EP1538393B1 - Vehicle headlight with vertical orientation - Google Patents

Vehicle headlight with vertical orientation Download PDF

Info

Publication number
EP1538393B1
EP1538393B1 EP04292799A EP04292799A EP1538393B1 EP 1538393 B1 EP1538393 B1 EP 1538393B1 EP 04292799 A EP04292799 A EP 04292799A EP 04292799 A EP04292799 A EP 04292799A EP 1538393 B1 EP1538393 B1 EP 1538393B1
Authority
EP
European Patent Office
Prior art keywords
reflector
optical axis
source
headlight according
ellipsoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04292799A
Other languages
German (de)
French (fr)
Other versions
EP1538393A1 (en
Inventor
Jean-Luc Meyrenaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Priority to PL04292799T priority Critical patent/PL1538393T3/en
Publication of EP1538393A1 publication Critical patent/EP1538393A1/en
Application granted granted Critical
Publication of EP1538393B1 publication Critical patent/EP1538393B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/337Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector having a structured surface, e.g. with facets or corrugations

Definitions

  • the invention relates to a projector for a motor vehicle, in particular a projector of the so-called “verticalized” type and comprising at least one reflector associated with at least one light source preferably placed in the vicinity of the focus of the reflector.
  • this term refers to a headlamp which, when mounted on the vehicle for which it is intended, has a height of dimension significantly greater than its width: it is a headlamp that extends mainly in a vertical direction once mounted, and is therefore significantly higher than wide (although it can be mounted not exactly vertical in the vehicle body).
  • This verticalization is generally induced by the arrangement of the reflector of the projector (of the main projector if there are several), also arranged in the projector so as to be higher than wide once on the vehicle.
  • the document US 4772987 shows a car headlamp with a lamp arranged parallel to the optical axis of the reflector.
  • the object of the invention is to provide a projector intended to equip vehicles, which, while retaining the advantages provided by a verticalized reflector projector, makes it possible to obtain better optical performances, in particular to obtain in a simple and effective manner a large beam width to illuminate the aisles.
  • the invention in the alternative, seeks to obtain a verticalized type of projector that can be compact in size, particularly with regard to its depth.
  • source is understood to mean the filament of the lamp when it is a filament lamp such as a halogen lamp.
  • the invention has thus devised a vehicle lighting device which combines two types of reflector: an ellipsoidal reflector associated with a lens of the type found, for example, in elliptical modules, and a verticalized reflector, preferably sharing the same focal length.
  • the ellipsoidal reflector will rather contribute to the overall beam in the definition of its width, while the verticalized reflector will be used more to define the range and possibly the cutoff of the overall beam.
  • the light source can be oriented in different ways with respect to the optical axis of the ellipsoidal reflector, especially by being able to maintain the same surface definitions of the reflectors, is quite innovative and advantageous, and allows more flexibility: a shallow projector may adopt a configuration where the lamp is obliquely oriented. A particular photometry is obtained, for example, only with an orientation of the source parallel to the optical axis. A parallel orientation generally makes it possible to obtain a wider beam, all other things being equal, than with an oblique orientation of the source. It may incidentally be noted that an orientation of the source parallel to the present optical axis the interest of identical mounting of the light source between the right projector and the left projector of the same vehicle.
  • the beam produced by the ellipsoidal reflector (R1) contributes to defining the width of the complete beam.
  • the beam produced by the verticalized reflector (R2) contributes to defining the range, and possibly the cutoff, of the complete beam.
  • the axis of the light source (S) is arranged in a substantially horizontal plane. Preferably, it makes an angle ⁇ between 45 ° and 80 °, in particular between 45 ° and 70 °, or about 45 ° with the optical axis (YY) of the ellipsoidal reflector (R1).
  • the surfaces of the verticalized reflector preferably have a focus in the vicinity of the light source.
  • the verticalized reflector may comprise ridges delimiting at least one central facet and two lateral facets inclined towards one another.
  • the beam produced by the verticalized reflector has an opening angle at most equal to ⁇ 15 ° on either side of the optical axis.
  • the beam produced by the ellipsoidal reflector has an opening angle of about ⁇ 40 ° on either side of the optical axis.
  • the plane passing through the axis of the light source (S) is substantially horizontal, the ellipsoidal reflector (R1) being located above this plane and the verticalized reflector (R2) being located below this plane.
  • the projector of the invention may be a crossover projector (or code) for a motor vehicle, in which case the ellipsoidal reflector has a cover located in the vicinity of the external focus so that the outgoing beam is essentially located below a level determined, while the verticalized reflector is provided to create a V cut corresponding to that of a passing beam.
  • the ellipsoidal reflector has a cover located in the vicinity of the external focus so that the outgoing beam is essentially located below a level determined, while the verticalized reflector is provided to create a V cut corresponding to that of a passing beam.
  • the cover may be located at the focus or behind the focus of the ellipsoidal reflector.
  • the upper edge of the cover is located below the horizontal plane passing through the optical axis of the reflector, in particular between 0 and 2 mm below, in particular between 0.5 and 1.8 mm or between 0.7 and 1.7 mm below, for example about 1.5 mm below.
  • the choice of this dimension depends on the definition of the ellipsoidal mirror. This arrangement of the cache is advantageous because it makes it possible to recover a non-interfering portion of additional luminous flux.
  • the cover can be constituted by a portion of cylinder with vertical generatrices, turning its concavity forward, according to the curvature of the field of the ellipsoidal reflector.
  • the cache may also have other geometric definitions, for example, being plane. The choice of its shape may depend on the chromaticism of the lens associated with the ellipsoidal mirror.
  • the optical axis of the lens is advantageously offset with respect to the optical axis of the ellipsoidal reflector, on the side of the notch.
  • the lens may be arranged in such a way that its focus is behind, in particular at the same level as the upper edge of the cover when it is present, and for example at about 0.5 to 2 mm backwards, for example 1, 5 mm behind the outer focus of the ellipsoidal reflector. This distance may depend, in particular, on the focal length of the lens and the definition of the ellipsoid. (The lens can also be exactly at the external focus). This configuration of the lens behind the external focus optimizes the recovery of the maximum light flux above the cut when there is a cache.
  • the ellipsoidal reflector may be located below the horizontal plane passing through the transverse axis of the light source and parallel to the optical axis of the reflector, while the verticalized projector is located above this plane.
  • the light source is a discharge lamp (or xenon lamp).
  • FIGS. 1 to 3 there can be seen a light projector P for a motor vehicle comprising a source S whose geometric axis is in a substantially horizontal plane and whose orientation with respect to the optical axis YY of the headlamp is variable.
  • Figure 1 shows an orientation of the source parallel to the optical axis, we will speak of axial orientation.
  • Figure 2 only symbolizes it in the form of a cross, which is the point where the center of the filament passes.
  • FIG. 3 represents the optical axis YY and the axis of the source XX, with two configurations of the source: one where the angle ⁇ that the two axes make is 0 °, and one according to the invention where the angle ⁇ that make the two axes between them is 45 °.
  • Source S may be constituted by a halogen lamp having a generally cylindrical filament.
  • this lamp in the case of a standard lamp H1 or H7 with axial filament, this lamp is mounted obliquely in the projector, whereas in the case of a standard lamp H3 with transverse filament, this lamp H3 is mounted obliquely. in the projector.
  • the source S may be constituted by a xenon lamp producing a generally cylindrical arc and in the axis of the lamp: everything then happens, within the meaning of the invention, as if we were dealing with a filament halogen lamp axial with respect to the orientation of the lamp.
  • ellipsoidal reflector is meant a reflector whose surface is defined from two foci respectively an internal focal point Fi and an external focus Fe, this surface approximating an ellipsoid without necessarily being exactly an ellipsoid.
  • the wall of the ellipsoidal reflector R1 in the case where a halogen lamp is used, comprises a notch 1 on one side of the plane passing through the geometric axis of the source S and parallel to the optical axis YY.
  • the plane in question is the horizontal plane passing through the geometric axis of the source S.
  • the notch 1 substantially corresponds to a section of the lower half of the reflector R1 by an oblique plane.
  • the cutting plane is slightly inclined from the left to the right of Fig.1.
  • the indentation 1 is bounded by two edges converging towards the rear of the source S. rear ends of the edges of the notch 1 are connected by a segment orthogonal to the axis YY.
  • the notch 1 is provided to let down, on the opposite side to the major part of the reflector R1, a maximum of light from the source S.
  • the optical axis of the ellipsoidal reflector R1 coincides with the optical axis Y-Y of the projector.
  • a lens 2, of optical axis parallel or coincident with the Y-axis, is placed in front of the reflector R1 in the direction of propagation of light.
  • the diameter of the lens 2 may be about 50 mm.
  • the lens 2 is preferably of small print ("draw" is the distance between the lens and the external focus Fe of R1).
  • the invention also applies to lenses of greater diameter, 60 or 70 mm.
  • the accessory elements of the projector including closing glass and auxiliary equipment for maintaining reflector, lens, light source and other parts, are not shown because known in themselves.
  • the focus 3 of the lens 2 is close to or coincides with the external focus Fe of the reflector R1.
  • the focus 3 of the lens is behind the external focus Fe of the lens 2 by a distance d, in particular about 1.5 mm.
  • the optical axis 4 of the lens 2 is located lower than the optical axis Y-Y.
  • the vertical distance h between the optical axis 4 of the lens 2 and the optical axis Y-Y is about 1.5 mm, which allows to recover more light flux from the reflector R1.
  • the filament of the lamp S can be located vertically above the internal focus Fi to increase the luminous flux from the ellipsoidal reflector R1.
  • the projector P is provided to provide the code function that is to say to provide a passing beam.
  • a cover 5 is arranged in the vicinity of the external focus Fe.
  • the cover 5 is constituted by an opaque wafer, for example metallic, maintained by any appropriate means. Due to the curvature of the field, the cover 5 is plane, and has a profile corresponding to the inverted image relative to the horizontal of the desired cut.
  • the upper edge of the cover 5 is located below the horizontal plane passing through YY, at a distance d of about 1 mm.
  • the cache dimensions are at most equal to the horizontal opening of the ellipsoid of the reflector R1.
  • a verticalized reflector R2 is disposed on the side of the indentation 1 opposite the major part of the ellipsoidal reflector R1.
  • the intersection of this verticalized reflector R2 by a vertical plane passing through the Y-Y axis is constituted by a curve arc adjacent to a parabola arc having a focal point close to the internal focal point Fi.
  • the surface of the reflector R2 is determined such that a light beam such as 6i from the source S is reflected in 6th in a direction parallel or substantially parallel to the Y-axis.
  • the verticalized reflector R2 is intended to give images of the source S centered on the Y-Y axis at infinity, that is to say at a distance of several tens of meters from the projector.
  • the verticalized reflector R2 is designed to focus the beam that it reflects in an opening angle at most equal to ⁇ 15 ° on either side of the optical axis Y-Y.
  • the reflector R2 may comprise streaks C1, C2 defining at least three facets, namely a central facet constituted by a cylindrical surface portion whose generatrices are horizontal and perpendicular to the plane of Figure 1, and two side facets slightly folded the towards each other with respect to the central facet.
  • the central facet of the verticalized reflector contributes essentially to the range of the beam, one of the lateral facets contributes to widen the beam reflected by R2 and the other side facet contributes to the range of the beam.
  • the housing of the projector for example has a rectangular contour, significantly higher than wide.
  • the ellipsoidal reflector R1 produces a light beam having an aperture angle of about ⁇ 40 ° on either side of the Y-Y optical axis.
  • the verticalized reflector R2 is provided to establish the V cut line, corresponding to the code regulations in Europe.
  • the operation of the projector P is as follows.
  • the ellipsoidal reflector R1 When the light source S is in operation, the ellipsoidal reflector R1 produces a beam of reduced range but wide, to illuminate the aisles.
  • This embodiment according to the invention relates to a 45 ° oblique configuration of the source, which is an H 7 lamp.
  • the isolux illumination curves of this beam on a screen perpendicular to the optical axis YY and located 25 m from the projector are represented in FIGS. 4 and 5, respectively corresponding to the portion of the beam coming from the verticalized reflector R2 and to the portion of the beam of the headlight coming from the ellipsoidal reflector R1.
  • the abscissa axis corresponds to the trace on the screen of the horizontal plane passing through the optical axis YY of the projector.
  • the graduations in% (percent) on this axis correspond to the tangent of the angle formed between the optical axis and the line passing through the focus of the projector and cutting the screen at the level of the graduation.
  • the ordinate axis corresponds to the trace on the screen of the vertical plane passing through the optical axis YY.
  • the percent (percent) scale of this vertical axis corresponds to the tangent of the angle formed between the horizontal plane passing through the optical axis and a line that passes through the focus of the projector and cuts the screen at the right place. graduation.
  • the isolux curves of the beam produced by the verticalized reflector delimit the specific V cut of a code beam.
  • the closed curve L1 of maximum illumination is located below the horizontal plane, and is shifted with respect to the vertical axis to the right, being under the oblique line of the cut.
  • This curve L1 is surrounded by a series of closed curves corresponding to increasingly weak illuminations. Some of these curves extend laterally up to ⁇ 15 °.
  • the isolux curve L1 corresponds, in the embodiment considered, to an illumination of 24 lux.
  • the maximum illumination is at the center of this curve.
  • the following isolux curves correspond to progressively decreasing illumination: 20 lux for L2, 16 lux for L3, 12 lux for L4, 6 lux for L5, 3.2 lux for L6.
  • FIG. 5 thus represents the part of the beam coming from the ellipsoidal reflector.
  • the isolux are much wider, which is sought as the main function of the mirror R1. This results in a beam illuminating the low sides and bringing comfort in front of the vehicle.
  • the curve V1 maximum illumination is essentially below the horizontal axis, and distributed on both sides of the vertical axis.
  • This example relates to an axial configuration of the source, which is an H 7 lamp.
  • the isolux illumination curves of this beam on a screen perpendicular to the optical axis YY and located 25 m from the projector are shown in FIGS. 6 and 7, respectively corresponding to the portion of the beam coming from the verticalized reflector R2 and to the portion of the beam of the projector from the ellipsoidal reflector R1.
  • the maximum isolux according to the Figure 7 is substantially in the horizontal plane, and distributed approximately symmetrically with respect to the vertical axis. The maximum value is 19.5 lux with regard to Figure 6.
  • FIGS. 8 and 9 illustrate the photometry of the global beams according to configurations 1 and 2.
  • the total flux according to example 1 in axial orientation of the source (FIG. 8) is 434.95 lumen. It is 352.16 lumens in the case of Example 2 in oblique orientation of the source ( Figure 9).
  • the advantage common to these two configurations is that, irrespective of the orientation, of the source, a clean cutoff V is obtained, satisfactory, with the mirror R2, and with a sufficient luminous flux. Note also the flux increases when the angle ⁇ goes from 45 to 0 °.
  • An axial orientation of the source therefore has the additional advantage of a larger flow than in oblique orientation: the flow gain is not negligible (about 25%).
  • the ellipsoidal reflector R1 is located mainly above the horizontal plane passing through the optical axis Y-Y of the headlamp, the notch 1 being located below this plane, as well as the verticalized reflector R2.
  • the invention applies not only to a crossing headlamp P as described, but also to other types of headlamps, including a headlamp.
  • the cache 5 is removed, and the surfaces of the mirror R2 are recalculated so as to center the maximum isolux on the point (0,0) of the isolux curve, point also called point HV.
  • the presence of the verticalized reflector R2 allows, in the case of a crossover projector with cover 5, a better flux efficiency compared to a projector with a single complete ellipsoidal reflector.
  • the flux gain is of the order of 25%, because the light beam produced by the verticalized reflector R2 is not reduced by the cover 5.
  • the invention makes it possible to adapt a projector according to the invention, the optical surfaces of the reflectors of which are fixed, according to dimensional or photometric constraints, by appropriately adjusting the orientation of the lamp with respect to the optical axis. which is simple, surprising and effective.

Abstract

The headlight has a xenon lamp placed near an internal focal point of an ellipsoidal mirror (R1) having a window (1) parallel to its optical axis. A lens (2) has a focal point (3) near an external focal point of the mirror (R1). A vertical mirror (R2) produces a light beam, not intercepted by the lens, from the lamp. The mirror (R1) produces a light beam added to the beam of the mirror (R2) to constitute a complete light beam. An independent claim is also included for a motor vehicle having a headlight.

Description

L'invention est relative à un projecteur pour véhicule automobile, notamment un projecteur du type dit " verticalisé " et comportant au moins un réflecteur associé à au moins une source lumineuse placée de préférence au voisinage du foyer du réflecteur. On entend sous ce terme, au sens de l'invention, un projecteur qui, une fois monté sur le véhicule auquel il est destiné, présente une hauteur de dimension significativement plus importante que sa largeur : c'est un projecteur qui s'étend principalement suivant une direction verticale une fois monté, et qui est donc significativement plus haut que large (même s'il peut être monté de façon non exactement verticale dans la carrosserie du véhicule). Cette verticalisation est généralement induite par la disposition du réflecteur du projecteur (du projecteur principal s'il y en a plusieurs), lui aussi disposé dans le projecteur de façon à être plus haut que large une fois sur le véhicule. Ces projecteurs dits " verticalisés " sont intéressants, d'abord car ils offrent de nouvelles possibilités en termes de performances optiques, ensuite car cela leur confère un style original.The invention relates to a projector for a motor vehicle, in particular a projector of the so-called "verticalized" type and comprising at least one reflector associated with at least one light source preferably placed in the vicinity of the focus of the reflector. Within the meaning of the invention, this term refers to a headlamp which, when mounted on the vehicle for which it is intended, has a height of dimension significantly greater than its width: it is a headlamp that extends mainly in a vertical direction once mounted, and is therefore significantly higher than wide (although it can be mounted not exactly vertical in the vehicle body). This verticalization is generally induced by the arrangement of the reflector of the projector (of the main projector if there are several), also arranged in the projector so as to be higher than wide once on the vehicle. These so-called "verticalized" projectors are interesting, first because they offer new possibilities in terms of optical performance, then because it gives them an original style.

Il est connu du brevet EP 0 933 585 et de la demande EP-A-1433999 un projecteur à source lumineuse disposée transversalement à l'axe optique du réflecteur auquel elle est associée, ce réflecteur étant de type " verticalisé " . Comme déjà explicité plus haut, on comprend par l'expression "réflecteur verticalisé", un réflecteur s'étendant principalement suivant la direction verticale, une fois le projecteur monté dans le véhicule, et dont la surface est déterminée pour réfléchir suivant une direction sensiblement horizontale des rayons lumineux provenant d'une source située au voisinage du foyer du réflecteur. Le projecteur selon le brevet EP 0 933 585 permet d'obtenir un faisceau de portée satisfaisante suivant l'axe optique du projecteur, avec une coupure nette du faisceau au-dessous d'un plan horizontal.It is known from the patent EP 0 933 585 and demand EP-A-1433999 a light source projector disposed transversely to the optical axis of the reflector with which it is associated, this reflector being of "verticalized" type. As already explained above, the term "verticalized reflector", a reflector extending mainly in the vertical direction, once the projector mounted in the vehicle, and whose surface is determined to reflect in a substantially horizontal direction light rays from a source located near the focus of the reflector. The projector according to the patent EP 0 933 585 allows to obtain a beam of satisfactory range along the optical axis of the projector, with a clear cut of the beam below a horizontal plane.

Toutefois la réalisation de l'éclairage des bas-côtés de la route est relativement délicate.However, the realization of the lighting of the side of the road is relatively delicate.

Le document US-4772987 montre un projecteur automobile avec une lampe disposée parallèlement à l'axe optique du réflecteur.The document US 4772987 shows a car headlamp with a lamp arranged parallel to the optical axis of the reflector.

L'invention a pour but de fournir un projecteur destiné à équiper des véhicules, qui, tout en conservant les avantages procurés par un projecteur à réflecteur verticalisé, permet d'obtenir de meilleures performances optiques, notamment d'obtenir de manière simple et efficace une grande largeur de faisceau pour éclairer les bas-côtés. L'invention, subsidiairement, cherche à obtenir un projecteur de type verticalisé qui puisse être de dimensions compactes, notamment en ce qui concerne sa profondeur.The object of the invention is to provide a projector intended to equip vehicles, which, while retaining the advantages provided by a verticalized reflector projector, makes it possible to obtain better optical performances, in particular to obtain in a simple and effective manner a large beam width to illuminate the aisles. The invention, in the alternative, seeks to obtain a verticalized type of projector that can be compact in size, particularly with regard to its depth.

Selon l'invention, un projecteur pour véhicule automobile du genre défini précédemment est caractérisé par le fait que :

  • une source lumineuse (S) est placée au voisinage du foyer interne (Fi) d'un réflecteur ellipsoïdal (R1), de façon à ce que l'axe de la source soit oblique par rapport à l'axe optique (YY) du réflecteur ellipsoïdal (R1) ;
  • la paroi du réflecteur ellipsoïdal (R1) comporte une échancrure (1) située d'un côté du plan qui passe par l'axe géométrique de la source lumineuse (S) et est parallèle à l'axe optique (Y-Y) du réflecteur ellipsoïdal (R1),
  • une lentille (2) d'axe optique parallèle ou confondu avec celui du réflecteur ellipsoïdal (R1 ) est placée en avant de ce réflecteur, le foyer (3) de la lentille étant voisin du foyer externe (Fe) du réflecteur ellipsoïdal,
  • et un réflecteur verticalisé (R2) est disposé du côté de l'échancrure (1 ) opposé à la majeure partie du réflecteur ellipsoïdal (R1), ce réflecteur verticalisé (R2) étant prévu pour produire, à partir de la source (S) logée dans le réflecteur ellipsoïdal, un faisceau lumineux qui n'est substantiellement pas intercepté par la lentille, le réflecteur ellipsoïdal (R1) donnant un faisceau venant s'additionner à celui produit par le réflecteur verticalisé (R2) pour constituer le faisceau complet produit par le projecteur.
According to the invention, a motor vehicle headlamp of the kind defined above is characterized by the fact that:
  • a light source (S) is placed in the vicinity of the internal focus (Fi) of an ellipsoidal reflector (R1), so that the axis of the source is oblique with respect to the optical axis (YY) of the reflector ellipsoidal (R1);
  • the wall of the ellipsoidal reflector (R1) has a notch (1) located on one side of the plane which passes through the geometric axis of the light source (S) and is parallel to the optical axis (YY) of the ellipsoidal reflector ( R1),
  • a lens (2) of optical axis parallel or coincident with that of the ellipsoidal reflector (R1) is placed in front of this reflector, the focus (3) of the lens being close to the external focus (Fe) of the ellipsoidal reflector,
  • and a verticalized reflector (R2) is disposed on the side of the notch (1) opposite the major part of the ellipsoidal reflector (R1), this verticalized reflector (R2) being provided to produce, from the source (S) housed in the ellipsoidal reflector, a light beam which is substantially not intercepted by the lens, the ellipsoidal reflector (R1) giving a beam coming to add to that produced by the verticalized reflector (R2) to constitute the complete beam produced by the projector.

On comprend par « source » le filament de la lampe quand il s'agit d'une lampe à filament type lampe halogène.The term "source" is understood to mean the filament of the lamp when it is a filament lamp such as a halogen lamp.

L'invention a ainsi conçu un dispositif d'éclairage pour véhicule qui associe deux types de réflecteur : un réflecteur ellipsoïdal associé à une lentille du type de celles que l'on trouve, par exemple, dans les modules elliptiques, et un réflecteur verticalisé, partageant de préférence la même focale. Le réflecteur ellipsoïdal va plutôt contribuer au faisceau global dans la définition de sa largeur, tandis que le réflecteur verticalisé va être utilisé davantage pour définir la portée et éventuellement la coupure du faisceau global. Le fait que l'on puisse orienter de différentes façons la source lumineuse par rapport à l'axe optique du réflecteur ellipsoïdal, surtout en pouvant conserver les mêmes définitions de surface des réflecteurs est tout à fait novateur et avantageux , et permet plus de souplesse : un projecteur qui devra être peu profond peut adopter une configuration où la lampe est d'orientation oblique. Une photométrie particulière n'est obtenue, par exemple, qu'avec une orientation de la source parallèle à l'axe optique. Une orientation parallèle permet généralement d'obtenir un faisceau plus large, toutes choses égales par ailleurs, qu'avec une orientation oblique de la source. On peut noter incidemment qu'une orientation de la source parallèle à l'axe optique présente l'intérêt d'un montage identique de la source lumineuse entre le projecteur droit et le projecteur gauche d'un même véhicule.The invention has thus devised a vehicle lighting device which combines two types of reflector: an ellipsoidal reflector associated with a lens of the type found, for example, in elliptical modules, and a verticalized reflector, preferably sharing the same focal length. The ellipsoidal reflector will rather contribute to the overall beam in the definition of its width, while the verticalized reflector will be used more to define the range and possibly the cutoff of the overall beam. The fact that the light source can be oriented in different ways with respect to the optical axis of the ellipsoidal reflector, especially by being able to maintain the same surface definitions of the reflectors, is quite innovative and advantageous, and allows more flexibility: a shallow projector may adopt a configuration where the lamp is obliquely oriented. A particular photometry is obtained, for example, only with an orientation of the source parallel to the optical axis. A parallel orientation generally makes it possible to obtain a wider beam, all other things being equal, than with an oblique orientation of the source. It may incidentally be noted that an orientation of the source parallel to the present optical axis the interest of identical mounting of the light source between the right projector and the left projector of the same vehicle.

Avantageusement, le faisceau produit par le réflecteur ellipsoïdal (R1) contribue à définir la largeur du faisceau complet. De même, de préférence, le faisceau produit par le réflecteur verticalisé (R2) contribue à définir la portée, et éventuellement la coupure, du faisceau complet.Advantageously, the beam produced by the ellipsoidal reflector (R1) contributes to defining the width of the complete beam. Likewise, preferably, the beam produced by the verticalized reflector (R2) contributes to defining the range, and possibly the cutoff, of the complete beam.

Avantageusement, l'axe de la source lumineuse (S) est disposé dans un plan substantiellement horizontal. De préférence, celui-ci fait un angle α compris entre 45° et 80°, notamment entre 45° et 70°, ou environ 45° avec l'axe optique (YY) du réflecteur ellipsoïdal (R1).Advantageously, the axis of the light source (S) is arranged in a substantially horizontal plane. Preferably, it makes an angle α between 45 ° and 80 °, in particular between 45 ° and 70 °, or about 45 ° with the optical axis (YY) of the ellipsoidal reflector (R1).

Les surfaces du réflecteur verticalisé ont de préférence un foyer se trouvant au voisinage de la source lumineuse. Le réflecteur verticalisé peut comporter des stries délimitant au moins une facette centrale et deux facettes latérales inclinées l'une vers l'autre.The surfaces of the verticalized reflector preferably have a focus in the vicinity of the light source. The verticalized reflector may comprise ridges delimiting at least one central facet and two lateral facets inclined towards one another.

De préférence, le faisceau produit par le réflecteur verticalisé a un angle d'ouverture au plus égal à ± 15° de part et d'autre de l'axe optique. Le faisceau produit par le réflecteur ellipsoïdal a un angle d'ouverture d'environ ± 40° de part et d'autre de l'axe optique.
Généralement le plan passant par l'axe de la source lumineuse (S) est substantiellement horizontal, le réflecteur ellipsoïdal (R1) étant situé au-dessus de ce plan et le réflecteur verticalisé (R2) étant situé au-dessous de ce plan.
Preferably, the beam produced by the verticalized reflector has an opening angle at most equal to ± 15 ° on either side of the optical axis. The beam produced by the ellipsoidal reflector has an opening angle of about ± 40 ° on either side of the optical axis.
Generally the plane passing through the axis of the light source (S) is substantially horizontal, the ellipsoidal reflector (R1) being located above this plane and the verticalized reflector (R2) being located below this plane.

Le projecteur de l'invention peut être un projecteur de croisement (ou code) pour véhicule automobile, auquel cas le réflecteur ellipsoïdal comporte un cache situé au voisinage du foyer externe de manière que le faisceau sortant soit essentiellement situé au-dessous d'un niveau déterminé, tandis que le réflecteur verticalisé est prévu pour créer une coupure en V correspondant à celle d'un faisceau de croisement.The projector of the invention may be a crossover projector (or code) for a motor vehicle, in which case the ellipsoidal reflector has a cover located in the vicinity of the external focus so that the outgoing beam is essentially located below a level determined, while the verticalized reflector is provided to create a V cut corresponding to that of a passing beam.

Le cache peut être situé au foyer ou en arrière du foyer du réflecteur ellipsoïdal. De préférence le bord supérieur du cache est situé au-dessous du plan horizontal passant par l'axe optique du réflecteur, en particulier entre 0 et 2 mm en dessous, notamment entre 0,5 et 1,8 mm ou entre 0,7 et 1,7 mm en dessous, par exemple à environ 1,5 mm au-dessous. Le choix de cette cote dépend de la définition du miroir ellipsoïdal. Cette disposition du cache est avantageuse, car elle permet de récupérer une portion non gênante de flux lumineux supplémentaire.The cover may be located at the focus or behind the focus of the ellipsoidal reflector. Preferably the upper edge of the cover is located below the horizontal plane passing through the optical axis of the reflector, in particular between 0 and 2 mm below, in particular between 0.5 and 1.8 mm or between 0.7 and 1.7 mm below, for example about 1.5 mm below. The choice of this dimension depends on the definition of the ellipsoidal mirror. This arrangement of the cache is advantageous because it makes it possible to recover a non-interfering portion of additional luminous flux.

Le cache peut être constitué par une portion de cylindre à génératrices verticales, tournant sa concavité vers l'avant, selon la courbure du champ du réflecteur ellipsoïdal. Le cache peut aussi avoir d'autres définitions géométriques, par exemple être plan. Le choix de sa forme peut dépendre du chromatisme de la lentille associée au miroir ellipsoïdal.The cover can be constituted by a portion of cylinder with vertical generatrices, turning its concavity forward, according to the curvature of the field of the ellipsoidal reflector. The cache may also have other geometric definitions, for example, being plane. The choice of its shape may depend on the chromaticism of the lens associated with the ellipsoidal mirror.

Le rayon de la portion de cylindre peut ainsi varier d'une valeur R=x, égal par exemple à 15 ou 30 mm, à R= infini suivant la courbure de champ.The radius of the cylinder portion can thus vary by a value R = x, for example equal to 15 or 30 mm, at R = infinite depending on the curvature of the field.

L'axe optique de la lentille est avantageusement décalé, par rapport à l'axe optique du réflecteur ellipsoïdal, du côté de l'échancrure.The optical axis of the lens is advantageously offset with respect to the optical axis of the ellipsoidal reflector, on the side of the notch.

La lentille peut être disposée de telle sorte que son foyer se trouve en arrière, notamment au même niveau que le bord supérieur du cache lorsqu'il est présent, et par exemple à environ 0,5 à 2 mm en arrière, par exemple 1,5 mm en arrière du foyer externe du réflecteur ellipsoïdal. Cette distance peut dépendre, notamment, de la focale de la lentille et de la définition de l'ellipsoïde. (La lentille peut se trouver également exactement au niveau du foyer externe). Cette configuration de la lentille en arrière du foyer externe permet d'optimiser la récupération du flux lumineux maximal au dessus de la coupure quand il y a un cache.The lens may be arranged in such a way that its focus is behind, in particular at the same level as the upper edge of the cover when it is present, and for example at about 0.5 to 2 mm backwards, for example 1, 5 mm behind the outer focus of the ellipsoidal reflector. This distance may depend, in particular, on the focal length of the lens and the definition of the ellipsoid. (The lens can also be exactly at the external focus). This configuration of the lens behind the external focus optimizes the recovery of the maximum light flux above the cut when there is a cache.

En variante, le réflecteur ellipsoïdal peut être situé au-dessous du plan horizontal passant par l'axe transversal de la source lumineuse et parallèle à l'axe optique du réflecteur, tandis que le projecteur verticalisé est situé au-dessus de ce plan. Cette disposition est avantageuse dans le cas où la source lumineuse est une lampe à décharge (ou lampe xénon).Alternatively, the ellipsoidal reflector may be located below the horizontal plane passing through the transverse axis of the light source and parallel to the optical axis of the reflector, while the verticalized projector is located above this plane. This arrangement is advantageous in the case where the light source is a discharge lamp (or xenon lamp).

L'invention sera décrite ci-après à l'aide d'exemples non limitatifs illustrés par les figures suivantes :

  • Fig.1 est une coupe schématique d'un projecteur par un plan vertical passant par l'axe optique.
  • Fig 2 est une vue schématique oblique du projecteur suivant la Fig.1.
  • Fig.3 est une coupe schématique dans un plan horizontal par lequel passe la source lumineuse du projecteur représenté aux figures précédentes.
  • Fig.4 illustre la photométrie du réflecteur verticalisé, avec une orientation à 45° de l'axe de la source lumineuse par rapport à l'axe optique (orientation " oblique ").
  • Fig.5 illustre la photométrie du réflecteur ellipsoïdal, avec une orientation à 45° par rapport à l'axe optique (orientation "oblique ")
  • Fig.6 illustre la photométrie d'un réflecteur verticalisé, avec une orientation à 0° par rapport à l'axe optique (orientation "axiale ").
  • Fig.7 illustre la photométrie d'un réflecteur ellipsoïdal, avec une orientation à 0° par rapport à l'axe optique (orientation "axiale ").
  • Fig.8 illustre la photométrie du faisceau global du projecteur, avec l'orientation à 0 ° de la source lumineuse (orientation "axiale ").
  • Fig.9 illustre la photométrie du faisceau global du projecteur, avec l'orientation à 45° de la source lumineuse (orientation "oblique ")
The invention will be described hereinafter with the aid of non-limiting examples illustrated by the following figures:
  • Fig.1 is a schematic sectional view of a projector by a vertical plane passing through the optical axis.
  • Fig 2 is an oblique schematic view of the projector according to Fig.1.
  • Fig.3 is a schematic section in a horizontal plane through which passes the light source of the projector shown in the preceding figures.
  • Fig.4 illustrates the photometry of the verticalized reflector, with a 45 ° orientation of the axis of the light source relative to the optical axis ("oblique" orientation).
  • Fig.5 illustrates the photometry of the ellipsoidal reflector, with a 45 ° orientation with respect to the optical axis ("oblique" orientation)
  • Fig.6 illustrates the photometry of a verticalized reflector, with an orientation at 0 ° with respect to the optical axis ("axial" orientation).
  • Fig.7 illustrates the photometry of an ellipsoidal reflector, with a 0 ° orientation with respect to the optical axis ("axial" orientation).
  • Fig.8 illustrates the photometry of the overall beam of the projector, with the 0 ° orientation of the light source ("axial" orientation).
  • Fig.9 illustrates the photometry of the overall beam of the headlamp, with the 45 ° orientation of the light source ("oblique" orientation)

En se reportant aux figures 1 à 3, on peut voir un projecteur lumineux P pour véhicule automobile comportant une source S, dont l'axe géométrique est dans un plan substantiellement horizontal et dont l'orientation par rapport à l'axe optique Y-Y du projecteur est variable. La figure 1 montre une orientation de la source parallèle à l'axe optique, on parlera alors d'orientation axiale. La figure 2 ne fait que la symboliser sous la forme d'une croix, qui est donc le point où passe le centre du filament . La figure 3 représente l'axe optique YY et l'axe de la source XX, avec deux configurations de la source : une où l'angle α que font les deux axes est de 0°, et une selon l'invention où l'angle α que font les deux axes entre eux est de 45°. Bien sûr, toute autre configuration où cet angle α est compris entre 45 et 80° est aussi possible. La source S peut être constituée par une lampe halogène ayant un filament généralement cylindrique. Selon l'invention, dans le cas d'une lampe normalisée H1 ou H7 à filament axial, cette lampe est montée obliquement dans le projecteur, tandis que dans le cas d'une lampe normalisée H3 avec filament transversal, cette lampe H3 est montée obliquement dans le projecteur.Referring to FIGS. 1 to 3, there can be seen a light projector P for a motor vehicle comprising a source S whose geometric axis is in a substantially horizontal plane and whose orientation with respect to the optical axis YY of the headlamp is variable. Figure 1 shows an orientation of the source parallel to the optical axis, we will speak of axial orientation. Figure 2 only symbolizes it in the form of a cross, which is the point where the center of the filament passes. FIG. 3 represents the optical axis YY and the axis of the source XX, with two configurations of the source: one where the angle α that the two axes make is 0 °, and one according to the invention where the angle α that make the two axes between them is 45 °. Of course, any other configuration where this angle α is between 45 and 80 ° is also possible. Source S may be constituted by a halogen lamp having a generally cylindrical filament. According to the invention, in the case of a standard lamp H1 or H7 with axial filament, this lamp is mounted obliquely in the projector, whereas in the case of a standard lamp H3 with transverse filament, this lamp H3 is mounted obliquely. in the projector.

En variante, la source S peut être constituée par une lampe xénon produisant un arc généralement cylindrique et dans l'axe de la lampe : tout se passe alors, au sens de l'invention, comme si on avait affaire à une lampe halogène à filament axial en ce qui concerne l'orientation de la lampe.Alternatively, the source S may be constituted by a xenon lamp producing a generally cylindrical arc and in the axis of the lamp: everything then happens, within the meaning of the invention, as if we were dealing with a filament halogen lamp axial with respect to the orientation of the lamp.

La source S est placée au voisinage du foyer interne Fi d'un réflecteur ellipsoïdal R1. Par "réflecteur ellipsoïdal" on désigne un réflecteur dont la surface est définie à partir de deux foyers respectivement un foyer interne Fi et un foyer externe Fe, cette surface se rapprochant d'un ellipsoïde sans être nécessairement exactement un ellipsoïde.The source S is placed in the vicinity of the internal focal point Fi of an ellipsoidal reflector R1. By "ellipsoidal reflector" is meant a reflector whose surface is defined from two foci respectively an internal focal point Fi and an external focus Fe, this surface approximating an ellipsoid without necessarily being exactly an ellipsoid.

La paroi du réflecteur ellipsoïdal R1, dans le cas où l'on utilise une lampe halogène, comporte une échancrure 1 d'un côté du plan passant par l'axe géométrique de la source S et parallèle à l'axe optique Y-Y. Dans l'exemple représenté, le plan en question est le plan horizontal passant par l'axe géométrique de la source S. L'échancrure 1 correspond sensiblement à une coupe de la moitié inférieure du réflecteur R1 par un plan oblique. Le plan de coupe est faiblement incliné de la gauche vers la droite de Fig.1. L'échancrure 1 est limitée par deux bords convergeant vers l'arrière de la source S. Les extrémités arrière des bords de l'échancrure 1 sont reliées par un segment orthogonal à l'axe Y-Y. L'échancrure 1 est prévue pour laisser passer vers le bas, du côté opposé à la majeure partie du réflecteur R1, un maximum de lumière provenant de la source S.The wall of the ellipsoidal reflector R1, in the case where a halogen lamp is used, comprises a notch 1 on one side of the plane passing through the geometric axis of the source S and parallel to the optical axis YY. In the example shown, the plane in question is the horizontal plane passing through the geometric axis of the source S. The notch 1 substantially corresponds to a section of the lower half of the reflector R1 by an oblique plane. The cutting plane is slightly inclined from the left to the right of Fig.1. The indentation 1 is bounded by two edges converging towards the rear of the source S. rear ends of the edges of the notch 1 are connected by a segment orthogonal to the axis YY. The notch 1 is provided to let down, on the opposite side to the major part of the reflector R1, a maximum of light from the source S.

L'axe optique du réflecteur ellipsoïdal R1 est confondu avec l'axe optique Y-Y du projecteur.The optical axis of the ellipsoidal reflector R1 coincides with the optical axis Y-Y of the projector.

Une lentille 2, d'axe optique parallèle ou confondu avec l'axe Y-Y, est placée en avant du réflecteur R1 suivant le sens de propagation de la lumière. Le diamètre de la lentille 2 peut être d'environ 50 mm. La lentille 2 est de préférence de faible tirage (par "tirage" on désigne la distance entre la lentille et le foyer externe Fe de R1). L'invention s'applique aussi à des lentilles de diamètre supérieur, de 60 ou 70 mm.A lens 2, of optical axis parallel or coincident with the Y-axis, is placed in front of the reflector R1 in the direction of propagation of light. The diameter of the lens 2 may be about 50 mm. The lens 2 is preferably of small print ("draw" is the distance between the lens and the external focus Fe of R1). The invention also applies to lenses of greater diameter, 60 or 70 mm.

Les éléments accessoires du projecteur, notamment glace de fermeture et équipements auxiliaires permettant de maintenir réflecteur, lentille, source lumineuse et autres pièces, ne sont pas représentés car connus en eux-mêmes.The accessory elements of the projector, including closing glass and auxiliary equipment for maintaining reflector, lens, light source and other parts, are not shown because known in themselves.

Le foyer 3 de la lentille 2 est voisin de, ou confondu avec, le foyer externe Fe du réflecteur R1. De préférence, le foyer 3 de la lentille se trouve en arrière du foyer externe Fe de la lentille 2 d'une distance d, notamment d'environ 1,5 mm.The focus 3 of the lens 2 is close to or coincides with the external focus Fe of the reflector R1. Preferably, the focus 3 of the lens is behind the external focus Fe of the lens 2 by a distance d, in particular about 1.5 mm.

Avantageusement, l'axe optique 4 de la lentille 2 est situé plus bas que l'axe optique Y-Y. En particulier, la distance verticale h entre l'axe optique 4 de la lentille 2 et l'axe optique Y-Y est d'environ 1,5 mm, ce qui permet de récupérer davantage de flux lumineux en provenance du réflecteur R1.Advantageously, the optical axis 4 of the lens 2 is located lower than the optical axis Y-Y. In particular, the vertical distance h between the optical axis 4 of the lens 2 and the optical axis Y-Y is about 1.5 mm, which allows to recover more light flux from the reflector R1.

Le filament de la lampe S peut être situé verticalement au-dessus du foyer interne Fi pour augmenter le flux lumineux issu du réflecteur ellipsoïdal R1.The filament of the lamp S can be located vertically above the internal focus Fi to increase the luminous flux from the ellipsoidal reflector R1.

Dans le cas représenté sur les figures 1 à 3, le projecteur P est prévu pour assurer la fonction code c'est-à-dire pour fournir un faisceau de croisement. Pour éviter que le faisceau lumineux provenant du réflecteur R1 ne comporte une partie située au-dessus du plan horizontal passant par l'axe Y-Y, un cache 5 est disposé au voisinage du foyer externe Fe. Le cache 5 est constitué par une plaquette opaque, par exemple métallique, maintenue par tout moyen approprié. En raison de la courbure du champ, le cache 5 est plan, et présente un profil correspondant à l'image inversé par rapport à l'horizontale de la coupure recherchée. Avantageusement, le bord supérieur du cache 5 est situé au-dessous du plan horizontal passant par Y-Y, à une distance d d'environ 1 mm. Les dimensions du cache sont au maximum égales à l'ouverture horizontale de l'ellipsoïde du réflecteur R1.In the case shown in Figures 1 to 3, the projector P is provided to provide the code function that is to say to provide a passing beam. To prevent the light beam coming from the reflector R1 having a part situated above the horizontal plane passing through the axis YY, a cover 5 is arranged in the vicinity of the external focus Fe. The cover 5 is constituted by an opaque wafer, for example metallic, maintained by any appropriate means. Due to the curvature of the field, the cover 5 is plane, and has a profile corresponding to the inverted image relative to the horizontal of the desired cut. Advantageously, the upper edge of the cover 5 is located below the horizontal plane passing through YY, at a distance d of about 1 mm. The cache dimensions are at most equal to the horizontal opening of the ellipsoid of the reflector R1.

Un réflecteur verticalisé R2 est disposé du côté de l'échancrure 1 opposé à la majeure partie du réflecteur ellipsoïdal R1. L'intersection de ce réflecteur verticalisé R2 par un plan vertical passant par l'axe Y-Y est constituée par un arc de courbe voisin d'un arc de parabole ayant un foyer voisin du foyer interne Fi. D'une manière générale, la surface du réflecteur R2 est déterminée de telle sorte qu'un rayon lumineux tel que 6i provenant de la source S soit réfléchi en 6e suivant une direction parallèle ou sensiblement parallèle à l'axe Y-Y.A verticalized reflector R2 is disposed on the side of the indentation 1 opposite the major part of the ellipsoidal reflector R1. The intersection of this verticalized reflector R2 by a vertical plane passing through the Y-Y axis is constituted by a curve arc adjacent to a parabola arc having a focal point close to the internal focal point Fi. In general, the surface of the reflector R2 is determined such that a light beam such as 6i from the source S is reflected in 6th in a direction parallel or substantially parallel to the Y-axis.

Le réflecteur verticalisé R2 est prévu pour donner des images de la source S centrées sur l'axe Y-Y à l'infini, c'est-à-dire à une distance de plusieurs dizaines de mètres du projecteur.The verticalized reflector R2 is intended to give images of the source S centered on the Y-Y axis at infinity, that is to say at a distance of several tens of meters from the projector.

En outre, le réflecteur verticalisé R2 est prévu pour concentrer le faisceau qu'il réfléchit dans un angle d'ouverture au plus égal à ± 15° de part et d'autre de l'axe optique Y-Y. Le réflecteur R2 peut comporter des stries C1, C2 déterminant au moins trois facettes, à savoir une facette centrale constituée par une portion de surface cylindrique dont les génératrices sont horizontales et perpendiculaires au plan de la figure 1, et deux facettes latérales légèrement repliées l'une vers l'autre par rapport à la facette centrale. La facette centrale du réflecteur verticalisé contribue essentiellement à la portée du faisceau, l'une des facettes latérale contribue à élargir le faisceau réfléchi par R2 et l'autre facette latérale contribue à la portée du faisceau.In addition, the verticalized reflector R2 is designed to focus the beam that it reflects in an opening angle at most equal to ± 15 ° on either side of the optical axis Y-Y. The reflector R2 may comprise streaks C1, C2 defining at least three facets, namely a central facet constituted by a cylindrical surface portion whose generatrices are horizontal and perpendicular to the plane of Figure 1, and two side facets slightly folded the towards each other with respect to the central facet. The central facet of the verticalized reflector contributes essentially to the range of the beam, one of the lateral facets contributes to widen the beam reflected by R2 and the other side facet contributes to the range of the beam.

Le boîtier du projecteur, non représenté, a par exemple un contour rectangulaire, nettement plus haut que large.The housing of the projector, not shown, for example has a rectangular contour, significantly higher than wide.

Le réflecteur ellipsoïdal R1 produit un faisceau lumineux ayant un angle d'ouverture d'environ ± 40° de part et d'autre de l'axe optique Y-Y.The ellipsoidal reflector R1 produces a light beam having an aperture angle of about ± 40 ° on either side of the Y-Y optical axis.

Dans l'exemple considéré d'un projecteur P destiné à produire un faisceau de croisement, le réflecteur verticalisé R2 est prévu pour établir la ligne de coupure en V, correspondant à la réglementation des codes en Europe.In the example of a projector P for producing a passing beam, the verticalized reflector R2 is provided to establish the V cut line, corresponding to the code regulations in Europe.

Le fonctionnement du projecteur P est le suivant.The operation of the projector P is as follows.

Lorsque la source lumineuse S est en fonctionnement, le réflecteur ellipsoïdal R1 produit un faisceau de portée réduite mais de grande largeur, permettant d'éclairer les bas-côtés.When the light source S is in operation, the ellipsoidal reflector R1 produces a beam of reduced range but wide, to illuminate the aisles.

Mode de réalisationMode of realization

Ce mode de réalisation selon l'invention se rapporte à une configuration oblique à 45° de la source, qui est une lampe H 7This embodiment according to the invention relates to a 45 ° oblique configuration of the source, which is an H 7 lamp.

Les courbes d'éclairement isolux de ce faisceau sur un écran perpendiculaire à l'axe optique Y-Y et situé à 25 m du projecteur sont représentées sur les figures 4 et 5, correspondant respectivement à la portion du faisceau provenant du réflecteur verticalisé R2 et à la portion du faisceau du projecteur provenant du réflecteur ellipsoïdal R1. L'axe des abscisses correspond à la trace sur l'écran du plan horizontal passant par l'axe optique Y-Y du projecteur. Les graduations en % (pour cent) sur cet axe correspondent à la tangente de l'angle formé entre l'axe optique et la droite passant par le foyer du projecteur et coupant l'écran au niveau de la graduation. L'axe des ordonnées correspond à la trace sur l'écran du plan vertical passant par l'axe optique Y-Y. Les graduations en % (pour cent) de cet axe vertical correspondent à la tangente de l'angle formé entre le plan horizontal passant par l'axe optique et une droite qui passe par le foyer du projecteur et coupe l'écran à l'endroit de la graduation.The isolux illumination curves of this beam on a screen perpendicular to the optical axis YY and located 25 m from the projector are represented in FIGS. 4 and 5, respectively corresponding to the portion of the beam coming from the verticalized reflector R2 and to the portion of the beam of the headlight coming from the ellipsoidal reflector R1. The abscissa axis corresponds to the trace on the screen of the horizontal plane passing through the optical axis YY of the projector. The graduations in% (percent) on this axis correspond to the tangent of the angle formed between the optical axis and the line passing through the focus of the projector and cutting the screen at the level of the graduation. The ordinate axis corresponds to the trace on the screen of the vertical plane passing through the optical axis YY. The percent (percent) scale of this vertical axis corresponds to the tangent of the angle formed between the horizontal plane passing through the optical axis and a line that passes through the focus of the projector and cuts the screen at the right place. graduation.

On voit, d'après la figure 4, que les courbes isolux du faisceau produit par le réflecteur verticalisé délimitent la coupure en V spécifique d'un faisceau code. La courbe fermée L1 d'éclairement maximal est située au-dessous du plan horizontal, et est décalée par rapport à l'axe vertical vers la droite, en se trouvant sous la ligne oblique de la coupure. Cette courbe L1 est entourée par une suite de courbes fermées correspondant à des éclairements de plus en plus faibles. Certaines de ces courbes s'étendent latéralement jusqu'à ± 15°.It can be seen from FIG. 4 that the isolux curves of the beam produced by the verticalized reflector delimit the specific V cut of a code beam. The closed curve L1 of maximum illumination is located below the horizontal plane, and is shifted with respect to the vertical axis to the right, being under the oblique line of the cut. This curve L1 is surrounded by a series of closed curves corresponding to increasingly weak illuminations. Some of these curves extend laterally up to ± 15 °.

La courbe isolux L1 correspond, dans le mode de réalisation considéré, à un éclairement de 24 lux. L'éclairement maximal se trouve au centre de cette courbe. Les courbes isolux suivantes correspondent à des éclairements qui diminuent progressivement : 20 lux pour L2, 16 lux pour L3, 12 lux pour L4, 6 lux pour L5, 3.2 lux pour L6.The isolux curve L1 corresponds, in the embodiment considered, to an illumination of 24 lux. The maximum illumination is at the center of this curve. The following isolux curves correspond to progressively decreasing illumination: 20 lux for L2, 16 lux for L3, 12 lux for L4, 6 lux for L5, 3.2 lux for L6.

La figure 5 représente donc la part du faisceau provenant cette fois du réflecteur ellipsoïdal. Les isolux sont nettement plus larges, ce que l'on recherche comme fonction principale du miroir R1. Cela se traduit par un faisceau éclairant les bas côtés et apportant du confort devant le véhicule. La courbe V1 d'éclairement maximal est essentiellement sous l'axe horizontal, et répartie de part et d'autres de l'axe vertical.FIG. 5 thus represents the part of the beam coming from the ellipsoidal reflector. The isolux are much wider, which is sought as the main function of the mirror R1. This results in a beam illuminating the low sides and bringing comfort in front of the vehicle. The curve V1 maximum illumination is essentially below the horizontal axis, and distributed on both sides of the vertical axis.

Exemple 2Example 2

Cet exemple se rapporte à une configuration axiale de la source, qui est une lampe H 7.This example relates to an axial configuration of the source, which is an H 7 lamp.

Les courbes d'éclairement isolux de ce faisceau sur un écran perpendiculaire à l'axe optique Y-Y et situé à 25 m du projecteur sont représentées sur les figures 6 et 7, correspondant respectivement à la portion du faisceau provenant du réflecteur verticalisé R2 et à la portion du faisceau du projecteur provenant du réflecteur ellipsoïdal R1. L'isolux maximum selon la figure 7 est substantiellement sous le plan horizontal, et réparti approximativement de façon symétrique par rapport à l'axe vertical. La valeur maximum est à 19,5 lux en ce qui concerne la figure 6..The isolux illumination curves of this beam on a screen perpendicular to the optical axis YY and located 25 m from the projector are shown in FIGS. 6 and 7, respectively corresponding to the portion of the beam coming from the verticalized reflector R2 and to the portion of the beam of the projector from the ellipsoidal reflector R1. The maximum isolux according to the Figure 7 is substantially in the horizontal plane, and distributed approximately symmetrically with respect to the vertical axis. The maximum value is 19.5 lux with regard to Figure 6.

Les figures 8 et 9 illustrent la photométrie des faisceaux globaux selon les configurations 1 et 2. Le flux total selon l'exemple 1 en orientation axiale de la source (figure 8) est de 434,95 lumen. Il est de 352,16 lumens dans le cas de l'exemple 2 en orientation oblique de la source (figure 9). L'avantage commun à ces deux configurations est que, quelle que soit l'orientation, de la source, on obtient un V de coupure net, satisfaisant, avec le miroir R2, et avec un flux lumineux suffisant. On remarque aussi le flux augmente quand l'angle α passe de 45 à 0°. Une orientation axiale de la source présente donc l'avantage supplémentaire d'un flux plus important qu'en orientation oblique : le gain de flux est non négligeable (environ 25%).FIGS. 8 and 9 illustrate the photometry of the global beams according to configurations 1 and 2. The total flux according to example 1 in axial orientation of the source (FIG. 8) is 434.95 lumen. It is 352.16 lumens in the case of Example 2 in oblique orientation of the source (Figure 9). The advantage common to these two configurations is that, irrespective of the orientation, of the source, a clean cutoff V is obtained, satisfactory, with the mirror R2, and with a sufficient luminous flux. Note also the flux increases when the angle α goes from 45 to 0 °. An axial orientation of the source therefore has the additional advantage of a larger flow than in oblique orientation: the flow gain is not negligible (about 25%).

Dans la description qui précède, le réflecteur ellipsoïdal R1 est situé principalement au-dessus du plan horizontal passant par l'axe optique Y-Y du projecteur, l'échancrure 1 étant située au-dessous de ce plan, de même que le réflecteur verticalisé R2.In the foregoing description, the ellipsoidal reflector R1 is located mainly above the horizontal plane passing through the optical axis Y-Y of the headlamp, the notch 1 being located below this plane, as well as the verticalized reflector R2.

Une disposition inverse est possible, c'est-à-dire avec le réflecteur verticalisé R2 au-dessus du plan horizontal passant par l'axe Y-Y et avec le réflecteur ellipsoïdal R1 en majeure partie au-dessous de ce plan. L'échancrure du réflecteur R1 se trouverait alors au-dessus du plan horizontal passant par Y-Y. Pour une telle disposition inversée, les surfaces réfléchissantes sont recalculées de manière à fournir les faisceaux souhaités. Une telle disposition inversée convient en particulier pour une source lumineuse S constituée par une lampe xenon.An inverse arrangement is possible, that is to say with the verticalized reflector R2 above the horizontal plane passing through the Y-axis and with the ellipsoidal reflector R1 largely below this plane. The notch of the reflector R1 would then be above the horizontal plane passing through Y-Y. For such an inverted arrangement, the reflective surfaces are recalculated to provide the desired beams. Such an inverted arrangement is particularly suitable for a light source S consisting of a xenon lamp.

L'invention s'applique non seulement à un projecteur de croisement P tel que celui qui a été décrit, mais aussi à d'autres types de projecteurs, notamment un projecteur de route. Dans ce dernier cas, le cache 5 est supprimé, et les surfaces du miroir R2 sont recalculées de façon à centrer l'isolux maximum sur le point (0,0) de la courbe d'isolux, point appelé également point HV.The invention applies not only to a crossing headlamp P as described, but also to other types of headlamps, including a headlamp. In the latter case, the cache 5 is removed, and the surfaces of the mirror R2 are recalculated so as to center the maximum isolux on the point (0,0) of the isolux curve, point also called point HV.

La présence du réflecteur verticalisé R2 permet, dans le cas d'un projecteur de croisement avec cache 5, un meilleur rendement en flux par rapport à un projecteur avec un seul réflecteur ellipsoïdal complet. Le gain en flux est de l'ordre de 25%, car le faisceau lumineux produit par le réflecteur verticalisé R2 n'est pas diminué par le cache 5.The presence of the verticalized reflector R2 allows, in the case of a crossover projector with cover 5, a better flux efficiency compared to a projector with a single complete ellipsoidal reflector. The flux gain is of the order of 25%, because the light beam produced by the verticalized reflector R2 is not reduced by the cover 5.

Avec un réflecteur verticalisé classique seul de dimensions équivalentes, il était relativement difficile d'assurer la largeur du faisceau et il fallait utiliser des réflexions sur les joues du miroir. Ces difficultés disparaissent avec la solution de l'invention puisque le réflecteur ellipsoïdal R1 assure l'étalement du faisceau. L'invention permet d'adapter un projecteur selon l'invention dont les surfaces optiques des réflecteurs sont figées, en fonction de contraintes dimensionnelles ou photométriques, en ajustant de façon appropriée l'orientation de la lampe par rapport à l'axe optique, ce qui est simple, surprenant et efficace.With only a conventional verticalized reflector of equivalent size, it was relatively difficult to ensure beam width and had to use reflections on the cheeks of the mirror. These difficulties disappear with the solution of the invention since the ellipsoidal reflector R1 spreads the beam. The invention makes it possible to adapt a projector according to the invention, the optical surfaces of the reflectors of which are fixed, according to dimensional or photometric constraints, by appropriately adjusting the orientation of the lamp with respect to the optical axis. which is simple, surprising and effective.

Claims (16)

  1. Headlight for a motor vehicle comprising at least one reflector and a source of light, characterised in that:
    - a source of light (S) is placed in the vicinity of the inner focal point (Fi) of an ellipsoid reflector (R1), such that the axis of the source is oblique relative to the optical axis (YY) of the ellipsoid reflector (R1);
    - the wall of the ellipsoid reflector (R1) comprises a cut-out (1) which is situated on one side of the plane which passes via the geometric axis of the source of light (S) and is parallel to the optical axis (Y-Y) of the ellipsoid reflector (R1);
    - a lens (2) with an optical axis which is parallel to, or combined with that of the ellipsoid reflector (R1) is placed to the front of this reflector, the focal point (3) of the lens being in the vicinity of the outer focal point (Fe) of the ellipsoid reflector; and
    - a verticalised reflector (R2) is disposed on the side of the cut-out (1) opposite the main part of the ellipsoid reflector (R1), this verticalised reflector (R2) being designed to produce from the source (S) which is contained in the ellipsoid reflector a light beam which is substantially not intercepted by the lens, the ellipsoid reflector (R1) providing a beam which is added to that produced by the verticalised reflector (R2) in order to constitute the complete beam produced by the headlight.
  2. Headlight according to claim 1, characterised in that the beam produced by the ellipsoid reflector (R1) contributes towards defining the width of the complete beam.
  3. Headlight according to either of the preceding claims, characterised in that the beam produced by the verticalised reflector (R2) contributes towards defining the range, and optionally the cut-off, of the complete beam.
  4. Headlight according to one of the preceding claims, characterised in that the axis of the source of light forms an angle α of between 45° and 80°, and in particular between 45 and 70° or approximately 45° with the optical axis (YY) of the ellipsoid reflector (R1).
  5. Headlight according to one of the preceding claims, characterised in that the surfaces of the verticalised reflector (R2) have a focal point which is in the vicinity of the source of light (S).
  6. Headlight according to one of the preceding claims, characterised in that the verticalised reflector (R2) comprises flutes delimiting at least one central facet and two lateral facets which are inclined towards one another.
  7. Headlight according to one of the preceding claims, characterised in that the beam produced by the verticalised reflector (R2) has an angle of opening which is equal to ±15° at the most on both sides of the optical axis.
  8. Headlight according to one of the preceding claims, characterised in that the beam produced by the ellipsoid reflector (R1) has an angle of opening of approximately ±40° on both sides of the optical axis.
  9. Headlight according to one of the preceding claims, characterised in that the ellipsoid reflector (R1) is situated above the plane which passes via the axis of the source of light (S), and the verticalised reflector (R2) being situated below this plane.
  10. Dipped headlight according to one of the preceding claims, characterised in that the ellipsoid reflector (R1) comprises a shield (5) which is situated in the vicinity of the outer focal point (Fe), such that the beam obtained from this reflector is situated substantially below a predetermined level, whereas the verticalised reflector (R2) is designed to create a cut-off in the form of a "V" corresponding to that of a dipped beam.
  11. Dipped headlight according to the preceding claim, characterised in that the upper edge of the mask (5) is situated below the plan which passes via the optical axis of the reflector, in particular between 0.5 and 1.8 mm, and more particularly approximately 1.5 mm below.
  12. Headlight according to one of the preceding claims, characterised in that the optical axis of the lens (2) is offset (h) relative to the optical axis (Y-Y) of the ellipsoid reflector, on the cut-out (1) side.
  13. Headlight according to one of the preceding claims, characterised in that the lens (2) is disposed such that its focal point (3) is to the rear, in particular approximately 0,5 to 2 mm to the rear, and more particularly approximately 1.5 mm to the rear of the outer focal point (Fe) of the ellipsoid reflector.
  14. Headlight according to one of the preceding claims, characterised in that the plane which passes via the transverse axis of the source of light (S) and parallel to the optical axis (Y-Y) of the ellipsoid reflector is horizontal, characterised in that the ellipsoid reflector (R1) is situated below the horizontal plane which passes via the transverse axis of the source of light (S) and parallel to the optical axis (Y-'Y) of the reflector, whereas the verticalised headlight (R2) is situated above this plane.
  15. Headlight according to one of the preceding claims, characterised in that the source of light (S) is a xenon lamp or an H1, H3 or H7 lamp.
  16. Motor vehicle characterised in that it comprises at least one headlight according to one of the preceding claims.
EP04292799A 2003-12-05 2004-11-26 Vehicle headlight with vertical orientation Not-in-force EP1538393B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04292799T PL1538393T3 (en) 2003-12-05 2004-11-26 Vehicle headlight with vertical orientation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0314320A FR2863342B1 (en) 2003-12-05 2003-12-05 VERTICALIZED PROJECTOR FOR MOTOR VEHICLE
FR0314320 2003-12-05

Publications (2)

Publication Number Publication Date
EP1538393A1 EP1538393A1 (en) 2005-06-08
EP1538393B1 true EP1538393B1 (en) 2007-06-13

Family

ID=34451733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04292799A Not-in-force EP1538393B1 (en) 2003-12-05 2004-11-26 Vehicle headlight with vertical orientation

Country Status (6)

Country Link
EP (1) EP1538393B1 (en)
AT (1) ATE364817T1 (en)
DE (1) DE602004006945T2 (en)
ES (1) ES2289456T3 (en)
FR (1) FR2863342B1 (en)
PL (1) PL1538393T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007031253B4 (en) * 2007-07-04 2013-03-28 Automotive Lighting Reutlingen Gmbh Compact ellipsoid headlight
DE102017113728A1 (en) * 2017-06-21 2018-12-27 Automotive Lighting Reutlingen Gmbh Motor vehicle headlamps

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3525041C2 (en) * 1985-07-13 1994-06-16 Bosch Gmbh Robert Low beam or fog lights for motor vehicles
JP2517368B2 (en) * 1988-09-27 1996-07-24 株式会社小糸製作所 Vehicle headlight and vehicle headlight device
DE3930746A1 (en) * 1989-09-14 1991-03-28 Hella Kg Hueck & Co HEADLIGHTS, ESPECIALLY FOR MOTOR VEHICLES
DE19756437A1 (en) * 1997-12-18 1999-06-24 Bosch Gmbh Robert Vehicle headlamp with high and dipped beam settings
FR2774150B1 (en) * 1998-01-28 2000-04-14 Valeo Vision CROSS-SOURCE PROJECTOR FOR A MOTOR VEHICLE, LIKELY TO TRANSMIT A BEAM WITH A CLEAR CUT
DE19860669B4 (en) * 1998-12-29 2007-08-23 Automotive Lighting Reutlingen Gmbh Vehicle headlights according to the projection principle
JP2001014908A (en) * 1999-06-28 2001-01-19 Stanley Electric Co Ltd Projector type headlight
JP3964089B2 (en) * 2000-01-12 2007-08-22 株式会社小糸製作所 Vehicle headlamp
JP3488960B2 (en) * 2000-02-18 2004-01-19 スタンレー電気株式会社 Vehicle headlights
EP1219887B1 (en) * 2000-12-25 2006-09-27 Stanley Electric Co., Ltd. Vehicle light capable of changing light distribution pattern between low-beam mode and high-beam mode by a movable shade and a reflecting surface
JP3779173B2 (en) * 2001-04-24 2006-05-24 株式会社小糸製作所 Vehicle headlamp
DE60202105T2 (en) * 2001-08-14 2005-12-01 Stanley Electric Co. Ltd. vehicle headlights
FR2849159B1 (en) * 2002-12-24 2005-02-18 Valeo Vision TRANSVERSE LUMINOUS SOURCE PROJECTOR FOR MOTOR VEHICLE

Also Published As

Publication number Publication date
EP1538393A1 (en) 2005-06-08
ATE364817T1 (en) 2007-07-15
PL1538393T3 (en) 2007-11-30
DE602004006945D1 (en) 2007-07-26
FR2863342A1 (en) 2005-06-10
ES2289456T3 (en) 2008-02-01
FR2863342B1 (en) 2007-01-05
DE602004006945T2 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
EP1686310B1 (en) Vertically oriented vehicle headlamp
EP1746340B1 (en) Optical module for a motor vehicle lighting device
EP1433999B1 (en) Motor vehicle headlamp with a transverse light source
EP1308669A1 (en) Projector-type headlamp for motor vehicles
EP3002504A2 (en) Lighting module for lighting and/or signalling of a motor vehicle
EP1600689B1 (en) Multifunction headlamp for motor vehicles
EP0628765B1 (en) Vehicle headlamp with ellipsoidal type light reflector
EP0256930A1 (en) Fog lamp with transverse filament for motor vehicles
EP1944542B1 (en) Double-function headlight for an automobile
EP1422471A2 (en) Elliptical vehicle headlamp emitting different light beams
EP1170547B2 (en) Elliptical-type headlight for road lighting with improved low photometry
EP2416061A2 (en) Cut-off lighting module with parabolic reflector placed over an elliptical reflector
FR2861832A1 (en) PROJECTOR FOR A MOTOR VEHICLE COMPRISING A LIGHT SOURCE FORMED BY A DISCHARGE LAMP
EP1538393B1 (en) Vehicle headlight with vertical orientation
FR2602306A1 (en) CROSS-ROAD PROJECTOR WITH TWO TRANSVERSAL FILAMENTS FOR MOTOR VEHICLE
EP2436968B1 (en) Light-emitting device for an automobile headlight
EP1739345B1 (en) Optical module for automotive vehicle
FR2578955A1 (en) Motor vehicle headlight incorporating a parabolic reflector and an elliptical reflector
FR2889289A1 (en) Illumination headlamp for motor vehicle, has bifocal lens with front convex faces to admit distinct focuses placed near ellipsoidal portion focuses whose distance is less than/equal to half of transversal dimension of headlamp front opening
EP2366941A2 (en) Lighting module with two reflectors having different focal lengths
EP1867914B1 (en) Headlight with dual light source for an automobile vehicle
FR2894647A1 (en) Projector for motor vehicles, e.g. a fog light, comprises a plano-convex lens and a lamp positioned so that its light source or filament is at the optical focus behind the planar back of the lens
FR2865021A1 (en) Headlight for motor vehicle, has light source with axis that is parallel to or oblique with respect to optical axis of verticalized reflector, where reflector cooperates with source for generating light beam
EP1870634A1 (en) Headlight with several lighting functions, in particular for an automobile vehicle
FR2803013A1 (en) SELECTIVE SPECIALIZED MOTOR VEHICLE PROJECTOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17P Request for examination filed

Effective date: 20051124

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004006945

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070613

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2289456

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070914

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

26N No opposition filed

Effective date: 20080314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

BERE Be: lapsed

Owner name: ALEO VISION

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20161019

Year of fee payment: 13

Ref country code: SK

Payment date: 20161018

Year of fee payment: 13

Ref country code: FR

Payment date: 20161130

Year of fee payment: 13

Ref country code: DE

Payment date: 20161115

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20161018

Year of fee payment: 13

Ref country code: ES

Payment date: 20161130

Year of fee payment: 13

Ref country code: IT

Payment date: 20161116

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004006945

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171126

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171126

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2424

Country of ref document: SK

Effective date: 20171126

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171126

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171126