EP1522082A2 - Procede de stockage d'energie electrique dans des batteries quantiques - Google Patents

Procede de stockage d'energie electrique dans des batteries quantiques

Info

Publication number
EP1522082A2
EP1522082A2 EP03729779A EP03729779A EP1522082A2 EP 1522082 A2 EP1522082 A2 EP 1522082A2 EP 03729779 A EP03729779 A EP 03729779A EP 03729779 A EP03729779 A EP 03729779A EP 1522082 A2 EP1522082 A2 EP 1522082A2
Authority
EP
European Patent Office
Prior art keywords
layers
quantum
capacitors
range
electrical energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03729779A
Other languages
German (de)
English (en)
Inventor
Rolf Eisenring
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisenring Rolf
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1522082A2 publication Critical patent/EP1522082A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the energy storage devices are independent of stationary sources and are therefore used to power electrical drives in mobile traffic (road, rail, ship and aerospace), primarily as an energy substitute for fossil fuels.
  • the highly concentrated loss-free storage capacity of the materials also allows use in domestic technology for the temporary storage and transport of e.g. energies obtained through solar technology.
  • the materials also enable the construction of new types of electronic components.
  • the lossless, rapid discharge of the electrically stored energy also allows it to be used as an explosive device.
  • the new storage facility allows electrical energy to be stored in the same weight-specific range as chemical energy. Values in the range from 1 to over 15 MJ / kg can be achieved.
  • the materials of the new storage allow unlimited charging and discharging cycles; the materials do not wear out.
  • the new storage works loss-free when loading and unloading.
  • the memory is robust against shocks, extreme accelerations and extreme temperatures, as is the positioning of the room.
  • the invention makes use of a physical effect which consists in the fact that very small amounts of dipolar crystals, for example Ti02 (high electronegativity) in an insulating medium / matrix, for example Si02 or polymer resins, due to a strong electrostatic field and at a critical voltage (charging conditions) become electrically conductive (semiconductors) through virtual photon resonance (a new kind of quantum physical effect) and thereby absorb energy, which is stored analogously to a plate capacitor by counteracting polarization.
  • the memories can be designed with voltages from a few volts to a few thousand volts. The storage capacity is only limited by the design. 15.3.
  • the storage crystals such as Ti02, SrTi03 or the like, are applied to a support surface in the size of a few nm either as a grain or as a layer together with the insulating medium.
  • rutile There are special requirements for the expansion of the crystals, above all the "rutile" type is necessary.
  • Two methods are used: a) A mixture of crystals and polymer resin is first dispersed and then by electrostatic spray technology onto a composite film consisting of a sandwich made of metal and polymer film, which is either flat or stretched on a tube-like body and is continuously moved, sprayed in. The metal film isolated in the composite forms the counterelectrode.
  • the insulation of the polymer prevents the charges from flowing off after impact together with the counterelectrode an electric field, which exerts strong surface forces due to the capacitive effect. These surface forces produce geometrically precise shapes, in the case of the tube exactly round layers and exact layer thicknesses Ensure no-shift layers.
  • the electrostatic field also causes the geometrical alignment of the dipoles.
  • the resin is cured by radiation curing in a protective atmosphere or by thermal curing.
  • the coated film is then cut open and shaped into a layer capacitor.
  • the layers can either be laid flat on top of each other or rolled up. Alternately, the metallic parts of the foils are connected and thereby form the positive and negative poles of the memory.
  • the storage bodies are covered with insulating materials and the electrodes are guided to external terminals.
  • a film capacitor made planar with foils, if made extremely long and with few layers, can be used as a highly flexible flat conductor with an almost infinite bandwidth for the connection between source and battery.

Abstract

L'invention concerne un procédé selon lequel des « batteries quantiques » (supercondensateurs) sont réalisées à partir de matériaux constitués de cristaux chimiquement fortement bipolaires se présentant sous la forme de grains d'une taille de l'ordre du nanomètre ou de couches, incorporés dans des matériaux matriciels électro-isolants ou dans des couches intermédiaires, appliqués sur des films composites ou sur des substrats plats solides qui sont mis sous forme de condensateurs bobinés ou plats, lesquels peuvent accumuler de l'énergie électrique en raison de l'effet de la résonance phonique virtuelle, dans une plage pouvant dépasser 15 MJ/kg, sans perte.
EP03729779A 2002-07-01 2003-06-26 Procede de stockage d'energie electrique dans des batteries quantiques Withdrawn EP1522082A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH113002 2002-07-01
CH11302002 2002-07-01
PCT/CH2003/000423 WO2004004026A2 (fr) 2002-07-01 2003-06-26 Procede de stockage d'energie electrique dans des « batteries quantiques »

Publications (1)

Publication Number Publication Date
EP1522082A2 true EP1522082A2 (fr) 2005-04-13

Family

ID=29783982

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03729779A Withdrawn EP1522082A2 (fr) 2002-07-01 2003-06-26 Procede de stockage d'energie electrique dans des batteries quantiques

Country Status (8)

Country Link
US (2) US20060164788A1 (fr)
EP (1) EP1522082A2 (fr)
JP (2) JP4986398B2 (fr)
CN (1) CN1679123B (fr)
AU (1) AU2003240363A1 (fr)
CA (1) CA2491552A1 (fr)
RU (1) RU2357313C2 (fr)
WO (1) WO2004004026A2 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595109B2 (en) * 2001-04-12 2009-09-29 Eestor, Inc. Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries
US7914755B2 (en) 2001-04-12 2011-03-29 Eestor, Inc. Method of preparing ceramic powders using chelate precursors
US7729811B1 (en) 2001-04-12 2010-06-01 Eestor, Inc. Systems and methods for utility grid power averaging, long term uninterruptible power supply, power line isolation from noise and transients and intelligent power transfer on demand
WO2005094440A2 (fr) 2004-03-18 2005-10-13 Nanosys Inc. Condensateurs a base de surface de nanofibres
US7466536B1 (en) * 2004-08-13 2008-12-16 Eestor, Inc. Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU)
US20110170232A1 (en) * 2004-08-13 2011-07-14 Eestor, Inc. Electrical energy storage unit and methods for forming same
US7648687B1 (en) 2006-06-15 2010-01-19 Eestor, Inc. Method of purifying barium nitrate aqueous solution
US7993611B2 (en) 2006-08-02 2011-08-09 Eestor, Inc. Method of preparing ceramic powders using ammonium oxalate
US8853116B2 (en) 2006-08-02 2014-10-07 Eestor, Inc. Method of preparing ceramic powders
US8145362B2 (en) * 2006-08-04 2012-03-27 Eestor, Inc. Utility grid power averaging and conditioning
CN101939895A (zh) * 2007-10-31 2011-01-05 罗尔夫·艾森宁 无损耗地传输电能的方法和装置
JP5323373B2 (ja) * 2008-03-24 2013-10-23 タマティーエルオー株式会社 キャパシタ型蓄電池
EP2319060A1 (fr) * 2008-08-26 2011-05-11 Nxp B.V. Condensateur et procédé de fabrication
US8877367B2 (en) 2009-01-16 2014-11-04 The Board Of Trustees Of The Leland Stanford Junior University High energy storage capacitor by embedding tunneling nano-structures
AU2010204926A1 (en) * 2009-01-16 2011-07-14 The Board Of Trustees Of The Leland Stanford Junior University Quantum dot ultracapacitor and electron battery
US20100285316A1 (en) * 2009-02-27 2010-11-11 Eestor, Inc. Method of Preparing Ceramic Powders
JP2012523117A (ja) * 2009-04-01 2012-09-27 ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティ 面積を増大させた電極を有する全電子バッテリー
KR20130139743A (ko) * 2010-01-20 2013-12-23 에스톨, 인코포레이티드 바륨 이온 소스의 정제
US8611067B1 (en) * 2010-03-08 2013-12-17 Daniel A. Pearson Energy storage device
WO2011114100A1 (fr) 2010-03-17 2011-09-22 The Secretary Of State For Defence Améliorations apportées à des diélectriques
CN102074751B (zh) * 2010-12-16 2013-05-01 合肥中兴电子科技有限责任公司 一种蓄电池维护方法
WO2013035149A1 (fr) * 2011-09-05 2013-03-14 株式会社日本マイクロニクス Appareil et procédé d'évaluation de batterie en feuille
KR101654114B1 (ko) * 2011-10-30 2016-09-05 가부시키가이샤 니혼 마이크로닉스 반복 충방전 가능한 양자 전지
CN102623173B (zh) * 2012-04-17 2014-05-28 电子科技大学 一种基于氧化铝有序纳米孔结构的电容器的制备方法
EP2858102B1 (fr) * 2012-05-31 2020-04-22 Kabushiki Kaisha Nihon Micronics Sonde à semi-conducteurs destinée à tester une cellule quantique, dispositif de test et procédé de test
RU2530765C1 (ru) * 2013-04-17 2014-10-10 Общество с ограниченной ответственностью "МВТУ" (ООО "МВТУ") Способ накопления, хранения электрической энергии и устройство для его осуществления
WO2015023533A1 (fr) * 2013-08-12 2015-02-19 Waters Technologies Corporation Unité de commande de phase mobile pour systèmes de chromatographie en phase supercritique
US20170098870A1 (en) * 2014-03-18 2017-04-06 Kabushiki Kaisha Nihon Micronics Battery
JP2017532787A (ja) * 2014-10-13 2017-11-02 ライプニッツ−インスティトゥート フュア フェストケルパー− ウント ヴェルクシュトフフォルシュング ドレスデン エー ファオLeibniz−Institut fuer Festkoerper− und Werkstoffforschung Dresden e.V. コンパクトなマイクロキャパシタ又はナノキャパシタの製造方法、及びコンパクトなマイクロキャパシタ又はナノキャパシタ
JP6813982B2 (ja) * 2016-08-01 2021-01-13 株式会社日本マイクロニクス 二次電池
JP6961370B2 (ja) * 2017-03-15 2021-11-05 株式会社日本マイクロニクス 蓄電デバイス
CN110224454A (zh) * 2018-03-02 2019-09-10 意法半导体有限公司 用于移动站的电池交换系统
CN112601462B (zh) 2018-08-31 2023-10-31 伊诺弗斯公司 植物抗氧化剂
WO2020046478A1 (fr) 2018-08-31 2020-03-05 Innophos, Inc. Modulateur botanique de troubles métaboliques
CN112638179A (zh) 2018-08-31 2021-04-09 伊诺弗斯公司 植物提取物皮肤护理

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800575A (en) * 1992-04-06 1998-09-01 Zycon Corporation In situ method of forming a bypass capacitor element internally within a capacitive PCB
JP3173143B2 (ja) * 1992-07-09 2001-06-04 松下電器産業株式会社 積層フィルムコンデンサ用積層体およびその製造方法
US5711988A (en) * 1992-09-18 1998-01-27 Pinnacle Research Institute, Inc. Energy storage device and its methods of manufacture
JPH06236826A (ja) * 1993-02-10 1994-08-23 Hitachi Ltd 薄膜状絶縁膜およびその形成方法並びにその形成装置
US5710436A (en) * 1994-09-27 1998-01-20 Kabushiki Kaisha Toshiba Quantum effect device
US5705259A (en) * 1994-11-17 1998-01-06 Globe-Union Inc. Method of using a bipolar electrochemical storage device
KR100250480B1 (ko) * 1997-08-30 2000-04-01 김영환 반도체소자의 캐패시터 제조방법
WO2000022637A1 (fr) * 1998-10-13 2000-04-20 Select Molecular Technologies Corporation Dispositif de stockage d'energie de forte capacitance
US6399521B1 (en) * 1999-05-21 2002-06-04 Sharp Laboratories Of America, Inc. Composite iridium barrier structure with oxidized refractory metal companion barrier and method for same
KR100487069B1 (ko) * 2000-04-12 2005-05-03 일진나노텍 주식회사 새로운 물질로 이루어진 전극을 이용하는 수퍼 커패시터 및 그 제조 방법
AU2001274857A1 (en) * 2000-05-18 2001-12-03 Georgia Tech Research Corporation High dielectric constant nano-structure polymer-ceramic composite
US7031136B2 (en) * 2002-04-09 2006-04-18 Ngimat Co. Variable capacitors, composite materials
US20090195961A1 (en) * 2002-07-01 2009-08-06 Rolf Eisenring Method and device for storing electricity in quantum batteries
KR20050116809A (ko) * 2003-03-05 2005-12-13 윌리엄 비. 쥬니어 더프 강화된 전력 특성들을 갖는 전하 저장 장치
JP4392336B2 (ja) * 2004-03-25 2009-12-24 パナソニック株式会社 強誘電体容量素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004004026A2 *

Also Published As

Publication number Publication date
RU2005102398A (ru) 2005-08-20
CN1679123B (zh) 2010-04-28
AU2003240363A8 (en) 2004-01-19
AU2003240363A1 (en) 2004-01-19
US7895721B2 (en) 2011-03-01
JP2010093306A (ja) 2010-04-22
CA2491552A1 (fr) 2004-01-08
RU2357313C2 (ru) 2009-05-27
US20080016681A1 (en) 2008-01-24
JP2005531922A (ja) 2005-10-20
CN1679123A (zh) 2005-10-05
JP4986398B2 (ja) 2012-07-25
WO2004004026A2 (fr) 2004-01-08
US20060164788A1 (en) 2006-07-27
WO2004004026A3 (fr) 2004-03-25

Similar Documents

Publication Publication Date Title
EP1522082A2 (fr) Procede de stockage d'energie electrique dans des batteries quantiques
US9767960B2 (en) Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods
CN105283926B (zh) 利用有机和有机金属高介电常数材料改进能量存储设备中的电极和电流及其改进方法
CN103947015B (zh) 全固态薄膜电池的制造方法
US8890476B2 (en) Fuel cell/supercapacitor/battery power system for vehicular propulsion
WO2017139451A1 (fr) Polymère para-furuta et condensateur
EP2791989A1 (fr) Boîtier pour un élément de batterie comportant un revêtement en vernis destiné à l'isolation électrique, élément de batterie et batterie pour un véhicule à moteur
US20160351965A1 (en) Electrostatic energy storage device and preparation method thereof
US2933547A (en) Solid state electric cell
CN107112759B (zh) 熵能转移方法以及电路
DE112010005062T5 (de) Modulare Batterie mit polymerer Kompressionsabdichtung
DE112018001797T5 (de) Festkörper-sekundärbatterie
WO2013152906A1 (fr) Accumulateur d'énergie électrochimique et procédé pour le fabriquer
DE102010051754A1 (de) Energiespeicher zur reversiblen Speicherung elektrischer Energie ohne Massetransport mit hoher Energiedichte und sehr hoher Zyklenzahl durch Ladungsspeicherung im Volumen
CN101989493A (zh) 一种有电量锁存功能的陶瓷电容器暨物理电池
US10998142B2 (en) High energy density capacitor system and method
DE102017207439A1 (de) Elektroden mit verbesserter Beschichtung und Verfahren zu ihrer Herstellung
DE102010022831A1 (de) Doppelschichtkondensator
DE102018205299A1 (de) Verfahren zur Herstellung eines Schichtaufbaus für einen Lithium-Ionen-Festkörperakkumulator
Das-Gupta et al. Piezoelectricity in uniaxially stretched and corona poled polyvinylidene fluoride
US20140147772A1 (en) Polarizable ion-conducting material
US20110170232A1 (en) Electrical energy storage unit and methods for forming same
US20140272577A1 (en) Methods and apparatus for high capacity anodes for lithium batteries
WO2014182379A1 (fr) Dispositif de stockage d'energie electrique
DE102012000084A1 (de) Elektrische Energiespeicher in der Form sich durchdringender und elektrisch leitfähiger Halbleiternetzwerke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050119

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EISENRING, ROLF

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EISENRING, ROLF

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090924

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130103