EP1524970A1 - Particules enrobees avec de la hyluronane ou un de ces derives et son utilisation comme vecteurs biologiques pour les principes actifs - Google Patents

Particules enrobees avec de la hyluronane ou un de ces derives et son utilisation comme vecteurs biologiques pour les principes actifs

Info

Publication number
EP1524970A1
EP1524970A1 EP03769524A EP03769524A EP1524970A1 EP 1524970 A1 EP1524970 A1 EP 1524970A1 EP 03769524 A EP03769524 A EP 03769524A EP 03769524 A EP03769524 A EP 03769524A EP 1524970 A1 EP1524970 A1 EP 1524970A1
Authority
EP
European Patent Office
Prior art keywords
particles according
particles
hyaluronan
poly
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03769524A
Other languages
German (de)
English (en)
Inventor
Edith Dellacherie
Michèle Leonard
Ruxandra Gref
Patrick Netter
Elisabeth Payan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Lorraine
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1524970A1 publication Critical patent/EP1524970A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/167Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection

Definitions

  • the present invention relates mainly to particles coated at least partially on the surface with hyaluronan or derivative and the use of these particles with title of biological vectors for active ingredients.
  • Vectorization is an operation aimed at modulating and if possible completely controlling the distribution of a substance, by associating it with an appropriate system called a vector.
  • the in vivo fate of the vector is conditioned by its size, its physicochemical characteristics and, in particular, its surface properties which, on the one hand play a determining role with the components of the biological medium and, on the other share can induce targeted behavior towards a specific site to be treated.
  • Biological vectors more particularly concerned in the context of the present invention, belong to the field of particles, in particular nano- and microparticles.
  • PLA poly (lactic acid)
  • biodegradable polyester whose degradation products are natural metabolites of a human organism
  • the hydrophobic nature of the surface of these particles as well as the presence of carboxylate groups (ends of the PLA chains) cause adsorption of plasma proteins, the opsonins, responsible in particular for the capture of the particles by the cells of the Phagocyte System. Mononuclear (SPM). This results in a rapid disappearance of particles from the circulating volume at the same time as an accumulation in the organs of PMS (liver, spleen, kidneys).
  • SPM Mononuclear
  • the object of the present invention is in particular to propose new particles having an extended lifespan and which are particularly advantageous for conveying biological or synthetic active materials which are advantageous in the field of rheumatology.
  • the practitioner is often confronted with inflammatory and / or degenerative pathologies which generate, in the more or less long term, sometimes irreversible degradations of the cartilage.
  • corticosteroids can be used, among others.
  • the high doses of corticosteroids used in this scenario can, however, induce significant side effects.
  • the present invention aims in particular to propose a particle type vector which, on the one hand is biodegradable and suitable for the controlled release of an active material and, on the other hand is capable of effectively targeting the release of this active ingredient at the level of tissue cells and more particularly cells possessing specific receptors for hyaluronans, also called CD44.
  • Chondrocytes are cells involved in the synthesis of the cartilage matrix. They also manage the maintenance of cartilage homeostasis.
  • Synoviocytes which are cells located in the synovial membrane, are involved in the synthesis of hyaluronan in synovial fluid.
  • a first aspect of the invention therefore relates to particles the core of which is based on at least one biodegradable organosoluble polymer, characterized in that they are coated, at least partially on the surface, with at least one hyaluronan or one of its derivatives.
  • Hyaluronic acid is a natural polysaccharide constituted by a succession of disaccharide units N-acetylglucosamine / glucuronic acid and whose aqueous solutions have a high viscosity. It is present in particular in the umbilical cord, in the vitreous humor and in the synovial fluid. It is also produced by certain bacteria, in particular by hemolytic streptococci from groups A and C.
  • the molar mass of hyaluronic acid can vary from 10,000 to 10,000,000 g approximately, depending on the origin.
  • Hyaluronic acid is sold in particular in the form of its sodium salt (also called hyaluronate).
  • hyaluronan is used to denote hyaluronic acid and hyaluronates without distinction, in particular in the form of inorganic or organic salts and in particular the alkaline and / or alkaline earth salts.
  • this hyaluronan is used in the form of an amphiphilic, water-soluble hyaluronan, the carboxylic functions of which are partly transformed so as to represent hydrophobic groups.
  • the fixing of these hydrophobic groups can in particular be established by reaction of these with the carboxylic functions of the hyaluronate according to an esterification or amidation reaction. This transformation is carried out at a rate sufficient to confer amphiphilic behavior on said hyaluronan.
  • the hydrophobic groups can in particular derive from the esterification of the carboxylic functions by at least one group chosen from: alkyl chains, linear or branched, saturated or unsaturated, which can be interrupted by one or more heteroatoms such as the atoms of S, O and N , and where appropriate, substituted by at least one aromatic ring, and oligomers such as those derived from ⁇ -hydroxy acids.
  • the alkyl chains can have a number of carbon atoms greater than 5 and in particular greater than 10. However, in the particular case where such a chain is substituted by an aromatic ring, its number of carbon atoms can be reduced.
  • the transformation rate is generally adjusted so as to preserve sufficient water-solubility for the amphiphilic hyaluronan derivative thus obtained.
  • the longer the chain the lower the rate of fixation in the hyaluronan skeleton.
  • the rate of attachment may be higher. It is clear that this adjustment between the rate of attachment and the length of the alkyl chains falls within the competence of a person skilled in the art.
  • the rate of esterification can be at most 15%, or even less than 10% and, in particular less than 7% and in particular between 0.05 and 5%.
  • this esterification rate can be greater than or equal to 25% and for an alkyl chain of 6 carbon atoms, it can be around 50%.
  • This transformation rate is generally adjusted so as to allow the hyaluronan derivative to be fixed on the surface of the particles thanks to the interaction of its hydrophobic groups with the hydrophobic polymer matrix constituting the particles.
  • the alkyl chains are anchored in the hydrophobic matrix during the formation of the particles.
  • the functionalization at the surface of the particles by hyaluronan does not involve a covalent or ionic bond between these two entities.
  • the binding of the hyaluronan derivative essentially comes from hydrophobic and Nan der Waals interactions.
  • the transformation rate is also adjusted so as not to affect the natural affinity of hyaluronan for CD44 receptors.
  • hyaluronan on the surface of particles is particularly advantageous for directing them selectively towards the CD44 receptors present in particular on the cells of the articular sphere.
  • the particles according to the invention used as a biological vector for a biological or synthetic active material advantageously make it possible to effectively target the release of this active material at the level of cells with CD44 receptors, for example chondrocytes and / or synoviocytes. This results in a controlled and prolonged action of this active material at the level of the target lesion.
  • This last aspect is particularly interesting for the well-being of the patient, insofar as it gives access to better availability of the drug and therefore makes it possible to reduce the quantities administered and their frequency of administration.
  • the biodegradability of the claimed particles is also ensured thanks to the nature of the polymers which constitute them.
  • biodegradable is intended to denote any polymer which dissolves or degrades in a period acceptable for the application for which it is intended, usually in in vivo therapy. Generally, this period must be less than 5 years and more preferably one year when a corresponding physiological solution is exposed to a pH of 6 to 8 and at a temperature between 25 ° C and 37 ° C.
  • biodegradable polymers according to the invention are or are derived from synthetic or natural biodegradable polymers.
  • organosoluble biodegradable polymers which can be used to constitute the core of the particles, they can in particular be chosen from polyesters such as poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly ( ⁇ -caprolactone) (PCL) , polyanhydrides, poly (alkylcyanoacrylates), polyorthoesters, poly (alkylene tartrate), polyphosphazenes, polyamino acids, polyamidoamines, polycarbonates, polymethylidenemalonate, polysiloxane, polyhydroxybutyrate or ⁇ oly (malic acid), as well as their copolymers and derivatives.
  • polyesters such as poly (lactic acid) (PLA), poly (glycolic acid) (PGA), poly ( ⁇ -caprolactone) (PCL) , polyanhydrides, poly (alkylcyanoacrylates), polyorthoesters, poly (alkylene tartrate), polyphosphazenes, polyamino acids, polyamidoamine
  • the claimed particles have a polymer matrix incorporating at least one polymer different from hyaluronan. More preferably, this matrix consists of one or more polymers other than hyaluronan.
  • Polyesters such as poly (lactic acid), poly (glycolic acid), poly ( ⁇ -caprolactone), and their copolymers, such as poly (lactic acid-co- glycolic acid) (PLGA).
  • the particles are mainly composed, that is to say more than 50% by weight, in particular more than 75% by weight, or even entirely, of poly (lactic acid).
  • the particles according to the invention preferably comprise at least one biological or synthetic active material of the drug type in a form encapsulated in the polymer core.
  • biological active materials mention may more particularly be made of peptides, proteins, carbohydrates, nucleic acids, lipids, polysaccharides or their mixtures. It can also be synthetic organic or inorganic molecules, which, administered in vivo to an animal or to a patient, are capable of inducing a biological effect and / or manifesting therapeutic activity. It can thus be antigens, enzymes, hormones, receptors, vitamins and / or minerals.
  • anti-inflammatory compounds include anesthetics, chemotherapeutic agents, immunotoxins, immunosuppressive agents, steroids, antibiotics, antivirals, antifungals, antiparasitics, vaccinating substances, immunomodulators and analgesics.
  • the particles according to the invention are advantageously targeted towards cells with a tissue structure such as, for example, chondrocytes and synoviocytes
  • the following compounds may be used as active materials: anti-inflammatories, matrix components like for example glycosaminoglycans and biological factors involved in the process of regeneration and / or protection of cartilage.
  • anti-inflammatories matrix components like for example glycosaminoglycans and biological factors involved in the process of regeneration and / or protection of cartilage.
  • Particular advantages of particles are that they effectively protect this type of active material which is particularly sensitive to the phenomenon of biodegradation.
  • They may also be biological compounds which are more particularly active with regard to osteoarthritis, such as, for example, the glucosamine of glycosaminoglycans, hyaluronic acid, chondroitin sulfate and their mixtures.
  • the particles in accordance with the invention can comprise up to 95% by weight of an active material.
  • the active ingredient can thus be present in an amount varying from 0.001 to
  • the particles according to the invention can have a size varying from 50 nm to 600 ⁇ m and in particular from 80 nm to 250 ⁇ m.
  • the particles according to the invention having a size between 1 and 1000 nm are called nanoparticles.
  • Particles ranging in size from 1 to several thousand microns refer to microparticles.
  • the particles are generally in spherical form, but can also occur in other forms.
  • the claimed nanoparticles or microparticles can be prepared according to methods already described in the literature, and more particularly can be obtained by the solvent emulsion / evaporation technique and in particular that described by R. Gurny et al. "Development of biodegradable and injectable latices for controlled release ofpotent drugs” Drug Dev. Ind. Pharm., Vol. 7, p. 1-25 1981.
  • amphiphilic hyaluronans could advantageously be used in place of conventional surfactants for the preparation of particles according to the emulsion / solvent evaporation technique.
  • two variants of this technique are considered according to the hydrophobic or hydrophilic nature of the active material to be encapsulated.
  • a simple emulsion is prepared.
  • the selected biodegradable polymer is dissolved in the organic phase, in particular a solvent poorly soluble in water such as, for example, methylene chloride or ethyl acetate, with the active material to be encapsulated.
  • the amphiphilic hyaluronan for its part, is dissolved in the aqueous phase which serves as a dispersing medium for the organic phase.
  • the hyaluronan derivative After mixing these two phases, the hyaluronan derivative is localized at the water / organic phase interface thanks to its amphiphilic properties and thus stabilizes the emulsion.
  • the amphiphilic derivatives of hyaluronan advantageously remain attached to the surface of the particles thus formed, the hydrophobic groups being anchored more or less deeply in the core of organosoluble polymer forming the particles and the hydrophilic part, corresponding mainly to the hyaluronan skeleton, being exposed on the surface.
  • particles conforming to the invention At the end of the evaporation of the solvent, particles conforming to the invention which are then washed with water, centrifuged or lyophilized.
  • a first oil-in-water type emulsion is prepared, composed of an organic phase containing the biodegradable organosoluble polymer and of a first phase aqueous containing the active ingredient.
  • This so-called inverted emulsion is then placed in the presence of a second aqueous phase containing the amphiphilic hyaluronan derivative so as to obtain a double water / oil / water emulsion vis-à-vis which the amphiphilic hyaluronan plays the role of stabilizer.
  • particles are recovered in accordance with the present invention which are treated as above.
  • the conditions used during the preparation of the emulsions generally determine the size of the particles and their adjustment is within the competence of a person skilled in the art.
  • the use of a hyaluronan derivative as a stabilizing agent in this type of process for preparing particles is therefore particularly advantageous in at least two respects: it makes it possible to dispense with the presence of surfactants systematically used in the processes conventional. In this case, the latter are not always biocompatible and sometimes difficult to eliminate at the end of the synthesis; at the end of the synthesis of the particles, it leads to a vector manifesting a selective affinity for cells of tissue structure and more particularly for cells of the articular sphere and in particular for chondrocytes and synoviocytes.
  • the concentration of hyaluronan in the particle synthesis medium determines the recovery rate of the particles, that is to say the amount of hyaluronan deposited on their surface.
  • the hyaluronan derivative is generally distributed homogeneously on the surface of the particles with a surface density which can vary significantly. It is also possible to incorporate into the particles, compounds for diagnostic purposes. It can thus be substances detectable by X-rays, fluorescence, ultrasound, nuclear magnetic resonance or radioactivity. Particles can thus include magnetic particles, radio-opaque materials, such as barium or fluorescent compounds. Alternatively, gamma emitters (for example Indium or Technetium) can be incorporated.
  • the active ingredient is preferably incorporated into these particles during their formation process. However, when this proves possible, it can also be charged at the level of the particles once these are obtained.
  • the particles according to the invention can be administered in different ways, for example by oral or parenteral route and in particular by intra-articular, ocular, pulmonary, nasal, vaginal, cutaneous and / or buccal routes.
  • marker type molecules and compounds capable of potentiating the targeting function provided by hyaluronan such as for example RGD peptides (arginine glycine - aspartic acid) which promote adhesion between cells and their extracellular matrices.
  • a second aspect of the invention relates to a biological vector in particular for one or more active (s) biological (s) or synthetic (s) material comprising at least particles according to the invention.
  • the invention also relates to the use of this vector, or of the particles claimed for encapsulating at least one active, biological or synthetic material.
  • compositions comprising at least one vector and in particular particles according to the invention, if appropriate associated (s) with at least one pharmaceutically acceptable and compatible vehicle.
  • the particles claimed are particularly advantageous from the pharmaceutical or diagnostic point of view. They provide satisfactory protection of the encapsulated active material. They limit the diffusion of this active ingredient in the body thanks to the steric effect of the particles per se and to the natural affinity of hyaluronan for CD44 receptors. They allow a gradual release of this active substance near the lesion and / or the targeted cells, thus allowing a prolonged action. Finally, they slowly degrade into products that are well tolerated by the body.
  • Another aspect of the present invention relates to the use of particles as defined above see of a biological vector by incorporating for the preparation of a pharmaceutical composition intended for the treatment of osteoarthritis.
  • the particles can also be incorporated into capsules, or incorporated into implants, gels or tablets. They can also be formulated directly in an oil-type fluid for example and be injected directly at the biological site to be treated.
  • Another aspect of the invention relates to the use of hyaluronan or amphiphilic derivative as defined above as targeting agent on the surface of particles, in particular consisting of at least one biodegradable polymer or capsules, in particular hollow.
  • particles or capsules can in particular be nano- or micro-spheres or nano- or micro-particles.
  • FIGURES are a diagrammatic representation of FIGURES.
  • Figure 1 Representation of cell proliferation of rat chondrocytes cultured in a monolayer system after 48 h of treatment in the presence of nanoparticles based on PLA (control) and PLA coated with amphiphilic hyaluronan.
  • Figure 2 Representation of cell proliferation and proteoglycan synthesis activity, of chondrocytes cultured on alginate beads (three-dimensional culture) after 48 hours of treatment in the presence of nanoparticles based on PLA (control) and PLA coated with amphiphilic hyaluronan .
  • a derivative of sodium hyaluronate is thus obtained, of which approximately 4% of the carboxylic functions are esterified by chains with 18 carbons.
  • the protocol for the synthesis of particles covered with amphiphilic hyaluronate HA-C 18 -1.3% that is to say a polymer containing 1.3 alkyl chains with 18 carbons, is given below. for 100 glucose reasons.
  • the aqueous suspension of particles thus obtained is washed with water by 3 successive centrifugations of 10 min at 12,000 rpm.
  • the particles obtained under these conditions have an average diameter of 450 nm
  • Chondrocytes (cartilage cells) of rats obtained after digestion of cartilage fragments by pronase and by collagenase, are cultured in DMEM (Gibco BRL, RU) in the presence of particles obtained according to example 1. Two systems are used:
  • the chondrocytes are distributed in 24-well culture plates at the rate of approximately 100,000 chondrocytes per well.
  • a suspension of nanoparticles covered with amphiphilic HA and synthesized according to Example 1, is prepared in the DMEM culture medium so as to have on average approximately 10 7 particles per ml. 1 ml of this suspension is brought into contact with the chondrocytes in the culture wells, which gives an average ratio of approximately 100 particles per chondrocyte. Contact is maintained for 48 h.
  • FIG. 1 shows that after this 48 h contact with particles covered with amphiphilic HA substituted at different rates by chains with 18 or 12 carbon atoms, the viability and proliferation of the chondrocytes are similar to those obtained with the control.
  • Figure 2 shows that contact with nanospheres covered with amphiphilic HA substituted at different rates by chains with 18 or 12 carbon atoms, does not significantly disturb the proliferation and metabolic activity of chondrocytes in this environment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Transplantation (AREA)
  • Anesthesiology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

« Particules revêtues en surface de hyaluronane ou d'un de ses dérivés et leur utilisation á titre de vecteurs biologiques pour des matières actives » La présente invention concerne des particules dont le cœur est á base d'au moins un polymère organosoluble biodégradable, caractérisées en ce qu'elles sont revêtues, au moins partiellement en surface d'au moins un hyaluronane ou de l'un de ses dérivés, ledit hyaluronane étant un hyaluronane amphiphile, hydrosoluble et dont les fonctions carboxyliques sont en partie transformées pour figurer des groupes hydrophobes.

Description

Particules revêtues en surface de hyaluronane ou d'un de ses dérivés et leur utilisation à titre de vecteurs biologiques pour des matières actives La présente invention concerne principalement des particules revêtues au moins partiellement en surface de hyaluronane ou dérivé et l'utilisation de ces particules à titre de vecteurs biologiques pour des matières actives.
La vectorisation est une opération visant à moduler et si possible à totalement maîtriser la distribution d'une substance, en l'associant à un système approprié appelé vecteur.
Dans le domaine de la vectorisation, trois fonctions principales sont à assurer : - transporter la ou les matières actives dans les liquides biologiques de l'organisme, acheminer les matières actives vers les organes à traiter, et assurer la libération de ces matières actives. A ces trois fonctions, s'ajoute une exigence de biodisponibilité du vecteur. Il doit être biodégradable et ses sous-unités doivent être tolérées par l'organisme.
En fait, le devenir in vivo du vecteur est conditionné par sa taille, ses caractéristiques physico-chimiques et, en particulier, ses propriétés de surface qui, d'une part jouent un rôle déterminant avec les composants du milieu biologique et, d'autre part peuvent induire un comportement ciblé vers un site spécifique à traiter. Les vecteurs biologiques, plus particulièrement concernés dans le cadre de la présente invention, appartiennent au domaine des particules, notamment nano- et microparticules.
Des nano-particules et micro-particules de poly(acide lactique) (PLA) et/ou de polyester biodégradable dont les produits de dégradation sont des métabolites naturels d'un organisme humain, sont proposées depuis longtemps pour vectoriser des molécules bioactives pour différents types d'administration. Cependant, le caractère hydrophobe de la surface de ces particules ainsi que la présence de groupes carboxylates (extrémités des chaînes de PLA) entraînent une adsorption de protéines plasmatiques, les opsonines, responsables en particulier de la capture des particules par les cellules du Système des Phagocytes Mononucléés (SPM). Il en résulte une disparition rapide des particules du volume circulant en même temps qu'une accumulation dans les organes du SPM (foie, rate, reins). La présente invention a notamment pour objectif de proposer de nouvelles particules possédant une durée de vie prolongée et particulièrement avantageuses pour véhiculer des matières actives biologiques ou synthétiques, intéressantes dans le domaine de la rhumatologie. Dans ce domaine clinique, le praticien est souvent confronté à des pathologies inflammatoires et/ou dégénératives qui engendrent, à plus ou moins long terme, des dégradations parfois irréversibles du cartilage. Outre des traitements non spécifiques à base d'antalgiques et d' anti-inflammatoires non stéroïdiens, on peut avoir recours, entre autres, à des injections locales de corticoïdes. Les doses élevées de corticoïdes utilisées dans ce cas de figure peuvent, toutefois, induire des effets indésirables non négligeables. Par ailleurs, il est généralement nécessaire de multiplier ces injections en raison d'une action bénéfique trop réduite.
L'administration de ce type de matières actives par l'intermédiaire de particules serait donc une alternative particulièrement avantageuse aux thérapies conventionnelles.
En l'occurrence, la présente invention vise notamment à proposer un vecteur de type particules qui, d'une part est biodégradable et approprié au relargage contrôlé d'une matière active et, d'autre part est capable de cibler efficacement la libération de cette matière active au niveau des cellules tissulaires et plus particulièrement des cellules possédant des récepteurs spécifiques aux hyaluronanes, encore dénommés CD44.
Ces récepteurs sont notamment présents au niveau des cellules de la sphère articulaire comme par exemple les chondrocytes et les synoviocytes. Les chondrocytes sont des cellules impliquées dans la synthèse de la matrice cartilagineuse. Elles gèrent également le maintien de l'homéostasie du cartilage. Les synoviocytes qui sont des cellules localisées dans la membrane synoviale, sont pour leur part impliquées dans la synthèse du hyaluronane dans le liquide synoviale.
De manière inattendue, les inventeurs ont mis en évidence qu'il était possible de cibler efficacement le relargage d'une matière active encapsulée dans des particules vers des cellules possédant notamment ce type de récepteur, en les fonctionnalisant en surface avec du hyaluronane.
Un premier aspect de l'invention concerne donc des particules dont le cœur est à base d'au moins un polymère organosoluble biodégradable, caractérisées en ce qu'elles sont revêtues, au moins partiellement en surface, d'au moins un hyaluronane ou de l'un de ses dérivés.
L'acide hyaluronique est un polysaccharide naturel constitué par une succession de motifs disaccharidiques N-acétylglucosamine/acide glucuronique et dont les solutions aqueuses ont une viscosité élevée. Il est présent notamment dans le cordon ombilical, dans l'humeur vitrée et dans le liquide synovial. Il est également produit par certaines bactéries, notamment par des streptocoques hémolytiques des groupes A et C. La masse molaire de l'acide hyaluronique peut varier de 10 000 à 10 000000 g environ, selon l'origine. L'acide hyaluronique est commercialisé notamment sous la forme de son sel de sodium (encore dénommé hyaluronate). On utilise le terme générique « hyaluronane » pour désigner indistinctement l'acide hyaluronique et les hyaluronates, notamment sous la forme de sels inorganiques ou organiques et en particulier les sels alcalins et/ou alcalino- terreux.
Plus particulièrement, ce hyaluronane est mis en œuvre sous la forme d'un hyaluronane amphiphile, hydrosoluble dont les fonctions carboxyliques sont en partie transformées de manière à figurer des groupements hydrophobes. La fixation de ces groupements hydrophobes peut notamment être établie par réaction de ceux-ci avec les fonctions carboxyliques du hyaluronate selon une réaction d'estérification ou d'amidification. Cette transformation est effectuée à un taux suffisant pour conférer un comportement amphiphile audit hyaluronane.
La transformation des fonctions carboxyliques du hyaluronate peut ainsi être obtenue par une estérification et/ou amidification partielle de ces fonctions. De tels dérivés sont notamment décrits dans FR 2 794 763.
Les groupes hydrophobes peuvent notamment dériver de l' estérification des fonctions carboxyliques par au moins un groupe choisi parmi : des chaînes alkyles, linéaires ou ramifiées, saturées ou insaturées, pouvant être interrompues par un ou plusieurs hétéroatomes comme les atomes de S, O et N, et le cas échéant, substituées par au moins un noyau aromatique, et des oligomères comme ceux dérivant des α-hydroxyacides. Les chaînes alkyles peuvent posséder un nombre d'atomes de carbone supérieur à 5 et notamment supérieur à 10. Toutefois, dans le cas particulier où une telle chaîne est substituée par un noyau aromatique, son nombre d'atomes de carbone peut être réduit.
Le taux de transformation est généralement ajusté de manière à préserver une hydrosolubilité suffisante au dérivé hyaluronane amphiphile ainsi obtenu.
Il est également contrôlé en tenant compte de l'hydrophobie des groupes fixés sur le hyaluronane.
D'une manière générale, concernant les chaînes alkyles, plus la chaîne est longue, plus le taux de fixation au niveau du squelette hyaluronane pourra être faible.
Inversement, avec des chaînes alkyles courtes, le taux de fixation pourra être plus élevé. Il est clair que cet ajustement entre le taux de fixation et la longueur des chaînes alkyles relève des compétences de l'homme de l'art.
A titre indicatif, pour une chaîne alkyle contenant de 15 à 20 atomes de carbone et en particulier 18 atomes de carbone, le taux d' estérification peut être d'au plus 15 %, voire inférieur à 10 % et, notamment inférieur à 7 % et en particulier compris entre 0,05 et 5 %. Pour une chaîne alkyle contenant de 10 à 14 atomes de carbone et notamment de 12 atomes de carbone, ce taux d' estérification peut être supérieur ou égal à 25 % et pour une chaîne alkyle de 6 atomes de carbone, il peut être de l'ordre de 50 %.
Ce taux de transformation est généralement ajusté de manière à permettre la fixation du dérivé hyaluronane en surface des particules grâce à l'interaction de ses groupements hydrophobes avec la matrice polymérique hydrophobe constituant les particules. En d'autres termes, les chaînes alkyles sont ancrées dans la matrice hydrophobe pendant la formation des particules. Dans le cas de la présente invention, la fonctionnalisation en surface des particules par hyaluronane ne fait pas intervenir de lien covalent ni ionique entre ces deux entités. La fixation du dérivé hyaluronane relève essentiellement d'interactions de type hydrophobe et Nan der Waals. Le taux de transformation est également ajusté de manière à ne pas affecter l'affinité naturelle du hyaluronane pour les récepteurs CD44.
La présence de hyaluronane en surface de particules est particulièrement avantageuse pour les diriger sélectivement vers les récepteurs CD44 présents notamment sur les cellules de la sphère articulaire. Grâce à cette enveloppe hyaluronane, les particules, selon l'invention, utilisées à titre de vecteur biologique pour une matière active biologique ou synthétique permettent avantageusement de cibler efficacement la libération de cette matière active au niveau des cellules à récepteurs CD44, par exemple des chondrocytes et/ou des synoviocytes. Il en résulte une action contrôlée et prolongée de cette matière active au niveau de la lésion visée. Ce dernier aspect est particulièrement intéressant pour le bien-être du patient, dans la mesure où il donne accès à une meilleure disponibilité du médicament et donc, permet de réduire les quantités administrées et leur fréquence d'administration.
La biodégradabilité des particules revendiquées est, par ailleurs, également assurée grâce à la nature des polymères qui les constituent.
Au sens de l'invention, on entend désigner sous l'appellation «biodégradable » tout polymère qui se dissout ou se dégrade en une période acceptable pour l'application à laquelle il est destiné, habituellement en thérapie in vivo. Généralement, cette période doit être inférieure à 5 ans et plus préférentiellement à une année lorsque l'on expose une solution physiologique correspondante à un pH de 6 à 8 et à une température comprise entre 25 °C et 37 °C.
Les polymères biodégradables selon l'invention sont ou dérivent de polymères biodégradables synthétiques ou naturels.
Concernant les polymères biodégradables organosolubles utilisables pour constituer le cœur des particules, ils peuvent notamment être choisis parmi les polyesters comme les poly(acide lactique) (PLA), poly(acide glycolique) (PGA), poly(ε-caprolactone) (PCL), les polyanhydrides, poly(alkylcyanoacrylates), polyorthoesters, poly(alkylène tartrate), polyphosphazènes, polyaminoacides, polyamidoamines, polycarbonates, polyméthylidènemalonate, polysiloxane, le polyhydroxybutyrate ou le ρoly(acide malique), ainsi que leurs copolymères et dérivés.
Selon une variante particulière de l'invention, les particules revendiquées possèdent une matrice polymérique incorporant au moins un polymère différent du hyaluronane. Plus préférentiellement, cette matrice est constituée d'un ou plusieurs polymères autres que le hyaluronane.
Sont notamment préférés comme polymères organosolubles biodégradables selon l'invention, les polyesters comme les poly(acide lactique), poly(acide glycolique), poly(ε-caprolactone), et leurs copolymères, comme par exemple le poly(acide lactique-co- acide glycolique) (PLGA).
Selon une variante particulière de l'invention, les particules sont composées majoritairement c'est-à-dire à plus de 50 % en poids, en particulier plus de 75 % en poids, voire en totalité, de poly(acide lactique).
Les particules selon l'invention, comprennent de préférence au moins une matière active biologique ou synthétique de type médicament sous une forme encapsulée dans le cœur de polymère. Comme matières actives biologiques, on peut plus particulièrement citer les peptides, les protéines, les carbohydrates, les acides nucléiques, les lipides, les polysaccharides ou leurs mélanges. Il peut également s'agir de molécules organiques ou inorganiques synthétiques, qui, administrées in vivo à un animal ou à un patient, sont susceptibles d'induire un effet biologique et/ou manifester une activité thérapeutique. Il peut ainsi s'agir d'antigènes, d'enzymes, d'hormones, de récepteurs, de vitamines et/ou de minéraux.
A titre représentatif et non limitatif des médicaments susceptibles d'être incorporés dans ces particules, on peut citer les composés anti-inflammatoires, les anesthésiants, les agents chimiothérapeutiques, les immunotoxines, les agents immunosuppresseurs, les stéroïdes, les antibiotiques, les antiviraux, les antifongiques, les antiparasitaires, les substances vaccinantes, les immunomodulateurs et les analgésiques.
Dans la mesure où les particules selon l'invention sont avantageusement ciblées vers les cellules de structure tissulaires comme par exemple les chondrocytes et synoviocytes, on peut privilégier l'utilisation à titre de matières actives des composés suivants : les anti-inflammatoires, des composants matriciels comme par exemple les glycosaminoglycanes et des facteurs biologiques impliqués dans le processus de régénération et/ou protection du cartilage. Les particules ont notamment pour avantage de protéger efficacement ce type de matière active particulièrement sensibles au phénomène de biodégradation. II peut également s'agir de composés biologiques plus particulièrement actifs vis-à-vis de l'arthrose comme par exemple la glucosamine des glycosaminoglycannes, l'acide hyaluronique, le sulfate de chondroïtine et leurs mélanges.
Les particules conformes à l'invention peuvent comprendre jusqu'à 95 % en poids d'une matière active. La matière active peut ainsi être présente en une quantité variant de 0,001 à
950 mg/g de particule et préférentiellement de 0,1 à 500 mg/g. Il est à noter que dans le cas de l'encapsulation de certains composés macromoléculaires (ADN, oligonucléotides, protéines, peptides, etc) des charges encore plus faibles peuvent être suffisantes.
Les particules selon l'invention peuvent posséder une taille variant de 50 nm à 600 μm et notamment de 80 nm à 250 μm.
Les particules selon l'invention possédant une taille comprise entre 1 et 1000 nm sont dénommées nanoparticules. Les particules dont la taille varie de 1 à plusieurs milliers de microns font référence à des microparticules.
Les particules sont généralement sous forme sphérique, mais peuvent également se présenter sous d'autres formes.
Les nanoparticules ou microparticules revendiquées peuvent être préparées selon des méthodes déjà décrites dans la littérature, et plus particulièrement peuvent être obtenues par la technique d'émulsion/évaporation du solvant et notamment celle décrite par R. Gurny et al. « Development of biodégradable and injectable latices for controlled release ofpotent drugs » Drug Dev. Ind. Pharm., vol. 7, p. 1-25 1981.
De manière inattendue, les inventeurs ont ainsi mis en évidence que les hyaluronanes amphiphiles précités pouvaient avantageusement être utilisés à la place des tensioactifs conventionnels pour la préparation de particules selon la technique émulsion/évaporation de solvant.
En fait, deux variantes de cette technique sont considérées selon la nature hydrophobe ou hydrophile de la matière active à encapsuler. Lorsque que l'on cherche à encapsuler une matière active hydrophobe, on prépare une simple émulsion. Pour ce faire, le polymère biodégradable choisi est dissous dans la phase organique, notamment un solvant peu soluble dans l'eau comme par exemple du chlorure de méthylène ou de l'acétate d'éthyle, avec la matière active à encapsuler. Le hyaluronane amphiphile, est pour sa part dissous dans la phase aqueuse qui sert de milieu dispersant à la phase organique. A l'issue du mélange de ces deux phases, le dérivé hyaluronane se localise à l'interface eau/phase organique grâce à ses propriétés amphiphiles et stabilise ainsi l'émulsion. Lors de l'évaporation du solvant organique, les dérivés amphiphiles de hyaluronane demeurent avantageusement fixés à la surface des particules ainsi formées, les groupes hydrophobes étant ancrés plus ou moins profondément dans le cœur de polymère organosolubles formant les particules et la partie hydrophile, correspondant principalement au squelette hyaluronane, étant exposée à la surface. A la fin de l'évaporation du solvant, on récupère des particules conformes à l'invention qui subissent ensuite un lavage à l'eau, une centrifugation ou une lyophilisation.
Dans le cas où la matière active à encapsuler est hydrophile à l'image des protéines et polysaccharides par exemple, on prépare une première émulsion de type huile dans eau, composée d'une phase organique contenant le polymère organosoluble biodégradable et d'une première phase aqueuse contenant la matière active. Cette émulsion dite inversée est ensuite mise en présence d'une seconde phase aqueuse contenant le dérivé hyaluronane amphiphile de manière à obtenir une double émulsion eau/huile/eau vis-à-vis de laquelle le hyaluronane amphiphile joue le rôle de stabilisant. Après évaporation du solvant, on récupère des particules conformes à la présente invention qui sont traitées comme précédemment.
Les conditions utilisées lors de la préparation des émulsions déterminent généralement la taille des particules et leur ajustement relève des compétences de l'homme de l'art. L'utilisation d'un dérivé hyaluronane à titre d'agent stabilisant dans ce type de procédé de préparation de particules est donc particulièrement avantageuse à au moins deux titres : elle permet de s'affranchir de la présence des agents tensioactifs systématiquement utilisés dans les procédés conventionnels. En l'occurrence, ces derniers ne sont pas toujours biocompatibles et parfois difficiles à éliminer en fin de synthèse ; elle conduit à l'issue de la synthèse des particules, à un vecteur manifestant une affinité sélective pour des cellules de structure tissulaires et plus particulièrement pour des cellules de la sphère articulaire et en particulier pour les chondrocytes et les synoviocytes. La concentration de hyaluronane dans le milieu de synthèse des particules, détermine le taux de recouvrement des particules, c'est-à-dire la quantité de hyaluronane déposée à leur surface. Le dérivé hyaluronane est généralement réparti de manière homogène en surface des particules avec une densité surfacique pouvant varier de manière significative. On peut également incorporer dans les particules, des composés à finalité de diagnostic. Il peut ainsi s'agir de substances détectables par rayons X, fluorescence, ultrasons, résonance magnétique nucléaire ou radioactivité. Les particules peuvent ainsi inclure des particules magnétiques, des matériaux radio-opaques, comme notamment le baryum ou des composés fluorescents. Alternativement, des émetteurs gamma (par exemple Indium ou Technetium) peuvent y être incorporés.
Comme décrit précédemment, la matière active est de préférence incorporée dans ces particules lors de leur processus de formation. Toutefois, lorsque cela s'avère possible, elle peut également être chargée au niveau des particules une fois que celles-ci sont obtenues.
Les particules selon l'invention peuvent être administrées de différentes façons, par exemple par voie orale ou parentérale et notamment par voies intra-articulaire, oculaire, pulmonaire, nasale, vaginale, cutanée et/ou buccale.
Les hyaluronanes présents en surface des particules selon l'invention, portant une multitude de fonctions OH réactives, il est en outre possible une fois les particules formées, de fixer à ses fonctions toutes sortes de molécules par des liaisons covalentes. A titre illustratif et non limitatif de ce type de molécules, on peut notamment citer les molécules de type marqueurs et les composés susceptibles de potentialiser la fonction de ciblage assurée par le hyaluronane, comme par exemple des peptides RGD (arginine glycine - acide aspartique) qui favorisent l'adhésion entre les cellules et leurs matrices extracellulaires.
Un second aspect de l'invention concerne un vecteur biologique notamment pour une ou plusieurs matière(s) active(s) biologique(s) ou synthétique(s) comprenant au moins des particules selon l'invention.
L'invention concerne également l'utilisation de ce vecteur, ou des particules revendiquées pour encapsuler au moins une matière active, biologique ou synthétique.
Un autre aspect de l'invention se rapporte à des compositions pharmaceutiques ou de diagnostic comprenant au moins un vecteur et notamment des particules selon l'invention, le cas échéant associé(es) à au moins un véhicule pharmaceutiquement acceptable et compatible.
Comme évoqué précédemment, les particules revendiquées sont particulièrement avantageuses sur le plan pharmaceutique ou du diagnostic. Elles assurent une protection satisfaisante de la matière active encapsulée. Elles limitent la diffusion de cette matière active dans l'organisme grâce à l'effet stérique des particules en soi et à l'affinité naturelle du hyaluronane pour les récepteurs CD44. Elles autorisent une libération progressive de cette substance active à proximité de la lésion et/ou des cellules visées permettant ainsi une action prolongée. Enfin, elles se dégradent lentement en produits bien tolérés par l'organisme.
Un autre aspect de la présente invention concerne l'utilisation de particules telles que définies ci-dessus voir d'un vecteur biologique en incorporant pour la préparation d'une composition pharmaceutique destinée au traitement de l'arthrose.
Les particules peuvent également être incorporées dans des capsules, ou incorporées dans des implants, gels ou tablettes. Elles peuvent également être formulées directement dans un fluide de type huile par exemple et être injectées directement au niveau du site biologique à traiter.
Un autre aspect de l'invention concerne l'utilisation de hyaluronane ou dérivé amphiphile tel que défini précédemment à titre d'agent de ciblage en surface de particules, en particulier constituées d'au moins un polymère biodégradable ou de capsules, notamment creuses. Ces particules ou capsules peuvent notamment être des nano- ou micro-sphères ou des nano- ou micro-particules.
Les exemples et figures présentés ci-après sont soumis à titre illustratif et non limitatif du domaine de l'invention.
FIGURES :
Figure 1 : Représentation de la prolifération cellulaire de chondrocytes de rats cultivés en système monocouche après 48 h de traitement en présence de nanoparticules à base de PLA (témoin) et de PLA revêtue de hyaluronane amphiphile.
Figure 2 : Représentation de la prolifération cellulaire et activité de synthèse en protéoglycanes, de chondrocytes cultivés sur billes d'alginate (culture tridimensionnelle) après 48 heures de traitement en présence de nanoparticules à base de PLA (témoin) et de PLA revêtue de hyaluronane amphiphile.
MATERIEL ET METHODE Synthèse des HA modifiés
A titre d'exemple, est décrite ci-dessous la synthèse d'un hyaluronane substitué par des chaînes aliphatiques à 18 carbones.
Le hyaluronate de sodium (HA, Mw = 600 000 g/mol) provient de la Société Bioibérica (Barcelone, Espagne).
1 g de hyaluronate de sodium est dissous dans 100 ml d'eau distillée. La solution est mise en contact pendant 15 minutes avec 5 g de résine Dowex 50*8 échangeuse de cations conditionnée en H+ à 2,5 meq/g (stoechiométrie 1:6). Après filtration, la solution contenant la forme acide du polysaccharide est neutralisée à pH 7 à l'hydroxyde de tétrabutylammomum, puis lyophilisée. On obtient ainsi le hyaluronate de tétrabutylammonium HA-TBA.
1 g de HA-TBA est dissous dans 100 ml de diméthylsulfoxyde. 36 μl de
C18H3 Br sont ajoutés. Après 24 h de réaction à 30 °C sous agitation, le mélange est mis en dialyse : 1 jour contre eau distillée, 6 jours contre eau distillée + azide NaN3 (1/2500) puis
1 jour contre eau distillée. Enfin, la solution dialysée est lyophilisée.
On obtient ainsi un dérivé du hyaluronate de sodium dont environ 4 % des fonctions carboxyliques sont estérifiées par des chaînes à 18 carbones.
EXEMPLE 1 :
Synthèse et caractérisation de particules conformes à l'invention.
A titre d'exemple, est donné ci-dessous le protocole de synthèse de particules recouvertes du hyaluronate amphiphile HA-C18-1,3 % c'est-à-dire d'un polymère contenant 1,3 chaînes alkyle à 18 carbones pour 100 motifs glucose.
Le poly(D,L-acide lactique) (PLA, Mw = 106 OOOg/mol) et le dichorométhane (CH2C12) sont des produits Sigma- Aldrich (France).
10 mg de HA-Cι8-1,3 % sont dissous pendant 24 h sous agitation dans 10 ml d'eau distillée. On ajoute 1 ml de CH2C12 contenant 25 mg de PLA. Une émulsion huile dans eau stable est réalisée par l'utilisation d'un vortex pendant 30 s puis des ultra-sons à une puissance de 10 W en mode puisé (50 % de cycle actif) pendant 60 s. Le solvant organique est ensuite évaporé sous agitation, à température et pression ambiantes pendant
2 h. La suspension aqueuse de particules ainsi obtenue est lavée à l'eau par 3 centrifugations successives de 10 mn à 12 000 tr/mn. Les particules obtenues dans ces conditions ont un diamètre moyen de 450 nm
(diamètre moyen en intensité, déterminé par spectroscopie à corrélation de photons sur un appareil Malvern 4600). EXEMPLE 2 :
Evaluation biologique in vitro des particules conformes à l'invention.
Des chondrocytes (cellules du cartilage) de rats obtenus après digestion de fragments de cartilage par la pronase et par la collagénase, sont mis en culture dans du DMEM (Gibco BRL, RU) en présence de particules obtenues selon l'exemple 1. Deux systèmes de culture sont utilisés :
1) un système en monocouche classique applicable à tous les types cellulaires et qui permet d'appréhender les paramètres généraux de biocompatibilité tels que la viabilité et la prolifération.
Les chondrocytes sont répartis dans des plaques de culture à 24 puits à raison d'environ 100 000 chondrocytes par puits. Une suspension de nanoparticules recouvertes de HA amphiphile et synthétisées selon l'exemple 1, est préparée dans le milieu de culture DMEM de façon à avoir en moyenne environ 107 particules par ml. 1 ml de cette suspension est mis en contact avec les chondrocytes dans les puits de culture ce qui donne un ratio moyen d'environ 100 particules par chondrocytes. Le contact est maintenu pendant 48 h.
La figure 1 montre qu'après ce contact de 48 h avec des particules recouvertes de HA amphiphiles substitués à différents taux par des chaînes à 18 ou 12 atomes de carbone, la viabilité et la prolifération des chondrocytes sont similaires à celles obtenues avec le témoin.
En revanche, on peut observer que dans ces conditions expérimentales, la présence des particules de PLA nues modifie significativement ces paramètres. 2) un système tridimensionnel : dans le cas des chondrocytes, on complète l'analyse précédente par l'étude d'une culture dans des billes d'alginate de calcium qui sont enrichies ou non en particules conformes à l'invention, afin d'appréhender l'activité de synthèse des protéoglycanes du chondrocyte dans cet environnement nano ou microparticulaire. Les culots cellulaires sont suspendus dans une solution d'alginate de sodium à
2 % dans du NaCl stérile 0,9 % et contenant les particules recouvertes de HA, de façon à avoir approximativement 500 000 chondrocytes par ml et en moyenne environ 200 nanoparticules par chondrocyte. La suspension résultante est alors déposée au goutte à goutte dans une solution de CaCl 100 mM à l'aide d'une seringue de 2 ml équipée d'une aiguille 0,8x25, ce qui permet de former des billes d'environ 2 mm de diamètre au contact du CaCl . Après repos de 20 mn dans la solution de CaCl2, les billes sont lavées 2 fois de suite par du NaCl 0,9 %.
La figure 2 montre que le contact avec des nanosphères recouvertes de HA amphiphiles substitués à différents taux par des chaînes à 18 ou 12 atomes de carbone, ne perturbe pas significativement la prolifération et l'activité métabolique des chondrocytes dans cet environnement.

Claims

REVENDICATIONS
1. Particules dont le cœur est à base d'au moins un polymère organosoluble biodégradable, caractérisées en ce qu'elles sont revêtues, au moins partiellement en surface d'au moins un hyaluronane ou de l'un de ses dérivés, ledit hyaluronane étant un hyaluronane amphiphile, hydrosoluble et dont les fonctions carboxyliques sont en partie transformées pour figurer des groupes hydrophobes.
2. Particules selon la revendication 1, caractérisées en ce que les groupes hydrophobes sont fixés au hyaluronane par des fonctions esters et/ou a ides.
3. Particules selon la revendication 1 ou 2, caractérisées en ce que les fonctions carboxyliques sont en partie estérifiés à l'aide d'au moins un groupe choisi parmi des chaînes alkyles, linéaires ou ramifiées, saturées ou insaturées pouvant être interrompues par un ou plusieurs hétéroatomes et le cas échéant substituées par un noyau aromatique et des oligomères dérivant d'α-hydroxyacides.
4. Particules selon la revendication 3, caractérisées en ce que les chaînes alkyles possèdent un nombre d'atomes de carbone supérieur à 5 et notamment supérieur à 10.
5. Particules selon l'une quelconque des revendications 1 à 4, caractérisées en ce que lorsque les chaînes alkyles possèdent un nombre d'atomes de carbone variant de 15 à 20, le taux d' estérification est d'au plus 15 %.
6. Particules selon la revendication 5, caractérisées en ce que le hyaluronane est estérifié par une chaîne alkyle possédant 18 atomes de carbone.
7. Particules selon la revendication 6, caractérisées en ce que le taux d' estérification est inférieur à 7 %.
8. Particules selon l'une quelconque des revendications 1 à 4, caractérisées en ce que lorsque les chaînes alkyles possèdent un nombre d'atomes de carbone variant de 10 à 14, le taux d' estérification est supérieur ou égal à 25 %.
9. Particules selon l'une quelconque des revendications précédentes, caractérisées en ce que le polymère organosoluble biodégradable est ou dérive d'un polymère biodégradable synthétique ou naturel.
10. Particules selon l'une quelconque des revendications précédentes, caractérisées en ce que le polymère organosoluble biodégradable est un polymère choisi parmi les polyesters de type poly(acide lactique), poly(acide glycolique), poly(ε- caprolactone), les polyanhydrides, poly(alkylcyanoacrylates), polyorthoesters, poly(alkylène tartrate), polyphosphazènes, polyaminoacides, polyamidoamines, polycarbonate, polyméhtylidènemalonate, polysiloxane, polyhydroxybutyrate, poly(acide malique), leurs copolymères ou dérivés.
11. Particules selon l'une quelconque des revendications 1 à 10, caractérisées en ce que le polymère organosoluble biodégradable est choisi parmi le poly(acide lactique), poly(acide glycolique), poly(caprolactone) et leurs copolymères.
12. Particules selon l'une quelconque des revendications précédentes, caractérisées en ce qu'elles comprennent en outre au moins une matière active biologique ou synthétique encapsulée dans le cœur de polymère.
13. Particules selon la revendication 12, caractérisées en ce que la matière active encapsulée est au moins une matière biologique choisie parmi les peptides, protéines, carbohydrates, acides nucléiques, lipides, polysaccharides, antigènes, enzymes, hormones, récepteurs, vitamines, les composants matriciels comme par exemple les glycosaminoglycanes, les facteurs biologiques impliqués dans le processus de régénération et/ou protection du cartilage, dans l'arthrose et leurs mélanges.
14. Particules selon la revendication 13, caractérisée en ce que la matière active encapsulée est choisie parmi les glucosamine, acide hyaluronique, sulfate de chondroïtine et leurs mélanges.
15. Particules selon la revendication 12, caractérisées en ce que la matière active est une au moins matière active synthétique notamment de type médicament choisie parmi les composés anti-inflammatoires, anesthésiants, agents chimiothérapeutiques, immunotoxines, agents immunosuppresseurs, stéroïdes, antibiotiques, antiviraux, antifongiques, antiparasitaires, substances vaccinantes, immunomodulateurs et analgésiques.
16. Particules selon l'une quelconque des revendications précédentes, caractérisées en ce qu'elles comprennent jusqu'à 95 % en poids d'une matière active.
17. Particules selon l'une quelconque des revendications précédentes, caractérisées en ce qu'elles possèdent une taille variant de 50 nm à 600 μm et en particulier de 80 nm à 250 μm.
18. Particules selon l'une quelconque des revendications 1 à 17, caractérisées en ce qu'il s'agit de nanoparticules.
19. Particules selon l'une quelconque des revendications 1 à 17, caractérisées en ce qu'il s'agit de microparticules.
20. Particules selon l'une quelconque des revendications 1 à 19, caractérisées en ce qu'elles sont obtenues par la technique d'émulsion/évaporation du solvant en utilisant à titre d'agent stabilisant d' émulsion au moins ledit hyaluronane amphiphile.
21. Vecteur biologique caractérisé en ce qu'il comprend au moins des particules selon l'une quelconque des revendications 1 à 20.
22. Utilisation de particules selon l'une quelconque des revendications 1 à 20, ou d'un vecteur selon la revendication 19 pour encapsuler au moins une matière active.
23. Utilisation de particules selon l'une quelconque des revendications 1 à 20 ou d'un vecteur selon revendication 21 pour la préparation d'une composition pharmaceutique destinée au traitement de l' arthrose.
24. Composition pharmaceutique ou de diagnostic comprenant au moins des particules selon l'une quelconque des revendications 1 à 20 ou un vecteur selon la revendication 21, associé(es) le cas échéant à au moins un véhicule pharmaceutiquement acceptable et compatible.
25. Utilisation de hyaluronane ou dérivé à titre d'agent de ciblage en surface de particules ou de capsules.
26. Utilisation selon la revendication 25, caractérisée en ce que le hyaluronane est un hyaluronane tel que défini en revendications 1 à 8.
27. Utilisation selon la revendication 25 ou 26, caractérisée en ce que les particules ou capsules sont des nano- ou micro-sphères ou des nano- ou micro-particules.
EP03769524A 2002-07-25 2003-07-21 Particules enrobees avec de la hyluronane ou un de ces derives et son utilisation comme vecteurs biologiques pour les principes actifs Withdrawn EP1524970A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0209436A FR2842737B1 (fr) 2002-07-25 2002-07-25 Particules revetues en surface de hyaluronane ou d'un de ses derives et leur utilisation a titre de vecteurs biologiques pour des matieres actives
FR0209436 2002-07-25
PCT/FR2003/002299 WO2004014347A1 (fr) 2002-07-25 2003-07-21 Centre national de la recherche scientifique

Publications (1)

Publication Number Publication Date
EP1524970A1 true EP1524970A1 (fr) 2005-04-27

Family

ID=30011470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03769524A Withdrawn EP1524970A1 (fr) 2002-07-25 2003-07-21 Particules enrobees avec de la hyluronane ou un de ces derives et son utilisation comme vecteurs biologiques pour les principes actifs

Country Status (6)

Country Link
US (3) US20050271730A1 (fr)
EP (1) EP1524970A1 (fr)
AU (1) AU2003278209A1 (fr)
CA (1) CA2493470C (fr)
FR (1) FR2842737B1 (fr)
WO (1) WO2004014347A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924606B1 (fr) * 2007-12-10 2010-08-13 Jean Noel Thorel Composition a base d'acide hyaluronique pour l'hydratation de la peau.
WO2009155059A2 (fr) * 2008-05-28 2009-12-23 Trustees Of Tufts College Composition de polysaccharide et procédés permettant d'isoler le polysaccharide polyélectrolytique cationique de stabilisation d'émulsion
WO2010011857A2 (fr) * 2008-07-23 2010-01-28 The Johns Hopkins University Administration parentérale d'une glucosamine
US20160030349A1 (en) * 2014-08-01 2016-02-04 Boehringer Ingelheim Vetmedica Gmbh Nanoparticles, methods of preparation, and uses thereof
CA3074449A1 (fr) 2017-09-05 2019-03-14 Excel Med, Llc Composition d'heparine pour le traitement de l'ischemie
EP3897763A1 (fr) * 2018-12-21 2021-10-27 Galderma Holding SA Compositions d'hydrogel encapsulant des particules solides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006897A1 (fr) * 2002-07-11 2004-01-22 Centre National De La Recherche Scientifique (C.N.R.S.) Dispersions aqueuses de particules nanometriques ou micrometriques pour l'encapsulation de composes chimiques

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851521A (en) * 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
GB8601100D0 (en) * 1986-01-17 1986-02-19 Cosmas Damian Ltd Drug delivery system
US5736372A (en) * 1986-11-20 1998-04-07 Massachusetts Institute Of Technology Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure
EP0576675A4 (en) * 1991-03-25 1994-06-01 Fujisawa Pharmaceutical Co Long-acting pharmaceutical preparation
US5565215A (en) * 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
JPH10511957A (ja) * 1995-01-05 1998-11-17 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン 表面改質ナノ微粒子並びにその製造及び使用方法
KR100201352B1 (ko) * 1995-03-16 1999-06-15 성재갑 단일주사 백신 제형
CA2289088C (fr) * 1997-04-30 2007-08-07 Point Biomedical Corporation Microparticules utilisables comme agents de contraste ou pour la liberation de medicaments dans le flux sanguin
FR2809112B1 (fr) * 2000-05-16 2004-05-07 Centre Nat Rech Scient Materiaux a base de polymeres biodegradables et son procede de preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006897A1 (fr) * 2002-07-11 2004-01-22 Centre National De La Recherche Scientifique (C.N.R.S.) Dispersions aqueuses de particules nanometriques ou micrometriques pour l'encapsulation de composes chimiques

Also Published As

Publication number Publication date
FR2842737B1 (fr) 2006-01-27
AU2003278209A1 (en) 2004-02-25
US20050271730A1 (en) 2005-12-08
CA2493470C (fr) 2012-05-22
CA2493470A1 (fr) 2004-02-19
FR2842737A1 (fr) 2004-01-30
US20130071480A1 (en) 2013-03-21
WO2004014347A1 (fr) 2004-02-19
US20120003320A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
Yang et al. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery
Li et al. Nanoparticle–cartilage interaction: pathology-based intra-articular drug delivery for osteoarthritis therapy
Mura Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review
Kumar et al. Chitosan chemistry and pharmaceutical perspectives
CN101137700B (zh) 微粒及医药组合物
Wen et al. Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management
Dung et al. Chitosan-TPP nanoparticle as a release system of antisense oligonucleotide in the oral environment
TWI378941B (fr)
Niaz et al. Antihypertensive nano-ceuticales based on chitosan biopolymer: Physico-chemical evaluation and release kinetics
CN109310775B (zh) 用于向软骨中受控递送被囊封的药剂的二元自组装凝胶
Blanco et al. Chitosan microspheres in PLG films as devices for cytarabine release
US20170368181A1 (en) Polymeric Nanoparticle
US20130071480A1 (en) Particles which are surface coated with hyaluronan or one of the derivatives thereof and the use of same as biological vectors for active substances
US20170333338A1 (en) Sustained and reversible oral drug delivery systems
US20050250881A1 (en) Aqueous dispersions of nanometric or micrometric particles for encapsulating chemical compounds
Andronescu et al. Nanostructures for oral medicine
Walvekar et al. A review of hyaluronic acid-based therapeutics for the treatment and management of arthritis
Ponnaganti et al. Preparation, characterization and evaluation of chitosan nanobubbles for the targeted delivery of ibrutinib
Mirtič et al. Development of cetylpyridinium-alginate nanoparticles: A binding and formulation study
US8859001B2 (en) Fenoldopam formulations and pro-drug derivatives
Saravanabhavan et al. Fabrication of chitosan/TPP nano particles as a carrier towards the treatment of cancer
Song et al. Preparation and evaluation of insulin-loaded nanoparticles based on hydroxypropyl-β-cyclodextrin modified carboxymethyl chitosan for oral delivery
WO2005120435A2 (fr) Procede de preparation de compositions a liberation prolongee et utilisation de ces compositions pour le traitement des affections chroniques du systeme nerveux central (snc)
US20140005199A1 (en) Implant for the controlled release of pharmaceutically active agents
CN113896906A (zh) 一种电荷引导的微纳米可黏附水凝胶及其制备方法与应用

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070615

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITE DE LORRAINE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160202