EP1529127B1 - Method and device for drafting at least one sliver - Google Patents

Method and device for drafting at least one sliver Download PDF

Info

Publication number
EP1529127B1
EP1529127B1 EP03735597.1A EP03735597A EP1529127B1 EP 1529127 B1 EP1529127 B1 EP 1529127B1 EP 03735597 A EP03735597 A EP 03735597A EP 1529127 B1 EP1529127 B1 EP 1529127B1
Authority
EP
European Patent Office
Prior art keywords
auto
rollers
pair
leveling
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03735597.1A
Other languages
German (de)
French (fr)
Other versions
EP1529127A1 (en
Inventor
Joachim Dämmig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rieter Ingolstadt GmbH
Original Assignee
Rieter Ingolstadt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rieter Ingolstadt GmbH filed Critical Rieter Ingolstadt GmbH
Publication of EP1529127A1 publication Critical patent/EP1529127A1/en
Application granted granted Critical
Publication of EP1529127B1 publication Critical patent/EP1529127B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H5/00Drafting machines or arrangements ; Threading of roving into drafting machine
    • D01H5/18Drafting machines or arrangements without fallers or like pinned bars
    • D01H5/32Regulating or varying draft
    • D01H5/38Regulating or varying draft in response to irregularities in material ; Measuring irregularities
    • D01H5/42Regulating or varying draft in response to irregularities in material ; Measuring irregularities employing electrical time-delay devices

Definitions

  • the invention relates to a method for drawing at least one sliver by means of a regulated Spinnerelmaschine, in particular carding machine or track, according to the preamble of claim 1. Furthermore, the invention relates to a device for stretching at least one sliver according to the preamble of claim. 4
  • Spinning machines such as carding or stretching serve the purpose of forming a uniform as possible textile material from the submitted textile material.
  • the spinning machines often have a regulated drafting system to control in accordance with the determined fluctuations on the basis of measured in front of the drafting device strip cross-section fluctuations in the direction of strip running delay elements.
  • these drafting elements are formed, for example, by a plurality of roller pairs arranged one behind the other, between which the fiber sliver or slivers are clamped along the respective so-called nip line in the transverse direction of the strip. Since the pairs of rollers have different circumferential speeds which increase in the direction of travel of the strip, the fiber composite consisting of one or more slivers is stretched and made uniform.
  • a second tape cross-section measuring device is also provided at the exit of the drafting system in most cases.
  • the Rieter line RSB D30 has a pair of scanning disks with mutually parallel axes, one of the scanning disks being arranged stationary and the other scanning disk is designed to be mobile.
  • the sliver (s) are passed in a gap between a circumferential groove of the first scanning disk and a peripheral ring of the second scanning disk, the movable scanning disk being deflected in accordance with the mass variations of the sliver (s).
  • the deflection movements are converted by a signal converter into electrical voltage values and delivered to a regulating processor for controlling the roller pairs of the drafting system.
  • the ausregulierbare frequency range with respect to the band cross-section fluctuations is relatively limited. Due to the large inertia of such an arrangement, a desired balancing over a wide frequency range of long-wave fluctuations (so-called A% values) up to Regulierinn of a few inches at high delivery speeds is not possible. In addition, the machine parts wear, caused by the large bandwidth of the signal contents and the associated acceleration of large masses, and the energy consumption are relatively high.
  • FIG. 1 a regulated drafting system is shown, in which a sliver FB passes through a mechanical belt cross-section measuring device 8 and is then guided into a drafting system formed by three drafting roller pairs 2a, 2b, 3a, 3b, 4a, 4b.
  • the tape cross-section measuring device 8 is formed by two scanning disks, which have already been described above.
  • One of the two scanning discs is coupled to a clock generator 11, which generates a certain number of pulses per revolution of this Tastusion. Furthermore, the movable scanning disc is connected to a signal converter 10, which converts their deflection movements into electrical voltage values. These voltage values are then sent to a Meßwertverzögerungstechnik 12 passed, which also receives a number of clocks from the clock 11, which represent a measure of the speed of the current through the belt cross-section measuring device 8 sliver FB.
  • the voltage values in the Meßwertverzögerungsaku 12 which represents an electronic memory in the form of a FIFO (First-In-First-Out), according to the traversed by the sliver path between the band cross-section measuring device 8 and the drafting device are retained.
  • the sliver with the strip piece to be leveled reaches the notional arrears in the drafting zone of the drafting system, the corresponding measured value is released by the Meßwertverzögerungsussi 12 and made a corresponding action in response to the respective measured value.
  • the distance between the measuring location of the Abtastwalzencrues and the default location is called Regelnoctician.
  • the measured value delay unit 12 forwards the measured values to an algorithm unit 13 which calculates the speed of the drafting rollers concerned on the basis of the desired draft setting and the set machine parameters and forwards the corresponding information to a control drive 22.
  • This variable speed drive 22 drives in a differential gear 23, which drives the stationary Abtastusion the band cross-section measuring device 8, the lower roller 2a of the pair of input rollers and the lower roller 3a of the middle roller pair.
  • the differential gear 23 receives from a main motor 14 a base speed, which is adjustable via an intermediate between the main motor 14 and the differential gear 23 Drehiereeinstellmaschine 15.
  • the main motor 14 in turn, directly drives the lower roller 4a of the pair of delivery rollers, thereby obtaining a constant belt discharge speed. Accordingly, only the input roller pair and the middle roller pair are used for the regulation.
  • a method and a device is known in which a first control loop for the pre-delay and a second control loop for the main delay is provided.
  • the pre-delay is set constant, while in the main delay both short-term and long-term disturbances or high and low frequency components in the nonwoven fabric are adjusted.
  • the advantages of the invention are to be seen in particular in the fact that the scanning signals are processed in front of the drafting in at least two Regulier Vietnameseen, thus increasing the flexibility and accuracy in the control of the drafting elements or rollers.
  • the at least two regulating circuits can react to different signal contents and thus assume a distribution of the driving tasks.
  • at least one roller of a first pair of rollers and at least one roller of a second pair of rollers which are at least partially decoupled with respect to their inertia drive, can be driven.
  • the measured signal components of the at least one band cross-section measuring device are subdivided with regard to their frequency into at least two frequency ranges. Based on the affiliation of Meßsignalan fixing to different frequency ranges then the rollers of different roller pairs can be controlled. In this way also the regulation in the frequency domain is shared. Thus, each frequency band can be distributed according to its energy requirements on adapted machine elements.
  • a defined signal processing is advantageous if the measurement signal components of the strip cross-section measuring device connected upstream of the drafting system are allocated to at least one lower and one upper frequency range.
  • the lower and upper frequency ranges are preferably close to one another, particularly preferably substantially continuous, or overlapping.
  • the upper frequency range is chosen such that a substantially lossless processing of the machine elements with a lower mass moment of inertia is possible.
  • the lower frequency range is preferably chosen such that a substantially lossless processing of the machine elements with a higher mass moment of inertia is possible.
  • the lower frequency range comprises frequencies in the range of about 0-3 Hz and the upper frequency range frequencies in the range of about 3 -100 Hz.
  • these frequency ranges are not to be regarded as fixed, but can advantageously be selected or adjusted depending on the regulating distance and / or material to be distorted or other parameters.
  • the mentioned maximum frequency of 100 Hz is not a technical condition. Depending on the design of the drafting system or the masses to be accelerated, lower or higher limit values are also possible.
  • each roller of the pair of input rollers and of the middle roller pair is driven in the first regulating circle, while in the second regulating circle a roller of the delivery roller pair is actuated.
  • the pair of delivery rollers is therefore also used for regulation.
  • this discharge regulation produces no additional delay on average, eliminates the known disadvantages of discharge regulations, which in particular consist in that the tape delivery speed varies and thus problems in these known machines with regard to a clean filing of the warped sliver in a sliver can.
  • the described preferred variant of the invention in principle forms an inlet regulation with superimposed outlet control.
  • the basic advantage and the Ausregul ist low-frequency band fluctuations up to 3 Hz, for example, are made using the low-frequency regulation, in principle, the known regulation, for example, the Rieter route RSB D30 corresponds.
  • the upper frequency band is modulated by the higher-frequency regulation in the drafting system.
  • the control in the first and second Reguller Vietnamese is preferably such that the crizgantician or default point in the delay line formed by the middle pair of rollers and pair of delivery rollers for both Regulier Vietnamese.
  • This means that the delay point for both regulating circuits is identical and no Meßwertverzögerung the two Regulier Vietnamese. - is needed. In other words, the different frequency ranges are merged at the default point or control point.
  • At least one roller of a calender roller pair arranged downstream of the drafting system can be provided in the second regulation circuit or in a third regulation circuit. It is thus possible, for example, to tune the rotational speeds of the delivery roller pair and the Kalanderwalzecrues to create a synchronous operation to each other so that no delay between these two roller pairs occurs. It is therefore not absolutely necessary by means of such a construction that the stretched sliver leaves the drafting system at a constant outflow speed.
  • At least one low-pass filter is connected upstream of a first setpoint level in the first regulating circuit.
  • the voltage signals which are preferably released by the measured value delay unit therefore first pass through this at least one low-pass filter before being switched to a setpoint stage in the first regulating circuit (actual values).
  • This Sallwert tone also receives preferably via a tachogenerator determined speed of a main motor (setpoints) to determine from these switched signals a target value for a first variable speed drive.
  • This first variable speed drive then drives - as in the prior art - in a differential gear that drives in a known manner, the mechanical scanning gear and the lower rollers of the input and middle roller pair.
  • At least one high-pass filter is particularly preferably connected upstream of a second setpoint value stage.
  • the second setpoint stage is also preferably connected to the voltage signals corresponding to the rotational speeds of the main motor (setpoints).
  • Downstream of the output of the second setpoint stage is preferably a second control drive which serves to drive machine elements with a low inertial mass.
  • Such a machine element is preferably a roller of the delivery roller pair.
  • the second control drive drives in a second differential gear, which advantageously also receives its base speed from the main engine.
  • the second control drive thus oscillates symmetrically, corresponding to the thick and thin areas of the at least one sliver, about the speed 0.
  • the second control drive which is provided in the second regulating circuit for balancing the high-frequency Meßsignalanmaschine, for direct control of at least one roller of the corresponding pair of rollers - preferably pair of delivery rollers and / or Kalanderwalzencru - formed be.
  • no differential gear in the second regulating circuit is necessary.
  • a more precise control of the control drive is necessary, which does not oscillate in this case by the speed 0.
  • the lower frequency range in the first regulating circuit is limited by a first order low-pass filter, wherein the signals in the upper frequency range are formed by subtracting the low-pass signal output from the original measuring signal.
  • amplitude and phase errors of the original measuring signals are taken into account in the upper frequency range or in the second regulating circuit, which have been blocked by the low-pass filter or have only been transmitted incorrectly.
  • the upper frequency range is limited by a high pass of at least first order downwards, wherein the signals in the lower frequency range are formed by subtracting the Hochpablysignalausgangs from Ursprungmeßsignal. This automatically compensates for possible amplitude and phase errors, i. there are no amplitude or phase jumps.
  • machine elements comprising drafting rollers and having an overall higher mass moment of inertia than machine elements having an overall lower mass moment of inertia are used as low-pass filters. Parts of the machine with a relatively high moment of inertia are thus used even as a frequency-separating low-pass filter.
  • the measuring signals in this case pass through the first regulating circuit and are also branched off into the second regulating circuit.
  • a tachogenerator can expediently be provided, which measures the rotational speeds of at least one of the drive elements, in particular one of the rollers, this roller being part of the machine elements with a high mass moment of inertia.
  • the output of a first setpoint stage in the first regulation circuit is connected to the input of a setpoint stage in the second regulation circuit.
  • a splitting of the measurement signal is not necessarily made following the Meßverzögerungshim means of a low and high pass. Rather, the measurement signal of the band cross-section measuring device can be switched directly to the setpoint level in the first Regulier Vietnamese after conversion in the signal converter.
  • the output signal of this setpoint stage is then used on the one hand to generate a control signal for the drive elements in the first Regullerkrels - particularly preferably by means of a first variable speed drive and a differential gear - and on the other hand in the form of a setpoint as an input signal for a setpoint stage in the second Regulier Vietnamese.
  • the actual value for the second setpoint stage is preferably provided by measuring the frequency components converted in amplitude and phase by the machine in the first regulating circuit, for example by connecting a tachogenerator to one of the center rollers which produces the mentioned actual values for the second setpoint stage.
  • the high-pass filter for the second regulating circuit is thus realized in principle by the machine itself, without any need for other filters, the frequency components of lower frequencies which can be used by the machine in the first regulating circuit being measured and the measuring signal in the second setpoint stage comprising all frequencies, to be processed in its entirety be subtracted.
  • the voltage signals generated by a tachogenerator can advantageously be applied to the input of the setpoint stage of the second regulating circuit in accordance with the rotational speeds of, for example, a center roller or an input roller.
  • These voltage values of the tachogenerator can be synchronized with a clock, which is connected to the belt cross-section measuring device, before they are switched to the input of the setpoint level of the second regulating circuit.
  • the at least one tape cross-section measuring device can be designed, for example, as a mechanical scanning device. Alternatively or additionally, a microwave sensor with a resonator can be used.
  • band cross-section fluctuations are determined mechanically via a band cross-section measuring device 8.
  • band cross-section fluctuations also encompasses band mass fluctuations, band-thickness fluctuations, band volume fluctuations or similar terms.
  • the measured values for the band cross-section fluctuations are converted into digital voltage signals in a signal converter 10 and applied to a measured value delay unit 12 which is designed, for example, as a hardware or software-implemented first-in-first-out (FIFO) memory.
  • a clock 11 is further connected, which generates a pulse according to a particular sliver length, for example, 1.5 mm, and also passes the pulse number to the Meßwertverzögerungsaku 12.
  • the delayed voltage signals are passed from the Meßwertverzögerungsech 12 to a low-pass filter 20 in a first Reguliernik After passing through the low-pass filter which, for example, transmits frequencies in a frequency range from about 0 to about 3 Hz, the correspondingly filtered voltage signals are forwarded to a first setpoint stage 21 in the first regulating circuit (actual values).
  • a voltage value from a tachogenerator 16 is switched on, which determines the rotational speed of a main motor 14 and converts it into a corresponding voltage signal (nominal values).
  • the output of the setpoint stage 21 is applied to a first variable speed drive 22, which drives in a first differential gear 23.
  • the basic speed receives the first differential gear 23 from the main motor 14, the speed of which is adjustable by a speed setting unit 15.
  • the first variable speed drive 22 is preferably designed as a servo drive, which generates a control speed for the differential gear 23, which is preferably designed as a planetary gear. With this controlled output speed of the differential gear 23, both a scanning roller of the belt cross-section measuring device 8, the lower roller 2a of the input roller pair and the lower roller 3a of the middle roller pair are driven.
  • the speeds of the rollers 2a and 3a are not necessarily the same. It is possible, for example, to drive it in a fixed speed ratio.
  • the second regulating circuit includes a high-pass filter 30 to the input of which the voltage values of the measuring value delay unit 12 are given.
  • the high-pass filter 30 filters the voltage signals and allows, for example, frequencies of about 3 Hz - about 100 Hz.
  • the thus filtered voltage signals are switched to a second setpoint level 31 of the second regulating circuit (actual values).
  • the second setpoint stage 31 also receives the speed of the main motor 14 (setpoint values) converted by the tachogenerator 16 into voltage values.
  • the second setpoint stage 31 determines from these signals a control speed for a second variable speed drive, advantageously in turn a servo drive.
  • the second variable speed drive 32 drives in a second differential gear 33 of the second regulating circuit, this second differential gear 33 also receives its base speed from the main motor 14. With this controlled output speed of the second differential gear 33, the lower roller 4a of the delivery roller pair is driven.
  • the two regulating circuits thus realize an inlet regulation with a superimposed outlet regulation, the second regulating drive oscillating symmetrically about the speed 0. An additional delay is not produced by the discontinuation regulation on average.
  • the longer-wave band cross-section fluctuations by the mass-carrier machine elements - mechanical scanning gear of the tape cross-section measuring device 8, first differential gear 23, rollers 2a, 3a - be compensated to a sufficient extent.
  • the higher-frequency band cross-section fluctuations are ausregulierbar by means of the outlet control by driving the roller 4a of the pair of delivery rollers.
  • the frequency ranges are brought together again, so that wear of, for example, motor drive belt, caused by the large bandwidth of the signals can be reduced.
  • the wear by the acceleration of large masses and increased energy consumption for driving these masses which is in the prior art due to the impossibility of Ausregultechnik of higher-frequency band cross-section fluctuations partially ineffective, can be reduced.
  • the Regulier Anlagenor includes in the embodiment of FIG. 2 (as well as those of the Figures 3 - 5 ) the measurement delay unit 12, the low-pass filter 20, the high pass filter 30, the first setpoint stage 21 and the second setpoint stage 31. These elements are mapped in software in the regulation processor.
  • the embodiment according to the FIG. 3 is different from the one of FIG. 2 in that no separate high-pass filter is provided for filtering out the voltages corresponding to the low-frequency band cross-section fluctuations. Rather, on the one hand, the unfiltered voltage signals from the Meßwertverzögerungstechnik 12 and by a low-pass filter 20 (corresponding to the FIG. 2 On the other hand, filtered voltage signals are switched to a subtractor 135.
  • the subtracter 135 provides output values which only contain the high-frequency signal components of the band thickness fluctuations and outputs these as set values to a second multiplier setpoint stage 131 of the second regulation circuit.
  • the second setpoint stage 131 is thus preceded by a subtracter element 135 in which the low-frequency measurement signals of the first regulation circle are subtracted from the measurement signal containing all frequencies.
  • the actual values for this second setpoint level 131 are - similar to the embodiment according to the FIG. 2 Obtained from a tachogenerator 16, which converts the speed of the main motor 14 into a corresponding voltage signal. Otherwise, the operation in the embodiment according to the FIG. 3 analogous to that of FIG. 2 ,
  • FIG. 4 a third embodiment of the invention is shown.
  • the first regulating circuit with a first setpoint stage 221, a first variable speed drive 22 and a first differential gear 23 are compared to the embodiment according to the FIG. 2 unchanged (only the low-pass filter 20 is missing).
  • a superimposed outflow regulation according to the invention is realized in this embodiment in that the output of the first setpoint stage 221 is not only applied to the first variable speed drive 22, but also as setpoint values to a second, subtractive setpoint stage 231 of a second regulation circle.
  • the actual values for this second setpoint stage 231 are determined from voltage values that are generated by a tachogenerator 116, which determines the speed of the upper roller 3b of the middle roller pair in the illustrated embodiment. It could, for example, the speed of one of the rollers 2a, 2b, 3a tapped.
  • the tacho-generator 116 detects the frequency and amplitude converted by the machine in the first regulating circuit, i. Measuring signal components of relatively low frequency, measures to subtract these from the total frequency signal containing total signal in the second setpoint stage 231.
  • the second setpoint stage 231 determines the setpoint values corresponding to high-frequency measured signal portions for a second control drive 32 which generates a control speed for a second differential 33 from this setpoint value. With this controlled output speed of the second differential gear 33, the lower roller 4a of the delivery roller pair is driven. As a result, the desired delay change is achieved in the main drafting zone, formed by the middle roller pair and delivery roller pair, so that the band cross-section fluctuations of the incoming belt or bands FB can be adjusted.
  • a low-pass filter 20 and a high-pass filter 30 are provided, which split the Meßsignalanmaschine the band cross-section measuring device 8 in low-frequency signal components and high-frequency signal components.
  • a plurality of filters may be provided for the respective frequency range.
  • the essential difference of the embodiment according to the FIG. 5 opposite to that of FIG. 2 is that the control speed generated by the second control drive 32 is not placed in a differential gear, but is switched directly to the lower roller 4a of the delivery roller pair.
  • the second differential gear can be saved.
  • the coupling of the inlet regulation and the outlet regulation is dispensed with.
  • an additional delay can be produced by the outlet regulation by means of the second control drive, so that the delivery speed is not necessarily constant.
  • the second control drive 32 additionally drives a calender roller pair downstream of the drafting system or a pull-off device for drawing off the drawn sliver, so that the delivery roller pair and the calender roller pair synchronously convey the sliver.
  • the invention can also be used in spinning machines with individual drives. It is essential that from signals obtained before the drafting system Band cross-section fluctuations are regulated in at least two Regulier Vietnameseen, in particular to be able to take into account the different moments of inertia of different machine parts in these Regulier Vietnameseen. It can thus be obtained a frequency bandwidth increase in the regulation of the stretching of the at least one sliver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Verstrecken von mindestens einem Faserband mittels einer regulierten Spinnerelmaschine, Insbesondere Karde oder Strecke, nach dem Oberbegriff des Anspruchs 1. Des weiteren betrifft die Erfindung eine Vorrichtung zum Verstrecken von mindestens einem Faserband nach dem Oberbegriff des Anspruchs 4.The invention relates to a method for drawing at least one sliver by means of a regulated Spinnerelmaschine, in particular carding machine or track, according to the preamble of claim 1. Furthermore, the invention relates to a device for stretching at least one sliver according to the preamble of claim. 4

Spinnereimaschinen wie Karden oder Strecken dienen dem Zweck, aus dem vorgelegten Textilmaterial ein möglichst gleichmäßiges Textilmaterial zu bilden. Zu diesem Zweck weisen die Spinnereimaschinen oftmals ein reguliertes Streckwerk auf, um anhand von vor dem Streckwerk gemessenen Bandquerschnittsschwankungen in Bandlaufrichtung hintereinander angeordnete Verzugsorgane entsprechend den ermittelten Schwankungen anzusteuern. Bei Strecken werden diese Verzugsorgane beispielsweise von mehreren hintereinander angeordneten Walzenpaaren gebildet, zwischen denen das oder die Faserbänder entlang der jeweiligen sog. Klemmlinie in Bandquerrichtung geklemmt werden. Da die Walzenpaare unterschiedliche, in Bandlaufrichtung zunehmende Umfangsgeschwindigkeiten aufweisen, wird der aus einem oder mehreren Faserbändern bestehende Faserverbund verstreckt und vergleichmäßigt. Zur Bildung einer Rückmeldung im geschlossenen Regelkreis oder zur Kontrolle der Vergleichmäßigung und ggf. zur Auslösung eines Maschinenstopps bei zu großen Bandnummernschwankungen ist zudem in den meisten Fällen eine zweite Bandquerschnittsmesseinrichtung am Ausgang des Streckwerks vorgesehen.Spinning machines such as carding or stretching serve the purpose of forming a uniform as possible textile material from the submitted textile material. For this purpose, the spinning machines often have a regulated drafting system to control in accordance with the determined fluctuations on the basis of measured in front of the drafting device strip cross-section fluctuations in the direction of strip running delay elements. In the case of stretching, these drafting elements are formed, for example, by a plurality of roller pairs arranged one behind the other, between which the fiber sliver or slivers are clamped along the respective so-called nip line in the transverse direction of the strip. Since the pairs of rollers have different circumferential speeds which increase in the direction of travel of the strip, the fiber composite consisting of one or more slivers is stretched and made uniform. In order to form a feedback in the closed loop or to control the homogenization and possibly to trigger a machine stop in case of excessive tape number fluctuations a second tape cross-section measuring device is also provided at the exit of the drafting system in most cases.

Zur Abtastung haben sich mechanische Abtastvorrichtungen weitestgehend durchgesetzt. Beispielsweise weist die Rieter-Strecke RSB D30 vor dem Streckwerk ein Paar von Abtastscheiben mit zueinander parallelen Achsen auf, wobei die eine Abtastscheibe ortsfest angeordnet und die andere Abtastscheibe ortsbeweglich ausgebildet ist. Das oder die Faserbänder werden in einem Spalt zwischen einer Umfangsnut der ersten Abtastscheibe und einem umfangseitigen Ring der zweiten Abtastscheibe hindurchgeführt, wobei die ortsbewegliche Abtastscheibe entsprechend den Masseschwankungen des oder der Faserbänder ausgelenkt wird. Die Auslenkbewegungen werden von einem Signalwandler in elektrische Spannungswerte umgewandelt und an einen Regulierprozessor zur Ansteuerung der Walzenpaare des Streckwerks weltergegeben.For scanning mechanical scanning devices have prevailed as far as possible. For example, before the drafting system, the Rieter line RSB D30 has a pair of scanning disks with mutually parallel axes, one of the scanning disks being arranged stationary and the other scanning disk is designed to be mobile. The sliver (s) are passed in a gap between a circumferential groove of the first scanning disk and a peripheral ring of the second scanning disk, the movable scanning disk being deflected in accordance with the mass variations of the sliver (s). The deflection movements are converted by a signal converter into electrical voltage values and delivered to a regulating processor for controlling the roller pairs of the drafting system.

Insbesondere bei Spinnereimaschinen, bei denen das Abtastgetriebe und die Walzenpaare über beispielsweise ein Differentialgetriebe miteinander verbunden sind, ist der ausregulierbare Frequenzbereich bezüglich der Bandquerschnittsschwankungen relativ eingeschränkt. Aufgrund der großen Massenträgheit einer solchen Anordnung ist eine gewünschte Ausregulierung über einen großen Frequenzbereich von längerwelligen Schwankungen (sog. A%-Werte) bis zu Regulierlängen von wenigen Zentimeter bei hohen Liefergeschwindigkeiten nicht möglich. Zudem sind der Maschinenteileverschleiß, hervorgerufen durch die große Bandbreite der Signalinhalte und der damit verbundenen Beschleunigung großer Massen, sowie der Energieverbrauch relativ hoch.In particular, in spinning machines in which the scanning gear and the roller pairs are interconnected via, for example, a differential gear, the ausregulierbare frequency range with respect to the band cross-section fluctuations is relatively limited. Due to the large inertia of such an arrangement, a desired balancing over a wide frequency range of long-wave fluctuations (so-called A% values) up to Regulierlängen of a few inches at high delivery speeds is not possible. In addition, the machine parts wear, caused by the large bandwidth of the signal contents and the associated acceleration of large masses, and the energy consumption are relatively high.

In Figur 1 ist ein reguliertes Streckwerk dargestellt, bei dem ein Faserband FB eine mechanische Bandquerschnittsmesseinrichtung 8 durchläuft und anschließend in ein von drei Streckwerkswalzenpaaren 2a, 2b, 3a, 3b, 4a, 4b gebildetes Streckwerk geführt wird. Die Bandquerschnittsmesseinrichtung 8 wird von zwei Abtastscheiben gebildet, die schon zuvor beschrieben wurden.In FIG. 1 a regulated drafting system is shown, in which a sliver FB passes through a mechanical belt cross-section measuring device 8 and is then guided into a drafting system formed by three drafting roller pairs 2a, 2b, 3a, 3b, 4a, 4b. The tape cross-section measuring device 8 is formed by two scanning disks, which have already been described above.

Eine der beiden Abtastscheiben ist mit einem Taktgeber 11 gekoppelt, der eine bestimmte Anzahl von Takten bzw. Impulsen pro Umdrehung dieser Tastscheibe erzeugt. Weiterhin ist die bewegliche Abtastscheibe mit einem Signalwandler 10 verbunden, der ihre Auslenkbewegungen in elektrische Spannungswerte umwandelt. Diese Spannungswerte werden dann an eine Meßwertverzögerungseinheit 12 weitergegeben, die zudem vom Taktgeber 11 eine Anzahl von Takten erhält, die ein Maß für die Geschwindigkeit des durch die Bandquerschnittsmesseinrichtung 8 laufenden Faserbandes FB darstellen. Entsprechend dieser Takte vom Taktgeber 11 werden die Spannungswerte in der Meßwertverzögerungseinheit 12, die einen elektronischen Speicher in Form eines FIFO (First-In-First-Out) darstellt, entsprechend des von dem Faserband zurückgelegten Weges zwischen der Bandquerschnittsmesseinrichtung 8 und dem Streckwerk zurückgehalten. Wenn das Faserband mit dem auszuregulierenden Bandstück den fiktiven Verzugspunkt im Verzugsfeld des Streckwerks erreicht, wird der entsprechende Meßwert durch die Meßwertverzögerungseinheit 12 freigegeben und eine entsprechende Stellhandlung in Abhängigkeit von dem jeweiligen Meßwert vorgenommen. Der Abstand zwischen Meßort des Abtastwalzenpaares und dem Verzugsort wird Regeleinsatzpunkt genannt. Hierzu gibt die Meßwertverzögerungseinheit 12 die Meßwerte an eine Algorithmuseinheit 13 weiter, die anhand der gewünschten Verzugseinstellung und der eingestellten Maschinenparameter die Drehzahl der betroffenen Streckwerkswalzen berechnet und die entsprechenden Informationen an einen Regelantrieb 22 weitergibt. Dieser Regelantrieb 22 treibt in ein Differentialgetriebe 23, welches die ortsfeste Abtastscheibe der Bandquerschnittsmesseinrichtung 8, die untere Walze 2a des Eingangswalzenpaares sowie die untere Walze 3a des Mittelwalzenpaares antreibt. Das Differentialgetriebe 23 erhält von einem Hauptmotor 14 eine Grunddrehzahl, die über eine zwischen dem Hauptmotor 14 und dem Differentialgetriebe 23 zwischengeschaltete Drehzahleinstelleinheit 15 einstellbar ist.One of the two scanning discs is coupled to a clock generator 11, which generates a certain number of pulses per revolution of this Tastscheibe. Furthermore, the movable scanning disc is connected to a signal converter 10, which converts their deflection movements into electrical voltage values. These voltage values are then sent to a Meßwertverzögerungseinheit 12 passed, which also receives a number of clocks from the clock 11, which represent a measure of the speed of the current through the belt cross-section measuring device 8 sliver FB. According to these clocks from the clock 11, the voltage values in the Meßwertverzögerungseinheit 12, which represents an electronic memory in the form of a FIFO (First-In-First-Out), according to the traversed by the sliver path between the band cross-section measuring device 8 and the drafting device are retained. When the sliver with the strip piece to be leveled reaches the notional arrears in the drafting zone of the drafting system, the corresponding measured value is released by the Meßwertverzögerungseinheit 12 and made a corresponding action in response to the respective measured value. The distance between the measuring location of the Abtastwalzenpaares and the default location is called Regeleinsatzpunkt. For this purpose, the measured value delay unit 12 forwards the measured values to an algorithm unit 13 which calculates the speed of the drafting rollers concerned on the basis of the desired draft setting and the set machine parameters and forwards the corresponding information to a control drive 22. This variable speed drive 22 drives in a differential gear 23, which drives the stationary Abtastscheibe the band cross-section measuring device 8, the lower roller 2a of the pair of input rollers and the lower roller 3a of the middle roller pair. The differential gear 23 receives from a main motor 14 a base speed, which is adjustable via an intermediate between the main motor 14 and the differential gear 23 Drehzahleinstelleinheit 15.

Der Hauptmotor 14 seinerseits treibt direkt die untere Walze 4a des Ausgangswalzenpaares an, wodurch eine konstante Bandauslaufgeschwindigkeit erhalten wird. Demnach werden lediglich das Eingangswalzenpaar und das Mittelwalzenpaar für die Regulierung herangezogen.The main motor 14, in turn, directly drives the lower roller 4a of the pair of delivery rollers, thereby obtaining a constant belt discharge speed. Accordingly, only the input roller pair and the middle roller pair are used for the regulation.

Aus der US 5,134,755 ist ein Verfahren bzw. eine Vorrichtung bekannt, bei der ein erster Regelkreis für den Vorverzug und ein zweiter Regelkreis für den Hauptverzug vorgesehen ist. Der Vorverzug wird konstant eingestellt, während in den Hauptverzug sowohl kurzfristige als auch langfristige Störungen bzw. hoch- und niederfrequente Anteile im Faservlies ausreguliert werden.From the US 5,134,755 a method and a device is known in which a first control loop for the pre-delay and a second control loop for the main delay is provided. The pre-delay is set constant, while in the main delay both short-term and long-term disturbances or high and low frequency components in the nonwoven fabric are adjusted.

Es ist Aufgabe der vorliegenden Erfindung, das Verfahren bzw. die Vorrichtung der eingangs genannten Art derart weiterzubilden, daß ein präziserer Verzug eines oder mehrerer Faserbänder erhalten wird.It is an object of the present invention, the method and the device of the type mentioned in such a way that a more precise distortion of one or more slivers is obtained.

Diese Aufgabe wird bei dem Verfahren der eingangs genannten Art durch die Merkmale des Anspruchs 1 gelöst.This object is achieved in the method of the type mentioned by the features of claim 1.

Diese Aufgabe wird weiterhin bei einer Vorrichtung der eingangs genannten Art gelöst durch die Merkmale des Anspruchs 4 gelöst.This object is further achieved in a device of the type mentioned by the features of claim 4.

Die Vorteile der Erfindung sind insbesondere darin zu sehen, daß die Abtastsignale vor dem Streckwerk in mindestens zwei Regulierkreisen verarbeitet werden, um somit die Flexibilität und die Genauigkeit bei der Ansteuerung der Verzugsorgane bzw. Walzen zu erhöhen. Die mindestens zwei Regulierkreise können hierbei auf verschiedene Signalinhalte reagieren und somit eine Verteilung der Ansteuerungsaufgaben übernehmen. Auf diese Weise lassen sich mindestens eine Walze eines ersten Walzen paares und mindestens eine Walze eines zweiten Walzenpaares, die zumindest teilweise bezüglich ihrer Massenträgheitsansteuerung entkoppelt sind, antreiben.The advantages of the invention are to be seen in particular in the fact that the scanning signals are processed in front of the drafting in at least two Regulierkreisen, thus increasing the flexibility and accuracy in the control of the drafting elements or rollers. The at least two regulating circuits can react to different signal contents and thus assume a distribution of the driving tasks. In this way, at least one roller of a first pair of rollers and at least one roller of a second pair of rollers, which are at least partially decoupled with respect to their inertia drive, can be driven.

Besonders bevorzugt werden die Meßsignalanteile der mindestens einen Bandquerschnittsmesseinrichtung hinsichtlich ihrer Frequenz in mindestens zwei Frequenzbereiche unterteilt. Auf Grundlage der Zugehörigkeit von Meßsignalanteilen zu verschiedenen Frequenzbereichen können dann die Walzen unterschiedlicher Walzenpaare angesteuert werden. Auf diese Weise wird auch die Regulierung im Frequenzbereich geteilt. Somit kann jedes Frequenzband seinem Energiebedarf entsprechend auf angepaßte Maschinenelemente verteilt werden.Particularly preferably, the measured signal components of the at least one band cross-section measuring device are subdivided with regard to their frequency into at least two frequency ranges. Based on the affiliation of Meßsignalanteilen to different frequency ranges then the rollers of different roller pairs can be controlled. In this way also the regulation in the frequency domain is shared. Thus, each frequency band can be distributed according to its energy requirements on adapted machine elements.

Es bietet sich an, niederfrequente Meßsignalanteile, d.h. längerwellige Bandquerschnittsschwankungen, zur Steuerung von Maschinenelementen bzw. Antriebselementen mit höherem Massenträgheitsmoment heranzuziehen. Entsprechend können höherfrequente Meßsignalanteile zur Steuerung von Antriebselementen mit niedrigem Massenträgheitsmoment verwendet werden. Aufgrund der niedrigen Massenträgheit lassen sich diese Maschinenelemente schneller beschleunigen bzw. abbremsen, so daß diese Maschinenelemente auch den höherfrequenten Meßsignalanteilen folgen können. Insgesamt wird hiermit eine exaktere Regulierung erhalten, wobei sowohl längerwellige als auch kürzerwellige Bandquerschnittsschwankungen optimal ausreguliert werden können.It is advisable to use low-frequency measuring signal components, i. Long-wave band cross-section fluctuations, to use for controlling machine elements or drive elements with a higher moment of inertia. Accordingly, higher-frequency measurement signal components can be used to control drive elements with a low mass moment of inertia. Due to the low inertia, these machine elements can accelerate or decelerate faster, so that these machine elements can also follow the higher-frequency Meßsignalanteilen. Overall, a more precise regulation is obtained, whereby both longer-wave and shorter-wave band cross-section fluctuations can be optimally regulated.

Einer definierten Signalverarbeitung kommt es zugute, wenn die Meßsignalanteile der dem Streckwerk vorgeschalteten Bandquerschnittsmesseinrichtung mindestens einem unteren und einem oberen Frequenzbereich zugeteilt werden. Um möglichst alle Frequenzanteile der Bandquerschnittsschwankungen verwerten zu können, liegen der untere und der obere Frequenzbereich hierbei vorzugsweise nahe beieinander, besonders bevorzugt im wesentlich lückenlos, oder überlappen sich.A defined signal processing is advantageous if the measurement signal components of the strip cross-section measuring device connected upstream of the drafting system are allocated to at least one lower and one upper frequency range. In order to be able to utilize as many frequency components of the band cross-section fluctuations as possible, the lower and upper frequency ranges are preferably close to one another, particularly preferably substantially continuous, or overlapping.

Bevorzugt wird der obere Frequenzbereich derart gewählt, daß eine im wesentlichen verlustlose Verarbeitung von den Maschinenelementen mit niedrigerem Massenträgheitsmoment möglich ist. Ebenso wird bevorzugt der untere Frequenzbereich derart gewählt, daß eine im wesentlichen verlustlose Verarbeitung von den Maschinenelementen mit höherem Massenträgheitsmoment möglich ist.Preferably, the upper frequency range is chosen such that a substantially lossless processing of the machine elements with a lower mass moment of inertia is possible. Likewise, the lower frequency range is preferably chosen such that a substantially lossless processing of the machine elements with a higher mass moment of inertia is possible.

Es hat sich als vorteilhaft erwiesen, wenn der untere Frequenzbereich Frequenzen im Bereich von ca. 0 - 3 Hz und der obere Frequenzbereich Frequenzen im Bereich von ca. 3 -100 Hz umfaßt. Diese Frequenzbereiche sind jedoch nicht als fix zu betrachten, sondern können je nach Regulierstrecke und/oder zu verziehendem Material oder anderen Parametern vorteilhafterweise gewählt bzw. eingestellt werden. Auch ist die genannte Maximalfrequenz von 100 Hz Ist keine technisch bedingte Größe. Je nach Ausführung des Streckwerks bzw. der beteiligten zu beschleunigenden Massen sind auch niedrigere oder höhere Grenzwerte möglich.It has proved to be advantageous if the lower frequency range comprises frequencies in the range of about 0-3 Hz and the upper frequency range frequencies in the range of about 3 -100 Hz. However, these frequency ranges are not to be regarded as fixed, but can advantageously be selected or adjusted depending on the regulating distance and / or material to be distorted or other parameters. Also, the mentioned maximum frequency of 100 Hz is not a technical condition. Depending on the design of the drafting system or the masses to be accelerated, lower or higher limit values are also possible.

Zur Zuordnung verschiedener Meßsignalanteile zu verschiedenen Frequenzbereichen sind verschiedenen Möglichkeiten gegeben. Bei bevorzugten Ausführungsbeispielen werden hierfür hardware- und/oder softwaremäßig realisierte Frequenzfilter eingesetzt.There are various possibilities for assigning different measured signal components to different frequency ranges. In preferred embodiments, hardware and / or software-implemented frequency filters are used for this purpose.

Bevorzugt wird im ersten Regulierkreis jeweils eine Walze des Eingangswalzenpaares und des Mittelwalzenpaares angesteuert, während im zweiten Regulierkreis eine Walze des Lieferwalzenpaares angesteuert wird. Entgegen dem oben beschriebenen Stand der Technik wird demnach hierbei auch das Lieferwalzenpaar zur Regulierung herangezogen. Entsprechend seiner geringen Massenträgheit ist es somit möglich, höherfrequente Bandquerschnittsschwankungen durch Ansteuerung des Lieferwalzenpaares auszuregulieren. Da diese Auslaufregulierung im Mittel keinen Zusatzverzug produziert, entfallen die bekannten Nachteile von Auslaufregulierungen, die insbesondere darin bestehen, daß die Bandablagegeschwindigkeit variiert und somit bei diesen bekannten Maschinen Probleme hinsichtlich einer sauberen Ablage des verzogenen Faserbandes in einer Spinnkanne auftreten. Die beschriebene bevorzugte Erfindungsvariante bildet hingegen im Prinzip eine Einlaufregulierung mit überlagerter Auslaufregulierung. Der Grundvorzug und die Ausregulierung niederfrequenter Bandschwankungen bis beispielsweise 3 Hz werden mit Hilfe der niederfrequenten Regulierung vorgenommen, die prinzipiell der bekannten Regulierung beispielsweise bei der Rieter-Strecke RSB D30 entspricht. Auf diesen Verzug wird dann das Oberfrequenzband durch die höherfrequente Regulierung im Streckwerk aufmoduliert. Diese höherfrequente Regulierung entspricht einer präzisen CV%-Regulierung, wobei der CV%-Wert definiert ist als CV% = s/x · 100. Hierbei ist CV% der Variationskoeffizient (prozentuale Bandungleichmäßigkeit), s die Standardabweichung und x der Mittelwert von allen Proben.Preferably, in each case one roller of the pair of input rollers and of the middle roller pair is driven in the first regulating circle, while in the second regulating circle a roller of the delivery roller pair is actuated. Contrary to the state of the art described above, the pair of delivery rollers is therefore also used for regulation. In accordance with its low mass inertia, it is thus possible to regulate higher-frequency band cross-section fluctuations by controlling the delivery roller pair. Since this discharge regulation produces no additional delay on average, eliminates the known disadvantages of discharge regulations, which in particular consist in that the tape delivery speed varies and thus problems in these known machines with regard to a clean filing of the warped sliver in a sliver can. The described preferred variant of the invention, however, in principle forms an inlet regulation with superimposed outlet control. The basic advantage and the Ausregulierung low-frequency band fluctuations up to 3 Hz, for example, are made using the low-frequency regulation, in principle, the known regulation, for example, the Rieter route RSB D30 corresponds. At this delay then the upper frequency band is modulated by the higher-frequency regulation in the drafting system. This higher frequency control corresponds to a precise CV% control with the CV% value defined as CV% = s / x x 100 where CV% is the coefficient of variation (percent band nonuniformity), s is the standard deviation and x is the mean of all samples ,

Die zuvor beschriebene, besonders bevorzugte Ausführungsform der Erfindung zeichnet sich daher durch die überlagerte Regulierung über das Auslaufstreckwerks- bzw. Lieferwalzenpaar aus.The above-described, particularly preferred embodiment of the invention is therefore characterized by the superimposed regulation via the outlet drafting roller or delivery roller pair.

Die Ansteuerung im ersten und zweiten Regullerkreis erfolgt bevorzugt derart, daß der Regeleinsatzpunkt bzw. Verzugspunkt in dem vom Mittelwalzenpaar und Lieferwalzenpaar gebildeten Verzugsfeld für beide Regulierkreise identisch ist. Dies bedeutet, daß der Verzugspunkt für beide Regulierkreise identisch ist und keine Meßwertverzögerung der beiden Regulierkreise zueinander- mit Hilfe eines FIFO-Speichers o.ä. - benötigt wird. Mit anderen Worten werden die verschiedenen Frequenzbereiche am Verzugspunkt bzw. Regeleinsatzpunkt zusammengeführt.The control in the first and second Regullerkreis is preferably such that the Regeleinsatzpunkt or default point in the delay line formed by the middle pair of rollers and pair of delivery rollers for both Regulierkreise is identical. This means that the delay point for both regulating circuits is identical and no Meßwertverzögerung the two Regulierkreise each other - using a FIFO memory or similar. - is needed. In other words, the different frequency ranges are merged at the default point or control point.

Alternativ oder zusätzlich zur Ansteuerung einer Walze des Lieferwalzenpaares ist Im zweiten Regulierkreis oder auch in einem dritten Regulierkreis mindestens eine Walze eines stromabwärts des Streckwerks angeordneten Kalanderwalzenpaares vorsehbar. Es ist beispielsweise hierdurch möglich, die Umlaufgeschwindigkeiten des Lieferwalzenpaares und des Kalanderwalzepaares zur Schaffung eines Synchronlaufes derart aufeinander abzustimmen, daß kein Verzug zwischen diesen beiden Walzenpaaren auftritt. Es ist mittels einer solchen Konstruktion daher nicht unbedingt notwendig, daß das verstreckte Faserband mit einer konstanten Auslaufgeschwindigkeit das Streckwerk verläßt.As an alternative or in addition to the control of a roller of the delivery roller pair, at least one roller of a calender roller pair arranged downstream of the drafting system can be provided in the second regulation circuit or in a third regulation circuit. It is thus possible, for example, to tune the rotational speeds of the delivery roller pair and the Kalanderwalzepaares to create a synchronous operation to each other so that no delay between these two roller pairs occurs. It is therefore not absolutely necessary by means of such a construction that the stretched sliver leaves the drafting system at a constant outflow speed.

Besonders bevorzugt ist in dem ersten Regulierkreis mindestens ein Tiefpaß einer ersten Sollwertstufe vorgeschaltet. Die vorzugsweise von der Meßwertverzögerungseinheit freigegebenen Spannungssignale durchlaufen demnach zunächst diesen mindestens einen Tiefpaß, bevor sie auf eine Sollwertstufe im ersten Regulierkreis aufgeschaltet werden (Istwerte). Diese Sallwertstufe erhält zudem vorzugsweise die über einen Tachogenerator ermittelte Drehzahl eines Hauptmotors (Sollwerte), um aus diesen aufgeschalteten Signalen einen Sollwert für einen ersten Regelantrieb zu ermitteln. Dieser erste Regelantrieb treibt dann - wie im Stand der Technik - in ein Differentialgetriebe, das in bekannter Weise das mechanische Abtastgetriebe sowie die Unterwalzen des Eingangs- und Mittelwalzenpaares antreibt.Particularly preferably, at least one low-pass filter is connected upstream of a first setpoint level in the first regulating circuit. The voltage signals which are preferably released by the measured value delay unit therefore first pass through this at least one low-pass filter before being switched to a setpoint stage in the first regulating circuit (actual values). This Sallwertstufe also receives preferably via a tachogenerator determined speed of a main motor (setpoints) to determine from these switched signals a target value for a first variable speed drive. This first variable speed drive then drives - as in the prior art - in a differential gear that drives in a known manner, the mechanical scanning gear and the lower rollers of the input and middle roller pair.

Im zweiten Regulierkreis ist besonders bevorzugt mindestens ein Hochpaß einer zweiten Sollwertstufe vorgeschaltet. Neben den hochfrequenten Spannungssignalen von der Bandquerschnittsmesseinrichtung (Istwerte) werden der zweiten Sollwertstufe bevorzugt ebenfalls die den Drehzahlen des Hauptmotors entsprechenden Spannungssignale aufgeschaltet (Sollwerte). Dem Ausgang der zweiten Sollwertstufe nachgeschaltet ist bevorzugt ein zweiter Regelantrieb, der zum Antreiben von Maschinenelementen mit geringer Trägheitsmasse dient. Ein solches Maschinenelement ist bevorzugt eine Walze des Lieferwalzenpaares.In the second regulating circuit, at least one high-pass filter is particularly preferably connected upstream of a second setpoint value stage. In addition to the high-frequency voltage signals from the strip cross-section measuring device (actual values), the second setpoint stage is also preferably connected to the voltage signals corresponding to the rotational speeds of the main motor (setpoints). Downstream of the output of the second setpoint stage is preferably a second control drive which serves to drive machine elements with a low inertial mass. Such a machine element is preferably a roller of the delivery roller pair.

Vorteilhafterweise treibt der zweite Regelantrieb in ein zweites Differentialgetriebe, das seine Grunddrehzahl vorteilhafterweise ebenfalls von dem Hauptmotor erhält. Der zweite Regelantrieb pendelt damit symmetrisch, entsprechend den Dick- und Dünnstellen des mindestens einen Faserbandes, um die Drehzahl 0.Advantageously, the second control drive drives in a second differential gear, which advantageously also receives its base speed from the main engine. The second control drive thus oscillates symmetrically, corresponding to the thick and thin areas of the at least one sliver, about the speed 0.

Alternativ kann der zweite Regelantrieb, der in dem zweiten Regulierkreis zur Ausregulierung der hochfrequenten Meßsignalanteile vorgesehen ist, zur direkten Ansteuerung mindestens einer Walze des entsprechenden Walzenpaares - bevorzugt Lieferwalzenpaar und/oder Kalanderwalzenpaar - ausgebildet sein. Bei dieser Ausführungsform ist demnach kein Differentialgetriebe im zweiten Regulierkreis notwendig. Selbstverständlich ist hierbei eine präzlse Ansteuerung des Regelantriebs notwendig, der in diesem Fall nicht um die Drehzahl 0 pendelt.Alternatively, the second control drive, which is provided in the second regulating circuit for balancing the high-frequency Meßsignalanteile, for direct control of at least one roller of the corresponding pair of rollers - preferably pair of delivery rollers and / or Kalanderwalzenpaar - formed be. In this embodiment, therefore, no differential gear in the second regulating circuit is necessary. Of course, in this case a more precise control of the control drive is necessary, which does not oscillate in this case by the speed 0.

Bei einer vorteilhaften alternativen Ausführungsform der Erfindung ist der untere Frequenzbereich im ersten Regulierkreis durch einen Tiefpaß mindestens erster Ordnung begrenzt, wobei die Signale im oberen Frequenzbereich durch Subtraktion des Tiefpaßsignalausgangs vom Ursprungsmeßsignal gebildet werden. Bevorzugt werden hierbei im oberen Frequenzbereich bzw. im zweiten Regulierkreis Amplituden- und Phasenfehler der ursprünglichen Meßsignale berücksichtigt, die vom Tiefpaßfilter gesperrt bzw. nur fehlerhaft durchgelassen wurden.In an advantageous alternative embodiment of the invention, the lower frequency range in the first regulating circuit is limited by a first order low-pass filter, wherein the signals in the upper frequency range are formed by subtracting the low-pass signal output from the original measuring signal. Preferably amplitude and phase errors of the original measuring signals are taken into account in the upper frequency range or in the second regulating circuit, which have been blocked by the low-pass filter or have only been transmitted incorrectly.

In einer alternativen Ausführungsform wird der obere Frequenzbereich durch einen Hochpaß mindestens erster Ordnung nach unten hin begrenzt, wobei die Signale im unteren Frequenzbereich durch Subtraktion des Hochpaßsignalausgangs vom Ursprungsmeßsignal gebildet werden. Dadurch werden automatisch mögliche Amplituden- und Phasenfehler kompensiert, d.h. es treten keine Amplituden- bzw. Phasensprünge auf.In an alternative embodiment, the upper frequency range is limited by a high pass of at least first order downwards, wherein the signals in the lower frequency range are formed by subtracting the Hochpaßsignalausgangs from Ursprungmeßsignal. This automatically compensates for possible amplitude and phase errors, i. there are no amplitude or phase jumps.

In einer vorteilhaften Erfindungsvariante werden Maschinenelemente, die Streckwerkswalzen umfassen und ein insgesamt höheres Massenträgheitsmoment aufweisen als Maschinenelemente mit einem insgesamt niedrigeren Massenträgheitsmoment, als Tiefpaß eingesetzt. Teile der Maschine mit relativ hohem Massenträgheitsmoment werden somit selbst als frequenztrennender Tiefpaß genutzt. Die Meßsignale durchlaufen hierbei den ersten Regulierkreis und werden zudem in den zweiten Regulierkreis abgezweigt. Zur Kontrolle der Tiefpaßfilterwirkung kann zweckmäßigerweise ein Tachogenerator vorgesehen sein, der die Drehzahlen mindestens einer der Antriebselemente, insbesondere einer der Walzen, misst, wobei diese Walze Teil der Maschinenelemente mit hohem Massenträgheitsmoment ist.In an advantageous variant of the invention, machine elements comprising drafting rollers and having an overall higher mass moment of inertia than machine elements having an overall lower mass moment of inertia are used as low-pass filters. Parts of the machine with a relatively high moment of inertia are thus used even as a frequency-separating low-pass filter. The measuring signals in this case pass through the first regulating circuit and are also branched off into the second regulating circuit. For controlling the low-pass filter effect, a tachogenerator can expediently be provided, which measures the rotational speeds of at least one of the drive elements, in particular one of the rollers, this roller being part of the machine elements with a high mass moment of inertia.

In einer speziellen Ausführungsform gemäß der zuvor beschrieben Variante ist der Ausgang einer ersten Sollwertstufe im ersten Regulierkreis mit dem Eingang einer Sollwertstufe im zweiten Regulierkreis verbunden. Bei dieser Ausführungsform wird nicht notwendigerweise eine Aufspaltung des Meßsignals Im Anschluß an die Meßverzögerungseinheit mittels eines Tief- und Hochpasses vorgenommen. Vielmehr kann das Meßsignal der Bandquerschnittsmesseinrichtung nach Umwandlung im Signalwandler direkt auf die Sollwertstufe im ersten Regulierkreis aufgeschaltet werden. Das Ausgangssignal dieser Sollwertstufe dient dann einerseits zur Erzeugung eines Steuersignals für die Antriebselemente im ersten Regullerkrels - Insbesondere bevorzugt mit Hilfe eines ersten Regelantriebs und einem Differentialgetriebe - und andererseits in Form eines Sollwerts als Eingangssignal für eine Sollwertstufe im zweiten Regulierkreis. Der Istwert für die zweite Sollwertstufe wird hierbei bevorzugt durch Messung der von der Maschine im ersten Regulierkreis in Amplitude und Phase umgesetzten Frequenzanteile bereitgestellt, indem beispielsweise an einer der Mittelwalzen ein Tachogenerator angeschlossen wird, der die genannten Istwerte für die zweite Sollwertstufe produziert. Der Hochpaß für den zweiten Regulierkreis wird somit prinzipiell von der Maschine selbst realisiert, ohne daß sonstige Filter vonnöten wären, wobei die von der Maschine im ersten Regulierkreis verwertbaren Frequenzanteile niedrigerer Frequenzen gemessen und von dem alle Frequenzen umfassenden, insgesamt zu verarbeitenden Meßsignal in der zweiten Sollwertstufe subtrahiert werden.In a specific embodiment according to the variant described above, the output of a first setpoint stage in the first regulation circuit is connected to the input of a setpoint stage in the second regulation circuit. In this embodiment, a splitting of the measurement signal is not necessarily made following the Meßverzögerungseinheit means of a low and high pass. Rather, the measurement signal of the band cross-section measuring device can be switched directly to the setpoint level in the first Regulierkreis after conversion in the signal converter. The output signal of this setpoint stage is then used on the one hand to generate a control signal for the drive elements in the first Regullerkrels - particularly preferably by means of a first variable speed drive and a differential gear - and on the other hand in the form of a setpoint as an input signal for a setpoint stage in the second Regulierkreis. In this case, the actual value for the second setpoint stage is preferably provided by measuring the frequency components converted in amplitude and phase by the machine in the first regulating circuit, for example by connecting a tachogenerator to one of the center rollers which produces the mentioned actual values for the second setpoint stage. The high-pass filter for the second regulating circuit is thus realized in principle by the machine itself, without any need for other filters, the frequency components of lower frequencies which can be used by the machine in the first regulating circuit being measured and the measuring signal in the second setpoint stage comprising all frequencies, to be processed in its entirety be subtracted.

Auf den Eingang der Sollwertstufe des zweiten Regulierkreises können vorteilhafterweise die durch einen Tachogenerator erzeugten Spannungssignale entsprechend der Drehzahlen beispielsweise einer Mittelwalze oder einer Eingangswalze aufgeschaltet werden. Diese Spannungswerte des Tachogenerators können mit einem Taktgeber, der mit der Bandquerschnittsmesseinrichtung verbunden ist, synchronisiert werden, bevor sie auf den Eingang der Sollwertstufe des zweiten Regulierkreises geschaltet werden.The voltage signals generated by a tachogenerator can advantageously be applied to the input of the setpoint stage of the second regulating circuit in accordance with the rotational speeds of, for example, a center roller or an input roller. These voltage values of the tachogenerator can be synchronized with a clock, which is connected to the belt cross-section measuring device, before they are switched to the input of the setpoint level of the second regulating circuit.

Statt lediglich einer Bandquerschnittsmeßeinrichtung können auch mehrere derartige Meßeinrichtungen vor dem Streckwerk eingesetzt werden.Instead of just one Bandquerschnittsmeßeinrichtung several such measuring devices can be used before the drafting.

Die mindestens eine Bandquerschnittsmeßeinrichtung kann beispielsweise als mechanische Abtastvorrichtung ausgebildet sein. Alternativ oder zusätzlich kann ein Mikrowellensensor mit einem Resonator verwendet werden.The at least one tape cross-section measuring device can be designed, for example, as a mechanical scanning device. Alternatively or additionally, a microwave sensor with a resonator can be used.

Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der Unteransprüche gekennzeichnet.Advantageous developments of the invention are characterized by the features of the subclaims.

Im folgenden werden verschiedene Ausführungsbeispiele der Erfindung anhand der Figuren näher erläutert. Es zeigen:

Figur 1
eine schematische Schaltungsanordnung gemäß dem Stand der Technik;
Figur 2
eine schematische Schaltungsanordnung gemäß einer ersten Ausführungsform der Erfindung;
Figur 3
eine schematische Schaltungsanordnung gemäß einer zweiten Ausführungsform der Erfindung;
Figur 4
eine schematische Schaltungsanordnung gemäß einer dritten Ausführungsform, und
Figur 5
eine schematische Schaltungsanordnung gemäß einer vierten Ausführungsform.
In the following, various embodiments of the invention will be explained in more detail with reference to FIGS. Show it:
FIG. 1
a schematic circuit arrangement according to the prior art;
FIG. 2
a schematic circuit arrangement according to a first embodiment of the invention;
FIG. 3
a schematic circuit arrangement according to a second embodiment of the invention;
FIG. 4
a schematic circuit arrangement according to a third embodiment, and
FIG. 5
a schematic circuit arrangement according to a fourth embodiment.

Die im folgenden zu besprechenden verschiedenen Ausführungsformen der Erfindung gehen von dem in Figur 1 dargestellten Stand der Technik aus. Andere Antriebskonzepte sowie Schaltungsanordnungen sind jedoch auch vom Erfindungsgedanken umfaßt.The various embodiments of the invention to be discussed below are based on the in FIG. 1 illustrated prior art. However, other drive concepts and circuit arrangements are also included in the concept of the invention.

Gemäß der Figur 2 werden über eine Bandquerschnittsmesseinrichtung 8 die Bandquerschnittsschwankungen mechanisch ermittelt. Unter den Begriff "Bandquerschnittsschwankungen" sind im Rahmen dieser Erfindung auch Bandmasseschwankungen, Banddickenschwankungen, Bandvolumenschwankungen oder ähnliche Begriffe zu fassen. Die Meßwerte zu den Bandquerschnittsschwankungen werden in einem Signalwandler 10 in digitale Spannungssignale umgewandelt und an eine Meßwertverzögerungseinheit 12 gegeben, die beispielsweise als Hardware- oder Software-realisierter FIFO-Speicher (First-In-First-Out) ausgebildet ist. An die Bandquerschnittsmesseinrichtung 8 ist weiterhin ein Taktgeber 11 angeschlossen, der entsprechend einer bestimmten Faserbandabschnittslänge, beispielsweise 1,5 mm, einen Impuls erzeugt und die Impulszahl ebenfalls an die Meßwertverzögerungseinheit 12 weitergibt. Entsprechend der Laufzeit des Faserbandes FB von der Bandquerschnittsmesseinrichtung 8 zum gewünschten Verzugspunkt bzw. Regeleinsatzpunkt im von den Streckwerkswalzenpaaren 2a, 2b, 3a, 3b, 4a, 4b gebildeten Streckwerk werden die verzögerten Spannungssignale von der Meßwertverzögerungseinheit 12 an einen Tiefpaß 20 in einem ersten Regulierkreis weitergegeben Nach Durchlaufen des Tiefpasses, der beispielsweise Frequenzen in einem Frequenzbereich von ca. 0 - ca. 3 Hz durchläßt, werden die entsprechend gefilterten Spannungssignale an eine erste Sollwertstufe 21 im ersten Regulierkreis weitergegeben (Istwerte). Zudem wird ein Spannungswert von einem Tachogenerator 16 aufgeschaltet, der die Drehzahl eines Hauptmotors 14 ermittelt und in ein entsprechendes Spannungssignal umwandelt (Sollwerte). Der Ausgang der Sollwertstufe 21 Ist auf einen ersten Regelantrieb 22 aufgeschaltet, der in ein erstes Differentialgetriebe 23 treibt. Die Grunddrehzahl erhält das erste Differentialgetriebe 23 von dem Hauptmotor 14, dessen Drehzahl durch eine Drehzahleinstelleinheit 15 einstellbar ist.According to the FIG. 2 The band cross-section fluctuations are determined mechanically via a band cross-section measuring device 8. Within the scope of this invention, the term "band cross-section fluctuations" also encompasses band mass fluctuations, band-thickness fluctuations, band volume fluctuations or similar terms. The measured values for the band cross-section fluctuations are converted into digital voltage signals in a signal converter 10 and applied to a measured value delay unit 12 which is designed, for example, as a hardware or software-implemented first-in-first-out (FIFO) memory. To the strip cross-section measuring device 8, a clock 11 is further connected, which generates a pulse according to a particular sliver length, for example, 1.5 mm, and also passes the pulse number to the Meßwertverzögerungseinheit 12. In accordance with the running time of the sliver FB from the belt cross-section measuring device 8 to the desired default point in the drafting system formed by the drafting roller pairs 2a, 2b, 3a, 3b, 4a, 4b, the delayed voltage signals are passed from the Meßwertverzögerungseinheit 12 to a low-pass filter 20 in a first Regulierkreis After passing through the low-pass filter which, for example, transmits frequencies in a frequency range from about 0 to about 3 Hz, the correspondingly filtered voltage signals are forwarded to a first setpoint stage 21 in the first regulating circuit (actual values). In addition, a voltage value from a tachogenerator 16 is switched on, which determines the rotational speed of a main motor 14 and converts it into a corresponding voltage signal (nominal values). The output of the setpoint stage 21 is applied to a first variable speed drive 22, which drives in a first differential gear 23. The basic speed receives the first differential gear 23 from the main motor 14, the speed of which is adjustable by a speed setting unit 15.

Der erste Regelantrieb 22 ist vorzugsweise als Servoantrieb ausgebildet, der eine Steuerdrehzahl für das Differentialgetriebe 23, das vorzugsweise als Planetengetriebe ausgebildet ist, erzeugt. Mit dieser gesteuerten Ausgangsdrehzahl des Differentialgetriebes 23 werden sowohl eine Abtastrolle der Bandquerschnittsmesseinrichtung 8, die untere Walze 2a des Eingangswalzenpaares als auch die untere Walze 3a des Mittelwalzenpaares angetrieben. Die Drehzahlen der Walzen 2a und 3a sind nicht notwendigerweise gleich. Es ist beispielsweise möglich, sie in einem festen Drehzahlverhältnis anzutreiben.The first variable speed drive 22 is preferably designed as a servo drive, which generates a control speed for the differential gear 23, which is preferably designed as a planetary gear. With this controlled output speed of the differential gear 23, both a scanning roller of the belt cross-section measuring device 8, the lower roller 2a of the input roller pair and the lower roller 3a of the middle roller pair are driven. The speeds of the rollers 2a and 3a are not necessarily the same. It is possible, for example, to drive it in a fixed speed ratio.

Der erfindungsgemäße zweite Regulierkreis schließt einen Hochpaß 30 ein, an dessen Eingang die Spannungswerte der Meßwertverzögerungseinheit 12 gegeben werden. Der Hochpaß 30 filtert die Spannungssignale und läßt beispielsweise Frequenzen von ca. 3 Hz - ca. 100 Hz durch. Die derart gefilterten Spannungssignale werden auf eine zweite Sollwertstufe 31 des zweiten Regulierkreises geschaltet (Istwerte). Die zweite Sollwertstufe 31 erhält zudem die vom Tachogenerator 16 in Spannungswerte umgewandelten Drehzahl des Hauptmotors 14 (Sollwerte). Die zweite Sollwertstufe 31 ermittelt aus diesen Signalen eine Steuerdrehzahl für einen zweiten Regelantrieb, vorteilhafterweise wiederum ein Servoantrieb. Der zweite Regelantrieb 32 treibt in ein zweites Differentialgetriebe 33 des zweiten Regulierkreises, wobei dieses zweite Differentialgetriebe 33 seine Grunddrehzahl ebenfalls vom Hauptmotor 14 erhält. Mit dieser gesteuerten Ausgangsdrehzahl des zweiten Differentialgetriebes 33 wird die untere Walze 4a des Lieferwalzenpaares angetrieben. Die beiden Regulierkreise realisieren somit eine Einlaufregulierung mit einer überlagerten Auslaufregulierung, wobei der zweite Regelantrieb symmetrisch um die Drehzahl 0 pendelt. Ein Zusatzverzug wird durch die Auslaufregulierung im Mittel nicht produziert.The second regulating circuit according to the invention includes a high-pass filter 30 to the input of which the voltage values of the measuring value delay unit 12 are given. The high-pass filter 30 filters the voltage signals and allows, for example, frequencies of about 3 Hz - about 100 Hz. The thus filtered voltage signals are switched to a second setpoint level 31 of the second regulating circuit (actual values). The second setpoint stage 31 also receives the speed of the main motor 14 (setpoint values) converted by the tachogenerator 16 into voltage values. The second setpoint stage 31 determines from these signals a control speed for a second variable speed drive, advantageously in turn a servo drive. The second variable speed drive 32 drives in a second differential gear 33 of the second regulating circuit, this second differential gear 33 also receives its base speed from the main motor 14. With this controlled output speed of the second differential gear 33, the lower roller 4a of the delivery roller pair is driven. The two regulating circuits thus realize an inlet regulation with a superimposed outlet regulation, the second regulating drive oscillating symmetrically about the speed 0. An additional delay is not produced by the discontinuation regulation on average.

Entsprechend der in Figur 2 dargestellten Ausführungsform können die längerwelligen Bandquerschnittsschwankungen durch die masseträgeren Maschinenelemente - mechanisches Abtastgetriebe der Bandquerschnittsmesseinrichtung 8, erstes Differentialgetriebe 23, Walzen 2a, 3a - in genügendem Maße ausgeglichen werden. Die höherfrequenten Bandquerschnittsschwankungen sind mittels der Auslaufregulierung durch Ansteuerung der Walze 4a des Lieferwalzenpaares ausregulierbar. Am Regeleinsatzpunkt werden die Frequenzbereiche wieder zusammengeführt, so daß ein Verschleiß von beispielsweise Motorantriebsriemen, hervorgerufen durch die große Bandbreite der Signale, reduziert werden kann. Auch der verschleiß durch die Beschleunigung großer Massen sowie ein erhöhter Energieverbrauch zum Antreiben dieser Massen, der im Stand der Technik aufgrund der Unmöglichkeit der Ausregulierung von höherfrequenten Bandquerschnittsschwankungen zum Teil wirkungslos ist, können reduziert werden.According to the in FIG. 2 illustrated embodiment, the longer-wave band cross-section fluctuations by the mass-carrier machine elements - mechanical scanning gear of the tape cross-section measuring device 8, first differential gear 23, rollers 2a, 3a - be compensated to a sufficient extent. The higher-frequency band cross-section fluctuations are ausregulierbar by means of the outlet control by driving the roller 4a of the pair of delivery rollers. At the Regeleinsatzpunkt the frequency ranges are brought together again, so that wear of, for example, motor drive belt, caused by the large bandwidth of the signals can be reduced. Also, the wear by the acceleration of large masses and increased energy consumption for driving these masses, which is in the prior art due to the impossibility of Ausregulierung of higher-frequency band cross-section fluctuations partially ineffective, can be reduced.

Der Regulierprozessor umfaßt bei der Ausführungsform der Figur 2 (sowie analog derjenigen der Figuren 3 - 5) die Meßwertverzögerungseinheit 12, den Tiefpaß 20, den Hochpaß 30, die erste Sollwertstufe 21 und die zweite Sollwertstufe 31. Diese Elemente sind in dem Regulierprozessor in Software abgebildet.The Regulierprozessor includes in the embodiment of FIG. 2 (as well as those of the Figures 3 - 5 ) the measurement delay unit 12, the low-pass filter 20, the high pass filter 30, the first setpoint stage 21 and the second setpoint stage 31. These elements are mapped in software in the regulation processor.

Die Ausführungsform gemäß der Figur 3 unterscheidet sich von derjenigen der Figur 2 darin, daß kein eigener Hochpaß zum Herausfiltern der Spannungen entsprechend den niederfrequenten Bandquerschnittsschwankungen vorgesehen ist. Vielmehr werden einerseits die ungefilterten Spannungssignale von der Meßwertverzögerungseinheit 12 sowie die von einem Tiefpaßfilter 20 (entsprechend der Figur 2) gefilterten Spannungssignale andererseits auf ein Subtrahierglied 135 geschaltet. Das Subtrahierglied 135 liefert Ausgangswerte, welche nur noch die hochfrequenten Signalanteile der Banddickenschwankungen enthalten und gibt diese als Sollwerte auf eine zweite, multiplizierende Sollwertstufe 131 des zweiten Regulierkreises gibt. Der zweiten Sollwertstufe 131 Ist somit ein Subtrahlerglied 135 vorgeschaltet, In dem vom alle Frequenzen enthaltenden Meßsignal die niederfrequenten Meßsignale des ersten Regulierkreises subtrahiert werden. Die Istwerte für diese zweite Sollwertstufe 131 werden - ähnlich der Ausführungsform gemäß der Figur 2 - von einem Tachogenerator 16 erhalten, der die Drehzahl des Hauptmotors 14 in ein entsprechendes Spannungssignal umwandelt. Ansonsten ist die Funktionsweise bei der Ausführungsform gemäß der Figur 3 analog zu derjenigen der Figur 2.The embodiment according to the FIG. 3 is different from the one of FIG. 2 in that no separate high-pass filter is provided for filtering out the voltages corresponding to the low-frequency band cross-section fluctuations. Rather, on the one hand, the unfiltered voltage signals from the Meßwertverzögerungseinheit 12 and by a low-pass filter 20 (corresponding to the FIG. 2 On the other hand, filtered voltage signals are switched to a subtractor 135. The subtracter 135 provides output values which only contain the high-frequency signal components of the band thickness fluctuations and outputs these as set values to a second multiplier setpoint stage 131 of the second regulation circuit. The second setpoint stage 131 is thus preceded by a subtracter element 135 in which the low-frequency measurement signals of the first regulation circle are subtracted from the measurement signal containing all frequencies. The actual values for this second setpoint level 131 are - similar to the embodiment according to the FIG. 2 Obtained from a tachogenerator 16, which converts the speed of the main motor 14 into a corresponding voltage signal. Otherwise, the operation in the embodiment according to the FIG. 3 analogous to that of FIG. 2 ,

In der Figur 4 ist eine dritte Ausführungsform der Erfindung dargestellt. Der erste Regulierkreis mit einer ersten Sollwertstufe 221, einem ersten Regelantrieb 22 und einem ersten Differentialgetriebe 23 sind gegenüber der Ausführungsform gemäß der Figur 2 unverändert (es fehlt lediglich der Tiefpaß 20). Eine erfindungsgemäße überlagerte Auslaufregulierung wird bei diesem Ausführungsbeispiel dadurch realisiert, daß der Ausgang der ersten Sollwertstufe 221 nicht nur auf den ersten Regelantrieb 22 gegeben wird, sondern auch als Sollwerte auf eine zweite, subtrahierende Sollwertstufe 231 eines zweiten Regulierkreises. Die Istwerte für diese zweite Sollwertstufe 231 werden aus Spannungswerten ermittelt, die von einem Tachogenerator 116 erzeugt werden, der in dem dargestellten Ausführungsbeispiel die Drehzahl der oberen Walze 3b des mittleren Walzenpaares ermittelt. Es könnte beispielsweise auch die Drehzahl auch von einem der Walzen 2a, 2b, 3a abgegriffen werden.In the FIG. 4 a third embodiment of the invention is shown. The first regulating circuit with a first setpoint stage 221, a first variable speed drive 22 and a first differential gear 23 are compared to the embodiment according to the FIG. 2 unchanged (only the low-pass filter 20 is missing). A superimposed outflow regulation according to the invention is realized in this embodiment in that the output of the first setpoint stage 221 is not only applied to the first variable speed drive 22, but also as setpoint values to a second, subtractive setpoint stage 231 of a second regulation circle. The actual values for this second setpoint stage 231 are determined from voltage values that are generated by a tachogenerator 116, which determines the speed of the upper roller 3b of the middle roller pair in the illustrated embodiment. It could, for example, the speed of one of the rollers 2a, 2b, 3a tapped.

Mit anderen Worten wird in dem zweiten Regulierkreis ein Hochpaß durch die Maschine selbst realisiert, wobei der Tachogenerator 116 die von der Maschine im ersten Regulierkreis in Amplitude und Phase umgesetzten Frequenzanteile, d.h. Meßsignalanteile relativ niedriger Frequenz, mißt, um diese von dem alle Frequenzanteile enthaltenden Gesamtsignal in der zweiten Sollwertstufe 231 abzuziehen.In other words, in the second regulating circuit, a high pass is realized by the machine itself, and the tacho-generator 116 detects the frequency and amplitude converted by the machine in the first regulating circuit, i. Measuring signal components of relatively low frequency, measures to subtract these from the total frequency signal containing total signal in the second setpoint stage 231.

Als Ergebnis des Vergleiches bzw. der Subtraktion der Soll- und Istwerte ermittelt die zweite Sollwertstufe 231 den hochfrequenten Meßsignalanteilen entsprechende Sollwerte für einen zweiten Regelantrieb 32, der aus diesem Sollwert eine Steuerdrehzahl für ein zweites Differential 33 erzeugt. Mit dieser gesteuerten Ausgangsdrehzahl des zweiten Differentialgetriebes 33 wird die untere Walze 4a des Lieferwalzenpaares angetrieben. Hierdurch wird im Hauptverzugsfeld, gebildet vom Mittelwalzenpaar und Lieferwalzenpaar, die gewünschte Verzugsänderung erzielt, so daß die Bandquerschnittsschwankungen des oder der einlaufenden Bänder FB ausreguliert werden können.As a result of the comparison or the subtraction of the desired and actual values, the second setpoint stage 231 determines the setpoint values corresponding to high-frequency measured signal portions for a second control drive 32 which generates a control speed for a second differential 33 from this setpoint value. With this controlled output speed of the second differential gear 33, the lower roller 4a of the delivery roller pair is driven. As a result, the desired delay change is achieved in the main drafting zone, formed by the middle roller pair and delivery roller pair, so that the band cross-section fluctuations of the incoming belt or bands FB can be adjusted.

Bei der Ausführungsform gemäß der Figur 5 sind - ähnlich derjenigen der Figur 2 - wiederum ein Tiefpaß 20 und ein Hochpaß 30 vorgesehen, welche die Meßsignalanteile der Bandquerschnittsmesseinrichtung 8 in niederfrequente Signalanteile und hochfrequente Signalanteile aufspalten. Selbstverständlich können auch - wie gleichfalls bei den entsprechenden, zuvor beschriebenen Ausführungsformen - mehrere Filter für den jeweiligen Frequenzbereich vorgesehen sein. Der wesentliche Unterschied der Ausführungsform gemäß der Figur 5 gegenüber derjenigen der Figur 2 besteht darin, daß die von dem zweiten Regelantrieb 32 erzeugte Steuerdrehzahl nicht in ein Differentialgetriebe gegeben, sondern direkt auf die untere Walze 4a des Lieferwalzenpaares geschaltet wird. Es sei bemerkt, daß selbstverständlich bei dieser als auch bei den vorhergehenden Ausführungsformen auch ein Antrieb der oberen Walzen der verschiedenen Walzenpaare möglich ist. Durch die direkte Ansteuerung der Walze 4a kann das zweite Differentialgetriebe eingespart werden. Allerdings wird bei dieser Ausführungsform auf die Kopplung der Einlaufregulierung und der Auslaufregulierung verzichtet. Vielmehr kann durch die Auslaufregulierung mittels des zweiten Regelantriebs ein zusätzlicher Verzug produziert werden, so daß die Liefergeschwindigkeit nicht unbedingt konstant ist. In diesem Fall bietet es sich an, wenn der zweite Regelantrieb 32 zusätzlich ein dem Streckwerk nachgeschaltetes Kalanderwalzenpaar bzw. eine Abzugseinrichturtg zum Abziehen des verstreckten Faserbandes antreibt, damit das Lieferwalzenpaar und das Kalanderwalzenpaar das Faserband synchron fördern.In the embodiment according to the FIG. 5 are similar to those of FIG. 2 - In turn, a low-pass filter 20 and a high-pass filter 30 are provided, which split the Meßsignalanteile the band cross-section measuring device 8 in low-frequency signal components and high-frequency signal components. Of course, as is also the case with the corresponding, previously described embodiments, a plurality of filters may be provided for the respective frequency range. The essential difference of the embodiment according to the FIG. 5 opposite to that of FIG. 2 is that the control speed generated by the second control drive 32 is not placed in a differential gear, but is switched directly to the lower roller 4a of the delivery roller pair. It should be noted that, of course, in this as well as in the preceding embodiments, a drive of the upper rollers of the various pairs of rollers is possible. By direct control of the roller 4a, the second differential gear can be saved. However, in this embodiment, the coupling of the inlet regulation and the outlet regulation is dispensed with. Rather, an additional delay can be produced by the outlet regulation by means of the second control drive, so that the delivery speed is not necessarily constant. In this case, it makes sense if the second control drive 32 additionally drives a calender roller pair downstream of the drafting system or a pull-off device for drawing off the drawn sliver, so that the delivery roller pair and the calender roller pair synchronously convey the sliver.

Die Erfindung läßt sich auch bei Spinnereimaschinen mit Einzelantrieben einsetzen. Wesentlich ist, daß aus vor dem Streckwerk erhaltenen Signalen Bandquerschnittsschwankungen in mindestens zwei Regulierkreisen ausreguliert werden, um insbesondere die unterschiedlichen Trägheitsmomente von verschiedenen Maschinenteilen in diesen Regulierkreisen berücksichtigen zu können. Es kann damit eine Frequenz-Bandbreitenvergrößerung bei der Regulierung der Verstreckung des mindestens einen Faserbandes erhalten werden.The invention can also be used in spinning machines with individual drives. It is essential that from signals obtained before the drafting system Band cross-section fluctuations are regulated in at least two Regulierkreisen, in particular to be able to take into account the different moments of inertia of different machine parts in these Regulierkreisen. It can thus be obtained a frequency bandwidth increase in the regulation of the stretching of the at least one sliver.

Claims (27)

  1. Method for the drafting of at least one fiber sliver (FB) by means of a regulated spinning machine, particularly a carding machine or draw frame comprising pairs of rollers (2a, 2b, 3a, 3b, 4a, 4b) which are disposed one behind another, wherein the mass cross-section of the (at least one) fiber sliver is measured upstream of the pairs of rollers (2a, 2b, 3a, 3b, 4a, 4b), wherein, based on the measuring signals, at least one roller (2a, 3a) of a first pair of rollers (2a, 2b, 3a, 3b) is actuated through a first auto-leveling circuit and at least one roller (4a) of a second pair of rollers (4a, 4b) is actuated through a second auto-leveling circuit, characterized in that based on the appurtenance of measuring signal portions to different frequency ranges, the rollers (2a, 3a, 4a) of different pairs of rollers (2a, 2b, 3a, 3b, 4a, 4b) are actuated.
  2. Method as in claim 1, characterized in that the low-frequency measuring signal portions are used to control machine elements, including rollers (2a, 3a) with greater moment of mass inertia, and higher-frequency measured signal portions are used to control machine elements, including roller (4a) with lower moments of mass inertia.
  3. Method as in one of the preceding claims, characterized in that the measuring signal portions are assigned to at least one lower and one upper frequency range.
  4. Device for the drafting of at least one fiber sliver (FB), in particular by applying the method according to one of the preceding claims, with at least one upstream and one downstream pair of rollers (2a, 2b, 3a, 3b, 4a, 4b), with at least one sliver cross-section measuring device (8) located upstream of these pairs of rollers (2a, 2b, 3a, 3b, 4a, 4b) to detect the mass cross-section of the (at least one) fiber sliver (FB), wherein at least two auto-leveling circuits are provided and wherein, based on the measuring signals, at least one roller (2a, 3a) of a first pair of rollers (2a, 2b, 3a, 3b) can be actuated through the first auto-leveling circuit, and at least one roller (4a) of a second pair of rollers (4a, 4b) through the second auto-leveling circuit,
    characterized in that machine elements, including rollers (2a, 3a), with higher moment of mass inertia can be controlled in the first auto-leveling circuit based on low-frequency measuring signal portions and machine elements, including rollers (4a), with lower moment of mass inertia in the second auto-leveling circuit based on higher-frequency measuring signal portions.
  5. Device as in claim 4, characterized in that a lower frequency range is assigned to the first auto-leveling circuit and an upper frequency-range to the second auto-leveling circuit.
  6. Device as in one of the claims 4 or 5, characterized by frequency filters in hardware and/or software form to delimit the frequency ranges.
  7. Device as in one of the claims 4 to 6, characterized in that the lower and upper frequency ranges adjoin each other essentially without a gap or overlap each other.
  8. Device as in one of the claims 4 to 7, characterized in that the lower frequency range comprises frequencies in the range of approximately 0 to 3 Hz and the upper frequency range frequencies in the range of approximately 3 to 100 Hz.
  9. Device as in one of the claims 4 to 8, characterized in that the lower and the upper frequency ranges are selected in such manner that the machine elements with higher or lower moment of mass inertia can be actuated essentially without loss.
  10. Device as in one of the claims 4 to 9, characterized in that one roller (2a) of a pair of input rollers (2a, 2b) and of a pair of central rollers (3a, 3b) can be actuated in the first auto-leveling circuit, and one roller (4a) of a pair of delivery rollers (4a, 4b) in the second auto-leveling circuit.
  11. Device as in one of the claims 4 to 10, characterized in that actuation takes place in such manner that the starting point of auto-leveling in the drafting field (6) formed by the central pair of rollers (3a, 3b) and the pair of delivery rollers (4a, 4b) is identical for the first and for the second auto-leveling circuit.
  12. Device as in one of the claims 4 to 11, characterized in that in the second auto-leveling circuit at least one roller of a pair of calendar rollers can be actuated.
  13. Device as in one of the claims 4 to 12, characterized in that at least one low-pass filter (20) precedes a first target-value step (21) in the first auto-leveling circuit.
  14. Device as in one of the claims 4 to 13, characterized in that the output signals of the first target-value step (21) are switched to the input of a first auto-leveling drive (22).
  15. Device as in one of the claims 4 to 14, characterized in that at least one high-pass filter (30) precedes a second target-value step (31; 131; 231) in the second auto-leveling circuit.
  16. Device as in one of the claims 4 to 15, characterized in that the output signals of the second target-value step (31; 131, 231) are switched to the input of a second auto-leveling drive (32).
  17. Device as in one of the claims 4 to 16, characterized in that the first auto-leveling drive (22) and/or the second auto-leveling drive (32) drives a first or second differential gear (23; 33).
  18. Device as in one of the claims 4 to 17, characterized in that the auto-leveling drive (32) of the second auto-leveling circuit which levels the high-frequency signals is designed for direct actuation of at least one roller (4a) of the appertaining pair of rollers (4a, 4b).
  19. Device as in one of the claims 4 to 18, characterized in that the lower frequency range is delimited by a low-pass filter of at least first order and the signal in the upper frequency range are formed by subtraction of the deep-pass filter signal output from the original signal.
  20. Device as in one of the claims 4 to 19, characterized in that amplitude and phase errors occurring in the lower frequency range through signals within the lock-out range of the deep-pass filter can be taken into account in the higher frequency range.
  21. Device as in one of the claims 4 to 20, characterized in that the upper frequency range is delimited downward by a high-pass filter of at least first order and in that the signals in the lower frequency range are formed by subtraction of the high-pass filter output signal from the original signal.
  22. Device as in one of the claims 4 to 21, characterized in that machine elements, including rollers (2a, 2b, 3a, 3b), with overall higher moment of mass inertia than machine elements, including rollers (4a, 4b), with an overall lower moment of mass inertia are used as low-pass filter.
  23. Device as in claim 22, characterized in that a tachometer generator (116) is provided on at least one drive element, in particular on one of the rollers (2a, 2b, 3a, 3b) to determine the effect of the low-pass filter.
  24. Device as in one of the claims 4 to 23, characterized in that the first auto-leveling circuit comprises a first target value step (221) at the input of which the measuring signals of the (at least one) sliver cross-section measuring device (8) can be applied and the output signals of which can be given as input signals to a second target value step (231) in the second auto-leveling circuit.
  25. Device as in one of the claims 4 to 24, characterized in that the actual speed values converted into voltage signals of a pair of rollers (3a, 3b) can be switched up to the target value step (221) of the second auto-leveling circuit.
  26. Device as in one of the claims 4 to 25, characterized in that the actual speed values converted into voltage signals of a driving motor (14), in particular of the main motor of the spinning machine, can be switched up to the target value steps (21, 31; 121, 131; 221, 231) of the first and/or the second auto-leveling circuit.
  27. Device as in one of the claims 4 to 26, characterized in that the (at least one) sliver cross-section measuring device (8) is designed as a mechanical scanning device or as a scanning device based on microwaves for at least one fiber sliver (FB).
EP03735597.1A 2002-08-10 2003-06-11 Method and device for drafting at least one sliver Expired - Lifetime EP1529127B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10236778A DE10236778B4 (en) 2002-08-10 2002-08-10 Method and device for drawing at least one sliver
DE10236778 2002-08-10
PCT/EP2003/006088 WO2004018748A1 (en) 2002-08-10 2003-06-11 Method and device for drafting at least one sliver

Publications (2)

Publication Number Publication Date
EP1529127A1 EP1529127A1 (en) 2005-05-11
EP1529127B1 true EP1529127B1 (en) 2014-07-16

Family

ID=30469693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735597.1A Expired - Lifetime EP1529127B1 (en) 2002-08-10 2003-06-11 Method and device for drafting at least one sliver

Country Status (6)

Country Link
US (1) US20050278900A1 (en)
EP (1) EP1529127B1 (en)
CN (1) CN1675417B (en)
AU (1) AU2003236733A1 (en)
DE (1) DE10236778B4 (en)
WO (1) WO2004018748A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007143B4 (en) * 2004-02-12 2012-04-05 Rieter Ingolstadt Gmbh Method and device for drawing at least one sliver
CH703441B1 (en) * 2007-06-29 2012-01-31 Truetzschler Gmbh & Co Kg Apparatus for sorting and selection of fibers of a fiber strand of textile fibers.
DE102008004098A1 (en) * 2007-06-29 2009-01-02 TRüTZSCHLER GMBH & CO. KG Device for fiber sorting or selection of a fiber structure of textile fibers, in particular for combing, which is fed via feeding means of a fiber sorting device, in particular combing device
CH703154B1 (en) * 2007-06-29 2011-11-30 Truetzschler Gmbh & Co Kg Device for fiber sorting and -selection of a fiber structure made of textile fibers.
GB0811191D0 (en) * 2007-06-29 2008-07-23 Truetzschler Gmbh & Co Kg Apparatus for the fibre-sorting or fibre-selection of a fibre bundle comprising textille fibre, especially for combing
GB0811207D0 (en) * 2007-06-29 2008-07-23 Truetzschler Gmbh & Co Kg Apparatus for the fibre-sorting or fibre-selection of a fibre bundle comprising textile fibres, especially for combing
CH703786B1 (en) * 2007-06-29 2012-03-30 Truetzschler Gmbh & Co Kg Device for fiber sorting and -selection of a fiber structure made of textile fibers.
ITMI20081097A1 (en) * 2007-06-29 2008-12-30 Truetzschler Gmbh & Co Kg EQUIPMENT FOR THE FIBER SORTING OR THE FIBER SELECTION OF A FIBER BAND INCLUDING TEXTILE FIBERS, ESPECIALLY FOR COMBING
JP2012053651A (en) * 2010-09-01 2012-03-15 Renesas Electronics Corp Timing analysis method, program and system
CN101967704B (en) * 2010-11-03 2012-08-08 北京经纬纺机新技术有限公司 Drawing frame leveling control method and servo system
DE102014110665A1 (en) * 2014-07-29 2016-02-18 Rieter Ingolstadt Gmbh Measuring roller and device for measuring a fiber structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59010914D1 (en) 1989-08-11 2000-11-16 Rieter Ag Maschf Drafting system with meshed control
CN1057870A (en) * 1990-07-04 1992-01-15 天津纺织工学院 Even and orderly device with autoregulation controlled by microcomputer
EP0477589B1 (en) * 1990-09-26 1996-04-24 Maschinenfabrik Rieter Ag Method for the correction of a determined measuring signal for the mass of a fiber band at an autolevellor for fiber bands with an outlet measuring device
DE4219777A1 (en) * 1992-06-17 1993-12-23 Rieter Ingolstadt Spinnerei Method and device for signal analysis of a regulating system
JP3271397B2 (en) * 1993-10-25 2002-04-02 豊和工業株式会社 Sliver spot control device for spinning machine
DE19615947B4 (en) * 1996-04-22 2007-10-31 Rieter Ingolstadt Spinnereimaschinenbau Ag Minimum-seeking regulatory optimization
DE19835372A1 (en) * 1998-08-05 2000-02-10 Rieter Ag Maschf Textile processing machine with a drafting unit
DE19925271B4 (en) * 1999-06-02 2012-07-12 Trützschler GmbH & Co Kommanditgesellschaft Drafting for a spinning machine, in particular a Regulierstrecke for cotton, manmade fibers u. like.
DE10041893A1 (en) * 2000-08-25 2002-03-07 Truetzschler Gmbh & Co Kg Device on a regulating section for the direct determination of setting values for the regulating point of use
DE10227676A1 (en) * 2002-06-20 2004-01-08 Rieter Ingolstadt Spinnereimaschinenbau Ag Method and device for evaluating signals from a sensor

Also Published As

Publication number Publication date
CN1675417A (en) 2005-09-28
WO2004018748A1 (en) 2004-03-04
DE10236778A1 (en) 2004-02-19
DE10236778B4 (en) 2011-05-05
EP1529127A1 (en) 2005-05-11
US20050278900A1 (en) 2005-12-22
CN1675417B (en) 2010-04-07
AU2003236733A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1529127B1 (en) Method and device for drafting at least one sliver
EP0608001B1 (en) Ring spinning machine with a yarn tension sensor and use of a yarn tension sensor to control a ring spinning machine
EP0412448A1 (en) Drafting arrangement with meshed control
DE2944428A1 (en) Process and device for production control of a card
EP0477589A1 (en) Method for the correction of a determined measuring signal for the mass of a fiber band at an autolevellor for fiber bands with an outlet measuring device
DE4304988C1 (en) Wadding prodn. machinery - has mechanism to extend or condense the web of gauze
DE3001807A1 (en) METHOD FOR CONTINUOUSLY MEASURING THE SIZE OR SLOPE OF THE FLATNESS ERROR OF A METAL STRIP WHILE ROLLING IT OUT
EP0000569A1 (en) Yarn winding machine
DE10204328A1 (en) Use of microwaves in the spinning industry
EP1532302B1 (en) Device and method for laying non-woven material
EP0866563A2 (en) Method and arrangement for the analogue-to-digital conversion of an image signal
DE102004007143B4 (en) Method and device for drawing at least one sliver
DE102008001696B4 (en) Spinning preparation machine with outlet regulation
EP1513970B2 (en) Method and device for evaluating sensor signals in textile machinery
DE10153999B4 (en) Simulation method for a spinning machine, spinning machine, and software program product
CH522051A (en) Carding engine feed control - and/or monitoring
DE2650287A1 (en) Fibre tow stretching appts. - preventing variation in fibre tow thickness
EP1687469B1 (en) Drafting arrangement for a spinning machine
DE3143285A1 (en) METHOD AND DEVICE FOR PRODUCING A UNIFORM FIBER TAPE ON A CARD
EP0413891A2 (en) Process and appliance forming an input signal for a crossed-coil type indicating instrument
DE10253197B4 (en) Method for determining the control point of use in spinning preparation machines and spinning preparation machine
EP0330750A2 (en) Disordered fleece card with at least three working drums
DE3212891A1 (en) Process for operating a drawing frame and drawing frame
DE102014105940A1 (en) Method and device for drawing at least one sliver
DE2019280A1 (en) System for analyzing and synthesizing speech

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RIETER INGOLSTADT GMBH

17Q First examination report despatched

Effective date: 20100427

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140328

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315089

Country of ref document: DE

Effective date: 20140828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315089

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170627

Year of fee payment: 15

Ref country code: IT

Payment date: 20170630

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315089

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180611

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101