EP1521737A1 - Verfahren zur r ckf hrung einer lewis-s ure - Google Patents

Verfahren zur r ckf hrung einer lewis-s ure

Info

Publication number
EP1521737A1
EP1521737A1 EP03763704A EP03763704A EP1521737A1 EP 1521737 A1 EP1521737 A1 EP 1521737A1 EP 03763704 A EP03763704 A EP 03763704A EP 03763704 A EP03763704 A EP 03763704A EP 1521737 A1 EP1521737 A1 EP 1521737A1
Authority
EP
European Patent Office
Prior art keywords
mixture
water
phase
lewis acid
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03763704A
Other languages
English (en)
French (fr)
Inventor
Tim Jungkamp
Jens Scheidel
Hermann Luyken
Michael Bartsch
Robert Baumann
Gerd Haderlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002131292 external-priority patent/DE10231292A1/de
Priority claimed from DE2002140012 external-priority patent/DE10240012A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP1521737A1 publication Critical patent/EP1521737A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/28Regeneration or reactivation
    • B01J27/32Regeneration or reactivation of catalysts comprising compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/403Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/08Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
    • C07C253/10Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • B01J2231/342Aldol type reactions, i.e. nucleophilic addition of C-H acidic compounds, their R3Si- or metal complex analogues, to aldehydes or ketones
    • B01J2231/343Aldol type reactions, i.e. nucleophilic addition of C-H acidic compounds, their R3Si- or metal complex analogues, to aldehydes or ketones to prepare cyanhydrines, e.g. by adding HCN or TMSCN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a process for the recovery of a Lewis acid from a reaction mixture (I) which has been obtained in the hydrocyanation of an olefinically unsaturated compound to give a nitrile which has a miscibility gap with water under certain quantity, pressure and temperature conditions Presence of a catalyst system containing a Lewis acid and a complex compound of a phosphorus-containing compound suitable as a ligand and a central atom suitable for this compound,
  • phase (III) which contains a higher proportion of water than said nitrile and a phase (IV) which contains a higher proportion contains said nitrile than water, phase (III) having a higher content of said Lewis acid than phase (IV),
  • cl does not form an azeotrope with water and whose boiling point is higher than that of under certain pressure conditions
  • step (V) is subjected to distillation under the pressure conditions mentioned in step cl) or c2) to obtain a mixture (VI) which contains a higher proportion of water than the diluent (V) and a mixture (VII) which comprises one contains a higher proportion of diluent (V) than water, mixture (VII) having a higher content of said ter Lewis acid has as mixture (VI), and
  • the present invention had for its object to provide a process which enables the recovery of the Lewis acid from such a reaction mixture in a form which permits the reuse of the Lewis acid in the said hydrocyanation in a technically simple and economical manner.
  • the process according to the invention also has the advantage that it separates the complex compound used as a component of the catalyst system from a phosphorus-containing compound suitable as a ligand and a central atom suitable for this compound in a form which enables the reuse of the Complex compound allowed in said hydrocyanation, as well as the separation of the product of value obtained in the hydrocyanation from the reaction mixture obtained in the hydrocyanation in a technically simple and economical manner.
  • step a) of the process according to the invention a reaction mixture (I) is used which was obtained in the hydrocyanation of an olefinically unsaturated compound to give a nitrile which has a miscibility gap with water under certain quantity, pressure and temperature conditions, in the presence of a catalyst system , containing a Lewis acid and a complex compound of a phosphorus-containing compound suitable as a ligand and a central atom suitable for this compound.
  • adiponitrile comes into consideration as the nitrile, which has a miscibility gap with water under certain quantity, pressure and temperature conditions.
  • Suitable Lewis acids are inorganic or organic metal compounds in which the cation is selected from the group consisting of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, boron, aluminum, yttrium, Zirconium, niobium, molybdenum, cadmium, rhenium and tin.
  • Examples include ZnBr, Znl, ZnCl, ZnS0, CuCl 2 , CuCl, Cu (0 3 SCF 3 ) 2 , CoCl 2 , CoI 2 , Fel 2 , FeCl 3 , FeCl 2 , FeCl 2 (THF) 2 , TiCl 4 (THF ) 2 , TiCl 4 , TiCl 3 , ClTi (0-i-propyl) 3- MnCl 2 , SCCI 3 , AICI 3 , (CsH ⁇ ) A1C1, (C 8 H ⁇ ) 2 A1C1, (i-CH 9 ) 2 AlCl, (C 6 H 5 ) 2 A1C1, (C 6 H 5 ) A1C1 2 , ReCl 5 , ZrCl 4 / NbCl 5 , VCI 3 , CrCl 2 , M0CI 5 , YCI3, CdCl 2 , LaCl 3 , Er (0 3 SCF 3
  • a metal in cationic form selected from the group consisting of zinc, cadmium, beryllium, aluminum, gallium, indium, thallium, titanium, zirconium, hafnium, erbium, germanium, tin, vanadium, niobium, scandium, can also be used as a promoter , Chromium, molybdenum, tungsten, manganese, rhenium, palladium, thorium, iron and cobalt, preferably zinc, cadmium, titanium, tin, chromium, iron and cobalt, can be used, and the anionic part of the compound can be selected from the group consisting of from halides, such as fluoride, chloride, bromide and iodide, anions of lower fatty acids having from 2 to 7 carbon atoms, HPO 3 2- , H 3 P0 2- , CF 3 COO-, ' C 7 H 15 OSO 2 - or SO 4
  • halides such
  • borohydrides, organoborohydrides and boric acid esters of the formula R 3 B and B (OR) 3 where R is selected from the group consisting of hydrogen, aryl radicals with between 6 and 18 carbon atoms. Atoms, aryl radicals substituted with alkyl groups with 1 to 7 carbon atoms and aryl radicals substituted with cyano-substituted alkyl groups with 1 to 7 carbon atoms, advantageously called riphenylboron.
  • riphenylboron advantageously called riphenylboron.
  • synergistically effective combinations of Lewis acids can be used to increase the activity of the catalyst system.
  • Lewis acid also includes the promoters mentioned in US 3,496,217, US 3,496,218, US 4,774,353, US 4,874,884, US 6,127,567, US 6,171,996 and US 6,380,421.
  • Lewis acids include, in particular, metal salts, particularly preferably metal halides, such as fluorides, chlorides, bromides, iodides, in particular chlorides, of which zinc chloride, iron (II) chloride and iron (III) chloride are particularly preferred.
  • metal salts particularly preferably metal halides, such as fluorides, chlorides, bromides, iodides, in particular chlorides, of which zinc chloride, iron (II) chloride and iron (III) chloride are particularly preferred.
  • reaction mixtures (I) are known per se, for example from US 3,496,217, US 3,496,218, US 4,774,353, US 4,874,884, US 6,127,567, US 6,171,996 and US 6,380,421.
  • step a) of the process according to the invention said complex compound is separated from mixture (I) to obtain a mixture (II).
  • This separation can be carried out in a manner known per se, preferably by extraction, as described, for example, in US Pat. No. 3,773,809.
  • Preferred extraction agents are alkanes or cycloalkanes.
  • Alkanes which can advantageously be used are n-pentane, n-hexane, n-heptane, n-octane and their branched isomers, or mixtures thereof, in particular those having a boiling point in the range from about 30 to about 135 ° C.
  • Suitable cycloalkanes are advantageously cyclopentane, cyclohexane, cycloheptane and alkyl-substituted cycloalkanes, or mixtures thereof, in particular those having a boiling point in the range from about 30 to about 135 ° C., such as methylcyclohexane.
  • the extraction can advantageously be carried out at a temperature in the range from approximately 0 to approximately 100 ° C.
  • the extraction can be carried out batchwise or continuously, a continuous countercurrent procedure having proven to be advantageous.
  • the weight ratio of phosphorus compound suitable as a ligand to the nitrile to be extracted should be in the range from 1: 1000 to 90: 100.
  • the weight ratio between extractant and phosphorus compound suitable as ligand should advantageously be in the range from 2: 1 to 100: 1.
  • the extraction can be carried out under ambient pressure or under increased pressure to avoid evaporation of the extractant.
  • the complex compound can be obtained from the extract by removing the extractant, for example by evaporating the extractant, and, if desired, can be returned to the hydrocyanation, as described in US Pat. No. 3,773,809.
  • the mixture (II) obtained in step a) contains the nitrile obtained by hydrocyanation of an olefinically unsaturated compound which, under certain quantity, pressure and temperature conditions, has a miscibility gap with water which is part of that used for the hydrocyanation
  • the content of the complex compound used as a component of the catalyst system used for hydrocyanation, comprising a phosphorus-containing compound suitable as a ligand and a central atom suitable for this compound, is preferably 0 to 60% by weight, in particular 0 to 50% by weight, based on the total weight of the mixture (I).
  • mixture (II) contains undissolved constituents
  • the optimal equipment and process conditions for such a separation can easily be determined by a few simple preliminary tests.
  • step b) mixture (II) is mixed with water and the system is brought into pressure and temperature conditions such that a phase (II) which contains a higher proportion of water than said nitrile and a phase (IV) which contains a higher proportion of said nitrile than water, phase (III) having a higher content of said Lewis acid than phase (IV).
  • the ratio of water to mixture (II) is not critical per se. With increasing ratio of Lewis acid to be recovered in mixture (II) to water, the viscosity of phase (III) increases significantly, so that the handling of the system of phase (IV) and phase (III) becomes increasingly complex.
  • a proportion of the Lewis acid in the total weight of phase (III) is in the range of at least 0.01% by weight, preferably at least 0.1% by weight, particularly preferably at least 0.25% by weight, particularly preferably at least 0.5% by weight.
  • Such an amount of water has proven to be advantageous that a proportion of the Lewis acid in the total weight of phase (III) is in the range of at most 60% by weight, preferably at most 35% by weight, particularly preferably at most 30% by weight. % sets. If the amount of water used to extract the Lewis acid from the mixture (II) is such that the mixture (III) has a concentration of Lewis acid which is less than that of the fresh feed solution, the Concentration of the Lewis acid by concentration in a manner known per se, such as being increased by pre-evaporation with the deduction of "a portion of the water from mixture (III), preferably to the concentration of Lewis acid which prevails in the freshly used solution at most 60% by weight, preferably at most 35% by weight, particularly preferably at most 32% by weight, particularly preferably at most 30% by weight, further advantageously at least 1% by weight, preferably at least 15% by weight, particularly preferably at least 25% by weight, based in each case on the proportion by weight of Lewis acid in mixture (III).
  • step) b can be employed pure 'water.
  • the water can contain further constituents, such as ionic or nonionic, organic or inorganic compounds, in particular those which are homogeneously miscible with water in a single phase or dissolved in water.
  • the addition of an inorganic or organic acid can be considered.
  • Those acids which do not form an azeotrope with water and which have a boiling point under the distillation conditions according to step d) of the process according to the invention which is lower than that of the liquid diluent (V) or under the distillation conditions according to step d) of the invention can preferably be used Process forms an azeotrope or heteroazeotrope with water.
  • Hydrogen halides such as HF, HC1, HBr, HJ, in particular HC1, are particularly preferred.
  • the amount of acid can advantageously be chosen so that the pH of the water used in step b) is less than 7.
  • the amount of acid can advantageously be chosen such that the pH of the water used in step b) is greater than or equal to 0, preferably greater than or equal to 1.
  • phase separation can be carried out in a manner known per se in apparatuses described for such purposes, as described, for example, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3, 5th Ed., VCH Verlagsgesellschaft, 'Weinheim, 1988, pages 6-14 to 6 -22 are known.
  • reaction according to step b) can be carried out batchwise or preferably continuously, with a continuous countercurrent procedure, particularly in a multistage extraction column ⁇ gene or a single-stage or multi-stage mixer-settler apparatus, as has been found advantageous.
  • Phase (IV) which contains the majority of the nitrile obtained in the hydrocyanation, can advantageously be fed to the production of this nitrile.
  • step (c) phase (III) is mixed with a liquid diluent (V) which
  • cl does not form an azeotrope with water and whose boiling point is higher than that of water or under certain pressure conditions
  • c2 forms an azeotrope or heteroazeotrope with water under certain pressure conditions.
  • Diluent (V) should advantageously be chosen so that said Lewis acid in diluent (V) under the distillation conditions according to step d) has a solubility of at least 0.1% by weight, based on diluent (V).
  • Diluents (V) include, for example, amides, in particular dialkylamides, such as diethylformamide, dimethylacetamide, N, N, -dimethylethyleneurea (DMEU), N, N-dimethylpropyleneurea (DMPU), hexamethylenephosphoric triamide (HMPT), ketones, sulfur-oxygen- Compounds such as dimethyl sulfoxide, tetra hydrothiophene-1,1-dioxide, nitroaromatics, such as nitrobenzene, nitroalkanes, such as nitromethane, nitroethane, ethers, such as diether of diethylene glycol, for example diethylene glycol dimethyl ether, alkylene carbonates, such as ethylene carbonate, nitriles, such as acetonitrile, propionitrile, n-butyronitrile Valeronitrile, cyanocyclopropane, acrylonitrile, crotonitrile,
  • Such diluents can be used alone or as a mixture.
  • Such aprotic, polar diluents can contain further diluents, preferably aromatics, such as benzene, toluene, o-xylene, m-xylene, p-xylene, aliphatics, in particular cycloaliphatics, such as cyclohexane, methylcyclohexane, or mixtures thereof.
  • aromatics such as benzene, toluene, o-xylene, m-xylene, p-xylene, aliphatics, in particular cycloaliphatics, such as cyclohexane, methylcyclohexane, or mixtures thereof.
  • diluents (V) can be used which form an azeotrope or heteroazeotrope with water.
  • the amount of diluent (V) compared to the amount of water in phase (III) is not critical per se. It is advantageous to use more liquid diluent (V) than the amounts to be distilled off by the azeotropes in step d), so that excess diluent (V) remains as the bottom product. .
  • the amount of diluent per se is not critical to the amount of water in phase (III).
  • the diluent should have a boiling point under the pressure and temperature conditions of the distillation in step d), which is preferably at least 5 ° C., in particular at least 20 ° C., and preferably at most 200 ° C., in particular at most 100 ° C above that of water under these distillation conditions.
  • Organic diluents are advantageous, preferably those with at least one nitrile group, in particular one nitrile group.
  • an aliphatic, saturated or an aliphatic, olefinically unsaturated nitrile can be used as the nitrile.
  • nitriles with 3, 4, 5, 6, 7, 8, 9, 10, in particular 4 carbon atoms, calculated without the nitrile groups, preferably nitrile groups, are suitable.
  • a diluent (V) is suitable which partially or completely contains the compound to be cyanated according to step e), in particular consists of it.
  • an aliphatic, olefinically unsaturated mononitrile selected from the group consisting of 2-cis-pentenenitrile, 2-trans-pentenenitrile, 3-cis-pentenenitrile, 3-trans-pentenenitrile can be used as the diluent.
  • 2-cis-pentenenitrile, 2-trans-pentenenirile, 3-cis-pentenenitrile, 3-trans-pentenenitrile, 4-pentenenitrile, E-2-methyl-2-butenenitrile, Z-2-methyl-2-butenenitrile, 2- Methyl-3-butenenitrile or mixtures thereof are known and can be obtained by processes known per se, such as by hydrocyanation of butadiene in the presence of catalysts, for example according to US Pat. No. 3,496,215 or the linear pentenenitriles by isomerization of 2-methyl-3-butenenitrile according to WO 97/23446 and methods described therein.
  • This product can advantageously be used for further hydrocyanation in the presence of a catalyst to give adiponitrile.
  • a depletion of 2-cis-pentenenitrile, 2-trans-pentenenitrile, E-2-methyl-2-butenenitrile, Z-2-methyl-2-butenenitrile, 2-methyl-3-butenenitrile is advantageous in so far as this two compounds of the hydrocyanation mentioned considerably are less accessible than 3-cis-pentenenitrile, 3-trans-pentenonitrile, 4-pentenenitrile or mixtures thereof.
  • the ratio of pentenenitrile to said Lewis acid has at least 0.5 mol / mol, preferably at least 5 mol / mol, particularly preferably at least 15 mol / mol proved to be advantageous.
  • the quantitative ratios of pentenenitrile to said Lewis acid have at most 10,000 mol / mol, preferably at most 5000 mol / mol, particularly preferably at most 2000 mol / mol proven to be advantageous.
  • Such pentenenitriles can advantageously be hydrocyanated to adiponitrile in step e).
  • step d) the mixture of phase (III) and liquid diluent (V) is subjected to a distillation under the pressure conditions mentioned in step cl) or c2) to obtain a mixture (VI) which has a higher proportion of water than of diluent ( V) and a mixture (VII) which contains a higher proportion of diluent (V) than water, mixture (VII) having a higher content of said Lewis acid than mixture (VI).
  • the pressure conditions for the distillation are not critical per se. Pressures of at least 10 -4 MPa, preferably at least 10 -3 MPa, in particular at least 5 * 10 -3 MPa, have proven to be advantageous.
  • the distillation temperature is then set depending on the pressure conditions and the composition of the mixture to be distilled.
  • the distillation can advantageously be carried out at a pressure of at most 200 kPa, preferably at most 100 kPa, in particular at most 50 kPa.
  • the distillation can advantageously be carried out at a pressure of at least 1 kPa, preferably at least 5 kPa, particularly preferably at 10 kPa.
  • the distillation can advantageously be carried out by single-stage evaporation, preferably by fractional distillation in one or more, such as 2 or 3, distillation apparatuses.
  • Equipment suitable for distillation for this purpose such as those described, for example, in: Kirk-Othmer, Encyclopedia of Chemical Technology, 3rd Ed., Vol. 7, John Wiley & Sons, New York, 1979, pages 870-881 , such as sieve tray columns, bubble tray trays, packed columns, packed columns, columns with side take-off or dividing wall columns.
  • the distillation can be carried out batchwise. i The distillation can be carried out continuously.
  • mixture (VI) is usually obtained overhead.
  • Mixture (VI) can advantageously be wholly or partly recycled in step b) and can be reacted there according to the invention as water or in a mixture with water with mixture (II).
  • mixture (VI) is single-phase, mixture (VI) can be partly or completely recycled.
  • mixture (VI) is two-phase, partial or complete recycling of the phase having the greater water mass content is advantageous.
  • Mixture (VII) is usually obtained as the bottom product in the distillation in step b).
  • Mixture (VII) contains the recovered proportion of said Lewis acid and diluent (V); the water content of mixture (VII) should preferably be in the range from 0 to 0.5% by weight, in particular in the range from 0 to 50 ppm by weight, based on the total weight of mixture (VII).
  • step e) mixture (VII) of a hydrocyanation of an olefinically unsaturated compound to give a nitrile which has a miscibility gap with water under certain quantity, pressure and temperature conditions, in the presence of a catalyst system comprising a Lewis acid and a complex compound from a phosphorus-containing compound suitable as a ligand and a central atom suitable for this compound.
  • a catalyst system comprising a Lewis acid and a complex compound from a phosphorus-containing compound suitable as a ligand and a central atom suitable for this compound.
  • the complex compound separated off in step a) can advantageously be used as the complex compound.
  • the olefinically unsaturated compound to be hydrocyanated is preferably diluent (V).
  • the content of Zn or zinc chloride was determined by means of atomic emission spectrometry.
  • the chlorine content was determined by the Schoeniger method.
  • the concentrations of water were determined potentiometrically by titration according to the Karl Fischer method.
  • the upper phase consisting essentially of trans-3-pentenenitrile
  • the lower phase consisted essentially of water and was continuously pumped out of the phase separation vessel.
  • a homogeneous solution of ZnCl 2 in trans-3-pentenenitrile at 348 K was separated off at the bottom.
  • Example 2 4 kg of the bottom discharge obtained in Example 1 were mixed with 1 kg of trans-3-pentonitrile and 500 g of water. The homogeneous mixture was metered into the distillation column operated as in Example 1 at a metering rate of 206 g / h.
  • the bottom discharge contained 350 ppm by weight of water, 16.9% by weight of chlorine, calculated as Cl and 15.5% by weight of Zn, in each case based on the total weight of the solution; this leads to an experimentally found Cl.Zn ratio of 2.01.
  • the zinc chloride solution in 3-pentenenitrile obtained in this way can be used in the hydrocyanation of 3-pentenenitrile in the presence of nickel (0) phosphite catalysts and shows no activity difference to a solution freshly prepared from 3-pentenenitrile and anhydrous zinc chloride.
  • a continuously operated mixer-settler apparatus consisting of a container with 2 1 volume operated at room temperature, equipped with an inclined blade stirrer operated at 700 rpm and a hydrostatic overflow into a subsequent switched phase separator with a volume of 0.5 l, 320 g / h of a solution of 0.52% by weight of ZnCl 2 in a mixture of 20% by weight of trans-3-pentenenitrile and the rest of adiponitrile, and 100 g / h of water were metered in.
  • the organic phase with 30 ppm of Zn was obtained via the phase separator, and the separated aqueous phase contained 0.75% by weight of Zn.
  • an accumulation of solid was observed in the phase separator, which accumulated at the phase interface.
  • the solid consisted of ZnCl 2 -4Zn (0H) 2 -2HO.
  • 320 g / h of trans-3-pentenenitrile were metered into the distillation column with a second pump. After 9.5 hours of continuous distillation, 310 ppm by weight of water and 0.10% by weight of Zn (corresponding to 0.20% by weight of ZnCl 2 ) were analyzed in the bottom discharge.
  • the solution of ZnCl in trans-3-pentenenitrile obtained via the bottom can be hydrocyanated to adiponitrile in the presence of Ni (O) phosphite catalysts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Verfahren zur Rückgewinnung einer Lewis-Säure aus einer Reaktionsmischung (I), die erhalten wurde bei der Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatarsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom, dadurch gekennzeichnet, dass man a) aus Mischung (I) die besagte Komplexverbindung abtrennt unter Erhalt einer Mischung (II), b) Mischung (II) mit Wasser versetzt und in solche Druck- und Temperaturbedingungen überführt, dass man eine Phase (III), die einen höheren Anteil an Wasser als an besagtem Nitril enthält, und eine Phase (IV), die einen höheren Anteil an be­ sagtem Nitril als an Wasser enthält, erhält, wobei Phase (III) einen höheren Gehalt an besagter Lewis-Säure aufweist als Phase (IV), c) Phase (III) mit einem flüssigen Verdünnungsmittel (V) versetzt, das c1) kein Azeotrop mit Wasser bildet und dessen~Siedepunkt unter bestimmten Druckbedingungen höher ist als der von ' Wasser oder 35 c2) unter bestimmten Druckbedingungen ein Azeotrop oder Heteroazeotrop mit Wasser bildet, d) die Mischung aus Phase (III) und flüssigem Verdünnungsmittel (V) unter den in Schritt cl) oder c2) genannten Druck Bedingungen einer Destillation unterzieht unter Erhalt einer Mischung (VI), die einen höheren Anteil an Wasser als an Ver- dünnungsmittel (V) enthält, und einer Mischung (VII), die einen höheren Anteil an Verdünnungsmittel (V) als an Wasser enthält, wobei Mischung (VII) einen höheren Gehalt an besag- ter Lewis-Säure aufweist als Mischung (VI), und e) Mischung (VII) einer Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom, zuführt.

Description

Verfahren zur Rückführung einer Lewis-Säure
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Rückgewinnung einer Lewis-Säure aus einer Reaktionsmischung (I) , die erhalten wurde bei der Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom,
dadurch gekennzeichnet, dass man
a) aus Mischung (I) die besagte Komplexverbindung abtrennt unter Erhalt einer Mischung (II) ,
b) Mischung (II) mit Wasser versetzt und in solche Druck- und Temperaturbedingungen überführt, dass man eine Phase (III) , die einen höheren Anteil an Wasser als an besagtem Nitril enthält, und eine Phase (IV) , die einen höheren Anteil an besagtem Nitril als an Wasser enthält, erhält, wobei Phase (III) einen höheren Gehalt an besagter Lewis-Säure aufweist als Phase (IV) ,
c) Phase (III) mit einem flüssigen Verdünnungsmittel (V) versetzt, das
cl) kein Azeotrop mit Wasser bildet und dessen Siedepunkt unter bestimmten Druckbedingungen höher ist als der von
Wasser oder
c2) unter bestimmten Druckbedingungen ein Azeotrop oder He-teroazeotrop mit Wasser bildet,
d) die Mischung aus Phase (III) und flüssigem Verdünnungsmittel
(V) unter den in Schritt cl) oder c2) genannten Druckbedingungen einer Destillation unterzieht unter Erhalt einer Mischung (VI) , die einen höheren Anteil an Wasser als an Ver- dünnungsmittel (V) enthält, und einer Mischung (VII) , die einen höheren Anteil an Verdünnungsmittel (V) als an Wasser enthält, wobei Mischung (VII) einen höheren Gehalt an besag- ter Lewis-Säure aufweist als Mischung (VI) , und
e) Mischung (VII) einer Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysator- Systems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Ver- bindung und einem für diese Verbindung geeigneten Zentralatom, zuführt.
Verfahren zur Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom sind bekannt.
So offenbaren die Patentschriften US 4,705,881, US 6,127,567, US : 6,171,996 Bl und US 6,380,421 Bl Verfahren zur Hydrocyanierung von Pentennitril zu Adipodinitril in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung, die einen mutidentaten Phosphit-Liganden und als Zentralatom Nickel enthält.
US 4,082,811 beschreibt die Abtrennung von Triphenylbor aus einer solchen Reaktionsmischung durch Fällung als NH3-Addukt. Dieses Verfahren hat den Nachteil, dass aus dem Niederschlag die Lewis- Säure erst aufwendig freigesetzt werden muß und zudem die Rückgewinnung des KatalysatorSystems aus dem Filtrat durch die Komplexbildung des Nickels mit dem eingesetzten Ammoniak erschwert wird.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Verfahren bereitzustellen, das die Rückgewinnung der Lewis-Säure aus einer solchen Reaktionsmischung in einer Form, die den erneuten Einsatz der Lewis-Säure in der besagten Hydrocyanierung gestattet, auf technisch einfache und wirtschaftliche Weise ermöglicht.
Demgemäß wurde das eingangs definierte Verfahren gefunden.
Das erfindungsgemäße Verfahren weist weiterhin den Vorteil auf, dass es die Abtrennung der als Bestandteil des KatalysatorSystems eingesetzten Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom in einer Form, die den erneuten Einsatz der Komplexverbindung in der besagten Hydrocyanierung gestattet, sowie die Abtrennung des bei der Hydrocyanierung erhaltenen Wertproduktes aus der bei der Hydrocyanierung erhaltenen Reaktionsmischung auf technisch einfache und wirtschaftliche Weise er ög- licht.
In Schritt a) des erfindungsgemäßen Verfahrens setzt man eine Reaktionsmischung (I) ein, die erhalten wurde bei der Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom.
In einer bevorzugten Ausführungsform kommt als Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, Adipodinitril in Betracht.
Verfahren zur Herstellung von Adipodinitril durch Hydrocyanierung einer olefinisch ungesättigten Verbindung, wie 2-cis-Penten- nitril, 2-trans-Pentennitril, 3-cis-PentennitrÜJ., 3-trans-Penten- nitril, 4-Pentennitril , E-2-Methyl-2-butennitril, Z-2-Methyl-2- butennitril, 2-Methyl-3-butennitril oder deren Gemische, in
Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine Komplexverbindung enthaltend eine als Ligand geeignete phosphorhaltige Verbindung wie eine monodentate, vorzugsweise multidentate, insbesondere bidentate Verbindung, deren Koordina- tion mit einem Zentralatom über ein Phosphoratom erfolgt, das als Phosphin, Phosphit, Phosphonit oder Phosphinit oder deren Gemische vorliegen kann, und ein Zentralatom, vorzugsweise Nickel, Kobalt oder Palladium, insbesondere Nickel, besonders bevorzugt in Form von Nickel- (0), sind bekannt, beispielsweise aus US 4,705,881, US 6,127,567, US 6,171,996 Bl und US 6,380,421 Bl .
Als Lewis-Säure kommen dabei anorganische oder organische Metall- Verbindungen in Betracht, in denen das Kation ausgewählt ist aus der Gruppe bestehend aus Scandium, Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Kupfer, Zink, Bor, Aluminium, Yttrium, Zirkonium, Niob, Molybdän, Cadmium, Rhenium und Zinn. Beispiele umfassen ZnBr , Znl , ZnCl , ZnS0 , CuCl2, CuCl, Cu(03SCF3)2, CoCl2, CoI2, Fel2, FeCl3, FeCl2, FeCl2(THF)2, TiCl4(THF)2, TiCl4, TiCl3, ClTi(0-i-Propyl)3- MnCl2, SCCI3, AICI3, (CsHι ) A1C1 , (C8Hπ) 2A1C1 , (i-CH9)2AlCl, (C6H5)2A1C1, (C6H5)A1C12, ReCl5, ZrCl4/ NbCl5, VCI3, CrCl2, M0CI5, YCI3, CdCl2, LaCl3, Er(03SCF3)3, Yb(02CCF3)3, SmCl3, B(C6H5)3, TaCis, wie sie beispielsweise in US 6,127,567, US 6,171,996 und US 6,380,421 beschrieben sind. Weiterhin kommen in Betracht Metallsalze, wie ZnCl2, CoI2 und SnCl2 und organo- metallische Verbindungen, wie RAICI2. RSnθ3SCF3 und R3B, wobei R eine Alkyl- oder Aryl-Gruppe ist, wie sie beispielsweise in US 3,496,217, US 3,496,218 und US 4,774,353 beschrieben sind. Weiterhin können gemäß US 3,773,809 als Promotor ein Metall in kationischer Form, ausgewählt aus der Gruppe bestehend aus Zink, Cadmium, Beryllium, Aluminium, Gallium, Indium, Thallium, Titan, Zirkonium, Hafnium, Erbium, Germanium, Zinn, Vanadium, Niob, Scandium, Chrom, Molybdän, Wolfram, Mangan, Rhenium, Palladium, Thorium, Eisen und Kobalt, vorzugsweise Zink, Cadmium, Titan, Zinn, Chrom, Eisen und Kobalt, eingesetzt werden, wobei der anionische Teil der Verbindung ausgewählt sein kann aus der Gruppe bestehend aus Halogeniden, wie Fluorid, Chlorid, Bromid und Jodid, Anionen niedriger Fettsäuren mit von 2 bis 7 Kohlenstoffatomen, HPO3 2-, H3P02-, CF3COO-,' C7H15OSO2- oder SO4 2-. Weiterhin sind aus US 3,773,809 als geeignete Promotoren Borhydride, Organobor- hydride und Borsäureester der Formel R3B und B(OR)3, wobei R ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Aryl-Radi- kale mit zwischen 6 und 18 Kohlenstoff-Atomen, mit Alkyl-Gruppen mit 1 bis 7 Kohlenstoff-Atomen substituierte Aryl-Radikale und mit Cyano-substituierte Alkyl-Gruppen mit 1 bis 7 Kohlenstoff- Atomen substituierte Aryl-Radikale, vorteilhaft, riphenylbor, genannt. Weiterhin können, wie in US 4,874,884 beschrieben, syner- gistisch wirksame Kombinationen von Lewis-Säuren eingesetzt werden, um die Aktivität des Katalysatorsystems zu erhöhen. Geeignete Promotoren können beispielsweise aus der Gruppe bestehend aus CdCl2, FeCl2, ZnCl2, B(C6H5)3 und (C6H5)3SnX, mit X=CF3S03, CH3C6HSθ3 oder (C6H5)3BCN ausgewählt werden, wobei für das Verhältnis von Promotor zu Nickel ein Bereich von vorzugsweise etwa 1:16 bis etwa 50:1 genannt ist.
Im Sinne der vorliegenden Erfindung umfasst der Begriff Lewis- Säure auch die in US 3,496,217, US 3,496,218, US 4,774,353, US 4,874,884, US 6,127,567, US 6,171,996 und US 6,380,421 genannten Promotoren.
Als besonders bevorzugte Lewis-Säuren kommen unter den genannten insbesondere Metallsalze, besonders bevorzugt Metallhalogenide, wie Fluoride, Chloride, Bromide, Jodide, insbesondere Chloride, in Betracht, von denen wiederum Zinkchlorid, Eisen- (II) -Chlorid und Eisen- (III) -chlorid besonders bevorzugt sind.
Die Herstellung von Reaktionsmischungen (I) ist an sich bekannt, beispielsweise aus US 3,496,217, US 3,496,218, US 4,774,353, US 4,874,884, US 6,127,567, US 6,171,996 und US 6,380,421. Gemäß Schritt a) des erfindungsgemäßen Verfahrens trennt man von Mischung (I) die besagte Komplexverbindung ab unter Erhalt einer Mischung (II) .
Diese Abtrennung kann in an sich bekannter Weise, vorzugsweise durch Extraktion, erfolgen, wie beispielsweise in US 3,773,809 beschrieben.
Als Extraktionsmittel kommen vorzugsweise Alkane oder Cycloalkane in Betracht. Als Alkane können vorteilhaft n-Pentan, n-Hexan, n-Heptan, n-Octan, sowie deren verzweigte Isomere, oder deren Gemische eingesetzt werden, insbesondere solche mit einem Siedepunkt im Bereich von etwa 30 bis etwa 135°C. Als Cycloalkane kommen vorteilhaft Cyclopentan, Cyclohexan, Cycloheptan, sowie alkyl-substituierte Cycloalkane, oder deren Gemische in Betracht, insbesondere solche mit einem Siedepunkt im Bereich von etwa 30 bis etwa 135°C, wie Methylcyclohexan.
Vorteilhaft kann man die Extraktion bei einer Temperatur im Be- reich von etwa 0 bis etwa 100°C durchführen.
Die Extraktion kann man diskontinuierlich oder kontinuierlich durchführen, wobei sich eine kontinuierliche Gegenstromfahrweise als vorteilhaft erwiesen hat.
Das Gewichtsverhältnis von als Ligand geeigneter Phosphorverbindung zu dem zu extrahierenden Nitril sollte im Bereich von 1:1000 bis 90:100 liegen. Das Gewichtsverhältnis zwischen Extraktionsmittel zu als Ligand geeigneter Phosphorverbindung sollte vorteilhaft im Bereich von 2:1 bis 100:1 liegen.
Die Extraktion kann unter Umgebungsdruck oder unter erhöhtem Druck zur Vermeidung der Verdampfung des Extraktionsmittels durchgeführt werden.
Aus dem Extrakt kann die Komplexverbindung durch Entfernen des Extraktionsmittels, beispielsweise durch Verdampfung des Extraktionsmittels, erhalten und gewünschtenfalls in die Hydrocyanierung zurückgeführt werden, wie in US 3,773,809 beschrieben.
Die in Schritt a) erhaltene Mischung (II) enthält das durch Hydrocyanierung einer olefinisch ungesättigten Verbindung erhaltene Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, die als Bestandteil des zur Hydrocyanierung eingesetzten
Katalysatorsystems verwendete Lewis-Säure sowie gegebenenfalls bei der Hydrocyanierung entstandene Nebenprodukte, die in Mischung (II) gelöst oder ungelöst sein können; der Gehalt der als Bestandteil des zur Hydrocyanierung eingesetzten Katalysatorsystems verwendeten Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom beträgt vorzugsweise 0 bis 60 Gew.-%, insbesondere 0 bis 50 Gew.-% bezogen auf das Gesamtgewicht von Mischung (I) .
Sollte Mischung (II) ungelöste Bestandteile enthalten, so kann man zwischen Schritt a) und b) oder zwischen Schritt b) und c) des erfindungsgemäßen Verfahrens von Mischung (II) solche ungelösten Bestandteile vorteilhaft teilweise oder vorzugsweise vollständig abtrennen; diese Abtrennung kann nach an sich bekannten Verfahren, beispielsweise durch Filtration oder Sedimentation er- folgen.
Die für eine solche Abtrennung optimalen Apparaturen und Verfahrensbedingungen lassen sich dabei leicht durch einige einfache Vorversuche ermitteln.
Erfindungsgemäß versetzt man gemäß Schritt b) Mischung (II) mit Wasser und überführt das System in solche Druck- und Temperaturbedingungen, dass man eine Phase (II) , die einen höheren Anteil an Wasser als an besagtem Nitril enthält, und eine Phase (IV) , die einen höheren Anteil an besagtem Nitril als an Wasser enthält, wobei Phase (III) einen höheren Gehalt an besagter Lewis- Säure aufweist als Phase (IV) .
Das Mengenverhältnis von Wasser zu Mischung (II) ist an sich nicht kritisch. Mit zunehmendem Verhältnis von rückzugewinnender Lewis-Säure in Mischung (II) zu Wasser nimmt die Viskosität von Phase (III) deutlich zu, so daß die Handhabung des Systems aus Phase (IV) und Phase (III) zunehmend aufwendiger wird.
Als vorteilhaft hat sich eine solche Wassermenge erwiesen, dass sich ein Anteil der Lewis-Säure an dem Gesamtgewicht von Phase (III) im Bereich von mindestens 0,01 Gew.-%, vorzugsweise mindestens 0,1 Gew.-%, besonders bevorzugt mindestens 0,25 Gew.-%, insbesondere bevorzugt mindestens 0,5 Gew.-% einstellt.
Als vorteilhaft hat sich eine solche Wassermenge erwiesen, dass sich ein Anteil der Lewis-Säure an dem Gesamtgewicht von Phase (III) im Bereich von höchstens 60 Gew.-%, vorzugsweise höchstens 35 Gew.-%, besonders bevorzugt höchstens 30 Gew.-% einstellt. Sollte sich die Wassermenge, die zur Extraktion der Lewis-Säure aus der Mischung (II) verwendet wird, so ergeben, daß die Mischung (III) eine Konzentration an Lewis-Säure aufweist, die kleiner ist als die der frischen Einsatzlösung, so kann die Konzentration der Lewis-Säure durch Aufkonzentrieren in an sich bekannter Weise., wie durch Vorverdampfung unter Abzug "eines Anteils des Wassers aus Mischung (III) erhöht werden, vorzugsweise auf die Konzentration an Lewis-Säure, die in der frisch eingesetzten Lösung vorherrscht, vorteilhaft höchstens 60 Gew.-%, vorzugsweise höchstens 35 Gew.-%, besonders bevorzugt höchstens 32 Gew.-%, insbesondere bevorzugt höchstens 30 Gew.-%, weiterhin vorteilhaft mindestens 1 Gew.-%, vorzugsweise mindestens 15 Gew.-%, besonders bevorzugt mindestens 25 Gew.-%, jeweils bezogen auf den Gewichtsanteil an Lewis-Säure in Mischung (III) .
In Schritt b) kann man reines' Wasser einsetzen.
In einer bevorzugten Ausführungsform kann das Wasser weitere Bestandteile enthalten, wie ionische oder nichtionische, organische oder anorganische Verbindungen, insbesondere solche, die mit Wasser homogen einphasig mischbar oder in Wasser gelöst sind. t In einer besonders bevorzugten Ausführungsform kommt die Zugabe einer anorganischen oder organischen Säure in Betracht. Bevorzugt können solche Säuren eingesetzt werden, die kein Azeotrop mit Wasser bilden und unter den Destillationsbedingungen gemäß Schritt d) des erfindungsgemäßen Verfahrens einen Siedepunkt aufweist, der niedriger ist als der des flüssigen Verdünnungsmittels (V) oder die unter den Destillationsbedingungen gemäß Schritt d) des erfindungsgemäßen Verfahrens ein Azeotrop oder Heteroazeotrop mit Wasser bildet.
Besonders bevorzugt kommen Halogenwasserstoffsäuren, wie HF, HC1, HBr, HJ, insbesondere HC1 in Betracht.
Die Menge der Säure kann vorteilhaft so gewählt werden, dass der pH-Wert des in Schritt b) eingesetzten Wassers kleiner als 7 ist.
Die Menge der Säure kann vorteilhaft so gewählt werden, dass der pH-Wert des in Schritt b) eingesetzten Wassers größer-gleich 0, vorzugsweise größer-gleich 1 ist.
Für die Umsetzung gemäß Schritt b) haben sich Temperaturen von mindestens 0°C, vorzugsweise mindestens 5°C, insbesondere mindestens 30°C als vorteilhaft erwiesen. Für die Umsetzung gemäß Schritt b) haben sich Temperaturen von höchstens 200°C, vorzugsweise höchstens 100°C, insbesondere höchstens 50°C als vorteilhaft erwiesen.
Hierdurch stellen sich Drücke im Bereich von 10~3 bis 10 MPa, vorzugsweise von 10~2 bis 1 MPa, insbesondere von 5*10~2 bis 5*10-1 MPa ein.
Die für die Auftrennung des Systems in eine Phase (III) und eine Phase (IV) optimalen Mengen-, Druck- und Temperaturbedingungen lassen sich leicht durch einige einfache Vorversuche ermitteln.
Die Phasentrennung kann in an sich bekannter Weise in für solche Zwecke beschriebenen Apparaturen erfolgen, wie sie beispielsweise aus: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3 , 5. Ed., VCH Verlagsgesellschaft, ' Weinheim, 1988, Seite 6-14 bis 6-22 bekannt sind.
Die Umsetzung gemäß Schritt b) kann man diskontinuierlich oder vorzugsweise kontinuierlich durchführen, wobei sich eine kontinuierliche Gegenstromfahrweise, insbesondere in einer mehrstufi- gen Extraktionskolonne oder einer einstufigen oder mehrstufigen Mixer-Settler-Apparatur, als vorteilhaft erwiesen hat.
Phase (IV) , die den überwiegenden Anteil des bei der Hydrocyanierung erhaltenen Nitrils enthält, kann vorteilhaft der Gewinnung dieses Nitrils zugeführt werden.
Erfindungsgemäß versetzt man gemäß Schritt c) Phase (III) mit einem flüssigen Verdünnungsmittel (V) , das
cl) kein Azeotrop mit Wasser bildet und dessen Siedepunkt unter bestimmten Druckbedingungen höher ist als der von Wasser oder
c2) unter bestimmten Druckbedingungen ein Azeotrop oder Hetero- azeotrop mit Wasser bildet.
Vorteilhaft sollte Verdünnungsmittel (V) so gewählt werden, dass besagte Lewis-Säure in Verdünnungsmittel (V) unter den Destilla- tionsbedingungen gemäß Schritt d) eine Löslichkeit von mindestens 0,1 Gew.-%, bezogen auf Verdünnungsmittel (V), beträgt.
Als Verdünnungsmittel (V) kommen beispielsweise Amide, insbesondere Dialkylamide, wie Di ethylformamid, Dimethylacetamid, N,N, -Dimethylethylenharnstoff (DMEU) , N,N-Dimethylpropylenharn- stoff (DMPU) , Hexamethylenphosphorsäuretriamid (HMPT) , Ketone, Schwefel-Sauerstoff-Verbindungen, wie Dimethylsulfoxid, Tetra- hydrothiophen-1, 1-dioxid, Nitroaromaten, wie Nitrobenzol, Nitro- alkane, wie Nitromethan, Nitroethan, Ether, wie Diether des Diethylenglykols, beispielsweise Diethylenglykoldimethylether, Alkylencarbonate, wie Ethylencarbonat, Nitrile, wie Acetonitril, Propionitril , n-Butyronitril, n-Valeronitril, Cyanocyclopropan, Acrylnitril, Crotonitril, Allylcyanid, Pentennitrile in Betracht,
Solche Verdünnungsmittel können allein oder als Gemisch eingesetzt werden.
Solche aprotischen, polaren Verdünnungsmittel können weitere Verdünnungsmittel enthalten, vorzugsweise Aromaten, wie Benzol, Toluol, o-Xylol, m-Xylol, p-Xylol, Aliphaten, insbesondere Cyclo- aliphaten, wie Cyclohexan, Methylcyclohexan, oder deren Gemische.
In einer bevorzugten Ausführungsform kann man Verdünnungsmittel (V) einsetzen, die mit Wasser ein Azeotrop oder Heteroazeotrop bilden. Die Menge an Verdünnungsmittel (V) gegenüber der Menge an Wasser in Phase (III) ist an sich nicht kritisch. Vorteilhaft sollte man mehr flüssiges Verdünnungsmittel (V) einsetzen als den durch die Azeotrope gemäß Schritt d) abzudestillierenden Mengen entspricht, so daß überschüssiges Verdünnungsmittel (V) als Sumpfprodukt verbleibt. ,
Setzt man ein Verdünnungsmit el (V) ein, das mit Wasser kein
Azeotrop bildet, so ist die Menge an Verdünnungsmittel gegenüber der Menge an Wasser in Phase (III) an sich nicht kritisch. Im Falle eines solchen Verdünnungsmittel (V) sollte das Verdünnungsmittel unter den Druck- und Temperaturbedingungen der Destillation gemäß Schritt d) einen Siedepunkt aufweisen, der vorzugsweise um mindestens 5°C, insbesondere mindestens 20°C, und vorzugsweise höchstens 200°C, insbesondere höchstens 100°C über dem von Wasser unter diesen Destillationsbedingungen liegt.
Vorteilhaft kommen organische Verdünnungsmittel in Betracht, vorzugsweise solche mit mindestens einer Nitrilgruppe, insbesondere einer Nitrilgruppe.
In einer bevorzugten Ausführungsform kann man als Nitril ein ali- phatisches, gesättigtes oder ein aliphatisches, olefinisch ungesättigtes Nitril einsetzen. Dabei kommen insbesondere Nitrile mit 3, 4, 5, 6, 7, 8, 9, 10, insbesondere 4 Kohlenstoffatomen, gerechnet ohne die Nitrilgruppen, vorzugsweise Nitrilgruppe, in Betracht. In einer besonders bevorzugten Ausführungsform kommt ein Verdünnungsmittel (V) in Betracht, das die gemäß Schritt e) zu hydro- cyanierende Verbindung teilweise oder vollständig enthält, insbesondere daraus besteht.
In einer insbesondere bevorzugten Ausführungsform kann man als Verdünnungsmittel ein aliphatisches, olefinisch ungesättigtes Mo- nonitril, ausgewählt aus der Gruppe bestehend aus 2-cis-Pentenni- tril, 2-trans-Pentennitril, 3-cis-Pentennitril, 3-trans-Pentenni- tril, 4-Pentennitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-bu- tennitril, 2-Methyl-3-butennitril oder deren Gemische einsetzen.
2-cis-Pentennitril, 2-trans-Pentenniril, 3-cis-Pentennitril, 3-trans-Pentennitril, 4-Pentennitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-butennitril, 2-Methyl-3-butennitril oder deren Gemische sind bekannt und können nach an sich bekannten Verfahren, wie durch Hydrocyanierung von Butadien in Gegenwart von Katalysatoren, erhalten werden, beispielsweise gemäß US-A-3 , 496, 215 oder die linearen Pentennitrile durch Isomeri- sierung von 2-Methyl-3-butennitril gemäß WO 97/23446 und darin beschriebene Verfahren.
Als besonders vorteilhaft kommen dabei solche Gemische der genannten Pentennitrile in Betracht, die 2-cis-Pentennitril, 2-trans-Pentennitril oder deren Gemische im Gemisch mit 3-cis- Pentennitril , 3-trans-Pentennitril , 4-Pentennitril , E-2-Methyl-2- butennitril, Z-2-Methyl-2-butennitril, 2-Methyl-3-butennitril oder deren Gemische enthalten. In solchen Gemischen findet bei der nachfolgenden Destillation gemäß Schritt d) des erfindungs- gemäßen Verfahrens eine Abreicherung von 2-cis-Pentennitril,
2-trans-Pentennitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-bu- tennitril, 2-Methyl-3-butennitril oder deren Gemische statt, da diese mit Wasser Azeotrope bilden, die niedriger sieden als die Azeotrope von 3-cis-Pentennitril, 3-trans-Pentennitril , 4-Penten- nitril oder deren Gemische mit Wasser. Bei dieser Ausführungsform erhält man nach der Destillation ein Gemisch enthaltend 3-cis- Pentennitril, 3-trans-Pentennitril, 4-Pentennitril oder deren Gemische und im wesentlichen wasserfreie Lewis-Säure als Produkt (VII) des erfindungsgemäßen Verfahrens.
Dieses Produkt kann vorteilhaft zur weiteren Hydrocyanierung in Gegenwart eines Katalysators zu Adipodinitril eingesetzt werden. Eine Abreicherung von 2-cis-Pentennitril , 2-trans-Pentennitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-butennitril , 2-Methyl-3-butennitril ist dabei insoweit vorteilhaft, als daß diese beiden Verbindungen der genannten Hydrocyanierung erheblich schlechter zugängig sind als 3-cis-Pentennitril, 3-trans-Penten- nitril, 4-Pentennitril oder deren Gemische.
Setzt man als Verdünnungsmittel 2-cis-Pentennitril, 2-trans-Pen- tennitril, 3-cis-Pentennitril, 3-trans-Pentennitril, 4-Penten- nitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-butennitril , 2-Methyl-3-butennitril oder deren Gemische ein, so haben sich Mengenverhältnisse von Pentennitril zu besagter Lewis-Säure von mindestens 0,5 mol/mol, vorzugsweise mindestens 5 mol/mol, beson- ders bevorzugt mindestens 15 mol/mol als vorteilhaft erwiesen.
Setzt man als Verdünnungsmittel 2-cis-Pentennitril, 2-trans-Pen- tennitril, 3-cis-Pentennitril, 3-trans-Pentennitril, 4-Penten- nitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-butennitril, 2-Methyl-3-butennitril oder deren Gemische ein, so haben sich Mengenverhältnisse von Pentennitril zu besagter Lewis-Säure von höchstens 10000 mol/mol, vorzugsweise höchstens 5000 mol/mol, besonders bevorzugt höchstens 2000 mol/mol als vorteilhaft erwiesen.
Solche Pentennitrile können vorteilhaft gemäß Schritt e) zu Adipodinitril hydrocyaniert werden.
Gemäß Schritt d) unterzieht man die Mischung aus Phase (III) und flüssigem Verdünnungsmittel (V) unter den in Schritt cl) oder c2) genannten Druckbedingungen einer Destillation unter Erhalt einer Mischung (VI) , die einen höheren Anteil an Wasser als an Verdünnungsmittel (V) enthält, und einer Mischung (VII), die einen höheren Anteil an Verdünnungsmittel (V) als an Wasser enthält, wo- bei Mischung (VII) einen höheren Gehalt an besagter Lewis-Säure aufweist als Mischung (VI) .
Die Druckbedingungen für die Destillation sind an sich nicht kritisch. Als vorteilhaft haben sich Drücke von mindestens 10-4 MPa, vorzugsweise mindestens 10~3 MPa, insbesondere mindestens 5*10-3 MPa erwiesen.
Als vorteilhaft haben sich Drücke von höchstens 1 MPa, vorzugsweise höchstens 5*10_1 MPa, insbesondere höchstens 1,5*10-1 MPa er- wiesen.
In Abhängigkeit von den Druckbedingungen und der Zusammensetzung des zu destillierenden Gemischs stellt sich dann die Destillationstemperatur ein. Im Falle von Pentennitril als Verdünnungsmittel kann man die Destillation vorteilhaft bei einem Druck von höchstens 200 kPa, vorzugsweise höchstens 100 kPa, insbesondere höchstens 50 kPa durchführen.
Im Falle von Pentennitril als Verdünnungsmittel "kann man die Destillation vorteilhaft bei einem Druck von mindestens 1 kPa, vorzugsweise mindestens 5 kPa, besonders bevorzugt bei 10 kPa durchführen.
Die Destillation kann vorteilhaft durch einstufige Verdampfung, bevorzugt durch fraktionierende Destillation in einer oder mehreren, wie 2 oder 3 Destillationsapparaturen erfolgen.
Dabei kommen für die Destillation hierfür übliche Apparaturen in Betracht, wie sie beispielsweise in: Kirk-Othmer, Encyclopedia of Chemical Technology, 3. Ed., Vol. 7, John Wiley & Sons, New York, 1979, Seite 870-881 beschrieben sind, wie Siebbodenkolonnen, Glockenbodenkolonnen, Packungskolonnen, Füllkörperkolonnen, Ko- lonnen mit Seitenabzug oder Trennwandkolonnen.
Die Destillation kann diskontinuierlich erfolgen. i Die Destillation kann kontinuierlich erfolgen.
Bei der Destillation gemäß Schritt d) wird Mischung (VI) üblicherweise über Kopf erhalten. Mischung (VI) kann vorteilhaft ganz oder teilweise in Schritt b) zurückgeführt werden und dort als Wasser oder im Gemisch mit Wasser mit Mischung (II) erfindungsgemäß umgesetzt werden.
Ist Mischung (VI) einphasig, so kann Mischung (VI) zum Teil oder vollständig zurückgeführt werden.
Ist Mischung (VI) zweiphasig, so kommt vorteilhaft die teilweise oder vollständige Rückführung der den größeren Wassermassengehalt aufweisenden Phase in Betracht.
Mischung (VII) wird bei der Destillation gemäß Schritt b) üblicherweise als Sumpfprodukt erhalten. Mischung (VII) enthält den zurückgewonnen Anteil besagter Lewis-Säure und Verdünnungsmittel (V) ; der Wassergehalt von Mischung (VII) sollte vorzugsweise im Bereich von 0 bis 0,5 Gew.-%, insbesondere im Bereich von 0 bis 50 Gew.-ppm, bezogen auf das Gesamtgewicht von Mischung (VII) , betragen. Gemäß Schritt e) wird Mischung (VII) einer Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysator- Systems, enthaltend eine Lewis-Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom, zugeführt .
Als Komplexverbindung kann dabei vorteilhaft die in Schritt a) abgetrennte Komplexverbindung eingesetzt werden.
Als zu hydrocyanierende olefinisch ungesättigte Verbindung kommt vorzugsweise Verdünnungsmittel (V) in Betracht.
Beispiele
Die in den Beispielen angegebenen Gew.-%- oder Ge . -ppm-Angaben beziehen sich, soweit nicht anders bezeichnet, auf das Gesamtgewicht der jeweiligen Mischung.
Der Gehalt an Zn oder Zinkchlorid wurde mittels Atomemissions- spektrometrie bestimmt.
I
Der Gehalt an Chlor wurde nach Methode Schoeniger bestimmt.
Die Konzentrationen an Wasser wurden durch Titration nach Karl- Fischer-Methode potentiometrisch bestimmt.
Beispiel 1
In einer kontinuierlich betriebenen Vakuum-Destillationskolonne mit Metallgewebepackung (Typ CY, Fa. Sulzer Chemtech, Innendurchmesser 0 = 50 mm, Höhe 130 cm) mit einem Dünnschichtverdampfer als Wärmeübertrager am Kolonnensumpf, einem bei 30°C betriebenem Kon- densator am Kopf und einem auf 0°C gekühlten Phasentrenngefäß im Rücklauf wurden 240 g/h einer Lösung von 30 Gew% Zinkchlorid in trans-3-Pentennitril mit einem Wassergehalt von 0.4 Gew% oberhalb der Gewebepackung in die Destillationskolonne dosiert. Bei einem Druck von p = 10 kPa (absolut) wurde bei 344 K als Destillat am Kondensator ein zweiphasiges Gemisch erhalten. Die obere, im wesentlichen aus trans-3-Pentennitril bestehende Phase wurde kontinuierlich auf den Kolonnenkopf zurückgefahren. Die untere Phase bestand im wesentlichen aus Wasser und wurde kontinuierlich aus dem Phasentrenngefäß abgepumpt. Über Sumpf wurde eine homogene Lösung von ZnCl2 in trans-3-Pentennitril bei 348 K abgetrennt.
Nach 17 h Laufzeit der Destillation war der Wasseranteil im Sump- faustraagg aauuff 7766 GGeeww--ppppmm HH2200,, nach 41 h auf 50 Gew-ppm abgerei- c <-!hhe<--r"rtt- .
Beispiel 2
4 kg des in Beispiel 1 erhaltenen Sumpfaustrages wurden mit 1 kg trans-3-Pentnnitril und 500 g Wasser versetzt. Die homogene Mischung wurde mit einer Dosierrate von 206 g/h in die wie in Beispiel 1 betriebene Destillationskolonne dosiert.
Der Sumpfaustrag enthielt nach 24 h kontinuierlichen Betriebs 350 Gew-ppm Wasser, 16.9 Gew% Chlor berechnet als Cl und 15.5 Gew% Zn, jeweils bezogen auf Gesamtgewicht der Lösung; daraus leitet sich ein experimentell gefundenes Cl.Zn -Verhältnis von 2.01 ab.
Gaschromatographische Analyse' durch Derivatisierung mit MSTFA (2,2, 2-trifluoro-N-methyl-N- (trimethylsilyl) acetamid) zeigte keine nachweisbaren Mengen an Verseifungsprodukt 3-Pentensäure.
Analyse auf polymere Abbauprodukte durch Gelpermeationschromato- graphie ergab keine nachweisbaren Mengen an polymerem Produkt.
Die so erhaltene Zinkchloridlösung in 3-Pentennitril kann in der Hydrocyanierung von 3-Pentennitril in Gegenwart von Nickel (0)- Phosphitkatalysatoren eingesetzt werden und zeigt keinen Aktivitätsunterschied zu einer frisch aus 3-Pentennitril und wasserfreiem Zinkchlorid hergestellten Lösung.
Beispiel 3
In eine kontinuierlich betriebene Gegenstromextraktionskolonne (Innendurchmesser 0= 30 mm, 50 cm hohe Schüttung mit Raschig-Rin- gen) wurden 110 g/h einer Lösung von 0.52 Gew% ZnCl2 in einer Mischung von 20 Gew% trans-3-Pentennitril und Rest Adipodinitril auf den unteren Teil der Extraktionskolonne dosiert. 170 g/h Wasser wurden auf den oberen Teil dosiert. Über 3 Stunden kontinuierlichen Betriebs hinweg wurde am oberen Ende der Extraktionskolonne die extrahierte organische Phase mit weniger als 10 Gew.- ppm Zn erhalten. Am unteren Ende der Extraktionskolonne wurde die wassrige Phase mit 0.30 Gew% ZnCl2 erhalten.
Beispiel 4
In eine kontinuierlich betriebene Mixer-Settler-Apparatur, beste- hend aus einem bei Raumtemperatur betriebenen Behälter mit 2 1 Volumen, ausgestattet mit einem bei 700 Upm betriebenen Schräg- blattrührer und einem hydrostatischen Überlauf in einen nach- geschalteten Phasenscheider mit 0.5 1 Volumen, wurden 320 g/h einer Lösung von 0.52 Gew% ZnCl2 in einer Mischung aus 20 Gew% trans-3-Pentennitril und Rest Adipodinitril, sowie 100 g/h Wasser dosiert. Über den Phasenscheider wurden nach 7 h Betrieb die organische Phase mit 30 ppm Zn erhalten, die abgetrennte wäss- rige Phase enthielt 0.75 Gew% Zn. Im Phasenscheider wurde nach kurzer Betriebszeit eine Ansammlung von Feststoff beobachtet, der sich an der Phasengrenzfläche ansammelte. Der Feststoff bestand laut röntgendiffraktometrischer Analyse aus ZnCl2-4Zn (0H)2-2HO.
Beispiel 5
Eine 0.94 Gew% ZnCl2 und einen pH-Wert von 6 aufweisende Mischung aus 500 g einer nach Beispiel 3 durch Extraktion erhaltenen wäss- rigen Zinkchloridlösung und 540 g einer nach Beispiel 4 erhaltenen wässrigen Zinkchloridlösung wurden mit einer Dosier- rate von 80 g/h in die wie in Beispiel 1 beschrieben betriebene Destillationskolonne dosiert. Mit einer zweiten Pumpe wurden 320 g/h trans-3-Pentennitril in die Destillationskolonne dosiert. Im Sumpfaustrag wurden nach 9.5 h kontinuierlicher Destillation 310 Gew-ppm Wasser und 0.10 Gew% Zn (entsprechend 0.20 Gew% ZnCl2) analysiert .
Beispiel 6
In eine wie in Beispiel 4 beschrieben betriebene Mixer-Settler- Apparatur wurden 320 g/h einer Lösung von 0.52 Gew% ZnCl2 in einer Mischung aus 20 Gew% trans-3-Pentennitril und Rest Adipodinitril, sowie 100 g/h einer 0. lN-Lösung von HC1 in Wasser mit pH-Wert 1 dosiert. Über den Phasenscheider wurden nach 7 h Betrieb die organische Phase mit 85 ppm Zn erhalten, die abgetrennte wässrige Phase enthielt 1.88 Gew% Zn. Im Phasenscheider wurde im Gegensatz zu Beispiel 4 kein Feststoff beobachtet.
Beispiel 7
Eine 0.72 Gew% Zn und einen pH-Wert von 1 aufweisende Mischung aus 190 g einer nach Beispiel 3 durch Extraktion erhaltenen wässrigen Zinkchloridlösung, 370 g einer nach Beispiel 4 erhaltenen wässrigen Zinkchloridlösung und 430 g einer nach Beispiel 4 erhaltenen wässrigen Zinkchloridlösung wurden mit einer Dosierrate von 80 g/h in die wie in Beispiel 1 beschrieben betriebene Destillationskolonne dosiert. Mit einer zweiten Pumpe wurden 320 g/h trans-3-Pentennitril in die Destillationskolonne dosiert. Im Sumpfaustrag wurden nach 9.5 h kontinuierlicher
Destillation 210 Gew-ppm Wasser und 0.18 Gew% Zn analysiert. Die wässrige Phase, die am Phasenscheider am Kopf der Kolonne erhalten wurde, wies einen pH von 1 auf.
Die über Sumpf erhaltene Lösung von ZnCl in trans-3-Pentennitril kann in Gegenwart von Ni (O)phosphitkatalysatoren zu Adipodinitril hydrocyaniert werden.

Claims

Patentansprüche
1. Verfahren zur Rückgewinnung einer Lewis-Säure aus einer Reak- tionsmischung (I) , die erhalten wurde bei der Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis- Säure und eine Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom,
dadurch gekennzeichnet, dass man
a) aus Mischung (I) die besagte Komplexverbindung abtrennt unter Erhalt einer Mischung (II) ,
b) Mischung (II) mit Wasser versetzt und in solche Druck- und Temperaturbedingungen überführt, dass man eine Phase
(III) , die einen höheren Anteil an Wasser als an besagtem Nitril enthält, und eine Phase (IV) , die einen höheren Anteil an besagtem Nitril als an Wasser enthält, erhält, wobei Phase (III) einen höheren Gehalt an besagter Lewis- Säure aufweist als Phase (IV) ,
c) Phase (III) mit einem flüssigen Verdünnungsmittel (V) versetzt, das
cl) kein Azeotrop mit Wasser bildet und dessen Siedepunkt unter bestimmten Druckbedingungen höher ist als der von Wasser oder
c2) unter bestimmten Druckbedingungen ein Azeotrop oder Heteroazeotrop mit Wasser bildet,
d) die Mischung aus Phase (III) und flüssigem Verdünnungsmittel (V) unter den in Schritt cl) oder c2) genannten Druckbedingungen einer Destillation unterzieht unter Er- halt einer Mischung (VI) , die einen höheren Anteil an
Wasser als an Verdünnungsmittel (V) enthält, und einer Mischung (VII) , die einen höheren Anteil an Verdünnungs mittel (V) als an Wasser enthält, wobei Mischung (VII) einen höheren Gehalt an besagter Lewis-Säure aufweist als Mischung (VI) , und
e) Mischung (VII) einer Hydrocyanierung einer olefinisch ungesättigten Verbindung zu einem Nitril, das unter bestimmten Mengen-, Druck- und Temperaturbedingungen eine Mischungslücke mit Wasser aufweist, in Gegenwart eines Katalysatorsystems, enthaltend eine Lewis-Säure und eine
Komplexverbindung aus einer als Ligand geeigneten phosphorhaltigen Verbindung und einem für diese Verbindung geeigneten Zentralatom, zuführt.
2. Verfahren nach Anspruch 1, wobei Mischung (VII) einen Wassergehalt von kleiner als 0,5 Gew.-%, bezogen auf Mischung (VII) , aufweist .
3. Verfahren nach Anspruch 1 oder 2, wobei die Löslichkeit der besagten Lewis-Säure in Verdünnungsmittel (V) unter den Destillationsbedingungen gemäß Schritt d) mindestens 0,1 Gew.-%, bezogen auf Verdünnungsmittel (V), beträgt. ι
4. Verfahren nach den Ansprüchen 1 bis 3, wobei man Schritt b) in einer mehrstufigen Extraktionskolonne im Gegenstrom durchführt .
5. Verfahren nach den Ansprüchen 1 bis 4, wobei man Mischung
(VI) ganz oder teilweise in Schritt b) zurückführt.
6. Verfahren nach den Ansprüchen 1 bis 5, wobei das in Schritt b) eingesetzte Wasser einen pH-Wert von kleiner als 7 aufweist .
7. Verfahren nach den Ansprüchen 1 bis 5, wobei das in Schritt b) eingesetzte Wasser einen pH-Wert im Bereich von 0 bis kleiner 7 aufweist.
8. Verfahren nach den Ansprüchen 1 bis 7, wobei man das in Schritt b) eingesetzte Wasser mit einer Säure versetzt.
9. Verfahren nach Anspruch 8, wobei man das Wasser mit HCl versetzt .
10. Verfahren nach den Ansprüchen 1 bis 9, wobei das Verdünnungsmittel (V) die gemäß Schritt e) zu hydrocyanierende Verbindung teilweise oder vollständig enthält.
11. Verfahren nach den Ansprüchen 1 bis 10, wobei man als Verdünnungsmittel (V) ein Nitril ausgewählt aus der Gruppe bestehend aus 2-cis-Pentennitril, 2-trans-Pentennitril, 3-cis-Pen- tennitril, 3-trans-Pentennitril, 4-Pentennitril, E-2-Methyl-2-butennitril, Z-2-Methyl-2-butennitril,' 2-Methyl-3-butennitril oder deren Gemische einsetzt.
12. Verfahren nach den Ansprüchen 1 bis 11, wobei man aus Mischung (II) zwischen Schritt'- a) und b) oder zwischen Schritt b) und c) ungelöste Bestandteile teilweise oder voll- ständig abtrennt.
EP03763704A 2002-07-10 2003-07-04 Verfahren zur r ckf hrung einer lewis-s ure Withdrawn EP1521737A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE2002131292 DE10231292A1 (de) 2002-07-10 2002-07-10 Verfahren zur Rückführung einer Lewis-Säure
DE10231292 2002-07-10
DE2002140012 DE10240012A1 (de) 2002-08-27 2002-08-27 Verfahren zur Rückführung einer Lewis-Säure
DE10240012 2002-08-27
PCT/EP2003/007150 WO2004007431A1 (de) 2002-07-10 2003-07-04 Verfahren zur rückführung einer lewis-säure

Publications (1)

Publication Number Publication Date
EP1521737A1 true EP1521737A1 (de) 2005-04-13

Family

ID=30116628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763704A Withdrawn EP1521737A1 (de) 2002-07-10 2003-07-04 Verfahren zur r ckf hrung einer lewis-s ure

Country Status (12)

Country Link
US (1) US7084294B2 (de)
EP (1) EP1521737A1 (de)
JP (1) JP2005538075A (de)
CN (1) CN1274671C (de)
AR (1) AR039736A1 (de)
AU (1) AU2003246375A1 (de)
BR (1) BR0311982A (de)
CA (1) CA2491240A1 (de)
MX (1) MXPA04012030A (de)
MY (1) MY134370A (de)
TW (1) TW200401764A (de)
WO (1) WO2004007431A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880028B2 (en) 2006-07-14 2011-02-01 Invista North America S.A R.L. Process for making 3-pentenenitrile by hydrocyanation of butadiene
US7897801B2 (en) 2003-05-12 2011-03-01 Invista North America S.A R.L. Process for the preparation of dinitriles
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US7973174B2 (en) 2005-10-18 2011-07-05 Invista North America S.A.R.L. Process of making 3-aminopentanenitrile
US7977502B2 (en) 2008-01-15 2011-07-12 Invista North America S.A R.L. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
US8088943B2 (en) 2008-01-15 2012-01-03 Invista North America S.A R.L. Hydrocyanation of pentenenitriles
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
US8178711B2 (en) 2006-03-17 2012-05-15 Invista North America S.A R.L. Method for the purification of triorganophosphites by treatment with a basic additive
US8338636B2 (en) 2009-08-07 2012-12-25 Invista North America S.A R.L. Hydrogenation and esterification to form diesters
US8373001B2 (en) 2003-02-10 2013-02-12 Invista North America S.A R.L. Method of producing dinitrile compounds

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10231296A1 (de) * 2002-07-10 2004-01-22 Basf Ag Verfahren zur Entfernung von Wasser aus einer Mischung, die Wasser und Zinkchlorid enthält
WO2009075692A2 (en) 2007-05-14 2009-06-18 Invista Technologies S.A.R.L. High efficiency reactor and process
KR101610423B1 (ko) 2008-10-14 2016-04-08 인비스타 테크놀러지스 에스.에이 알.엘. 2-sec-알킬-4,5-디-(n-알킬)페놀의 제조 방법
CN103080074B (zh) 2010-07-07 2015-08-12 因温斯特技术公司 用于制备腈的方法
EP2794046B1 (de) 2011-12-21 2016-02-03 Invista Technologies S.A R.L. Regelung des extraktionslösungsmittels zur verminderung stabiler emulsionen
JP2015505304A (ja) 2011-12-21 2015-02-19 インヴィスタ テクノロジーズ エスアエルエル 安定なエマルジョンを減じるための抽出溶媒制御
WO2013095852A1 (en) 2011-12-21 2013-06-27 Invista North America S.A.R.L. Extraction solvent control for reducing stable emulsions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773809A (en) * 1972-06-28 1973-11-20 Du Pont Separation of organic phosphorus compounds and their metal complexes from organic nitriles in the hydrocyanation of olefins
US4082881A (en) 1976-12-23 1978-04-04 E. R. Squibb & Sons, Inc. Topical and other type pharmaceutical formulations containing isosorbide carrier
US4082811A (en) * 1977-02-23 1978-04-04 E. I. Du Pont De Nemours And Company Recovery of metal and triarylborane catalyst components from olefin hydrocyanation residue
US4705881A (en) 1986-11-17 1987-11-10 E. I. Du Pont De Nemours And Company Continuous hydrocyanation process using zinc halide promoter
JPH0794422B2 (ja) 1989-04-04 1995-10-11 三井東圧化学株式会社 ノルカンファンジカルボニトリル類の製造方法
WO1996033969A1 (fr) 1995-04-26 1996-10-31 Rhone-Poulenc Chimie Procede d'hydrocyanation de nitriles insatures en dinitriles
GB9612622D0 (en) * 1996-06-17 1996-08-21 Zeneca Ltd Chemical process
MY124170A (en) 1997-07-29 2006-06-30 Invista Tech Sarl Hydrocyanation processes and multidentate phosphite ligand and nickel catalyst compositions therefor
FR2787446B1 (fr) 1998-12-22 2001-02-02 Rhone Poulenc Fibres Procede d'hydrocyanation de composes organiques a insaturations ethyleniques
US6048996A (en) * 1999-08-26 2000-04-11 E. I. Du Pont De Nemours And Company Insoluble promoters for nickel-catalyzed hydrocyanation of monoolefins
US6380421B1 (en) 1999-09-20 2002-04-30 E. I. Du Pont De Nemours And Company Multidentate phosphite ligands, catalytic compositions containing such ligands and catalytic processes utilizing such catalytic compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004007431A1 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373001B2 (en) 2003-02-10 2013-02-12 Invista North America S.A R.L. Method of producing dinitrile compounds
US7897801B2 (en) 2003-05-12 2011-03-01 Invista North America S.A R.L. Process for the preparation of dinitriles
US7973174B2 (en) 2005-10-18 2011-07-05 Invista North America S.A.R.L. Process of making 3-aminopentanenitrile
US8178711B2 (en) 2006-03-17 2012-05-15 Invista North America S.A R.L. Method for the purification of triorganophosphites by treatment with a basic additive
US7880028B2 (en) 2006-07-14 2011-02-01 Invista North America S.A R.L. Process for making 3-pentenenitrile by hydrocyanation of butadiene
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US8394981B2 (en) 2006-07-14 2013-03-12 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
US7977502B2 (en) 2008-01-15 2011-07-12 Invista North America S.A R.L. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
US8088943B2 (en) 2008-01-15 2012-01-03 Invista North America S.A R.L. Hydrocyanation of pentenenitriles
US8338636B2 (en) 2009-08-07 2012-12-25 Invista North America S.A R.L. Hydrogenation and esterification to form diesters

Also Published As

Publication number Publication date
MY134370A (en) 2007-12-31
JP2005538075A (ja) 2005-12-15
AR039736A1 (es) 2005-03-09
AU2003246375A1 (en) 2004-02-02
TW200401764A (en) 2004-02-01
CA2491240A1 (en) 2004-01-22
CN1274671C (zh) 2006-09-13
BR0311982A (pt) 2005-04-26
US20050247624A1 (en) 2005-11-10
US7084294B2 (en) 2006-08-01
CN1665776A (zh) 2005-09-07
WO2004007431A1 (de) 2004-01-22
MXPA04012030A (es) 2005-03-07

Similar Documents

Publication Publication Date Title
EP1713759B1 (de) Verfahren zur herstellung von adipodinitril durch hydrocyanierung von 1,3-butadien
EP1817108B1 (de) Extraktion von nickel(0)-komplexen aus nitrilgemischen mit verminderter mulmbildung
EP1713760B1 (de) Verfahren zur herstellung von dinitrilen
EP1713766B1 (de) Verfahren zur trennung von pentennitril-isomeren
EP1713816B1 (de) Abtrennung von nickel(0)-komplexen und phosphorhaltigen liganden aus nitrilgemischen
EP1521737A1 (de) Verfahren zur r ckf hrung einer lewis-s ure
EP1716105A1 (de) Verfahren zur herstellung von linearem pentennitril
EP1988998B1 (de) Verbessertes verfahren zur herstellung von nickel(0)-phosphorligand-komplexen
EP1716109B1 (de) Verfahren zur hydrocyanierung
WO2007115936A2 (de) Verfahren zur abtrennung von nickel(0)-komplexen und phosphorhaltigen liganden aus nitrilgemischen
EP1716103A1 (de) Kontinuierliches verfahren zur herstellung von linearen pentennitrilen
WO2008028843A1 (de) Verfahren zur herstellung von dinitrilen
DE10311122A1 (de) Verfahren zur Hydrocyanierung einer olefinisch ungesättigten Verbindung
DE102004004671A1 (de) Verfahren zur Herstellung von linearem Pentennitril
DE102004004685A1 (de) Abtrennung von Ni(O)P-Komplexen und P-Liganden von Nitrilgemischen
EP1521722B1 (de) Verfahren zur entfernung von wasser aus einer mischung, die wasser und zinkchlorid enth lt
DE10240012A1 (de) Verfahren zur Rückführung einer Lewis-Säure
DE10231292A1 (de) Verfahren zur Rückführung einer Lewis-Säure
DE102004045036A1 (de) Abtrennung von Nickel(O)-Komplexen und phosphorhaltigen Liganden aus Nitrilgemischen
WO2004080949A1 (de) Verfahren zur isomerisierung von 2-methyl-3-butennitril zu linearem pentennitril
KR20050017005A (ko) 루이스 산의 재순환 방법
DE102004063381A1 (de) Verfahren zur Herstellung von linearem Pentennitril
DE102004042949A1 (de) Verfahren zur Herstellung von linearem Pentennitril

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HADERLEIN, GERD

Inventor name: BAUMANN, ROBERT

Inventor name: BARTSCH, MICHAEL

Inventor name: LUYKEN, HERMANN

Inventor name: SCHEIDEL, JENS

Inventor name: JUNGKAMP, TIM

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HADERLEIN, GERD

Inventor name: BAUMANN, ROBERT

Inventor name: BARTSCH, MICHAEL

Inventor name: LUYKEN, HERMANN

Inventor name: SCHEIDEL, JENS

Inventor name: JUNGKAMP, TIM

DAX Request for extension of the european patent (deleted)
GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20070724