EP1531917A2 - Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle - Google Patents

Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle

Info

Publication number
EP1531917A2
EP1531917A2 EP03753642A EP03753642A EP1531917A2 EP 1531917 A2 EP1531917 A2 EP 1531917A2 EP 03753642 A EP03753642 A EP 03753642A EP 03753642 A EP03753642 A EP 03753642A EP 1531917 A2 EP1531917 A2 EP 1531917A2
Authority
EP
European Patent Office
Prior art keywords
adsorbent
homogeneous
core
outer layer
adsorbent according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03753642A
Other languages
German (de)
English (en)
Inventor
Elsa Jolimaitre
Loic Rouleau
Olivier Ducreux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1531917A2 publication Critical patent/EP1531917A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3007Moulding, shaping or extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3223Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating by means of an adhesive agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3238Inorganic material layers containing any type of zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves

Definitions

  • the present invention relates to a non-homogeneous adsorbent consisting of at least one crystal formed by a core and at least one continuous outer layer, used in diffusion separation processes. Diffusion separation processes exploit the property of two molecules to be separated by difference in diffusion kinetics inside solids of different chemical composition.
  • An optimal adsorbent to achieve separations on an industrial scale such as the separation of oxygen and nitrogen from the air, the separation of argon from nitrogen and oxygen, the separation of paraffins monobranched dibranched paraffins must have, on the one hand, a significant difference in kinetics of diffusion between the molecules to be separated and, on the other hand, a good adsorption capacity.
  • homogeneous adsorbents that is to say made up of the same chemical composition throughout their volume; these homogeneous adsorbents generally have either good performance in terms of separation but have only a low adsorption capacity, this is the case in particular of silicalite of the MFI structural type, or have good adsorption capacities but do not allow not achieve the desired separation. It is also already known in the state of the art of non-homogeneous adsorbents formed by a core and an outer layer (FR-A1-2 794 993, EP-A1-1 080 771).
  • a peripheral adsorbent layer generally a zeolite.
  • the formulation of such adsorbents does not make it possible to improve the performance of the separation process in terms of adsorption capacity but only to reduce the diffusional resistance of the species adsorbed in the adsorbent particle so as to have adsorbent particles at high kinetics. In this case, it is a thermodynamic separation where the selectivity of the peripheral layer is thermodynamic.
  • the present invention proposes to provide a new non-homogeneous adsorbent having a substantially improved adsorption capacity compared to homogeneous adsorbents and non-homogeneous adsorbents whose central part does not play the role of adsorbent. Summary of the invention
  • the non-homogeneous adsorbent according to the invention consists of at least one crystal formed by a heart and at least one continuous outer layer and is characterized in that the heart of said adsorbent has a volume adsorption capacity representing at least 35% of the volume of the adsorbent and the outer layer has a diffusive selectivity greater than 5.
  • Said non-homogeneous adsorbent consists of crystals grouped in grains, each crystal having a core and at least one continuous outer layer having the characteristics defined above.
  • the core has a crystal size of between 0.1 ⁇ m and 0.4 mm and the continuous outer layer has a thickness of between 0.01 and 100 ⁇ m.
  • the constitution of the non-homogeneous adsorbent according to the invention into an adsorbent core and a continuous and selective outer layer within the crystal makes it possible to obtain an adsorbent having both a high adsorption capacity while ensuring good selectivity . Also, the adsorption capacity of the non-homogeneous adsorbent being high, the cost of the separation processes in which the non-homogeneous adsorbent is significantly reduced since mass of adsorbent required ⁇ a given separation is inversely proportional to the adsorption capacity. Invention therefore makes it possible to reduce the amount of adsorbent & use to carry out a separation.
  • the adsorbent according to the present invention is a non-homogeneous adsorbent consisting of at least one crystal formed from a central core or core and at least one outer layer of chemical composition or of crystalline structure different from that of the core. Said adsorbent being particularly suitable for the diffusional separation of fluids, it is essential that at least one outer layer of the adsorbent is continuous on the surface of the core of the adsorbent so that said core is not in direct contact with the fluid phase to be separated.
  • the core of the adsorbent according to the invention makes it possible to guarantee a good adsorption capacity for this adsorbent while at least one continuous outer layer on the surface of the core of the adsorbent ensures good diffusive selectivity.
  • the present invention also relates to a non-homogeneous adsorbent formed by a core and at least one continuous outer layer, characterized in that the core of said adsorbent has a volume adsorption capacity representing at least 35% of the volume of the adsorbent. and the layer external has a diffusive selectivity greater than 5.
  • the adsorption capacity expressed in the context of the present invention in% volume, can be assimilated as being the volume of adsorbent accessible to the molecule capable of being adsorbed per unit volume of the adsorbent at the temperature considered.
  • continuous outer layer is meant a homogeneous covering of uniform thickness on the surface of the core of the adsorbent.
  • Said continuous outer layer completely covers the core and is characterized by a significant diffusive selectivity with respect to the desired separation. Also, we can speak of a continuous and selective outer layer. It therefore has a significant diffusional resistance so as to allow only part of the molecules present in the mixture to be separated to pass, that is to say the least congested molecules which diffuse most rapidly.
  • Said continuous outer layer having a diffusive selectivity greater than 5, has an adsorption capacity lower than that of the core of the adsorbent according to the invention.
  • the core, completely covered by said continuous outer layer with high diffusive selectivity has a diffusive selectivity much lower than that of said layer.
  • Neither the core nor the continuous outer layer of the adsorbent according to the invention are catalytically active. They do not contain any catalytically active metal in order to avoid any reaction and / or conversion of the molecules in contact with the adsorbent.
  • the adsorbent according to the present invention consists of grains, each grain consisting of crystals.
  • each crystal is formed of a core having a volume adsorption capacity representing at least 35% of the volume of the adsorbent and of a continuous outer layer of diffusive selectivity greater than 5.
  • the composition of the core of a crystal is different from that of the continuous outer layer of this same crystal.
  • the non-homogeneity of the adsorbent according to the invention therefore lies at the level of the crystal (micrometer scale), each crystal having a non-homogeneous composition throughout their volume.
  • the adsorbent according to the invention can have several outer layers so as to form a multi-layer adsorbent. According to the invention, at least one of these layers completely coats the core so as to form a continuous outer layer on the surface of the core and such that it has a diffusive selectivity greater than 5.
  • the adsorbent according to the invention comprises advantageously a single continuous layer.
  • the volume adsorption capacity of the core of the adsorbent represents at least 40% of the volume of the adsorbent and even more preferably, it represents at least 45% of the volume of the adsorbent.
  • the diffusive selectivity of the continuous outer layer, completely covering the core of the adsorbent is preferably greater than ⁇ , preferably greater than 50, more preferably greater than 100 and even more preferably greater than 175.
  • the core of the adsorbent is partially or completely empty.
  • the volume adsorption capacity of the heart represents 100% of the volume of the adsorbent.
  • This implementation is particularly suitable for the separation of liquid mixtures.
  • the core of the adsorbent having a volume adsorption capacity representing at least 35% of the volume of the adsorbent is formed of an adsorbent material consisting of a microporous crystalline solid having a pore diameter of between 0.1 and 20 nm or of a crystallized mesoporous solid having a pore diameter of 20 to 500 nm.
  • crystallized microporous solids it is possible to choose, for example, ceramics, clays, pillar clays, active carbon, silicas, aluminas, silica-aluminas, zeolites such as zeolites belonging to the structural type FAU (zeolite X, zeolite Y), with the structural type BEA (zeolite beta).
  • the solids MCM-41 and MCM-48 are particularly preferred.
  • any porous, crystalline or amorphous heterostructure having a pore size of between 0.1 nm and 500 nm and having a volume adsorption capacity representing at least 35% of the volume of the adsorbent, preferably at least 40% of the volume of the adsorbent, and very preferably at least 45% of the volume of the adsorbent is suitable for forming the core of the adsorbent.
  • the size of the crystals constituting the core of the adsorbent according to the invention is advantageously between 0.1 ⁇ m and 0.4 mm, more advantageously between 0.2 and 50 ⁇ m and even more advantageously between 0.5 and 5 ⁇ m.
  • the core of the adsorbent has negligible diffusion resistance.
  • the continuous outer layer having a diffusive selectivity greater than 5, consists of a crystalline microporous solid having a pore diameter of between 0.1 and 20 nm, preferably between 0.1 and 10 nm and even more preferably between 0.1 and 5 nm.
  • active charcoals for example, active charcoals, silicas, aluminas, aluminophosphates, zeolites exchanged or not with different cations, zeolites treated at the surface or with a surface deposit (organometallic type), metallosilicates such as aluminosilicates , borosilicates and titanosilicates and metallophosphates such as aluminophosphates, gallophosphates and zincophosphates.
  • organometallic type metallosilicates such as aluminosilicates , borosilicates and titanosilicates and metallophosphates such as aluminophosphates, gallophosphates and zincophosphates.
  • the thickness of the continuous outer layer having a diffusive selectivity greater than 5 and entirely surrounding the core of the adsorbent can be variable depending on the adsorbents and also for an adsorbent determined according to the molecules to be separated and the experimental conditions, in particular temperature, pressure, speed of circulation of the fluid.
  • the thickness of said outer layer is between 0.01 and 100 ⁇ m and even more preferably between 0.1 and 10 ⁇ m. It is particularly advantageous for the core to have a size of between 0.2 and 50 ⁇ m and for at least one continuous outer layer to have a thickness of between 0.01 and 100 ⁇ m, ie a maximum size of the crystals of the non-adsorbent. -homogeneous according to the invention of 150 ⁇ m.
  • the core of the adsorbent represents at least 10% and at most 99% of the total volume of the non-homogeneous adsorbent according to the invention, preferably it represents between 20 and 90% and even more preferably it represents between 40 and 85% of the total volume of said adsorbent.
  • the radius of the core represents at least 40% of the total radius of the adsorbent, more advantageously it represents at least 60% and even more advantageously it represents at least 70% of the total radius of the adsorbent.
  • the adsorbent according to the invention is in spherical form.
  • the solid which constitutes the core of the adsorbent has a larger pore size than that of the solid which constitutes the continuous outer layer.
  • zeolitic solids for the core and the continuous outer layer.
  • Said zeolitic solids differ in their structural type and / or in the chemical composition of their crystalline framework and / or in the nature of the compensating cations.
  • the zeolites used as constituent of the core of the adsorbent are zeolites of structural type FAU, in particular zeolite Y and zeolite X, zeolites of structural type BEA, in particular zeolite beta, zeolites of structural type EUO , in particular the EU-1 zeolite and the zeolites of the TON structural type, in particular the ZSM-22 zeolite.
  • the zeolites used as constituting the continuous outer layer are preferably zeolites having the structural type MFI, in particular the silicalite zeolite. Associations of zeolitic solids to form the whole core / continuous outer layer are very advantageously the associations zeolite Y / silicalite, zeolite X / silicalite, zeolite beta / silicalite, zeolite Y / zeolite EU-1, zeolite X / zeolite EU -1, Y zeolite / ZS-22 zeolite and X zeolite / ZSM-22 zeolite.
  • each of the crystals included in the adsorbent according to the invention is not a determining parameter for the implementation of said adsorbent. They can in particular be in the form of a sphere, a cylinder or an ellipsoid.
  • the preparation of the non-homogeneous adsorbent according to the invention consists in ⁇ forming one or more layers of solids, at least one of which is continuous and selective, on a solid with a high adsorption capacity constituting the heart of the adsorbent according to the invention or on an organic support material, easily decomposable by thermal or chemical treatment and thus leaving in the case of this decomposition a very large void volume.
  • Said organic support material can for example be polystyrene.
  • At least one of said layers completely coats the core of the adsorbent so as to form a continuous and selective outer layer having a diffusive selectivity greater than 5.
  • This continuous and selective outer layer consists of a crystalline microporous solid, for example of an MFI structural type zeolite.
  • the core of the adsorbent can be made from one of the materials mentioned above.
  • the non-homogeneous adsorbent according to the invention can, for example, be prepared by a process comprising: a) the adhesion of selective nanocrystals of zeolites to solid crystals constituting the core with optionally chemical bonding agents ( grafting agent) or electrostatic (surface charge reversal agent).
  • This adhesion can be carried out in one or more operations, for example in an agitated and aqueous medium, for example after a preliminary treatment of the solid constituting the core with a chemical or electrostatic bonding agent, b) the growth of selective zeolites, with optionally the deposition or the prior formation of nanocrystals playing the role of germs allowing seeding, facilitating growth and adhering for example by the above method.
  • This growth can be carried out in one or more operations, for example in an agitated and aqueous medium under hydrothermal conditions with the sources of the elements necessary for the crystallization of the zeolites, for example after the deposition of nanocrystals of the desired zeolite.
  • the zeolite nanocrystals can be synthesized by the so-called “clear solution” method as described in the article by V. Valtchev et al (J. Mater. Chem, 2002, 12, 1914-1918).
  • the electrostatic bonding agents can be cationic polymers such as those described by V. Valtchev et al, in particular Rediflock 4150® (AKZO Nobel) and Berocell 6100® (AKZO Nobel) (Zeolites and Mesoporous Materials at the Dawn of the 21 st Century ", Proceedings of the 13 International Zeolite ConfInter, France, 8-13 July 2001, Studies in Surface Science and Catalysis, vol 135, p298).
  • the solid constituting the core can possibly undergo various treatments before the deposition of the layer.
  • modification treatments conventional thermal and chemical known to those skilled in the art can be considered, in particular, calcination operations to remove for example the organic structuring agent and ion exchange operations to bring the zeolites into the desired cationic form.
  • Surface treatments may possibly be carried out to extract the elements harmful to the formation of this layer, to promote the reactivity of the core or the anchoring of the crystals of this layer. These treatments can also include the adsorption of specific charge inversion or grafting agents to ensure the adhesion of the crystals of the layer.
  • thermal and chemical modification operations can be carried out, for example to decompose the structuring agents, or the organic bonding agents, or the organic support material if one is used, and to put the zeolites in their desired cationic form.
  • the non-homogeneous adsorbent can be shaped by techniques known to those skilled in the art, in particular granulation or extrusion, with a binder.
  • the shaping is advantageously followed by drying and calcination.
  • These shaped solids can undergo thermal and chemical treatments, such as those described above, before use in the adsorption processes.
  • the solid constituting the core of the adsorbent is chosen so as to give the adsorbent according to the invention the required dimensions.
  • the thickness of the continuous and selective outer layer is ensured by controlling the adhesion conditions, in particular the number of steps.
  • the adsorbent according to the invention can be used in all separation processes using diffusive selectivity as the driving force of the separation and using adsorption separation techniques well known to those skilled in the art carried out by pressure effect (PSA or Pressure Swing Adsorption), by temperature effect (TSA or Temperature Swing Adsorption), by a mixture of both temperature and pressure effects (PTSA or Pressure and Temperature Swing Adsorption), by vacuum effect (VSA or Vacuum Swing Adsorption) or CCS (against simulated current), reactive CCS.
  • PSA or Pressure Swing Adsorption pressure effect
  • TSA or Temperature Swing Adsorption temperature effect
  • PTSA or Pressure and Temperature Swing Adsorption a mixture of both temperature and pressure effects
  • VSA or Vacuum Swing Adsorption vacuum effect
  • CCS against simulated current
  • the adsorbent according to the invention is advantageously used in gas or vapor separation processes. It is also successfully used in liquid separation processes. It is preferably used for the separation of paraffinic isomers according to the degree of branching (normal, mono-, di-, tri-branched species) and very preferably for the separation of monobranched paraffins from dibranched paraffins.
  • Example 1 preparation of a non-homogeneous adsorbent according to the invention.
  • a non-homogeneous adsorbent is prepared in which the core consists of X zeolite (structural type faujasite) and the outer layer consists of silicalite-1 (structural type MFI).
  • the layer of silicalite-1 is formed on the crystals of zeolite X by growth after adhesion of nanocrystals of silicalite-1.
  • Zeolite X is synthesized according to the method described by R.W. Thompson et al (Zeolites,
  • the gel is prepared from a solution of sodium silicate, sodium aluminate and triethanolamine according to the formulation 4.76 Na20 - 1.0 Al2O3 - 3.5 SiO2 - 454 H2O - 2 TEA
  • the sodium aluminate solution is prepared by dissolving soda (Aldrich) and then aluminum wires (Aldrich) in deionized water. Triethanolamine (Aldrich) is added to this solution to stabilize it.
  • the sodium silicate solution is obtained by diluting sodium metasilicate nonahydrate (Fischer) in deionized water. The two solutions are mixed vigorously to form the gel.
  • the gel is introduced into a 125 ml autoclave under autogenous pressure, at 115 ° C for 24 h to ensure crystallization.
  • the solid is recovered by filtration, washed abundantly on the filter with deionized water and dried in an oven at 60 ° C for 12 h in air.
  • the solid is in the form of X zeolite crystals (FAU type) with a purity of 95% according to the analysis by X-ray diffraction. The average size of the crystals is close to 6 ⁇ m.
  • silicalite-1 nanocrystals were synthesized by the so-called "clear solution” method described in the article by V. Valtchev et al (J. Mater. Chem, 2002, 12, 1914-1918).
  • the gel is prepared from a solution. tetraethylorthosilicate, tetrapropylammonium hydroxide according to the formulation:
  • Tetraethylorthosilicilicate (Merck) is diluted in deionized water. This solution is vigorously mixed with that of tetrapropylammonium hydroxide (Merck, 20% wt) and leave stirring for 14 h at room temperature, to promote hydrolysis of the silicon source, producing ethanol (EtOH).
  • the gel obtained is introduced into a 125 ml autoclave at 60 ° C for 3 weeks to ensure crystallization.
  • the solid is in the form of crystals of silicalite-1 zeolite (MFI type) with a purity of 99% according to X-ray diffraction analysis and with a size of the order of 100 nm according to microscopy. electronic transmission.
  • MFI type silicalite-1 zeolite
  • Silicalite-1 nano-crystals are adhered to zeolite X by charge inversion of zeolite X with a cationic polymer according to the method described in the article de V. Valtchev (Zeolites and Mesoporous Materials ConfInterval, France, 8-13 July 2001, Studies in Surface Science and catalysis, vol 135, 298).
  • the charge reversal polymer (Rediflock 4150, Akzo) is adsorbed on the zeolite in aqueous solution.
  • the dispersion of nanocrystals of silicalite-1 is mixed with that of zeolite X adsorbed with the cationic polymer.
  • the growth of the silicalite-1 crystals is carried out by three hydrothermal operations at 95 ° C. for 24 h in a 125 ml autoclave with the gel leading to the nanocrystals of silicalite-1. After each hydrothermal operation, the solid in suspension is recovered by filtration and washed abundantly on a filter with deionized water. The solid resulting from the three hydrothermal growth operations is dried in an oven at 60 ° C.
  • the calcination treatment is carried out so as to limit the deterioration of the layer, under a nitrogen-oxygen gas mixture, with 5% vol O2, at 500 ° C. for 2 h.
  • the product thus obtained has the two zeolitic phases silicalite-1 and X according to X-ray diffraction and consists of an outer layer of continuous and selective silicalite-1 nanocrystals with a thickness of 1 ⁇ m, on zeolite X crystals, 6 ⁇ m in diameter.
  • Example 2 Separation of mono / dibranched paraffins.
  • the performances of a homogeneous adsorbent, tested to carry out the separation of 3-methylpentane (3MP) and of 2,2 dimethylbutane (22DMB) are compared with those obtained with the non-homogeneous adsorbent prepared according to example 1, tested for the separation of the same molecules.
  • Table 1 adsorption and diffusion properties of 3MP and 22DMB in zeolite X and in silicalite
  • Table 1 clearly shows that the X zeolite has a very good adsorption capacity for the molecules which it is desired to separate, but little diffusional selectivity. Conversely, silicalite has very good diffusive selectivity for the two paraffins, but an adsorption capacity more than 3 times lower than that of zeolite X. Finally, the diffusion coefficients of 3MP and 22DMB are much higher in zeolite X than in silicalite.
  • the adsorption capacity of the non-homogeneous adsorbent is calculated by the formula
  • qs - qs siUcaU , e ⁇ -qs smcalite where qs x and qs si , i C aiite are respectively the adsorption capacities of zeolite X and silicalite at 200 ° C and R cX and Rc s ii .c ai . te are the rays of zeolite X and silicalite respectively.
  • the radius of the core of the adsorbent represents 75% of the total radius of non-homogeneous adsorbent, which gives a volume adsorption capacity representing 29.4% of the volume of the adsorbent, i.e. an increase in the adsorption capacity 62.7% compared to that of silicalite.
  • the adsorption capacity of the non-homogeneous adsorbent is therefore 1.627 times greater than that of the homogeneous adsorbent.
  • Table 2 shows the characteristic diffusion times for 3MP and 22DMB in the homogeneous adsorbent consisting of silicalite (not in accordance with the invention) and in the non-homogeneous adsorbent consisting of a core in X zeolite and a outer layer of silicalite (according to the invention). These characteristic times are defined in the case of a sphere
  • R 2 by the formula -, where R c is the radius of the sphere and D the diffusion coefficient, and represent the average time required for the molecule to travel the characteristic distance of the solid studied.
  • Table 2 characteristic diffusion times of 3MP and 2,2-DMB in the two adsorbents studied.
  • the characteristic diffusion times of 3MP and 22DMB are the same in the two adsorbents.
  • the diffusion of these molecules in the zeolite X being very fast, the diffusional resistance induced by the presence of this solid in the non-homogeneous adsorbent is negligible.
  • the two adsorbents are therefore identical in terms of diffusional separation selectivity. Consequently, the non-homogeneous adsorbent according to the invention makes it possible to maintain the properties of diffusional selectivity while doubling the adsorption capacities of the homogeneous adsorbent.

Abstract

On décrit un adsorbant non-homogène formé d'un coeur et d'au moins une couche extérieure continue dans lequel le coeur dudit adsorbant présente une capacité d'adsorption volumique représentant au moins 35% du volume de l'adsorbant et la couche extérieure présente une sélectivité diffusionnelle supérieure à 5. L'adsorbant est utilisé dans des procédés de séparation de gaz ou des procédés de séparation de liquides.

Description

ADSORBANT NON HOMOGENE ET SON UTILISATION DANS DES PROCEDES DE
SEPARATION DIFFUSIONNELLE
Domaine technique
La présente invention se rapporte à un adsorbant non-homogène constitué d'au moins un cristal formé d'un cœur et d'au moins une couche extérieure continue, utilisé dans des procédés de séparation diffusionnelle. Les procédés de séparation diffusionnelle exploitent la propriété de deux molécules à être séparées par différence de cinétique de diffusion à l'intérieur de solides de composition chimique différente.
Etat de la technique antérieure
Un adsorbant optimal pour réaliser des séparations à l'échelle industrielle telles que la séparation de l'oxygène et de l'azote de l'air, la séparation de l'argon de l'azote et de l'oxygène, la séparation de paraffines monobranchées des paraffines dibranchées doit présenter, d'une part, une différence de cinétique de diffusion importante entre les molécules à séparer et, d'autre part, une bonne capacité d'adsorption.
Il est connu dans l'état de la technique des adsorbants homogènes, c'est-à-dire constitués d'une même composition chimique dans tout leur volume ; ces adsorbants homogènes présentent généralement soit de bonnes performances en terme de séparation mais n'ont qu'une faible capacité d'adsorption, tel est le cas notamment de la silicalite de type structural MFI, soit présentent de bonnes capacités d'adsorption mais ne permettent pas de réaliser la séparation souhaitée. II est déjà également connu dans l'état de la technique des adsorbants non-homogènes formés d'un cœur et d'une couche extérieure (FR-A1-2 794 993, EP-A1-1 080 771). La partie centrale de tels adsorbants non-homogènes n'est que faiblement adsorbante voire ne l'est pas du tout et est recouverte, au moins en partie, d'une couche périphérique adsorbante, généralement une zéolithe. La formulation de tels adsorbants ne permet pas d'améliorer les performances du procédé de séparation en terme de capacité d'adsorption mais uniquement de diminuer la résistance diffusionnelle des espèces adsorbées dans la particule d'adsorbant de façon à disposer de particules d'adsorbant à cinétique élevée. Il s'agit dans ce cas d'une séparation thermodynamique où la sélectivité de la couche périphérique est thermodynamique. La présente invention se propose de fournir un nouvel adsorbant non- homogène présentant une capacité d'adsorption sensiblement améliorée par rapport aux adsorbants homogènes et aux adsorbants non-homogènes dont la partie centrale ne joue pas le rôle d'adsorbant. Résumé de l'invention
L'adsorbant non-homogène selon l'invention est constitué d'au moins un cristal formé d'un cœur et d'au moins une couche extérieure continue et est caractérisé en ce que le cœur dudit adsorbant présente une capacité d'adsorption volumique représentant au moins 35 % du volume de l'adsorbant et la couche extérieure présente une sélectivité diffusionnelle supérieure à 5. Ledit adsorbant non-homogène est constitué de cristaux regroupés en grains, chaque cristal présentant un cœur et au moins une couche extérieure continue ayant les caractéristiques définies ci-dessus. De préférence, le cœur présente une taille de cristaux comprise entre 0,1 μm et 0,4 mm et la couche extérieure continue présente une épaisseur comprise entre 0,01 et 100 μm.
Intérêt de l'invention
La constitution de l'adsorbant non-homogène selon l'invention en un cœur adsorbant et une couche extérieure continue et sélective au sein du cristal permet d'obtenir un adsorbant présentant à la fois une capacité d'adsorption élevée tout en assurant une bonne sélectivité. Aussi, la capacité d'adsorption de l'adsorbant non-homogène étant élevée, le coût des procédés de séparation dans lesquels l'adsorbant non-homogène est utilisé s'en trouve significativement réduit puisque masse d'adsorbant nécessaire φ une séparation donnée est inversement proportionnelle à la capacité d'adsorption. L'inyention permet donc de diminuer la quantité d'adsorbant & utiliser pour réaliser une séparation.
Exposé de l'invention
L'adsorbant selon la présente invention est un adsorbant non-homogène constitué d'au moins un cristal formé d'un cœur ou noyau central et d'au moins une couche extérieure de composition chimique ou de structure cristalline différente de celle du cœur. Ledit adsorbant étant tout particulièrement adapté pour la séparation diffusionnelle de fluides, il est essentiel qu'au moins une couche extérieure de l'adsorbant soit continue sur la surface du cœur de l'adsorbant afin que ledit cœur ne soit pas en contact direct avec la phase fluide à séparer. Le cœur de l'adsorbant selon l'invention permet de garantir une bonne capacité d'adsorption à cet adsorbant tandis qu'au moins une couche extérieure continue sur la surface du cœur de l'adsorbant permet d'assurer une bonne sélectivité diffusionnelle. Aussi la présente invention concerne un adsorbant non-homogène formé d'un cœur et d'au moins une couche extérieure continue caractérisé en ce que le cœur dudit adsorbant présente une capacité d'adsorption volumique représentant au moins 35 % du volume de l'adsorbant et la couche extérieure présente une sélectivité diffusionnelle supérieure à 5. La capacité d'adsorption, exprimée dans le cadre de la présente invention en % volume, peut être assimilée comme étant le volume d'adsorbant accessible à la molécule susceptible d'être adsorbée par unité de volume de l'adsorbant à la température considérée. Par couche extérieure continue, il faut entendre un recouvrement homogène et d'épaisseur uniforme sur la surface du cœur de l'adsorbant. Ladite couche extérieure continue recouvre intégralement le cœur et se caractérise par une importante sélectivité diffusionnelle vis-à-vis de la séparation souhaitée. Aussi, on peut parler de couche extérieure continue et sélective. Elle présente en conséquence une résistance diffusionnelle importante de façon à ne laisser passer qu'une partie des molécules présentes dans le mélange à séparer, c'est-à-dire les molécules les moins encombrées qui diffusent le plus rapidement. Ladite couche extérieure continue, ayant une sélectivité diffusionnelle supérieure à 5, présente une capacité d'adsorption inférieure à celle du cœur de l'adsorbant selon l'invention. Le cœur, totalement recouvert par ladite couche extérieure continue à forte sélectivité diffusionnelle, présente une sélectivité diffusionnelle bien inférieure à celle de ladite couche. Ni le cœur ni la couche extérieure continue de l'adsorbant selon l'invention sont actifs catalytiquement. Ils ne contiennent aucun métal catalytiquement actif afin d'éviter toute réaction et/ou conversion des molécules au contact de l'adsorbant.
Plus précisément, l'adsorbant selon la présente invention est constitué de grains, chaque grain étant constitué de cristaux. Conformément à l'invention, chaque cristal est formé d'un cœur ayant une capacité d'adsorption volumique représentant au moins 35% du volume de l'adsorbant et d'une couche extérieure continue de sélectivité diffusionnelle supérieure à 5. Selon l'invention, la composition du cœur d'un cristal est différente de celle de la couche extérieure continue de ce même cristal. La non-homogénéité de l'adsorbant selon l'invention se situe donc au niveau du cristal (échelle du micromètre), chaque cristal présentant une composition non-homogène dans tout leur volume.
L'adsorbant selon l'invention peut présenter plusieurs couches extérieures de manière à former un adsorbant multi-couche. Conformément à l'invention, au moins une de ces couches enrobe totalement le cœur de façon à former une couche extérieure continue sur la surface du cœur et telle qu'elle présente une sélectivité diffusionnelle supérieure à 5. L'adsorbant selon l'invention comporte avantageusement une seule couche continue. De manière préférée, la capacité d'adsorption volumique du cœur de l'adsorbant représente au moins 40 % du volume de l'adsorbant et de manière encore plus préférée, elle représente au moins 45 % du volume de l'adsorbant. La sélectivité diffusionnelle de la couche extérieure continue, recouvrant intégralement le cœur de l'adsorbant, est de préférence supérieure à θ, de manière préférée supérieure' à 50, de manière plus préférée supérieure à 100 et de manière encore plus préférée supérieure à 175.
Selon un mode de réalisation de l'invention, le cœur de l'adsorbant est partiellement ou totalement vide. Dans le cas où le cœur est entièrement vide, la capacité d'adsorption volumique du cœur représente 100% du volume de l'adsorbant. Cette mise en œuvre est particulièrement adaptée pour la séparation de mélanges liquides.
Selon un autre mode de réalisation de l'invention, le cœur de l'adsorbant présentant une capacité d'adsorption volumique représentant au moins 35 % du volume de l'adsorbant est formé d'un matériau adsorbant constitué d'un solide microporeux cristallisé ayant un - diamètre de pores compris entre 0,1 et 20 nm ou d'un solide mésoporeux cristallisé ayant un diamètre de pores de 20 à 500 nm. Parmi les solides microporeux cristallisés, on peut choisir par exemple des céramiques, des argiles, des argiles à piliers, des charbons actifs, des silices, des alumines, des silices-alumines, des zéolithes telles que les zéolithes appartenant au type structural FAU (zéolithe X, zéolithe Y), au type structural BEA (zéolithe beta). Parmi les solides mésoporeux cristallisés, les solides MCM-41 et MCM-48 sont particulièrement préférés. De façon générale, toute hétérostructure poreuse, cristallisée ou amorphe, ayant une taille de pores comprise entre 0,1 nm et 500 nm et ayant une capacité d'adsorption volumique représentant au moins 35 % du volume de l'adsorbant, de préférence au moins 40 % du volume de l'adsorbant, et de manière très préférée au moins 45 % du volume de l'adsorbant convient pour former le cœur de l'adsorbant. La taille des cristaux constituant le cœur de l'adsorbant selon l'invention, est avantageusement comprise entre 0,1 μm et 0,4 mm, de manière plus avantageuse comprise entre 0,2 et 50 μm et de manière encore plus avantageuse comprise entre 0,5 et 5 μm. Le cœur de l'adsorbant présente une résistance diffusionnelle négligeable. Indépendamment de la nature chimique du cœur, c'est-à-dire indépendamment de la présence d'un cœur partiellement ou entièrement vide ou d'un cœur formé d'un solide cristallisé, la couche extérieure continue, présentant une sélectivité diffusionnelle supérieure à 5, est constituée d'un solide microporeux cristallisé ayant un diamètre de pores compris entre 0,1 et 20 nm, de préférence entre 0,1 et 10 nm et de manière encore plus préférée entre 0,1 et 5 nm. Il s'agit par exemple des charbons actifs, des silices, des alumines, des aluminophosphates, des zéolithes échangées ou non avec différents cations, des zéolithes traitées en surface ou avec un dépôt de surface (type organométallique), des métallosilicates tels que les aluminosilicates, les borosilicates et les titanosilicates et des métallophosphates tels que les aluminophosphates, les gallophosphates et les zincophosphates. L'épaisseur de la couche extérieure continue présentant une sélectivité diffusionnelle supérieure à 5 et entourant entièrement le cœur de l'adsorbant peut être variable selon les adsorbants et également pour un adsorbant déterminé en fonction des molécules à séparer et des conditions expérimentales, notamment de la température, de la pression, de la vitesse de circulation du fluide. De préférence, l'épaisseur de ladite couche extérieure est comprise entre 0,01 et 100 μm et de manière encore plus préférée entre 0,1 et 10 μm. Il est particulièrement avantageux que le cœur présente une taille comprise entre 0,2 et 50 μm et qu'au moins une couche extérieure continue présente une épaisseur comprise entre 0,01 et 100 μm, soit une taille maximale des cristaux de l'adsorbant non-homogène selon l'invention de 150 μm. Avantageusement, le cœur de l'adsorbant représente au moins 10 % et au maximum 99% du volume total de l'adsorbant non-homogène selon l'invention, de manière préférée il en représente entre 20 et 90% et de manière encore plus préférée il représente entre 40 et 85% du volume total dudit adsorbant. Dans le cas où l'adsorbant se présente sous forme sphérique ou cylindrique, le rayon du cœur représente au moins 40% du rayon total de l'adsorbant, de manière plus avantageuse il en représente au moins 60% et de manière encore plus avantageuse il représente au moins 70% du rayon total de l'adsorbant. De préférence, l'adsorbant selon l'invention se présente sous forme sphérique. De façon avantageuse et conformément à l'invention, le solide qui constitue le cœur de l'adsorbant présente une taille de pores plus importante que celle du solide qui constitue la couche extérieure continue.
Pour la mise en œuvre de l'adsorbant selon l'invention, il est préféré d'utiliser pour le cœur et la couche extérieure continue des solides zéolithiques. Lesdits solides zéolithiques diffèrent par leur type structural et/ou par la composition chimique de leur charpente cristalline et/ou par la nature des cations compensateurs. De manière préférée, les zéolithes utilisées comme constituant du cœur de l'adsorbant sont les zéolithes de type structural FAU, notamment la zéolithe Y et la zéolithe X, les zéolithes de type structural BEA, notamment la zéolithe beta, les zéolithes de type structural EUO, notamment la zéolithe EU-1 et les zéolithes de type structural TON, notamment la zéolithe ZSM-22. Les zéolithes utilisées comme constituant la couche extérieure continue sont de préférence des zéolithes ayant le type structural MFI, notamment la zéolithe silicalite. Des associations de solides zéolithiques pour former l'ensemble coeur/couche extérieure continue sont de manière très avantageuse les associations zéolithe Y/silicalite, zéolithe X/silicalite, zéolithe beta/silicalite, zéolithe Y/zéolithe EU-1 , zéolithe X/zéolithe EU-1 , zéolithe Y/zéolithe ZS -22 et zéolithe X/zéolithe ZSM-22.
La forme de chacun des cristaux compris dans l'adsorbant selon l'invention n'est pas un paramètre déterminant pour la mise en œuvre dudit adsorbant. Ils peuvent notamment se trouver sous la forme de sphère, de cylindre ou d'ellipsoïde. La préparation de l'adsorbant non-homogène selon l'invention consiste à~ former une ou plusieurs couches de solides, dont l'une au moins est continue et sélective, sur un solide à forte capacité d'adsorption constituant le cœur de l'adsorbant selon l'invention ou sur un matériau support organique, facilement décomposable par un traitement thermique ou chimique et laissant ainsi dans le cas de cette décomposition un volume de vide très important. Ledit matériau support organique peut par exemple être le polystyrène. L'une au moins desdites couches enrobe totalement le cœur de l'adsorbant de façon à former une couche extérieure continue et sélective présentant une sélectivité diffusionnelle supérieure à 5. Cette couche extérieure continue et sélective est constituée d'un solide microporeux cristallisé, par exemple d'une zéolithe de type structurale MFI. Le cœur de l'adsorbant peut être constitué de l'un des matériaux cités plus haut.
L'adsorbant non-homogène selon l'invention peut, par exemple, être préparé par un procédé comprenant : a) l'adhésion de nano-cristaux de zéolithes sélectives sur des cristaux de solides constituant le cœur avec éventuellement des agents de liaison chimique (agent de greffage) ou électrostatique (agent d'inversion de charge de surface). Cette adhésion peut être réalisée en une ou plusieurs opérations, par exemple en milieu agité et aqueux, par exemple après un traitement préalable du solide constituant le coeur avec un agent de liaison chimique ou électrostatique, b) la croissance de zéolithes sélectives, avec éventuellement le dépôt ou la formation préalable de nano-cristaux jouant le rôle de germes permettant l'ensemencement, facilitant la croissance et adhères par exemple par la méthode ci-dessus. Cette croissance peut être réalisée en une ou plusieurs opérations, par exemple en milieu agité et aqueux sous conditions hydrothermales avec les sources des éléments nécessaires à la cristallisation des zéolithes, par exemple après le dépôt de nano-cristaux de la zéolithe recherchée.
Les nano-cristaux de zéolithe peuvent être synthétisés par la méthode dite de « solution claire» telle qu'elle est décrite dans l'article de V. Valtchev et al (J. Mater. Chem, 2002, 12, 1914-1918). Les agents de liaison électrostatique peuvent être des polymères cationiques tels que ceux décrits par V. Valtchev et al, notamment le Rediflock 4150® (AKZO Nobel) et le Berocell 6100® (AKZO Nobel) (Zeolites and Mesoporous Materials at the Dawn of the 21 st Century", Proceedings of the 13 International Zeolite Conférence, Montpellier, France, 8-13 July 2001 , Studies in Surface Science and Catalysis, vol 135, p298).
Le solide constituant le cœur peut éventuellement subir divers traitements avant le dépôt de la couche. Pour les zéolithes et matériaux mésoporeux, des traitements de modifications thermiques et chimiques classiques connues de l'homme du métier peuvent être envisagés, en particulier, des opérations de calcination pour évacuer par exemple le structurant organique et des opérations d'échanges ioniques pour mettre les zéolithes sous la forme cationique recherchée. Des traitements de surface peuvent éventuellement être opérés pour extraire les éléments néfastes à la formation de cette couche, pour favoriser la réactivité du coeur ou l'ancrage des cristaux de cette couche. Ces traitements peuvent également comprendre l'adsorption d'agents spécifiques d'inversion de charge ou de greffage pour assurer l'adhésion des cristaux de la couche. Après formation de la couche, des opérations de modifications thermiques et chimiques peuvent être conduites, pour décomposer par exemple les agents structurants, ou les agents de liaison organique, ou le matériau support organique s'il en est utilisé un, et pour mettre les zéolithes sous leur forme cationique recherchée.
L'adsorbant non-homogène peut être mis en forme par les techniques connues de l'homme du métier, en particulier la granulation ou l'extrusion, avec un liant. La mise en forme est avantageusement suivie d'un séchage et d'une calcination. Ces solides mis en forme peuvent subir des traitements thermiques et chimiques, tels que ceux décrits ci-dessus, avant utilisation dans les procédés d'adsorption.
Le solide constituant le coeur de l'adsorbant est choisi de manière à conférer à l'adsorbant selon l'invention les dimensions requises. L'épaisseur de la couche extérieure continue et sélective est assurée par le contrôle des conditions d'adhésion, en particulier le nombre d'étapes.
L'adsorbant selon l'invention peut être utilisé dans tous les procédés de séparation faisant appel à la sélectivité diffusionnelle comme force motrice de la séparation et utilisant des techniques de séparation par adsorption bien connues de l'Homme du métier se réalisant par effet de pression (PSA ou Pressure Swing Adsorption), par effet de température (TSA ou Température Swing Adsorption), par un mixte des deux effets de température et de pression (PTSA ou Pressure and Température Swing Adsorption), par effet du vide (VSA ou Vacuum Swing Adsorption) ou en CCS (contre courant simulé), CCS réactif.
L'adsorbant selon l'invention est avantageusement utilisé dans des procédés de séparation de gaz ou de vapeur. Il est également utilisé avec succès dans des procédés de séparation de liquides. Il est de préférence utilisé pour la séparation d'isomères paraffiniques selon le degré de ramification (espèces normales, mono-, di-, tri-branchées) et de manière très préférée pour la séparation des paraffines monobranchées des paraffines dibranchées. EXEMPLES
Exemple 1 : préparation d'un adsorbant non-homogène selon l'invention.
On prépare un adsorbant non-homogène dans lequel le cœur est constitué de zéolithe X (type structural faujasite) et la couche extérieure est constituée d'une silicalite-1 (type structural MFI).
La couche de silicalite-1 est formée sur les cristaux de zéolithe X par croissance après adhésion de nano-cristaux de silicalite-1.
Synthèse de la zéolithe X :
La zéolithe X est synthétisée selon la méthode décrite par R.W. Thompson et al (Zeolites,
1993, vol 13, 645-653). Le gel est préparé à partir d'une solution de silicate de sodium, d'aluminate de sodium et de triéthanolamine selon la formulation 4,76 Na20 - 1 ,0 AI2O3 - 3,5 SiO2 - 454 H2O - 2 TEA
La solution d'aluminate de sodium est préparée par dissolution de soude (Aldrich) puis de fils d'aluminium (Aldrich) dans de l'eau permutée. La triéthanolamine (Aldrich) est ajoutée à cette solution pour la stabiliser. La solution de silicate de sodium est obtenue par dilution de métasilicate de sodium nonahydraté (Fischer) dans l'eau permutée. Les deux solutions sont mélangées vigoureusement pour former le gel.
Le gel est introduit dans un autoclave de 125 ml sous pression autogène, à 115°C pendant 24 h pour assurer la cristallisation. Le solide est récupéré par filtration, lavé abondamment sur le filtre à l'eau permutée et séché en étuve à 60°C pendant 12 h sous air. Le solide se présente sous forme de cristaux de zéolithe X (de type FAU) avec une pureté de 95 % d'après l'analyse par diffraction des rayons X. La taille moyenne des cristaux est voisine de 6 μm.
Synthèse de nano-cristaux de silicalite-1 : Les nano-cristaux de silicalite-1 ont été synthétisés par la méthode dite de "solution claire" décrite dans l'article de V. Valtchev et al (J. Mater. Chem, 2002, 12, 1914-1918).
Le gel est préparé à partir d'une solution . de tétraéthylorthosilicate, d'hydroxyde de tétrapropylammonium selon la formulation :
9 TPAOH - 25 SiO2 - 480 H2O - 100E.OH Le tétraéthylorthosilicilicate (Merck) est dilué dans l'eau permutée. Cette solution est mélangée vigoureusement à celle d'hydroxyde de tétrapropylammonium (Merck, 20 % pds) et laisser sous agitation pendant 14 h à température ambiante, pour favoriser l'hydrolyse de la source de silicium, produisant l'éthanol (EtOH).
Le gel obtenu est introduit dans un autoclave de 125 ml à 60°C pendant 3 semaines pour assurer la cristallisation. Le solide est récupéré par ultracentrifugation puis lavé par de multiples dispersions dans une solution d'ammoniaque (0,1 M NH3, pH=9,5) et dispersé dans cette solution à 2 % pds de zéolithe. Le solide se présente sous forme de cristaux de zéolithe silicalite-1 (de type MFI) avec une pureté de 99 % d'après l'analyse par diffraction des rayons X et de taille de l'ordre de 100 nm d'après la microscopie électronique à transmission.
Adsorption et croissance des cristaux de silicalite- 1 sur les cristaux de zéolithe X : Les nano-cristaux de silicalite-1 sont adhères sur la zéolithe X par inversion de charge de la zéolithe X avec un polymère cationique selon la méthode décrite dans l'article de V. Valtchev (Zeolites and Mesoporous Materials Conférence, Montpellier, France, 8-13 July 2001 , Studies in Surface Science and catalysis, vol 135, 298).
Le polymère d'inversion de charge (Rediflock 4150, Akzo) est adsorbé sur la zéolithe en solution aqueuse. La dispersion de nano-cristaux de silicalite-1 est mélangée à celle de zéolithe X adsorbée avec le polymère cationique. La croissance des cristaux de silicalite-1 est effectuée par trois opérations hydrothermales à 95°C pendant 24 h en autoclave de 125 ml avec le gel conduisant aux nano-cristaux de silicalite-1. Après chaque opération hydrothermale, le solide en suspension est récupéré par filtration et lavé abondamment sur filtre à l'eau permutée. Le solide issu des trois opérations de croissance hydrothermale est séché en étuve à 60°C pendant 12 h et soumis à un traitement de calcination pour extraire le structurant organique présent dans la porosité de la couche de silicalite-1 et nécessaire à sa formation. Le traitement de calcination est effectué de manière à limiter la détérioration dé la couche, sous un mélange gazeux azote-oxygène, avec 5 % vol O2, à 500°C pendant 2 h.
Le produit ainsi obtenu présente les deux phases zéolithiques silicalite-1 et X d'après la diffraction des rayons X et se compose d'une couche extérieure de nano-cristaux de silicalite-1 continue et sélective d'épaisseur de 1 μm, sur des cristaux de zéolithe X, de diamètre de 6 μm.
Exemple 2 : Séparation de paraffines mono/dibranchées. Application à la séparation du 3-méthylpentane (3-MP) et du 2,2 diméthylbutane (22DMB) Les performances d'un adsorbant homogène, testé pour réaliser la séparation du 3- méthylpentane (3MP) et du 2,2 diméthylbutane (22DMB), sont comparées à celles obtenues avec l'adsorbant non-homogène préparé selon l'exemple 1 , testé pour la séparation des mêmes molécules. L'adsorbant homogène est entièrement constitué de zéolithe silicalite et se présente sous la forme d'une sphère de rayon R = 1 μm.
Les principales propriétés d'adsorption et de diffusion des molécules que l'on souhaite séparer, à savoir le 3-méthylpentane (3MP) et le 2,2 diméthylbutane (22DMB), dans les deux adsorbants étudiés sont notées dans le tableau 1.
Tableau 1 : propriétés d'adsorption et de diffusion du 3MP et du 22DMB dans la zéolithe X et dans la silicalite
Le tableau 1 montre clairement que la zéolithe X possède une très bonne capa itφ d'adsorption pour les molécules que l'on souhaite séparer, mais peu de sélectjvit^ diffusionnelle. A l'inverse la silicalite présente une très bonne sélectivité diffusionnelle pour les deux paraffines, mais une capacité d'adsorption plus de 3 fois inférieure à celle de la zéolithe X. Enfin, les coefficients de diffusion du 3MP et du 22DMB sont beaucoup plus élevés dans la zéolithe X que dans la silicalite.
La capacité d'adsorption de l'adsorbant non-homogène se calcule par la formule
qs — qs siUcaU,e ~-qssmcalite ) , où qsx et qssi,iCaiite sont respectivement les capacités d'adsorption de la zéolithe X et de la silicalite à 200°Ç et RcX et Rcsii.cai.te sont respectivement les rayons de la zéolithe X et de la silicalite.
Dans cet exemple, le rayon du cœur de l'adsorbant représente 75% du rayon total de adsorbant non-homogène, ce qui donne une capacité d'adsorption volumique représentant 29,4 % du volume de l'adsorbant, soit une augmentation de la capacité d'adsorption de 62,7% par rapport à celle de la silicalite. La capacité d'adsorption de l'adsorbant non- homogène est donc 1 ,627 fois plus importante que celle de l'adsorbant homogène.
Calcul des propriétés diffusionnelles :
Le tableau 2 présente les temps caractéristiques de diffusion du 3MP et du 22DMB dans l'adsorbant homogène constitué de silicalite (non conforme à l'invention) et dans l'adsorbant non-homogène constitué d'un cœur en zéolithe X et d'une couche extérieure en silicalite (conforme à l'invention). Ces temps caractéristiques sont définis dans le cas d'une sphère
R2 par la formule — , où Rc est le rayon de la sphère et D le coefficient de diffusion, et représentent le temps moyen nécessaire à la molécule pour parcourir la distance caractéristique du solide étudié.
Tableau 2 : temps caractéristiques de diffusion du 3MP et du 2,2-DMB dans les deux adsorbants étudiés.
Il apparaît que les temps caractéristiques de diffusion du 3MP et du 22DMB sont les mêmes dans les deux adsorbants. La diffusion de ces molécules dans la zéolithe X étant très rapide, la résistance diffusionnelle induite par la présence de ce solide dans l'adsorbant non- homogène est négligeable. Les deux adsorbants sont donc identiques en terme de sélectivité diffusionnelle de séparation. En conséquence, l'adsorbant non-homogène selon l'invention permet de maintenir les propriétés de sélectivité diffusionnelle tout en doublant les capacités d'adsorption de l'adsorbant homogène. L'introduction d'un cœur constitué d'un matériau adsorbant dans la structure d'un adsorbant de manière à former un adsorbant non- homogène conduit donc à une amélioration sensible de la capacité d'adsorption, l'adsorbant non-homogène conservant des propriétés de sélectivité diffusionnelle très satisfaisantes.

Claims

REVENDICATIONS
1. Adsorbant non-homogène constitué d'au moins un cristal formé d'un cœur et d'au moins une couche extérieure continue caractérisé en ce que le cœur dudit adsorbant présente une capacité d'adsorption volumique représentant au moins 35 % du volume de l'adsorbant et la couche extérieure présente une sélectivité diffusionnelle supérieure à 5.
2. Adsorbant non-homogène selon la revendication 1 caractérisé en ce que la capacité d'adsorption volumique du cœur représente au moins 40 % du volume de l'adsorbant.
3. Adsorbant non-homogène selon la revendication 1 ou 2 caractérisé en ce que la sélectivité diffusionnelle est supérieure à 10.
4. Adsorbant non-homogène selon l'une des revendications 1 à 3 caractérisé en ce que la capacité d'adsorption du cœur est supérieure à celle de la couche extérieure continue.
5. Adsorbant non-homogène selon l'une des revendications 1 à 4 caractérisé en ce que le cœur est partiellement ou totalement vide.
6. Adsorbant non-homogène selon l'une des revendications 1 à 4 caractérisé en ce que le cœur contient un solide micro- ou mésoporeux cristallisé.
7. Adsorbant non-homogène selon l'une des revendications 1 à 6 caractérisé en ce que la couche extérieure continue contient un solide microporeux cristallisé.
8. Adsorbant non-homogène selon la revendication 6 caractérisé en ce que le cœur présente une taille de cristaux comprise entre 0,1 μm et 0,4 mm.
9. Adsorbant non-homogène selon la revendication 8 caractérisé en ce que le cœur présente une taille de cristaux comprise entre 0,2 μm et 50 μm.
10. Adsorbant non-homogène selon l'une des revendications 1 à 9 caractérisé en ce que la couche extérieure continue présente une épaisseur comprise entre 0,01 et 100 μm.
11. Adsorbant non-homogène selon la revendication 10 caractérisé en ce que la couche extérieure continue présente une épaisseur comprise entre 0,1 et 10 μm.
12. Adsorbant non-homogène selonïune des revendications 1 à 11 caractérisé en ce que le cœur et ladite couche extérieure continue sont des solides zéolithiques.
13. Adsorbant non-homogène selon l'une des revendications 1 à 12 caractérisé en ce qu'il se présente sous forme sphérique ou cylindrique.
14. Adsorbant non-homogène selon la revendication 13 caractérisé en ce que le rayon du cœur représente au moins 40% du rayon total de l'adsorbant.
15. Utilisation d'un adsorbant selon l'une des revendications 1 à 14 dans, un procédé de séparation de gaz ou de vapeur.
16. Utilisation d'un adsorbant selon l'une des revendications 1 à 14 dans un procédé de séparation de liquides.
EP03753642A 2002-08-01 2003-07-11 Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle Withdrawn EP1531917A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0209841 2002-08-01
FR0209841A FR2843049B1 (fr) 2002-08-01 2002-08-01 Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle
PCT/FR2003/002220 WO2004012835A2 (fr) 2002-08-01 2003-07-11 Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle

Publications (1)

Publication Number Publication Date
EP1531917A2 true EP1531917A2 (fr) 2005-05-25

Family

ID=30129629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03753642A Withdrawn EP1531917A2 (fr) 2002-08-01 2003-07-11 Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle

Country Status (8)

Country Link
US (1) US7435699B2 (fr)
EP (1) EP1531917A2 (fr)
JP (1) JP2005534479A (fr)
KR (1) KR100969638B1 (fr)
CN (1) CN100415364C (fr)
AU (1) AU2003271806A1 (fr)
FR (1) FR2843049B1 (fr)
WO (1) WO2004012835A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7947182B2 (en) * 2008-08-29 2011-05-24 Conocophillips Company Naphthenic acid removal process
US9132410B2 (en) 2013-12-31 2015-09-15 Algenol Biotech LLC Compositions, systems and methods for separating ethanol from water and methods of making compositions for separating ethanol from water
WO2016105943A1 (fr) 2014-12-23 2016-06-30 Exxonmobil Research And Engineering Company Matériaux absorbants et leurs procédés d'utilisation
PL3752283T3 (pl) * 2018-02-15 2022-08-29 Praxair Technology, Inc. Lepsze adsorbenty kompozytowe rdzenie w powłokach do układów vsa/vpsa/psa
US20220258124A1 (en) 2019-06-26 2022-08-18 China Petroleum & Chemical Corporation Composite layer agglomerating adsorbent and preparation process thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827989A (en) * 1972-11-13 1974-08-06 Atomic Energy Commission Impregnated chemical separation particles
US4283583A (en) * 1979-06-29 1981-08-11 The Standard Oil Company Alkylation of aromatic hydrocarbons in the presence of coated zeolite catalysts
JPS6025369B2 (ja) * 1981-03-10 1985-06-18 水澤化学工業株式会社 耐摩耗性粒状ゼオライト及びその製法
JPS5916832A (ja) 1982-07-20 1984-01-28 Agency Of Ind Science & Technol 複合ゼオライト及びそれを触媒として用いる炭化水素の製造方法
JP2680823B2 (ja) * 1987-12-09 1997-11-19 水澤化学工業株式会社 白色球状吸着剤及びその製法
JP2587328B2 (ja) * 1991-06-13 1997-03-05 株式会社荏原製作所 有機塩素化合物の吸着剤および吸着処理法
WO1995032049A1 (fr) * 1994-05-23 1995-11-30 Tda Research, Inc. Support pour sorbants chimiques
GB9502342D0 (en) * 1995-02-07 1995-03-29 Exxon Chemical Patents Inc Hydrocarbon treatment and catalyst therefor
JPH0957095A (ja) * 1995-08-25 1997-03-04 Tetsujiro Minagawa クリストバル石、鱗珪石及びその混成材等を原材料とする吸着剤に関する製造方法
FR2794993B1 (fr) * 1999-06-18 2001-10-05 Air Liquide Utilisation d'un adsorbant particulaire non homogene dans un procede de separation de gaz
US6284021B1 (en) 1999-09-02 2001-09-04 The Boc Group, Inc. Composite adsorbent beads for adsorption process
FR2813310B1 (fr) 2000-08-25 2002-11-29 Inst Francais Du Petrole Procede de separation de paraffines multibranchees utilisant un absorbant zeolitique de structure mixte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004012835A2 *

Also Published As

Publication number Publication date
FR2843049B1 (fr) 2005-03-25
KR20050026051A (ko) 2005-03-14
US20050250641A1 (en) 2005-11-10
AU2003271806A1 (en) 2004-02-23
AU2003271806A8 (en) 2004-02-23
WO2004012835A3 (fr) 2004-07-22
US7435699B2 (en) 2008-10-14
CN1671469A (zh) 2005-09-21
FR2843049A1 (fr) 2004-02-06
KR100969638B1 (ko) 2010-07-14
WO2004012835A2 (fr) 2004-02-12
CN100415364C (zh) 2008-09-03
JP2005534479A (ja) 2005-11-17

Similar Documents

Publication Publication Date Title
EP1627853B1 (fr) Matériau à porosité hierarchisée comprenant du silicium
EP2197792B1 (fr) Materiau cristallise comprenant du silicium a porosite hierarchisee et organisee
EP2197791B1 (fr) Materiau amorphe a porosite hierarchisee et comprenant du silicium
CA2894606C (fr) Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
EP2197794B1 (fr) Materiau cristallise a porosite hierarchisee et comprenant du silicium
US7253130B2 (en) Method for making transparent continuous zeolite film and structure of the zeolite film
EP2197793B1 (fr) Materiau amorphe comprenant du silicium a porosite hierarchisee et organisee
EP2755751B1 (fr) Garnissage pour une colonne chromatographique et procédé de réalisation
FR2794993A1 (fr) Utilisation d'un adsorbant particulaire non homogene dans un procede de separation de gaz
EP1531917A2 (fr) Adsorbant non homogene et son utilisation dans des procedes de separation diffusionnelle
EP1334066A1 (fr) Solides inorganiques mesoporeux, leur procede de preparation et leurs utilisations notamment comme catalyseurs et adsorbants
EP2274236B1 (fr) Materiau mesostructure a forte teneur en aluminium et constitue de particules spheriques de taille specifique
EP2582622B1 (fr) Utilisation de nanoparticules pour le stockage "sec" longue duree de radicaux peroxydes
WO2021123662A1 (fr) Adsorbant zéolithique pour la séparation d'isomères d'hydrocarbures
EP1369166A1 (fr) Membrane zéolithique de faible epaisseur, sa préparation et son utilisation en séparation
CN116920805A (zh) 一种迈科烯/生物质复合吸附材料及其制备方法与应用
WO2005019108A1 (fr) Particules poreuses submicroniques de silice.
BE674707A (fr)
EP3028039A1 (fr) Procédé de fabrication d'une colonne de chromatographie en phase gazeuse et colonne obtenue par un tel procédé
FR2931369A1 (fr) Procede de traitement par "chimie douce" d'un materiau inorganique comportant une partie organique indesirable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050301

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130201