EP1529948B1 - Pre-controlling process of a variable lift fuel pump in an Internal combustion engine - Google Patents

Pre-controlling process of a variable lift fuel pump in an Internal combustion engine Download PDF

Info

Publication number
EP1529948B1
EP1529948B1 EP04021981A EP04021981A EP1529948B1 EP 1529948 B1 EP1529948 B1 EP 1529948B1 EP 04021981 A EP04021981 A EP 04021981A EP 04021981 A EP04021981 A EP 04021981A EP 1529948 B1 EP1529948 B1 EP 1529948B1
Authority
EP
European Patent Office
Prior art keywords
fuel
pressure
fuel pump
rail
reciprocating piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04021981A
Other languages
German (de)
French (fr)
Other versions
EP1529948A3 (en
EP1529948A2 (en
Inventor
Axel Wachtendorf
Leonhard Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1529948A2 publication Critical patent/EP1529948A2/en
Publication of EP1529948A3 publication Critical patent/EP1529948A3/en
Application granted granted Critical
Publication of EP1529948B1 publication Critical patent/EP1529948B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/0275Arrangement of common rails
    • F02M63/028Returnless common rail system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/02Fuel evaporation in fuel rails, e.g. in common rails

Definitions

  • the invention relates to a method for piloting a stroke-piston fuel pump of an internal combustion engine, in particular of a motor vehicle, wherein the internal combustion engine has a high-pressure rail and associated injection valves, according to the preamble of claim 1.
  • An amount set mechanism of a reciprocating piston fuel pump for a fuel supply of an internal combustion engine determines an amount of fuel that is compressed in the reciprocating piston fuel pump and pushed into a high-pressure rail.
  • a Regetatgorithmus is implemented, which calculates the opening and closing times or angles of the quantity control of the pump. These opening and closing times are output in the form of an electrical signal to the bulkhead.
  • the fuel pressure and the amount of fuel available for injection in the high-pressure rail must be provided as accurately as possible.
  • a pilot control and a controller are provided.
  • the target fuel pressure is calculated and the pump discharge volume is calculated as an optimum value taking into account the pressure deviation between the actual fuel pressure and the target fuel pressure.
  • the US Pat. No. 644 66 10 B1 describes, moreover, the regulation of the fuel pressure in the form that the delivered fuel quantity is equal to the algebraic sum of an amount of fuel to be injected into the combustion space and a necessary amount of fuel to correct the pressure deviation between the measured fuel pressure and a desired fuel pressure, whereby also the operating parameters of the Electrovalve be considered.
  • the invention has for its object to provide a method of the above type with respect. Control of the quantity of the hub piston-fuel pump to achieve a high accuracy with respect. To provide the fuel injection quantity and the fuel injection pressure in the high-pressure rail to improve and to make it more robust against disturbances.
  • FIG. 10 illustrates a non-return fuel system including a fuel tank 10, an electric fuel pump 12, a fuel filter 14, a high-pressure pump (HDP) 16 with tonnage control, a high-pressure rail 18, multiple high-pressure injection valves (HDEV) 20, a return line 22 , a pressure relief valve (DBV) 24, an engine control unit (ECU) 26, a low pressure sensor 28, a high pressure sensor 30 and a power output stage 32 for driving the fuel pump 12.
  • Line 34 separates the fuel system into a high pressure side 36 and a low pressure side 36.
  • EKP) 12 serves as a prefeed pump for the Hub Piston Fuel Pump (HDP) 16.
  • the Hub Piston Fuel Pump (HDP) 16 adjusts the fuel pressure in the rail or high pressure rail 18.
  • the high-pressure injection valves 20 are supplied with fuel from the high-pressure rail 20. Fuel flows back via the return line 22 when the pressure in the high-pressure rail exceeds a safety-critical limit value. This can only occur in the event of a fault.
  • a non-illustrated leakage line of the Hub Piston Fuel Pump (HDP) 16 discharges fuel that escapes in the Hub Piston Fuel Pump (HDP) 16 between the piston and cylinder. However, this amount is relatively small.
  • the stroke piston fuel pump 16 includes, as shown Fig. 2 can be seen, a piston 40 in a cylinder 42 which performs a lifting movement. This lifting movement is divided into a downward and upward movement. In the downward movement, a displacement with fuel from the fuel tank 10 of the low-pressure system 38 is filled with fuel. In the upward movement, the compression of the fuel takes place.
  • a quantity control in the form of a quantity control valve 44 separates the compression space from the supply side and low pressure side 38, respectively, during a predetermined part of the upstroke. During that portion of the upward movement of the piston 40 to be used to compress the fuel, the quantity interlocking 44 disconnects the displacement Hub piston fuel pump 16 and supply line 46.
  • the quantity control 44 opens the connection between the displacement of the reciprocating piston fuel pump 16 and the supply line 46th The result is a closing interval, which lies in the compression stroke of the reciprocating piston fuel pump 16.
  • the position of the interval in the compression stroke is in principle freely selectable. Usually either the closing or the opening time is set to one of the dead centers of the movement of the piston 40. With both concepts it is possible to set the effective compression stroke.
  • the displacement is connected to the high pressure rail 18 of the high pressure system 36 via a check valve 48. As soon as the pressure in the displacement of the lift-piston fuel pump 16 becomes greater than the pressure in the high-pressure rail 18, the compressed fuel flows from the displacement of the lift-piston fuel pump 16 into the high-pressure rail 18.
  • Fig. 1 outputs the switching pulse to the quantity control valve (44) of the quantity control station. The duration of this switching pulse determines the effective stroke taking into account the piston speed and piston position.
  • Fig. 4 illustrates the control of Mengenesteitwerkes 44 with the two different concepts.
  • a graph 50 illustrates the movement of the piston 40 between a top dead center 52 and a bottom dead center 54, wherein a filling 56 and a compression 58 cyclically alternate.
  • graph 62 shows a drive signal for the quantity control valve 44 between 0V and 12V, a graph 64 a state of the quantity control valve 44 between "open” 66, and “closed” 68 and a graph 70 a pressure in the compression chamber, the stroke-piston fuel pump 16 between a low pressure P low-pressure 72 in the low pressure system 38 and a high pressure p HD-rail 74 in the high-pressure system 36 or high-pressure rail 18.
  • graph 78 shows a drive signal for the quantity control valve 44 between 0V and 12V
  • a graph 80 shows a state of the quantity control valve 44 between "open” 82 and “closed 84
  • a graph 86 a pressure in the compression space of the reciprocating piston fuel pump 16 between a P low-pressure low-pressure 88 in the low pressure system 38 and a high pressure p HD-rail 90 in the high-pressure system 36 or high-pressure rail 18th
  • the closing interval 60 or 76 of the quantity-adjusting mechanism 44 lies between the bottom dead center 54 and the top dead center 52 of the piston 40 of the reciprocating piston fuel pump 16 relative to a piston 40 moving upward in the cylinder 42. In principle, it does not matter if the closing interval immediately after passing through the bottom dead center 54 begins (concept I, arrow 60) or ends with reaching the top dead center 52 (concept II, arrow 76). Both concepts lead to pressure build-up. For energetic reasons, however, the second concept (arrow 76) is to be preferred.
  • the compression process 60 or 76 is triggered by closing the quantity control station 44 with upwardly moving piston 40. The volume of fuel in the compression space at this moment is at approximately low pressure level. By the upward movement of the piston 40, the pressure increases.
  • the check valve 48 opens and the fuel flows out of the compression space of the reciprocating piston fuel pump 16 into the high-pressure rail 18. Dies takes place as long as the pressure in the compression chamber above the pressure p HD rail is maintained in the high-pressure rail 18.
  • the effective compression stroke is ended by opening the quantity-adjusting mechanism 44 or as soon as the piston 40 reaches its top dead center 52. Depending on the pump design and concept, a residual volume at the end of the compression process 58 may remain in the compression space of the reciprocating piston fuel pump 16.
  • the fuel for example petrol
  • changes its volume under pressure. This volume change results ⁇ ⁇ V V 0 * ⁇ ⁇ p * ⁇
  • V 0 is an initial volume [mm 3 ]
  • ⁇ p is a pressure change [bar]
  • is a compressibility number [1 / bar]
  • ⁇ V is a volume change [mm 3 ].
  • the one compressibility number ⁇ [1 / bar] for the fluid to be compressed results in dependence on temperature and pressure from a family of curves according to Fig. 3 ,
  • the Fig. 3 shows on a horizontal axis 92 a pressure in [bar] and on a vertical axis 94 the compressibility in [E-4 / bar].
  • the curves correspond from top to bottom to a temperature of 413K, 393K, 373K, 353K, 333K, 313K, 293K, 273K, 253K and 233K.
  • the variables used for calculating the volume change in the compression of fuel the pressure change, temperature change, output volume, output pressure and output temperature and a compressibility map of the fuel grade used.
  • the density of the fuel for the respective operating point is first calculated.
  • ⁇ fuel is a density of the fuel in [g / mm 3 ]
  • ⁇ norm is a density of the fuel under standard conditions in [g / mm 3 ]
  • p fuel is a pressure of the fuel [bar]
  • p norm is a standard pressure in [bar ]
  • ⁇ fuel is a compressibility of the fuel. This relationship applies to fuel in liquid form.
  • the fuel flows through first the lift-piston fuel pump 16, the fuel line and then the high-pressure rail 18. There is a heat transfer due to the contact of the fuel with the inner surfaces of the fuel-carrying components instead.
  • the source of heat is the engine block or the ambient air in the engine compartment as well as the compression work in the reciprocating piston fuel pump 16. These heat inputs bear the following names t emotr , t eulr and t krailnp .
  • the fuel flows into the compression space via the open quantity control 44 at the temperature t flvrhdp . There, the fuel is compressed and flows through the check valve 48 in the high-pressure rail 18. By this thermodynamic process takes place a temperature entry t krailnp in the fuel.
  • Q fuel t krailnp f ⁇ p rail - p
  • Low pressure side t eulr f t Surroundings ;
  • the dependencies of t emotr , t eulr and t krailnp are determined empirically and stored in curves and maps .
  • the dynamic behavior of the temperature t krail in the high-pressure rail 18 is detected.
  • the time behavior of the filter is determined as a function of the fuel mass flow Q fuel ) and of the difference between t mot and t krailnp .
  • the pilot control of the stroke piston fuel pump 16 is based on the calculation of the stroke volume of the piston 40 which is to be used for the compression of the fuel.
  • This stroke volume is defined by closing and opening times of the quantity control station 44 taking into account the pump geometry.
  • the volume of fuel to be compressed results from the requirements of the engine control 26 with respect to target fuel pressure in the high-pressure rail 18 and fuel quantity and the current operating parameters, such as temperature and actual pressures.
  • Ap soll_rail is defined as follows: ⁇ p soll_rail> 0 meant that the nominal pressure gradient is positive and Ap soll_rail ⁇ 0 meant the nominal pressure gradient däß negative.
  • the delta crank angle dwms ⁇ s ⁇ g refers to that part of the rising edge of the drive cam for the reciprocating piston fuel pump that is conceptually used for the compression interval.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Process for pre-controlling a reciprocating fuel pump of a vehicle comprises from the starting values determining the fuel volume removal from a high pressure rail by the injection valve per stroke of the pump, determining the fuel volume necessary for a change of theoretical pressure in the high pressure rail per stroke of the pump, and determining the volume loss by a non-optimum degree of delivery based on the formation of steam bubbles in the fuel. Preferred Features: The reciprocating pump is driven by a camshaft of an internal combustion engine.

Description

Die Erfindung betrifft ein Verfahren zum Vorsteuern einer Hub-Kolben-Kraftstoffpumpe einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, wobei die Brennkraftmaschine ein Hochdruckrail und damit verbundene Einspritzventile aufweist, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for piloting a stroke-piston fuel pump of an internal combustion engine, in particular of a motor vehicle, wherein the internal combustion engine has a high-pressure rail and associated injection valves, according to the preamble of claim 1.

Ein Mengenstellwerk einer Hub-Kolben-Kraftstoffpumpe für eine Kraftstoffversorgung einer Brennkraftmaschine legt eine Kraftstoffmenge fest, die in der Hub-Kolben-Kraftstoffpumpe komprimiert und in ein Hochdruckrail geschoben wird. In einem Motorsfeuergerät ist ein Regetatgorithmus implementiert, der die Öffnungs- und Schließzeiten bzw. -winkel des Mengenstellwerkes der Pumpe berechnet. Diese Öffnungs- und Schließzeiten werden in Form eines elektrischen Signals an das Mengenstellwerk ausgegeben. Für eine abgas- und verbrauchsoptimale Gemischbildung in einem Brennraum der Brennkraftmaschine muss der Kraftstoffdruck und die zur Einspritzung zur Verfügung stehende Kraftstoffmenge im Hochdruckrail so genau wie möglich bereitgestellt werden.An amount set mechanism of a reciprocating piston fuel pump for a fuel supply of an internal combustion engine determines an amount of fuel that is compressed in the reciprocating piston fuel pump and pushed into a high-pressure rail. In a motor fire device, a Regetatgorithmus is implemented, which calculates the opening and closing times or angles of the quantity control of the pump. These opening and closing times are output in the form of an electrical signal to the bulkhead. For optimal combustion and combustion mixture formation in a combustion chamber of the internal combustion engine, the fuel pressure and the amount of fuel available for injection in the high-pressure rail must be provided as accurately as possible.

Bei einem bekannten Algorithmus für die Ansteuerung des Mengenstellwerkes sind eine Vorsteuerung und ein Regler vorgesehen.In a known algorithm for controlling the quantity control station, a pilot control and a controller are provided.

So zeigt die DE 102 36 654 A1 eine Möglichkeit Druckregelungsprobleme, wie sie durch eine Abweichung eines Rückkoppelungsregelungsbetrags hervorgerufen werden, zu verhindern. Der Sollkraftstoffdruck wird berechnet und das Pumpenausströmvolumen wird als ein Optimalwert berechnet, bei dem die Druckabweichung zwischen dem tatsächlichen Kraftstoffdruck und dem Sollkraftstoffdruck berücksichtigt ist. Die US 644 66 10 B1 beschreibt drüber hinaus die Regelung des Treibstoffdrucks in der Form, dass die geförderte Treibstoffmenge gleich der algebraischen Summe aus einer in den Verbrennungsraum einzuspritzenden Treibstoffmenge und einer notwendigen Treibstoffmenge, um die Druckabweichung zwischen dem gemessenen Treibstoffdruck und einem gewünschten Treibstoffdruck zu korrigieren, wobei auch die Betriebsparameter des Elektroventils berücksichtigt werden.That's how it shows DE 102 36 654 A1 a possibility of preventing pressure control problems caused by a deviation of a feedback control amount. The target fuel pressure is calculated and the pump discharge volume is calculated as an optimum value taking into account the pressure deviation between the actual fuel pressure and the target fuel pressure. The US Pat. No. 644 66 10 B1 describes, moreover, the regulation of the fuel pressure in the form that the delivered fuel quantity is equal to the algebraic sum of an amount of fuel to be injected into the combustion space and a necessary amount of fuel to correct the pressure deviation between the measured fuel pressure and a desired fuel pressure, whereby also the operating parameters of the Electrovalve be considered.

In der Vorsteuerung wird die Zeitdauer für die Ansteuerung mit eingeschränkter Genauigkeit ermittelt. Eingangssignale der Vorsteuerung sind die Sollwerte für Kraftstoffdruck und -menge. Auf Basis dieser Sollwerte werden Kennfelder adressiert, in denen ein Ansteuerwinkel abgelegt ist. Diese Kennfelder bilden nicht die physikalischen Gegebenheiten in der Hub-Kolben-Krafistoffpumpe nach, sondern sind empirisch an exemplarisch ausgewählten Pumpen ermittelt. Durch die Verwendung eines Reglers besteht die Möglichkeit, die in der Vorsteuerung ermittelte Ansteuerdauer des Mengenstellwerkes zu korrigieren. Der Regler arbeitet auf Basis einer lstdruck-Erfassung mit einem Sensor im Hochdruckrail. Dieser Regler ist als PI-Regler ausgelegt. Diese Korrektur ist notwendig, da von den Vorsteuerkennfeldern folgende Zusammenhänge nicht berücksichtigt werden können:

  • Die Toleranzlagenstreuung der Pumpe in der Serie.
  • Fehler in den Vorsteuerkennfeldern.
  • Physikalische Abhängigkeiten, wie beispielsweise Temperaturabhängigkeiten.
In the pre-control, the time duration for the control with limited accuracy is determined. Input signals of the precontrol are the nominal values for fuel pressure and quantity. On the basis of these setpoints, maps are addressed in which a control angle is stored. These maps do not simulate the physical conditions in the reciprocating piston power pump, but are empirically determined on pumps selected by way of example. By using a controller, it is possible to correct the control period of the quantity control station determined in the pilot control. The controller works on the basis of a pressure detection with a sensor in the high pressure rail. This controller is designed as a PI controller. This correction is necessary because the following relationships can not be taken into account by the pilot control maps:
  • Tolerance distribution of the pump in the series.
  • Error in the pilot control maps.
  • Physical dependencies, such as temperature dependencies.

Je genauer die Vorsteuerkennfelder den realen Bedingungen entsprechen, desto kleiner fallen die Eingriffe des Reglers aus.The more accurately the pilot control maps correspond to the real conditions, the smaller the interventions of the controller are.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der obengenannten Art bzgl. Ansteuerung des Mengenstellwerks der Hub-Kolben-Kraftstoffpumpe zum Erzielen einer hohen Genauigkeit bzgl. der Bereitstellung der Kraftstoffeinspritzmenge und des Kraftstoffeinspritzdruckes im Hochdruckrail zu verbessern und gegen Störungen robuster zu machen.The invention has for its object to provide a method of the above type with respect. Control of the quantity of the hub piston-fuel pump to achieve a high accuracy with respect. To provide the fuel injection quantity and the fuel injection pressure in the high-pressure rail to improve and to make it more robust against disturbances.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a method of o.g. Art solved with the features characterized in claim 1. Advantageous embodiments of the invention are specified in the dependent claims.

Dazu ist es erfindungsgemäß vorgesehen, dass aus den Eingangswerten Kraftstoffvolumenentnahme vevphh aus dem Hochdruckrail durch die Einspritzventile pro Hub der Hub-Kolben-Kraftstoffpumpe, Kraftstoffvolumen vdaavst, welches für eine Änderung des Solldruckes Δpsoll_rail im Hochdruckrail pro Hub der Hub-Kolben-Kraftstoffpumpe benötigt wird, Hubvolumen vkdavst, welches der Kolben der Hub-Kolben-Kraftstoffpumpe zur Verdichtung des Kraftstoffes von Niederdruck auf Druck im Hochdruckrail pro Hub der Hub-Kolben-Kraftstoffpumpe benötigt, sowie Volumenverlust vvlfghdp durch nicht optimalen Liefergrad aufgrund von Dampfblasenbildung im Kraftstoff pro Hub der Hub-Kolben-Kraftstoffpumpe Schließ- und Öffnungszeitpunkte für ein Mengenstellwerk der Hub-Kolben-Kraftstoffpümpe bestimmt werden.For this it is inventively provided that from the input values fuel volume vevphh from the high pressure rail through the injectors per stroke of the piston-stroke fuel pump, vdaavst fuel volume , which is required for a change of the desired pressure Δ p soll_rail in the high-pressure rail per stroke of the reciprocating piston fuel pump vkdavst , which requires the piston of the reciprocating piston fuel pump to compress the fuel from low pressure to high pressure rail pressure per stroke of the reciprocating piston fuel pump, and volume loss vvlfghdp due to non-optimal delivery due to vapor bubble formation in the fuel per stroke of the stroke Piston Fuel Pump Closing and opening times for an amount set point of the Hub Piston Kraftstoffpümpe be determined.

Dies hat den Vorteil, dass eine höhere Genauigkeit bei geringerem Applikationsaufwand und besserer Diagnosefähigkeit erzielt wird, wobei unterschiedliche Pumpenkonzepte realisierbar sind.
Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfindung anhand der beigefügten Zeichnungen. Diese zeigen in

Fig. 1
ein schematisches Schaltbild eines bekannten, rücklauffreien Kraftstoffsystems,
Fig. 2
ein schematisches Schaltbild der Funktionsweise einer Hub-Kolben-Kraftstoffpumpe zur Veranschaulichung des erfindungsgemäßen Verfahrens und
Fig. 3
ein Kennfeld für die Kompressibilität des Kraftstoffs in Abhängigkeit von Druck und Temperatur.
Fig. 4
eine schematische Darstellung der Ansteuerung eines Mengenstellwerkes einer Hub-Kolben-Kraftstoffpumpe,
This has the advantage that a higher accuracy is achieved with less application effort and better diagnostic capability, with different pump concepts can be realized.
Further features, advantages and advantageous embodiments of the invention will become apparent from the dependent claims, and from the following description of the invention with reference to the accompanying drawings. These show in
Fig. 1
a schematic diagram of a known, non-return fuel system,
Fig. 2
a schematic diagram of the operation of a reciprocating-piston fuel pump to illustrate the method according to the invention and
Fig. 3
a map for the compressibility of the fuel as a function of pressure and temperature.
Fig. 4
a schematic representation of the control of a quantity control station of a reciprocating piston fuel pump,

Fig. 1 veranschaulicht ein rücklauffreies Kraftstoffsystem mit einem Kraftstofftank 10, einer elektrischen Kraftstoffpumpe 12, einem Kraftstoff-Filter 14, einer Hub-Kolben-Kraftstoffpumpe bzw. Hochdruckpumpe (HDP) 16 mit Mengenstellwerk, einem Hochdruckrail 18, mehreren Hochdruckeinspritzventilen (HDEV) 20, einer Rücklaufleitung 22, einem Druckbegrenzungsventil (DBV) 24, einem Motorsteuergerät (ECU) 26, einem Niederdrucksensor 28, einem Hochdrucksensor 30 und einer Leistungsendstufe 32 zum Ansteuern der Kraftstoffpumpe 12. Linie 34 trennt das Kraftstoffsystem in eine Hochdruckseite 36 und eine Niederdruckseite 36. Die elektrische Kraftstoffpumpe (EKP) 12 dient als Vorförderpumpe für die Hub-Kolben-Kraftstoffpumpe (HDP) 16. Die Hub-Kolben-Kraftstoffpumpe (HDP) 16 stellt den Kraftstoffdruck in der Verteilerleiste bzw. Hochdruckrail 18 ein. Die Hochdruckeinspritzventile 20 werden aus der Hochdruckrail 20 mit Kraftstoff versorgt. Über die Rücklaufleitung 22 fließt Kraftstoff zurück, wenn der Druck in der Hochdruckrail einen sicherheitskritischen Grenzwert überschreitet. Dies kann nur im Fehlerfall eintreten. Eine nicht dargestellte Leckageleitung der Hub-Kolben-Kraftstoffpumpe (HDP) 16 führt Kraftstoff ab, der in der Hub-Kolben-Kraftstoffpumpe (HDP) 16 zwischen Kolben und Zylinder entweicht. Diese Menge ist jedoch relativ klein. Fig. 1 FIG. 10 illustrates a non-return fuel system including a fuel tank 10, an electric fuel pump 12, a fuel filter 14, a high-pressure pump (HDP) 16 with tonnage control, a high-pressure rail 18, multiple high-pressure injection valves (HDEV) 20, a return line 22 , a pressure relief valve (DBV) 24, an engine control unit (ECU) 26, a low pressure sensor 28, a high pressure sensor 30 and a power output stage 32 for driving the fuel pump 12. Line 34 separates the fuel system into a high pressure side 36 and a low pressure side 36. EKP) 12 serves as a prefeed pump for the Hub Piston Fuel Pump (HDP) 16. The Hub Piston Fuel Pump (HDP) 16 adjusts the fuel pressure in the rail or high pressure rail 18. The high-pressure injection valves 20 are supplied with fuel from the high-pressure rail 20. Fuel flows back via the return line 22 when the pressure in the high-pressure rail exceeds a safety-critical limit value. This can only occur in the event of a fault. A non-illustrated leakage line of the Hub Piston Fuel Pump (HDP) 16 discharges fuel that escapes in the Hub Piston Fuel Pump (HDP) 16 between the piston and cylinder. However, this amount is relatively small.

Die Hub-Kolben-Kraftstoffpumpe 16 umfaßt, wie aus Fig. 2 ersichtlich, einen Kolben 40 in einem Zylinder 42, der eine Hubbewegung ausführt. Diese Hubbewegung unterteilt sich in eine Ab- und Aufwärtsbewegung. In der Abwärtsbewegung wird ein Hubraum mit Kraftstoff aus dem Kraftstofftank 10 des Niederdrucksystems 38 mit Kraftstoff befüllt. In der Aufwärtsbewegung erfolgt die Kompression des Kraftstoffes. Ein Mengenstellwerk in Form eines Mengensteuerventils 44 trennt während eines vorbestimmten Teils des Aufwärtshubes den Kompressionsraum von der Versorgungsseite bzw. Niederdruckseite 38. Während desjenigen Abschnittes der Aufwärtsbewegung des Kolbens 40, der zur Kompression des Kraftstoffes genutzt werden soll, trennt das Mengenstellwerk 44 die Verbindung zwischen Hubraum der Hub-Kolben-Kraftstoffpumpe 16 und Versorgungsleitung 46. Während desjenigen Abschnittes der Aufwärtsbewegung des Kolbens 40, der nicht zur Kompression des Kraftstoffes genutzt werden soll, öffnet das Mengenstellwerk 44 die Verbindung zwischen dem Hubraum der Hub-Kolben-Kraftstoffpumpe 16 und der Versorgungsleitung 46. Es entsteht ein Schließintervall, das im Kompressionstakt der Hub-Kolben-Kraftstoffpumpe 16 liegt.The stroke piston fuel pump 16 includes, as shown Fig. 2 can be seen, a piston 40 in a cylinder 42 which performs a lifting movement. This lifting movement is divided into a downward and upward movement. In the downward movement, a displacement with fuel from the fuel tank 10 of the low-pressure system 38 is filled with fuel. In the upward movement, the compression of the fuel takes place. A quantity control in the form of a quantity control valve 44 separates the compression space from the supply side and low pressure side 38, respectively, during a predetermined part of the upstroke. During that portion of the upward movement of the piston 40 to be used to compress the fuel, the quantity interlocking 44 disconnects the displacement Hub piston fuel pump 16 and supply line 46. During that portion of the upward movement of the piston 40, which is not to be used for compression of the fuel, the quantity control 44 opens the connection between the displacement of the reciprocating piston fuel pump 16 and the supply line 46th The result is a closing interval, which lies in the compression stroke of the reciprocating piston fuel pump 16.

Die Lage des Intervalls im Kompressionstakt ist prinzipiell frei wählbar. Üblicherweise wird entweder der Schließ- oder der Öffnungszeitpunkt auf einen der Totpunkte der Bewegung des Kolbens 40 gelegt. Mit beiden Konzepten ist es möglich, den effektiven Kompressionshub einzustellen. Der Hubraum ist mit dem Hochdruckrail 18 des Hochdrucksystems 36 über ein Rückschlagventil 48 verbunden. Sobald der Druck im Hubraum der Hub-Kolben-Kraftstoffpumpe 16 größer wird als der Druck im Hochdruckrail 18, strömt der komprimierte Kraftstoff aus dem Hubraum der Hub-Kolben-Kraftstoffpumpe 16 in das Hochdruckrail 18. Die Motorsteuerung 26 (Fig. 1) gibt den Schaltimpuls an das Mengensteuerventil (44) des Mengenstellwerkes aus. Die Zeitdauer dieses Schaltimpulses legt unter Berücksichtigung der Kolbengeschwindigkeit und Kolbenposition den effektiven Hub fest.The position of the interval in the compression stroke is in principle freely selectable. Usually either the closing or the opening time is set to one of the dead centers of the movement of the piston 40. With both concepts it is possible to set the effective compression stroke. The displacement is connected to the high pressure rail 18 of the high pressure system 36 via a check valve 48. As soon as the pressure in the displacement of the lift-piston fuel pump 16 becomes greater than the pressure in the high-pressure rail 18, the compressed fuel flows from the displacement of the lift-piston fuel pump 16 into the high-pressure rail 18. Fig. 1 ) outputs the switching pulse to the quantity control valve (44) of the quantity control station. The duration of this switching pulse determines the effective stroke taking into account the piston speed and piston position.

Fig. 4 veranschaulicht die Ansteuerung des Mengensteitwerkes 44 mit den zwei unterschiedlichen Konzepten. Hierzu veranschaulicht ein Graph 50 die Bewegung des Kolbens 40 zwischen einem oberen Totpunkt 52 und einem unteren Totpunkt 54, wobei sich eine Befüllung 56 und eine Kompression 58 zyklisch abwechseln. Gemäß einem ersten Konzept mit Schließintervall am Beginn des Kompressionshubes 58, wie mit Pfeilen 60 (Kompressionsphase gemäß Konzept I) angedeutet, zeigt Graph 62 ein Ansteuersignal für das Mengensteuerventil 44 zwischen 0V und 12V, ein Graph 64 einen Zustand des Mengensteuerventils 44 zwischen "offen" 66 und "geschlossen" 68 und ein Graph 70 einen Druck im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 zwischen einem Niederdruck Pniederdruck 72 im Niederdrucksystem 38 und einem Hochdruck pHD-rail 74 im Hochdrucksystem 36 bzw. Hochdruckrail 18. Gemäß einem zweiten Konzept mit Schließintervall am Ende des Kompressionshubes 58, wie mit Pfeilen 76 (Kompressionsphase gemäß Konzept II) angedeutet, zeigt Graph 78 ein Ansteuersignal für das Mengensteuerventil 44 zwischen 0V und 12V, ein Graph 80 einen Zustand des Mengensteuerventils 44 zwischen "offen" 82 und "geschlossen" 84 und ein Graph 86 einen Druck im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 zwischen einem Niederdruck pniederdruck 88 im Niederdrucksystem 38 und einem Hochdruck pHD-rail 90 im Hochdrucksystem 36 bzw. Hochdruckrail 18. Fig. 4 illustrates the control of Mengenesteitwerkes 44 with the two different concepts. For this purpose, a graph 50 illustrates the movement of the piston 40 between a top dead center 52 and a bottom dead center 54, wherein a filling 56 and a compression 58 cyclically alternate. According to a first concept with closing interval at the beginning of the compression stroke 58, as indicated by arrows 60 (compression phase according to concept I), graph 62 shows a drive signal for the quantity control valve 44 between 0V and 12V, a graph 64 a state of the quantity control valve 44 between "open" 66, and "closed" 68 and a graph 70 a pressure in the compression chamber, the stroke-piston fuel pump 16 between a low pressure P low-pressure 72 in the low pressure system 38 and a high pressure p HD-rail 74 in the high-pressure system 36 or high-pressure rail 18. According to a second concept with closing interval at the end of the compression stroke 58, as indicated by arrows 76 (compression phase according to concept II), graph 78 shows a drive signal for the quantity control valve 44 between 0V and 12V, a graph 80 shows a state of the quantity control valve 44 between "open" 82 and "closed 84 and a graph 86 a pressure in the compression space of the reciprocating piston fuel pump 16 between a P low-pressure low-pressure 88 in the low pressure system 38 and a high pressure p HD-rail 90 in the high-pressure system 36 or high-pressure rail 18th

Das Schließintervall 60 bzw. 76 des Mengenstellwerkes 44 liegt zwischen dem unteren Totpunkt 54 und dem oberen Totpunkt 52 des Kolbens 40 der Hub-Kolben-Kraftstoffpumpe 16 bezogen auf einen sich im Zylinder 42 aufwärts bewegenden Kolben 40. Prinzipiell ist es egal, ob das Schließintervall direkt nach durchschreiten des unteren Totpunktes 54 beginnt (Konzept I, Pfeil 60) oder mit erreichen des oberen Totpunktes 52 endet (Konzept II, Pfeil 76). Beide Konzepte führen zum Druckaufbau. Aus energetischen Gründen ist aber das zweite Konzept (Pfeil 76) zu bevorzugen. Der Kompressionsvorgang 60 bzw. 76 wird durch verschließen des Mengenstellwerkes 44 bei sich aufwärts bewegendem Kolben 40 ausgelöst. Das sich in diesem Moment im Kompressionsraum befindliche Kraftstoffvolumen hat annähernd Niederdruckniveau. Durch die Aufwärtsbewegung des Kolbens 40 erhöht sich der Druck. Steigt der Druck im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 über den im Hochdruckrail 18 herrschenden Drucks pHD-rail, dann öffnet sich das Rückschlagventil 48 und der Kraftstoff strömt aus dem Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 in das Hochdruckrail 18. Dies erfolgt so lange, wie der Druck im Kompressionsraum über dem Druck pHD-rail im Hochdruckrail 18 gehalten wird. Beendet wird der effektive Kompressionshub durch Öffnen des Mengenstellwerkes 44 bzw. sobald der Kolben 40 seinen oberen Totpunkt 52 erreicht. Je nach Pumpenkonstruktion und -Konzept kann ein Restvolumen am Ende des Kompressionsvorgangs 58 im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 verbleiben.The closing interval 60 or 76 of the quantity-adjusting mechanism 44 lies between the bottom dead center 54 and the top dead center 52 of the piston 40 of the reciprocating piston fuel pump 16 relative to a piston 40 moving upward in the cylinder 42. In principle, it does not matter if the closing interval immediately after passing through the bottom dead center 54 begins (concept I, arrow 60) or ends with reaching the top dead center 52 (concept II, arrow 76). Both concepts lead to pressure build-up. For energetic reasons, however, the second concept (arrow 76) is to be preferred. The compression process 60 or 76 is triggered by closing the quantity control station 44 with upwardly moving piston 40. The volume of fuel in the compression space at this moment is at approximately low pressure level. By the upward movement of the piston 40, the pressure increases. If the pressure in the compression chamber of the reciprocating piston fuel pump 16 rises above the pressure p HD-rail prevailing in the high-pressure rail 18 , then the check valve 48 opens and the fuel flows out of the compression space of the reciprocating piston fuel pump 16 into the high-pressure rail 18. Dies takes place as long as the pressure in the compression chamber above the pressure p HD rail is maintained in the high-pressure rail 18. The effective compression stroke is ended by opening the quantity-adjusting mechanism 44 or as soon as the piston 40 reaches its top dead center 52. Depending on the pump design and concept, a residual volume at the end of the compression process 58 may remain in the compression space of the reciprocating piston fuel pump 16.

Der Kraftstoff, beispielsweise Ottokraftstoff, ändert unter Druck sein Volumen. Diese Volumenänderung ergibt sich aus Δ V = V 0 * Δ p * χ

Figure imgb0001

wobei V 0 ein Ausgangsvolumen [mm3]; Δp eine Druckänderung [bar], χ eine Kompressibilitätszahl [1/bar] und ΔV eine Volumenänderung [mm3] ist. Die eine Kompressibilitätszahl χ [1/bar] für das zu komprimierende Fluid ergibt sich in Abhängigkeit von Temperatur und Druck aus einer Kennlinienschar gemäß Fig. 3. Die Fig. 3 zeigt auf einer horizontalen Achse 92 einen Druck in [bar] und auf einer vertikalen Achse 94 die Kompressibilität in [E-4/bar]. Die Kennlinien entsprechen von oben nach unten einer Temperatur von 413K, 393K, 373K,353K, 333K, 313K, 293K, 273K, 253K und 233K. Die Kompressibilität ist empirisch ermittelt und bezieht sich bei dem dargesteltten Beispiel auf Superbenzin, das bei 15°C und 1 bar die Dichte ρ =0,7647 g/cm3 aufweist.The fuel, for example petrol, changes its volume under pressure. This volume change results Δ V = V 0 * Δ p * χ
Figure imgb0001

where V 0 is an initial volume [mm 3 ]; Δ p is a pressure change [bar], χ is a compressibility number [1 / bar] and Δ V is a volume change [mm 3 ]. The one compressibility number χ [1 / bar] for the fluid to be compressed results in dependence on temperature and pressure from a family of curves according to Fig. 3 , The Fig. 3 shows on a horizontal axis 92 a pressure in [bar] and on a vertical axis 94 the compressibility in [E-4 / bar]. The curves correspond from top to bottom to a temperature of 413K, 393K, 373K, 353K, 333K, 313K, 293K, 273K, 253K and 233K. The compressibility is determined empirically and refers in the example shown to super-grade petrol which has the density ρ = 0.7647 g / cm 3 at 15 ° C. and 1 bar.

Erfindungsgemäß werden zur Berechnung der Volumenänderung bei der Kompression von Kraftstoff die Größen Druckänderung, Temperaturänderung, Ausgangsvolumen, Ausgangsdruck und Ausgangstemperatur sowie ein Kompressibilitätskennfeld der verwendeten Kraftstoffsorte verwendet.According to the invention, the variables used for calculating the volume change in the compression of fuel, the pressure change, temperature change, output volume, output pressure and output temperature and a compressibility map of the fuel grade used.

Für die Berechnung der Dichteänderung durch Kompression wird zunächst die Dichte des Kraftstoffes für den jeweiligen Betriebspunkt berechnet. Die Dichte ist gemäß folgender Formel abhängig von der Kompressibilität und dem Druck: ρ Kraftstoff = ρ 1 - p rail - p norm * χ Kail

Figure imgb0002
wobei ρKraftstoff eine Dichte des Kraftstoffes in [g/mm3], ρnorm eine Dichte des Kraftstoffes unter Normbedingungen in [g/mm3], pKraftstoff ein Druck des Kraftstoffes [bar], ], pnorm ein Normdruck in [bar] und χKraftstoff eine Kompressibilität des Kraftstoffes ist. Dieser Zusammenhang ist gültig für Kraftstoff in flüssiger Form.For the calculation of the density change by compression, the density of the fuel for the respective operating point is first calculated. The density depends on the compressibility and the pressure according to the following formula: ρ fuel = ρ 1 - p rail - p standard * χ Kail
Figure imgb0002
where ρ fuel is a density of the fuel in [g / mm 3 ], ρ norm is a density of the fuel under standard conditions in [g / mm 3 ], p fuel is a pressure of the fuel [bar],], p norm is a standard pressure in [bar ] and χ fuel is a compressibility of the fuel. This relationship applies to fuel in liquid form.

Größen, die nicht direkt gemessen werden können, müssen mit Hilfe von Modellen nachgebildet werden. Dies betrifft in dem vorliegenden Anwendungsfall die Temperatur. Für die Kompressibilitätsbestimmung ist es notwendig, an zwei Stellen des Kraftstoffsystems die Temperatur des Kraftstoffes zu modellieren, nämlich die Temperatur des Kraftstoffes beim Einströmen in den Kompressionsraum tflvrhdp und die Temperatur des Kraftstoffes im Hochdruckrail tkrail. Für tflvrhdp wird ein Kennfeld adressiert, welches im Versuch empirisch ermittelt wird. Die Temperatur tkrail des Kraftstoffes im Hochdruckrail 18 hängt von verschiedenen Einflußgrößen ab. Ausgangspunkt ist die Eintrittstemperatur tflvrhdp des Kraftstoffes in die Hub-Kolben-Kraftstoffpumpe 16. Der Kraftstoff durchfließt zunächst die Hub-Kolben-Kraftstoffpumpe 16, die Kraftstoffleitung und dann das Hochdruckrail 18. Es findet ein Wärmeübergang aufgrund der Berührung des Kraftstoffes mit den Innenflächen der kraftstoffdurchflossenen Bauteile statt. Die Quelle der Wärme sind der Motorblock bzw. die Umgebungsluft im Motorraum sowie die Verdichtungsarbeit in der Hub-Kolben-Kraftstoffpumpe 16. Diese Wärmeeinträge tragen im folgenden die Namen temotr, teulr und t krailnp. Der Kraftstoff strömt über das geöffnete Mengenstellwerk 44 mit der Temperatur tflvrhdp in den Kompressionsraum ein. Dort wird der Kraftstoff verdichtet und strömt über das Rückschlagventil 48 in das Hochdruckrail 18. Durch diesen thermodynamischen Prozeß erfolgt ein Temperatureintrag t krailnp in den Kraftstoff. Für t krail gilt: t krail = t flvhdp + t emotr + t eulr + t krailnp

Figure imgb0003
t emotr = f t mot - t krailnp ; Q Kraftstoff
Figure imgb0004
t krailnp = f p rail - p Niederdruckseite
Figure imgb0005
t eulr = f t Umgebung ; v Fahrzeug
Figure imgb0006
Sizes that can not be measured directly must be modeled using models. This relates to the temperature in the present application. For the determination of the compressibility it is necessary to model the temperature of the fuel at two points of the fuel system, namely the temperature of the fuel flowing into the compression space t flvrhdp and the temperature of the fuel in the high-pressure rail t krail . For t flvrhdp a map is addressed, which is empirically determined in the experiment. The temperature t krail of the fuel in the high-pressure rail 18 depends on various influencing variables. The starting point is the inlet temperature t flvrhdp of the fuel in the lift-piston fuel pump 16. The fuel flows through first the lift-piston fuel pump 16, the fuel line and then the high-pressure rail 18. There is a heat transfer due to the contact of the fuel with the inner surfaces of the fuel-carrying components instead. The source of heat is the engine block or the ambient air in the engine compartment as well as the compression work in the reciprocating piston fuel pump 16. These heat inputs bear the following names t emotr , t eulr and t krailnp . The fuel flows into the compression space via the open quantity control 44 at the temperature t flvrhdp . There, the fuel is compressed and flows through the check valve 48 in the high-pressure rail 18. By this thermodynamic process takes place a temperature entry t krailnp in the fuel. For t krail applies: t Krail = t flvhdp + t emotr + t eulr + t krailnp
Figure imgb0003
t emotr = f t mot - t krailnp ; Q fuel
Figure imgb0004
t krailnp = f p rail - p Low pressure side
Figure imgb0005
t eulr = f t Surroundings ; v vehicle
Figure imgb0006

Die Abhängigkeiten von temotr , teulr und t krailnp werden empirisch ermittelt und in Kennlinien und Kennfeldern abgelegt.The dependencies of t emotr , t eulr and t krailnp are determined empirically and stored in curves and maps .

Mittels einer Tiefpaßfilterung wird das dynamische Verhalten der Temperatur t krail im Hochdruckrail 18 erfaßt. Das Zeitverhalten des Filters wird in Abhängigkeit vom Kraftstoffmassenfluß QKraftstoff ) sowie von der Differenz aus t mot und t krailnp festgelegt.By means of a low-pass filter, the dynamic behavior of the temperature t krail in the high-pressure rail 18 is detected. The time behavior of the filter is determined as a function of the fuel mass flow Q fuel ) and of the difference between t mot and t krailnp .

Erfindungsgemäß basiert die Vorsteuerung der Hub-Kolben-Kraftstoffpumpe 16 auf der Berechnung des Hubvolumens des Kolbens 40, das für die Kompression des Kraftstoffes genutzt werden soll. Festgelegt wird dieses Hubvolumen durch Schließ- und Öffnungszeitpunkte des Mengenstellwerkes 44 unter Berücksichtigung der Pumpengeometrie. Das zu komprimierende Kraftstoffvolumen ergibt sich aus den Anforderungen der Motorsteuerung 26 hinsichtlich Soll-Kraftstoffdruck im Hochdruckrail 18 und Kraftstoffmenge sowie den aktuellen Betriebsparametern, wie Temperatur und Ist-Drücke.According to the invention, the pilot control of the stroke piston fuel pump 16 is based on the calculation of the stroke volume of the piston 40 which is to be used for the compression of the fuel. This stroke volume is defined by closing and opening times of the quantity control station 44 taking into account the pump geometry. The volume of fuel to be compressed results from the requirements of the engine control 26 with respect to target fuel pressure in the high-pressure rail 18 and fuel quantity and the current operating parameters, such as temperature and actual pressures.

Das von den Hochdruckeinspritzventilen 20 aus dem Hochdruckrail entnommene Kraftstoffvolumen muß von der Hub-Kolben-Kraftstoffpumpe 16 wieder dem Hochdruckrail 18 zugeführt werden. Das aus dem Hochdruckrail 18 entnommene Volumen vevphh 96 (Fig. 2)ergibt sich aus: vevphh = krnphvst ρ kharvst

Figure imgb0007
kmphvst = dmkrhdev ishdpvst
Figure imgb0008
ishdpvst = nmv * nahdpanz
Figure imgb0009
ρ kravst = ρ rohnvst 1 - p rail - p norm * χ Krail
Figure imgb0010
wobei

νeνphh =
Kraftstoffvolumenentnahme aus dem Hochdruckrail durch die Einspritzventile in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
kmphνst =
Kraftstoffmassenentnahme durch die Einspritzventile aus dem Hochdruckrail pro Hub der Hub-Kolben-Kraftstoffpumpe in [g/Hub der Hub-Kolben-Kraftstoffpumpe].
ρkrarνst =
Dichte des Kraftstoffes bei Ausströmen aus dem Hochdruckrail 18 in [g/mm3].
ρrohnνst =
Normdichte des Kraftstoffes (sortenabhängig) in [g/mm3].
prail =
Druck im Hochdruckrail 18 in [bar].
pnorm =
Normdruck in [bar].
χKrail =
Kompressibilität des Kraftstoffes im Hochdruckrail in [1/bar].
dmkrhdeν =
Kraftstoffmenge durch die Hochdruckeinspritzventile (HDEV) 20 berechnet aus Ventilöffnungszeiten in [g/min].
ishdpνst =
Anzahl der Lastspiele der Hub-Kolben-Kraftstoffpumpe pro min in [1/min].
nnw =
Nockenwellendrehzahl in [1/min].
nahdpanz =
Anzahl der Nocken auf der Nockenwelle für den Antrieb der Hub-Kolben-Kraftstoffpumpe [dimensionslos].
The volume of fuel removed from the high-pressure rail 20 by the high-pressure injection valves must be returned to the high-pressure rail 18 by the stroke piston fuel pump 16. The volume taken from the high-pressure rail 18 vevphh 96 ( FIG. Fig. 2 ) results from: vevphh = krnphvst ρ kharvst
Figure imgb0007
kmphvst = dmkrhdev ishdpvst
Figure imgb0008
ishdpvst = nmv * nahdpanz
Figure imgb0009
ρ kravst = ρ rohnvst 1 - p rail - p standard * χ Krail
Figure imgb0010
in which
νeνphh =
Fuel volume extraction from the high-pressure rail through the injection valves in [mm 3 / stroke stroke piston fuel pump].
kmphvst =
Fuel mass extraction by the injection valves from the high-pressure rail per stroke of the reciprocating piston fuel pump in [g / stroke of the reciprocating piston fuel pump].
ρ krarvst =
Density of the fuel when flowing out of the high-pressure rail 18 in [g / mm 3 ].
ρ rohnvst =
Standard density of the fuel (depending on the grade) in [g / mm 3 ].
p rail =
Pressure in the high-pressure rail 18 in [bar].
p norm =
Standard pressure in [bar].
Krail logo CNRS logo INIST
Compressibility of the fuel in the high-pressure rail in [1 / bar].
dmkrhdeν =
Fuel quantity through High Pressure Injection Valves (HDEV) 20 calculated from valve opening times in [g / min].
ishdpvst =
Number of load cycles of the reciprocating piston fuel pump per minute in [1 / min].
nnw =
Camshaft speed in [1 / min].
close - up
Number of cams on the camshaft for driving the reciprocating piston fuel pump [dimensionless].

Eine Erhöhung des Drucks im Hochdruckrail 18 läßt such nur über ein zusätzliches Kraftstoffvolumen νdaaνst 98 (Fig. 2)d erreichen. Bei positivem Solldruckgradienten muß daher eine zusätzliche Kraftstoffmenge in das Hochdruckrail 18 gepumpt werden. Weil diese Zusatzmenge nicht von dem Hochdruckrail 18 entnommen wird, kommt es zu einer Druckerhöhung im Hochdruckrail 18. Soll sich der Druck im Hochdruckrail 18 dagegen verringern, dann muß dem Hochdruckrail 18 ein kleineres Kraftstoffvolumen zugeführt werden, wie diesem durch die Hochdruckeinspritzventile 20 entnommen worden ist. Dieses Mindervolumen ergibt sich bei einem negativen Solldruckgradienten. In diesem Fall erhält das berechnete Volumen ein negatives Vorzeichen. Formeltechnisch läßt sich dieser Zusammenhang folgendermaßen erfassen: vdaavst = Δ p soll_rail * V HDRL * χ Krail

Figure imgb0011
wobei

νdaaνst =
Volumen Kraftstoff für Druckauf- und -abbau pro Hub der Hub-Kolben-Kraftstoffpumpe [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
Δpsoll_rail =
Solldruckveränderung pro Hub der Hub-Kolben-Kraftstoffpumpe [bar/Hub Hub-Kolben-Kraftstoffpumpe].
VHDRL =
Volumen des gesamten Hochdruckbereiches bestehend aus Hochdruckrail und Hochdruckleitungen in [mm3].
χKrail =
Kompressibilität des Kraftstoffes im Hochdruckrail in [1/bar].
An increase in the pressure in the high-pressure rail 18 leaves only about an additional fuel volume νdaaνst 98 ( Fig. 2 )the rich. With a positive target pressure gradient, therefore, an additional amount of fuel must be pumped into the high-pressure rail 18. Because this additional amount is not taken from the high pressure rail 18, there is an increase in pressure in the high pressure rail 18. If the pressure in the high pressure rail 18, however, reduce the high pressure rail 18, a smaller fuel volume must be supplied, as this has been removed by the high pressure injection valves 20 , This smaller volume results with a negative target pressure gradient. In this case, the calculated volume gets a negative sign. From a technical point of view, this relationship can be captured as follows: vdaavst = Δ p soll_rail * V HDRL * χ Krail
Figure imgb0011
in which
νdaaνst =
Volume Fuel for pressure buildup and release per stroke of Hub Piston Fuel Pump [mm 3 / Hub Hub Piston Fuel Pump].
Δp soll_rail =
Target pressure change per stroke of the Hub Piston Fuel Pump [bar / Hub Hub Piston Fuel Pump].
V HDRL =
Volume of the entire high-pressure area consisting of high-pressure rail and high-pressure lines in [mm 3 ].
Krail logo CNRS logo INIST
Compressibility of the fuel in the high-pressure rail in [1 / bar].

Hierbei ist Δpsoll_rail folgendermaßen definiert: Δpsoll_rail > 0 bedeutete, daß der Solldruckgradient positiv ist und Δpsoll_rail < 0 bedeutete, däß der Solldruckgradient negativ ist.Here Ap soll_rail is defined as follows: Δ p soll_rail> 0 meant that the nominal pressure gradient is positive and Ap soll_rail <0 meant the nominal pressure gradient däß negative.

Als nächstes wird eine Volumenänderung νkdaνst 100 (Fig. 2) durch Kompression berücksichtigt. Wenn der Kompressionsvorgang beginnt, befindet sich der Kraftstoff zunächst noch auf Niederdruckniveau. Durch den sich nach oben bewegenden Kolben 40 kommt es zu einem Druckanstieg. Erst wenn Druckausgleich zwischen dem Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 und dem Hochdruckrail 18 besteht, öffnet sich das dazwischen befindliche Rückschlagventil 48. Das Hubvolumen, das der Kolben für die Verdichtung von Niederdruck- auf Raildruckniveau benötigt, ist zurückzuführen auf die Kompressibilität des Kraftstoffes. Dieses Hubvolumen wird erfindungsgemäß bei der Berechnung der Ansteuerung des Mengenstellwerkes 44 berücksichtigt und wird zu den zuvor berechneten Volumina νeνphh (Kraftstoffvolumenentnahme aus dem Hochdruckrail durch die Einspritzventile) und νdaaνst (Volumen Kraftstoff für Druckauf- und -abbau im Hochdruckrail18) hinzu addiert. Dieses Zusatzvolumen berechnet sich wie folgt: vkdavst = χ Khdp * Δ p * V komp 1 - Δ p * χ Khdp

Figure imgb0012
V k o m p = v e v p h h + v d a a v s t + v t o t r a u m
Figure imgb0013
wobei

νkdaνst =
Volumen für Kompression bis Druckausgleich zwischen Kompressionsraum in der Hub-Kolben-Kraftstoffpumpe 16 und dem Hochdruckrail 18 in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
χKhdp =
Kompressibilität des Kraftstoffs bei Einströmen in den Kompressionsraum der Hub-Kolben-Kraftstoffpumpe in [1/bar].
Vkomp =
Kraftstoffvolumen das sich bei Druckausgleich im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe befindet in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
νdaaνst =
Volumen Kraftstoff für Druckauf- und -abbau pro Hub der Hub-Kolben-Kraftstoffpumpe [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
νeνphh =
Kraftstoffvolumenentnahme aus dem Hochdruckrail durch die Einspritzventile in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
νtotraum =
Kraftstoffvolumen im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 bei Ende des Kompressionsvorganges in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].
Next, a volume change νkdaνst 100 ( Fig. 2 ) by compression. When the compression process begins, the fuel is initially at low pressure level. By the piston 40 moving upwards, there is an increase in pressure. Only when pressure equalization between the compression space of the reciprocating piston fuel pump 16 and the high-pressure rail 18, opens the intervening check valve 48. The stroke volume, which requires the piston for the compression of low pressure to rail pressure level, is due to the compressibility of the fuel , According to the invention, this stroke volume is taken into account in the calculation of the activation of the quantity control station 44 and is added to the previously calculated volumes νeνphh (fuel volume extraction from the high-pressure rail through the injection valves) and νdaaνst (volume of fuel for pressure buildup and reduction in the high-pressure rail 18 ). This additional volume is calculated as follows: vkdavst = χ KHDP * Δ p * V comp 1 - Δ p * χ KHDP
Figure imgb0012
V k O m p = v e v p H H + v d a a v s t + v t O t r a u m
Figure imgb0013
in which
νkdaνst =
Volume for compression to pressure equalization between compression space in the reciprocating piston fuel pump 16 and the high-pressure rail 18 in [mm 3 / stroke stroke piston fuel pump].
Khdp =
Compressibility of the fuel flowing into the compression space of the reciprocating piston fuel pump in [1 / bar].
V comp =
Fuel volume in the compression chamber of the reciprocating piston fuel pump is in [mm 3 / Hub Hub Piston Fuel Pump].
νdaaνst =
Volume Fuel for pressure buildup and release per stroke of Hub Piston Fuel Pump [mm 3 / Hub Hub Piston Fuel Pump].
νeνphh =
Fuel volume extraction from the high-pressure rail through the injection valves in [mm 3 / stroke stroke piston fuel pump].
νtotraum =
Fuel volume in the compression chamber of the stroke piston fuel pump 16 at the end of the compression process in [mm 3 / Hub Hub Piston Fuel Pump].

Wenn das Mengenstellwerk 44 im unteren Totpunkt des Kolbens 40 der Hub-Kolben-Kraftstoffpumpe 16 schließt (vgl. Pfeil 60 in Fig. 4 gemäß Konzept I) und der Druckaufbau beginnt, muß stets der gesamte sich im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 befindliche Kraftstoff von Niederdruck- auf Raildruckniveau gebracht werden. Für Pumpenkonzepte, die prinzipbedingt immer um unteren Totpunkt des Kolbens 40 der Hub-Kolben-Kraftstoffpumpe 16 das Mengenstellwerk 44 schließen und mit einem variablen Öffnungszeitpunkt des Mengenstellwerks 44 ihre Förderleistung einstellen, läßt sich νkdaνst (Volumen für Kompression bis Druckausgleich zwischen Kompressionsraum in der Hub-Kolben-Kraftstoffpumpe 16 und dem Hochdruckrail 18) alternativ etwas einfacher darstellen: vkdavst = χ Khdp * Δ p * V Kompressionsraum

Figure imgb0014
wobei

VKompressionsraum =
Volumen des Kompressionsraumes der Hub-Kolben-Kraftstoffpumpe 16 in [mm3].
When the bulkhead 44 closes at the bottom dead center of the piston 40 of the reciprocating piston fuel pump 16 (see arrow 60 in FIG Fig. 4 According to concept I) and the pressure build-up begins, the entire fuel in the compression space of the reciprocating piston fuel pump 16 must always be brought from low pressure to rail pressure level. For pump concepts, which always close at the bottom dead center of the piston 40 of the reciprocating piston fuel pump 16, the quantity control unit 44 and adjust their capacity with a variable opening time of the quantity control 44, νkdaνst (volume for compression to pressure equalization between compression space in the lifting Piston fuel pump 16 and the high-pressure rail 18) alternatively represent something simpler: vkdavst = χ KHDP * Δ p * V compression chamber
Figure imgb0014
in which
V compression space
Volume of the compression space of the reciprocating piston fuel pump 16 in [mm 3 ].

Die Befüllung des Kompressionsraumes der Hub-Kolben-Kraftstoffpumpe 16 erfolgt während sich der Kolben 40 abwärts bewegt. Es muß soviel Kraftstoff in den Kompressionsraum nachgefüllt werden, wie im Kompressionstakt zuvor in das Hochdruckrail 18 abgegeben worden ist. Dynamische Strömungseffekte können jedoch dazu führen, daß die Befüllung nicht gleichmäßig erfolgt. Durch hohe Strömungsgeschwindigkeiten und nicht optimale Einströmkanäle entstehen punktuell Zonen mit niedrigem Druckniveau. In diesen Zonen kann es dazu kommen, dass der Kraftstoff unter Temperatureinwirkung von der flüssigen in die gasförmige Phase übergeht. Dies beinhaltet eine Volumenvergrößerung. Die so entstandenen Dampfblasen befinde sich entweder bereits im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 oder werden vom Kraftstoffstrom mitgerissen und gelangen so in den Kompressionsraum. Unter Druckerhöhung durch den beginnenden Kompressionsvorgang bilden sich diese Blasen zurück. Es kommt zu einer Volumenverringerung. Das Hubvolumen, das der Kolben 40 der Hub-Kolben-Krafttoffpumpe 16 bei geschlossenem Mengenstellwerk 44 benötigt, um diese Volumenänderung zu kompensieren wird im folgenden vvlfghdp genannt. Dieses Volumen vvlfghdp 102 (Fig. 2) wird erfindungsgemäß bei der Festlegung des zu komprimierenden Gesamtvolumens berücksichtigt.

vvlfghdp =
Volumenverlust durch nicht optimalen Liefergrad aufgrund von Dampfblasenbil- dung im Kraftstoff pro Hub der Hub-Kolben-Kraftstoffpumpe [mm3].
Ifgrhdp =
Liefergrad bei der Befüllung des Kompressionsraumes der Hub-Kolben-Kraftstoffpumpe [dimensionslos]. Definition: 0 < l f g r h d p < 1
Figure imgb0015
  • 0 = keine Füllung
  • 1 = 100% Führung
l f g r h d p = f k m e s h d p ; t f v r h d p * f n m o t ; p n i e d e r d r u c k
Figure imgb0016
kmeshdp =
Kraftstoffmasse, die durch das Mengenstellwerk in das Hochdruckrail pro Hub einströmt in [g/hub Hub-Koben-Kraftstoffpumpe].
tflvrhdp =
Temperatur des Kraftstoffes beim Einströmen in den Kompressionsraum in [°C].
nmot =
Motordrehzahl in [1/min].
pniederdruck =
Kraftstoffdruck auf einer Niederdruckseite in [kPa].
The filling of the compression space of the lift-piston fuel pump 16 takes place while the piston 40 moves downward. It must be replenished as much fuel in the compression chamber, as previously in the compression stroke has been discharged into the high-pressure rail 18. However, dynamic flow effects can cause the filling not to be uniform. Due to high flow velocities and not optimal inflow channels Occasionally zones with low pressure levels are created. In these zones it can happen that the fuel passes under the influence of temperature from the liquid to the gaseous phase. This includes an increase in volume. The resulting vapor bubbles are either already in the compression space of the reciprocating piston fuel pump 16 or are entrained by the fuel flow and thus get into the compression chamber. Under pressure increase by the incipient compression process, these bubbles form back. It comes to a reduction in volume. The stroke volume required by the piston 40 of the lift-piston power fuel pump 16 when the quantity control station 44 is closed in order to compensate for this volume change is referred to below as vvlfghdp . This volume vvlfghdp 102 ( Fig. 2 ) is considered according to the invention in the determination of the total volume to be compressed.
vvlfghdp =
Volume loss due to less than optimal delivery due to vapor formation in the fuel per stroke of the reciprocating piston fuel pump [mm 3 ].
Ifgrhdp =
Degree of delivery when filling the compression space of the reciprocating piston fuel pump [dimensionless]. Definition: 0 < l f G r H d p < 1
Figure imgb0015
  • 0 = no filling
  • 1 = 100% leadership
l f G r H d p = f k m e s H d p ; t f v r H d p * f n m O t ; p n i e d e r d r u c k
Figure imgb0016
kmeshdp =
Fuel mass flowing into the high-pressure rail per stroke through the metering station in [g / stroke Hub-Koben fuel pump].
tflvrhdp =
Temperature of the fuel flowing into the compression chamber in [° C].
nmot =
Engine speed in [rpm].
p low pressure
Fuel pressure on a low pressure side in [kPa].

Mit kmeshdp, tjlvrhdp, nmot und pniederdruck werden Kennfelder adressiert, die im Versuch empirisch ermittelt werden.With kmeshdp, tjlvrhdp, nmot and p low pressure maps are addressed, which are empirically determined in the experiment.

Das zu komprimierende Gesamtvolumen ergibt sich aus der Addition der voranstehend ermittelten Volumina gemäß: vkhdpvst = vevphh + vkdavst + vdaavst + vvlfghdp

Figure imgb0017
wobei

νkhdpνst =
Pro Hub der Hub-Kolben-Kraftstoffpumpe zu komprimierendes Gesamtvolumen [mm3].
The total volume to be compressed results from the addition of the above determined volumes according to: vkhdpvst = vevphh + vkdavst + vdaavst + vvlfghdp
Figure imgb0017
in which
νkhdpvst =
For each stroke of the reciprocating piston fuel pump, the total volume to be compressed [mm 3 ].

In vielen Anwendungsfällen wird die Hub-Kolben-Kraftstoffpumpe über einen Nocken auf einer Nockenwelle der Brennkraftmaschine angetrieben. Die Welle ist dabei winkelsynchron mit der antreibenden Kurbelwelle verbunden. Die Hubbewegungen des Kolbens der Hub-Kolben-Kraftstoffpumpe erfolgen in einem solchen Fall winkelsynchron zur Kurbelwelle. Die Ansteuerung des Mengenstellwerkes erfolgt dann in vorteilhafter Weise abhängig von dem Kurbelwinkel. Hierbei wird der Schließ- und Öffnungswinkel des Mengenstellwerkes bezogen auf den Kurbelwinkel bestimmt. Zum Umsetzen des zu komprimierende Gesamtvolumens in ein kurbelwellensynchrones Ansteuern des Mengenstellwerkes wird die Anbindung der Hub-Kolben-Kraftstoffpumpe formeltechnisch erfaßt. Dazu ist das Übersetzungsverhältnis und die Anzahl der Nocken auf der Nockenwelle, die der Hub-Kolben-Kraftstoffpumpe zugeordnet sind, zu beachten. Die eigentliche Hubbewegung wird durch die geometrische Form des Nockens festgelegt. Der zurückgelegte Hub ergibt in Verbindung mit dem Durchmesser des Kolbens das Hubvolumen der Hub-Kolben-Kraftstoffpumpe. Es ergibt sich folgende Formel: skhdp = vkhdpvst π * r Kolben 2

Figure imgb0018
wobei

skhdp =
Kompressionshub des Kolbens der Hub-Kolben-Kraftstoffpumpe, der für das zu komprimierende Gesamtvolumen νkhdpνst erforderlicher ist [mm].
νkhdpνst =
Pro Hub der Hub-Kolben-Kraftstoffpumpe zu komprimierendes Gesamtvolumen [mm3].
rKolben =
Radius des Kolbens der Hub-Kolben-Kraftstoffpumpe [mm].
mit dwmsvsvg = Erhebungskurve_Nocken skhdp
Figure imgb0019
wobei die Funktion Erhebungskurve_Nocken(skhdp) die Geometrie der steigenden Flanke der Antriebsnockens für die Hub-Kolben-Kraftstoffpumpe in Form einer Kennlinie beschreibt. Adressiert wird diese Kennlinie mit dem erforderlichen Kompressionshub skhdp in [mm]. Über die Geometrie ergibt sich mit dwmsνsνg der notwendige Kurbelwinkel, den das Mengenstellwerk geschlossen sein muß, damit der Kolben der Hub-Kolben-Kraftstoffpumpe den erforderlichen Kompressionshub skhdp ausführen kann, mit
dwmsνsνg =
Deltakurbelwinkel, den das Mengenstellwerk geschlossen bleibt in [°KW].
In many applications, the lift-piston fuel pump is driven by a cam on a camshaft of the internal combustion engine. The shaft is connected in angular synchronism with the driving crankshaft. The strokes of the piston of the reciprocating piston fuel pump in such a case are angularly synchronized with the crankshaft. The control of the quantity control station then takes place in an advantageous manner depending on the crank angle. Here, the closing and opening angle of the quantity control gear is determined based on the crank angle. To implement the total volume to be compressed in a crankshaft-synchronous driving the quantity control station, the connection of the reciprocating-piston fuel pump is detected formula technically. For this purpose, the gear ratio and the number of cams on the camshaft, which are assigned to the stroke-piston fuel pump to pay attention. The actual stroke movement is determined by the geometric shape of the cam. The distance traveled results in conjunction with the diameter of the piston, the stroke volume of the lift-piston fuel pump. The result is the following formula: skhdp = vkhdpvst π * r piston 2
Figure imgb0018
in which
skhdp =
Compression stroke of the piston of the reciprocating piston fuel pump required for the total volume to be compressed νkhdpνst [mm].
νkhdpvst =
For each stroke of the reciprocating piston fuel pump, the total volume to be compressed [mm 3 ].
r piston =
Radius of the piston of the reciprocating piston fuel pump [mm].
With dwmsvsvg = Erhebungskurve_Nocken skhdp
Figure imgb0019
wherein the function Erhebungskurve_Nocken (skhdp) describes the geometry of the rising edge of the drive cam for the stroke-plunger fuel pump in the form of a characteristic curve. This characteristic curve is addressed with the required compression stroke skhdp in [mm]. About the geometry results with dwmsνsνg the necessary crank angle, the quantity control must be closed so that the piston of the reciprocating piston fuel pump can perform the required compression stroke skhdp , with
dwmsνsνg =
Deltakurbelwinkel, the quantity control station remains closed in [° KW].

Der Deltakurbelwinkel dwmsνsνg bezieht sich auf den Teil der steigenden Flanke des Antriebsnockens für die Hub-Kolben-Kraftstoffpumpe, der konzeptbedingt für das Kompressionsintervall genutzt wird.The delta crank angle dwmsνsνg refers to that part of the rising edge of the drive cam for the reciprocating piston fuel pump that is conceptually used for the compression interval.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
KraftstofftankFuel tank
1212
KraftstoffpumpeFuel pump
1414
Kraftstoff-FilterFuel filter
1616
Hub-Kolben-Kraftstoffpumpe bzw. Hochdruckpumpe (HDP)Hub Piston Fuel Pump or High Pressure Pump (HDP)
1818
HochdruckrailHigh-pressure rail
2020
Hochdruckeinspritzventile (HDEV)High Pressure Injection Valves (HDEV)
2222
RücklaufleitungReturn line
2424
Druckbegrenzungsventil (DBV)Pressure relief valve (DBV)
2626
Motorsteuergerät /ECU)Engine control unit / ECU)
2828
NiederdrucksensorLow Pressure Sensor
3030
HochdrucksensorHigh pressure sensor
3232
Leistungsendstufepower output stage
3434
Linieline
3636
HochdruckseiteHigh pressure side
3838
NiederdruckseiteLow pressure side
4040
Kolbenpiston
4242
Zylindercylinder
4444
Mengenstellwerk / MengensteuerventilQuantity switch / quantity control valve
4646
Versorgungsleitungsupply line
4848
Rückschlagventilcheck valve
5050
Graph: die Bewegung des Kolbens 40Graph: the movement of the piston 40
5252
oberer TotpunktTop Dead Center
5454
unterer Totpunktbottom dead center
5656
Befüllungfilling
5858
Kompressioncompression
6060
Pfeil: Kompressionsphase gemäß Konzept IArrow: Compression phase according to Concept I
6262
Graph: Ansteuersignal für Mengensteuerventil 44 (Konzept I)Graph: Control signal for quantity control valve 44 (Concept I)
6464
Graph: Zustand des Mengensteuerventils 44 (Konzept I)Graph: State of quantity control valve 44 (Concept I)
6666
Zustand: "offen" (Konzept I)Condition: "open" (Concept I)
6868
Zustand: "geschlossen" (Konzept I)Condition: "closed" (Concept I)
7070
Graph: Druck im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 (Konzept I)Graph: Pressure in the compression space of the reciprocating piston fuel pump 16 (Concept I)
7272
Niederdruck pniederdruck (Konzept I)Low pressure p low pressure (Concept I)
7474
Hochdruck pHD-rail (Konzept I)High pressure p HD-rail (Concept I)
7676
Pfeil: Kompressionsphase gemäß Konzept IIArrow: Compression phase according to Concept II
7878
Graph: Ansteuersignal für Mengensteuerventil 44 (Konzept II)Graph: Control signal for quantity control valve 44 (Concept II)
8080
Graph: Zustand des Mengensteuerventils 44 (Konzept II)Graph: State of quantity control valve 44 (Concept II)
8282
Zustand: "offen" (Konzept II)Condition: "open" (Concept II)
8484
Zustand: "geschlossen" (Konzept II)Condition: "closed" (Concept II)
8686
Graph: Druck im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe 16 (Konzept II).Graph: Pressure in the compression space of the reciprocating piston fuel pump 16 (Concept II).
8888
Niederdruck pniederdruck (Konzept II)Low pressure p low pressure (Concept II)
9090
Hochdruck pHD-rail (Konzept II)High pressure p HD rail (Concept II)
9292
horizontale Achsehorizontal axis
9494
vertikale Achsevertical axis
9696
vevphhvevphh
9898
vdaavstvdaavst
100100
vkdavstvkdavst
102102
vvlfghdpvvlfghdp
dmkrhdevdmkrhdev
Durch die Einspritzventile strömende Kraftstoffmenge in [g/min] berechnet aus Ventilöffnungszeiten.Amount of fuel flowing in through the injectors in [g / min] calculated from valve opening times.
dwmsvsvgdwmsvsvg
Deltakurbelwinkel, den das Mengenstellwerk geschlossen bleibt in [°KW]. Erhebungskurve_Nocken(skhdp) Kennlinie, die eine Geometrie einer steigenden Flanke eines Antriebsnockens der Nockenwelle für die Hub-Kolben-Kraftstoffpumpe für den erforderlichen Kompressionshub skhdp beschreibt.Deltakurbelwinkel, the quantity control station remains closed in [° KW]. Survey curve_cock ( skhdp ) Characteristic describing a geometry of a rising flank of a drive cam of the camshaft for the reciprocating piston fuel pump for the required compression stroke skhdp .
ishdpvstishdpvst
Anzahl der Lastspiele der Hub-Kolben-Kraftstoffpumpe pro min in [1/min].Number of load cycles of the reciprocating piston fuel pump per minute in [1 / min].
kmeshdpkmeshdp
Kraftstoffmasse, die durch das Mengenstellwerk in das Hochdruckrail pro Hub einströmt in [g/Hub Hub-Kolben-Kraftstoffpumpe].Fuel mass that flows through the metering station into the high-pressure rail per stroke in [g / stroke stroke-piston fuel pump].
kmphvstkmphvst
Kraftstoffmassenentnahme durch die Einspritzventile aus dem Hochdruckrail pro Hub der Hub-Kolben-Kraftstoffpumpe in [g/Hub Hub-Koiben-Kraftstoffpumpe].Fuel mass extraction through the injection valves from the high-pressure rail per stroke of the reciprocating piston fuel pump in [g / Hub Hub-Koiben-Kraftstoffpumpe].
lfgrhdplfgrhdp
Liefergrad bei der Befüllung des Kompressionsraumes der Hub-Kolben-Kraftstoffpumpe [dimensionslos].Degree of delivery when filling the compression space of the reciprocating piston fuel pump [dimensionless].
nahdpanznahdpanz
Anzahl der Nocken auf der Nockenwelle für den Antrieb der Hub-Kolben-Kraftstoffpumpe [dimensionslos].Number of cams on the camshaft for driving the reciprocating piston fuel pump [dimensionless].
nmotnmot
Motordrehzahl in [1/min].Engine speed in [rpm].
nnwnnw
Nockenwellendrehzahl in [1/min].Camshaft speed in [1 / min].
pniederdruck p low pressure
Kraftstoffdruck auf einer Niederdruckseite in [kPa].Fuel pressure on a low pressure side in [kPa].
pnorm p norm
Normdruck in [bar].Standard pressure in [bar].
prail p rail
Druck im Hochdruckrail in [bar].Pressure in the high-pressure rail in [bar].
Δp Δ p
Druckänderung in [bar].Pressure change in [bar].
Δpsoll_rail Δp soll_rail
Änderung des Solldruckes im Hochdruckrail [bar/Hub Hub-Kolben-Kraftstoffpumpe].Changing the setpoint pressure in the high-pressure rail [bar / stroke-piston-fuel pump].
QKraftstoff ) Q fuel )
KraftstoffmassenflußKraftstoffmassenfluß
rKolben r piston
Radius des Kolbens der Hub-Kolben-Kraftstoffpumpe [mm].Radius of the piston of the reciprocating piston fuel pump [mm].
ρkrarνst ρ krarvst
Dichte des Kraftstoffes bei Ausströmen aus dem Hochdruckrail in [g/mm3].Density of the fuel when flowing out of the high pressure rail in [g / mm 3 ].
ρrohnνst ρ rohnvst
Normdichte des Kraftstoffes (sortenabhängig) in [g/mm3].Standard density of the fuel (depending on the grade) in [g / mm 3 ].
skhdpskhdp
Kompressionshub, der für das zu komprimierende Gesamtvolumen νkhdpνst erforderlicher ist [mm].Compression stroke, which is more necessary for the total volume to be compressed νkhdpνst [mm].
temotr t emotr
Temperatur Motorblock [°C].Temperature engine block [° C].
teulr t eulr
Temperatur Umgebungsluft im Motorraum [°C].Ambient air temperature in the engine compartment [° C].
tflνrhdptflνrhdp
Temperatur des Kraftstoffes beim Einströmen in den Kompressionsraum in [°C].Temperature of the fuel flowing into the compression chamber in [° C].
tt krailKrail
Temperatur im Hochdruckrail 18 [°C].Temperature in the high-pressure rail 18 [° C].
tt krailnpkrailnp
Temperatur durch Verdichtungsarbeit in Hub-Kolben-Kraftstoffpumpe 16 [°C].Temperature due to compression work in reciprocating piston fuel pump 16 [° C].
VHDRL V HDRL
Volumen des gesamten Hochdruckbereiches bestehend aus Hochdruckrail und Hochdruckleitungen in [mm3].Volume of the entire high-pressure area consisting of high-pressure rail and high-pressure lines in [mm 3 ].
Vkomp V comp
Kraftstoffvolumen das sich bei Druckausgleich im Kompressionsraum befindet in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].Fuel volume in the compression chamber at pressure compensation in [mm 3 / Hub Hub Piston Fuel Pump].
VKompressionsraum V compression space
Volumen des Kompressionsraumes der Hub-Kolben-Kraftstoffpumpe in [mm3].Volume of the compression space of the reciprocating piston fuel pump in [mm 3 ].
νdaaνstνdaaνst
Kraftstoffvolumen, welches für eine Änderung des Solldruckes Δpsoll_rail im Hochdruckrail benötigt wird, in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].Fuel volume, which is required for a change in the setpoint pressure Δp soll_rail in the high-pressure rail , in [mm 3 / stroke stroke piston fuel pump].
νeνphhνeνphh
Kraftstoffvolumenentnahme aus dem Hochdruckrail durch die Einspritzventile in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].Fuel volume extraction from the high-pressure rail through the injection valves in [mm 3 / stroke stroke piston fuel pump].
νkdaνstνkdaνst
Hubvolumen, welches der Kolben der Hub-Kolben-Kraftstoffpumpe zur Verdichtung des Kraftstoffes von Niederdruck auf Druck im Hochdruckrail benötigt in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].Stroke volume which the piston of the reciprocating piston fuel pump requires to compress the fuel from low pressure to high pressure rail pressure in [mm 3 / stroke stroke piston fuel pump].
νkhdpνstνkhdpνst
Pro Hub der Hub-Kolben-Kraftstoffpumpe zu komprimierendes Gesamtvolumen [mm3].For each stroke of the reciprocating piston fuel pump, the total volume to be compressed [mm 3 ].
vtotraumvtotraum
Kraftstoffvolumen im Kompressionsraum der Hub-Kolben-Kraftstoffpumpe bei Ende des Kompressionsvorganges in [mm3/Hub Hub-Kolben-Kraftstoffpumpe].Fuel volume in the compression chamber of the reciprocating piston fuel pump at the end of the compression process in [mm 3 / stroke stroke piston fuel pump].
vvlfghdpvvlfghdp
Volumenverlust durch nicht optimalen Liefergrad aufgrund von Dampfblasenbildung im Kraftstoff pro Hub der Hub-Kolben-Kraftstoffpumpe [mm3].Volume loss due to less than optimal delivery due to vapor formation in the fuel per stroke of the reciprocating piston fuel pump [mm 3 ].
χ Khdp Khdp
Kompressibilität des Kraftstoffs bei Einströmen in den Kompressionsraum der Hub-Kolben-Kraftstoffpumpe in [1/bar].Compressibility of the fuel flowing into the compression space of the reciprocating piston fuel pump in [1 / bar].
χ Krail χ Krail
Kompressibilität des Kraftstoffes im Hochdruckrail in [1/bar].Compressibility of the fuel in the high-pressure rail in [1 / bar].

Claims (13)

  1. Method for the pilot control of a reciprocating piston fuel pump of an internal combustion engine, particularly of a motor vehicle, the internal combustion engine comprising a high-pressure rail and injection valves connected thereto, characterized in that closing and opening times for a fuel feed control mechanism of the reciprocating piston fuel pump are determined from the input values for the fuel volumetric withdrawal for, a fuel volume vdaavst, which is needed for a variation of the set-point pressure Δpsoll_rail in the high-pressure rail per stroke of the reciprocating piston fuel pump, for a swept volume vkdavst, which the piston of the reciprocating piston fuel pump needs for compression of the fuel from low pressure to the pressure in the high-pressure rail per stroke of the reciprocating piston fuel pump, and the volumetric loss vvlfghdp through non-optimal volumetric efficiency due to vapour bubble formation in the fuel per stroke of the reciprocating piston fuel pump, closing and opening times are determined for a fuel feed control mechanism of the reciprocating piston fuel pump.
  2. Method according to Claim 1, characterized in that a total volume vkhdpvst to be compressed per stroke of the reciprocating piston fuel pump is calculated as the sum of: v k h d p v s t = v e v p h h + v k d a v s t + v d a a v s t + v v l f g h d p .
    Figure imgb0031
  3. Method according to Claim 2, characterized in that from the total volume vkhdpvst to be compressed a compression stroke skhdp of the piston of the reciprocating piston fuel pump required for this is calculated according to skhdp = vkhdpvst π * r Kolben 2
    Figure imgb0032

    where rKolben is a radius of the piston of the reciprocating piston fuel pump.
  4. Method according to Claim 3, characterized in that the reciprocating piston fuel pump is driven by a camshaft of the internal combustion engine, closing and opening times being determined as a delta crank angle dwmsvsvg, for which the fuel feed control mechanism remains closed, according to d w m s v s v g = E r h e b u n g s k u r v e _ N o c k e n s k h d p ,
    Figure imgb0033

    the function Erhebungskurve_Nocken (skhdp) describing a geometry of a rising flank of a drive cam of the camshaft for the reciprocating piston fuel pump in the form of a characteristic curve for the required compression stroke skhdp.
  5. Method according to at least one of the preceding claims, characterized in that the fuel volumetric withdrawal vevphh is calculated according to vevphh = kmphvst ρ krarvst
    Figure imgb0034

    where kmphvst is a fuel mass withdrawal by the injection valves from the high-pressure rail per stroke of the reciprocating piston fuel pump and ρkrarvst is a density of the fuel as it flows out of the high-pressure rail.
  6. Method according to Claim 5, characterized in that the fuel volumetric withdrawal kmphvst is calculated according to kmphvst = dmkrhdev ishdpvst ,
    Figure imgb0035

    where dmkrhdev is a quantity of fuel flowing through the injection valves calculated from valve opening times and ishdpvst is a number of load cycles of the reciprocating piston fuel pump per min.
  7. Method according to Claim 6, characterized in that the number of load cycles of the reciprocating piston fuel pump ishdpvst is calculated according to i s h d p v s t = n n w * n a h d p a n z
    Figure imgb0036

    where nnw is a camshaft speed and nahdpanz is a number of cams on the camshaft for driving the reciprocating piston fuel pump.
  8. Method according to at least one of Claims 5 to 7, characterized in that ρkrarvst is calculated according to ρ krarvst = ρ rohnvst 1 - p rail - p norm * χ Krail ,
    Figure imgb0037

    where ρrohnvst is a standard density of the fuel, prail is a pressure in the high-pressure rail, Pnorm is a standard pressure and χKrail is a compressibility of the fuel in the high-pressure rail.
  9. Method according to at least one of the preceding claims, characterized in that the fuel volume vdaavst is calculated according to vdaavst = Δ p soll_rail * V HDRL * χ Krail ,
    Figure imgb0038

    where Δpsoll_rail is a variation of the set-point pressure in the high-pressure rail, VHDRL is a volume of the total high-pressure area comprising the high-pressure rail and the high-pressure lines and χKrail is a compressibility of the fuel in the high-pressure rail.
  10. Method according to Claim 9, characterized in that Δpsoll_rail is greater than 0 when a set-point pressure gradient is positive, and in that Δpsoll_rail is less than 0 when a set-point pressure gradient is negative.
  11. Method according to at least one of the preceding claims, characterized in that the swept volume vkdavst is calculated according to vkdavst = χ Khdp * Δ p * V komp 1 - Δ p * χ Khdp ,
    Figure imgb0039

    where χKhdp is a compressibility of the fuel as it flows into the compression chamber of the reciprocating piston fuel pump, Δp is a pressure variation and Vkomp is a fuel volume, which is present during pressure equalization in the compression chamber.
  12. Method according to Claim 11, characterized in that the fuel volume Vkomp is calculated according to V k o m p = v e v p h h + v d a a v s t + v t o t r a u m ,
    Figure imgb0040

    where vtotraum is a fuel volume in the compression chamber of the reciprocating piston fuel pump at the end of the compression process.
  13. Method according to at least one of Claims 1 to 10, characterized in that the fuel feed control mechanism is closed at a bottom dead centre of the piston of the reciprocating piston fuel pump, the swept volume vkdavst being calculated according to vkdavst = χ Khdp * Δ p * V Kompressionsraum ,
    Figure imgb0041

    where VKompressionsraum is a volume of the compression chamber of the reciprocating piston fuel pump, Δp is a pressure variation and χKhdp is a compressibility of the fuel as it flows into the compression chamber of the reciprocating piston fuel pump.
EP04021981A 2003-11-07 2004-09-16 Pre-controlling process of a variable lift fuel pump in an Internal combustion engine Active EP1529948B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351914 2003-11-07
DE10351914A DE10351914A1 (en) 2003-11-07 2003-11-07 Method for piloting a stroke piston fuel pump of an internal combustion engine

Publications (3)

Publication Number Publication Date
EP1529948A2 EP1529948A2 (en) 2005-05-11
EP1529948A3 EP1529948A3 (en) 2006-09-06
EP1529948B1 true EP1529948B1 (en) 2011-07-27

Family

ID=34428586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04021981A Active EP1529948B1 (en) 2003-11-07 2004-09-16 Pre-controlling process of a variable lift fuel pump in an Internal combustion engine

Country Status (3)

Country Link
EP (1) EP1529948B1 (en)
AT (1) ATE518054T1 (en)
DE (1) DE10351914A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017160B3 (en) * 2008-04-03 2009-07-09 Continental Automotive Gmbh Method for determining the effective compressibility module of an injection system
DE102016119047B4 (en) * 2016-10-07 2018-04-26 Denso Corporation Method for quickly determining a fuel quantity change
CN113339152B (en) * 2021-06-18 2023-01-20 中国北方发动机研究所(天津) Rail pressure control method of high-pressure common rail diesel engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287297B2 (en) * 1998-02-10 2002-06-04 トヨタ自動車株式会社 Fuel pump control device
FR2790283B1 (en) 1999-02-26 2002-01-04 Magneti Marelli France METHOD AND SYSTEM FOR CONTROLLING THE PRESSURE OF A HIGH PRESSURE FUEL PUMP FOR FEEDING AN INTERNAL COMBUSTION ENGINE
DE10158950C2 (en) * 2001-12-03 2003-10-02 Bosch Gmbh Robert Method, computer program, control and regulating device for operating an internal combustion engine, and internal combustion engine
JP3833540B2 (en) 2002-01-09 2006-10-11 三菱電機株式会社 Fuel supply device for internal combustion engine

Also Published As

Publication number Publication date
EP1529948A3 (en) 2006-09-06
ATE518054T1 (en) 2011-08-15
DE10351914A1 (en) 2005-09-15
EP1529948A2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
DE102007043565B4 (en) High pressure fuel pump control device for an internal combustion engine
DE69925783T2 (en) Fuel injection system for an internal combustion engine
EP1042607B1 (en) Fuel supply system of an internal combustion engine
DE102007000246B4 (en) Fuel pressure control
DE102012105818B4 (en) High pressure pump and method for operating a high pressure pump
DE10030364A1 (en) Fuel injection system has fuel injection pump, fuel dosing valve, controller that controls switch-on duration of current to magnetic valve according to engine state
DE112011105549T5 (en) Fluid control device and fuel supply system
WO2014060292A1 (en) Method for operating a fuel injection system with a fuel filter heating process, and fuel injection system
DE102015108112A1 (en) COMMANDS FOR ADJUSTING A PUMP VOLUME FOR FUEL DIRECT INJECTION PUMPS
DE3128239C2 (en) Method and device for controlling exhaust gas recirculation quantities
DE102014223322A1 (en) Method for detecting the pump orientation of a high-pressure fuel pump
DE102006000333A1 (en) Fuel injection control system for use in automobile internal combustion (IC) engine e.g. common rail type diesel engine, lowers excess fuel pressure in accumulator to permissible range when excess fuel pressure is over set criteria
DE102012103139B4 (en) Fuel injection control device for an internal combustion engine
DE112015002295T5 (en) Device for controlling a high-pressure pump
DE102015107020A1 (en) Direct injection pump control for low fuel pumping volumes
DE102005011114A1 (en) Pressure accumulation type fuel injection apparatus for diesel engine has pressure reduction facilitator that lengthens opening period of injector valve by excess injection quantity so that fuel might be injected
DE102015116997A1 (en) Fuel injector
DE112014000612B4 (en) Control device for a high pressure pump
EP2643582B1 (en) Method for operating a fuel system of an internal combustion engine
DE102004011439A1 (en) Diesel fuel injection control system has a control unit that monitors differences in expected fuel flow quantities and adjusts the gradient of a characteristic curve accordingly
DE602004005356T2 (en) Accumulator injection system for an internal combustion engine
DE102008002462A1 (en) Fuel supply
EP1529948B1 (en) Pre-controlling process of a variable lift fuel pump in an Internal combustion engine
DE102013215909A1 (en) Method for controlling and regulating a high-pressure fuel pump of an internal combustion engine provided with an inlet valve with an electromagnetic actuator
EP2113646A1 (en) Method for determining the location of a top dead centre of a combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/38 20060101AFI20050228BHEP

17P Request for examination filed

Effective date: 20070306

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012725

Country of ref document: DE

Effective date: 20110922

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111128

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111028

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

26N No opposition filed

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012725

Country of ref document: DE

Effective date: 20120502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 518054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111107

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230926

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 20

Ref country code: DE

Payment date: 20230930

Year of fee payment: 20