EP1519976B1 - Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for making same - Google Patents

Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for making same Download PDF

Info

Publication number
EP1519976B1
EP1519976B1 EP03734315A EP03734315A EP1519976B1 EP 1519976 B1 EP1519976 B1 EP 1519976B1 EP 03734315 A EP03734315 A EP 03734315A EP 03734315 A EP03734315 A EP 03734315A EP 1519976 B1 EP1519976 B1 EP 1519976B1
Authority
EP
European Patent Office
Prior art keywords
bhpm
residues
polyester
copolymer
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03734315A
Other languages
German (de)
French (fr)
Other versions
EP1519976A1 (en
Inventor
Zhaohui Su
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SABIC Global Technologies BV
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of EP1519976A1 publication Critical patent/EP1519976A1/en
Application granted granted Critical
Publication of EP1519976B1 publication Critical patent/EP1519976B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/193Hydroxy compounds containing aromatic rings containing two or more aromatic rings
    • C08G63/195Bisphenol A
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/04End-capping

Abstract

Polyphthalate polyesters or polyester/polycarbonates are prepared from phthalates and 4,4'-[1-methyl-4-(1-methyl-ethyl)-1,3-cyclohexandlyl]-bisphenol.

Description

    BACKGROUND OF INVENTION
  • The present invention relates to bis-hydroxyphenyl menthane (BHPM) polyesters and polyester/polycarbonates and methods for making the same, for example from a phthalate and a bis-hydroxypheny methane as defined in claims 1 and 8. Polyphthalate polyesters of this type can be made with desirable, high glass transition temperatures.
  • It is becoming of increasing interest to develop thermoplastics with high glass transition temperatures. Polycarbonates are a well known class of thermoplastics with several advantageous properties, such as high optical clarity and ductility. However, the glass transition temperatures of polycarbonates are limited. Bisphenol A polycarbonates exhibit a Tg of approximately 150°C, while polyphthalate carbonate, a polyestercarbonate copolymer, exhibits a Tg of approximately 178° C. Bisphenol I polycarbonates have a much higher Tg of approximately 220°C, but some applications require even higher heat resistance. For instance, the preferred range for processing advanced LCD films is 250° C or higher. However, few thermoplastic materials can be processed into films by solvent casting and still possess the required heat performance, optical clarity, and ductility.
  • Bis-hydroxyphenyl menthanes are known in the art. For example, the synthesis of 4,4'-[1-methyl-4-(1-methyl-ethyl)-1,3-cyclohexandiyl]-bisphenol (i.e.,1,3-bis-hydroxyphenyl menthane, hereinafter "1,3-BHPM") is disclosed in US Patent No. 5,480,959 . A polycarbonate synthesized from 1,3-BHPM that possesses a Tg of 249°C is also disclosed.
  • JP 02 214691 A and JP 07 026126 A disclose a polyester compound comprising BHPM units in general and phthalic acid units like terephthalic and isophthalic acid units. Bisphenol A can also be employed as a diol. The copolyesters further comprise endcaps.
  • SUMMARY OF INVENTION
  • The present invention provides BHPM polyesters and polyester/polycarbonates as defined in claim 1. In one embodiment of the invention, a polyester is provided comprising phthalate residues and BHPM residues, selected from the group consisting of 1,3-BHPM residues or 2,8-BHPM residues. The phthalate residues comprise terephthalate residues and optionally isophthalate residues wherein at least 25% of the phthalate residues are terephthatate residues. One embodiment of the method of the invention for producing a BHPM-polyphthalate polyester comprises the steps of:
    1. (a) combining a phthaloyl chloride and 1,3-BHPM to form a reaction mixture that contains a polyphthalate polyester; and
    2. (b) recovering the polyphthalate polyester from the reaction mixture.
  • By selection of the phthalate residues, polyesters with high glass transition tmperatures can be obtained.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig. 1 shows the structures of 1,3-BHPM and 2,8-BHPM.
    DETAILED DESCRIPTION
  • The present invention provides for bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates, including polyesters and polyester polycarbonates having increased glass transition temperatures and methods for making such polymers as defined in claims 1+8. The compositions of the invention comprise a bis-hydroxyphenyl menthane, selected from the group consisting of 1,3-BHPM and 2,8-BHPM
  • The bis-hydroxyphenyl menthane has the general structure:
    Figure imgb0001
    in which X represents two hydroxy phenyl moieties and one hydrogen. Specific examples of BHPM's which are used in the copolymers of the invention include 1,3-BHPM and 2,8-BHPM which have the structures shown in Fig. 1. The BHPM's may be used individually or in combinations.
  • The copolymers of the invention further comprise a residue derived from a dicarboxylic acid, although in the actual reaction an acid derivative such as an acid halide may be used. Specific non-limiting examples of dicarboxylic acids the residues of which may be present in the copolymers of the invention are the various isomers of phthalic acid and dodecandioic acid (DDDA). These acids may be used individually or in combination. Other comonomers may also be included. For example, the copolymer may further comprise bisphenol A (BPA) residues.
  • In a first embodiment of the invention, the novel polymer of the present invention comprises phthalate residues and 1,3-BHPM residues. The phthalate residues in the polymer are optionally isophthalate residues and at least 25% of terephthalate residues. The isophthalate residues and terephthalate residues of the polymer can be derived from isophthaloyl chloride and terephthalate chloride, respectively, or from a phthalic acid acylating agent. The 1,3-BHPM residues are derived from 1,3-BHPM.
  • The polyesters of the invention are prepared to achieve high glass transition temperatures: A glass transition temperature (Tg) of 150 °C or greater, preferably of 200 ° C or greater. To achieve such glass transition temperatures, at least 25, and preferably 50 % of the phthalate residues in the polymer are terephthalate residues. In one specific embodiment, all of the phthalate residues are terephthalate residues.
  • If desired to control the molecular weight of the polymers generated, the polyphthalate polyester may be endcapped. The examples set forth below use p-cumyl phenol to produce an endcapped polymer, although other endcapping agents are possible, such as phenol, p-tert-butylphenol; undecanoic acid; lauric acid; stearic acid; phenyl chloroformate; t-butyl phenyl chloroformate; p-cumyl chloroformate; chroman chloroformate; octyl phenyl chloroformate; nonyl phenyl chloroformate; or mixtures thereof. The point in the reaction at which the endcapper is added depends on the desired molecular weight of the polymer. In general, it is appropriate to add endcapper when the polyphthalate polyester has a molecular weight of from 15000 to 60000, by PC standard.
  • Polyesters in accordance with the invention may also include other dihydric residues, for example bisphenol A residues, as substitutes for a portion of the 1,3-BHPM residues, and other diacid residues, for example residues derived from the dodecandioc acid (DDDA) as substitutes for a portion of the phthalate residues. In general, the additional dihydric residues and the additional dicarboxylic acid residues will make up less than 10 % of the total dihydric or dicarboxylic component, respectively.
  • When cast from methylene chloride solution, the polyphthalate polyesters of the present invention produce optically clear and ductile films. When the polymer composition includes at least 25 % terephthalate residues, preferably at least 50%, (based on the total phthalate residues) these films have a high glass transition temperature. For example, a polyphthalate consisting of 1,3-BHPM and terephthalate residues has a Tg of 284° C. A polyphthalate consisting of 1,3-BHPM residues and isophthalate and terephthalate residues in a 1:1 ratio has a Tg of 246°C. Films of this polymer cast from solution can be used in optical display applications such as LCD panel, OLED panel, etc.
  • The polyphthalate and other polyesters can be synthesized through an esterification reaction of esterification reactants for example 1,3-BHPM and a phthalic acid chloride, for example phthaloyl chloride. The esterification reaction occurs in a reaction mixture, the reaction mixture comprising the esterification reactants and at least one organic solvent which serves to dissolve the esterification reactants. For example, 1,3-BHPM may be dissolved in the organic solvents methylene chloride and triethylamine to form a 1,3-BHPM solution. Suitable concentrations for the 1,3-BHPM are in the range of from 5 to ~15%. The phthaloyl chloride may be dissolved in methylene chloride to form a phthaloyl chloride solution. Suitable concentrations are in the range of from 5 to 40%. Other solvents which may be used include halogenated solvents, such as ortho-dichlorobenzene, and other kinds of amines.The 1,3-BHPM solution is combined with the phthaloyl chloride solution over a period of time to form the reaction mixture. The reaction solution heats up to reflux, so the temperature at which the reactants start is not critical. For bench scale reaction, the esterification reaction may be conducted in a reactor which comprises a condenser, an addition funnel, and an agitator, although those skilled in the art will recognize the esterification reaction may be conducted under many other settings. In this reactor, the reactor is charged with the 1,3-BHPM solution under a nitrogen purge and the phthaloyl chloride solution added to the reactor via an addition funnel to form the reaction mixture. The addition of the phthaloyl chloride solution to the reactor occurs over a time period of 2 to 120 minutes, for example, before an optional endcapper such as p-cumyl phenol is added to the reaction mixture. At the end of the reaction, it doesn"t matter if the endcap is added over a short or long period of time. However without the endcap the polymer will be less stable when processed and in use. The theoretical stoichiometry of the esterification reaction between the phthaloyl choloride and the 1,3-BHPM is 1:1, in the absence of endcapper. When endcapper is present, it replaces 1,3-BHPM as a reactant. Thus, the theoretical amount of reactants calls for phthaloyl chloride to be added in excess of the 1,3-BHPM, the difference allowing for the addition of the endcapping agent. The relative amounts of the components can be represented by the equation: 2 x ([phthaloyl chloride] - [1,3-BHPM]) = [p-cumy] phenol]. In practice, the reactants can be added in amounts which depart from this exact stoichiometric Thus, in general, for an esterification reaction, the feed ratio phthaloyl chloride to 1,3-BHPM, is the range of from 0.9 to 1.1, preferably 0.95 to 1.05.
  • The resulting polymer is recovered using conventional separation strategies, such as washing with extraction solvents, distillation, precipitation and drying. In one embodiment for the recovery of the polyphthalate polyester, the reaction mixture is washed with the extraction solvents of hydrochloric acid and water. The polyphthalate polyester is then recovered through the evaporation of the organic solvent present in the washed reaction mixture. This step may be accomplished by adding the washed reaction mixture to hot water and flashing off the organic solvent, thereby leaving the phthalate to precipitate in the water. Filtering and drying of the precipitate leads to the recovered phthalate. Polymers can also be steam precipitated, which is a known industrial process.
  • In a further embodiment of the invention, the copolymer is a polyester/polycarbonate, i.e., a block copolymer (regular or random) in which there are block segments of a BHPM polyester as described above, and block segments of a polycarbonate, such as a BPA-polycarbonate. This structure can be represented diagrammatically by the formula:
    Figure imgb0002
    wherein X is a bisphenol residue, it can be BHPM or BPA or a mixture of BHPM and BPA, Y is a BHPM residue, m can be 0-100, and n can be 50-100.
  • An interfacial technique may be appropriately employed to make polyester/polycarbonates. In general, the bis-hydroxy menthane is combined with a diacid (or diacid derivative, such as a phthaloyl chloride) in a reactor with a solvent such as methylene chloride. Phosgene and caustic are introduced into the reactor to form the polyester/polycarbonate, which can be recovered by the same techniques as discussed above. For polyester/polycarbonate, end-cappers can be added at the beginning with the monomer(s), as described in Example 3 below, or before phosgenation starts, or along the phosgenation as a programmed addition. The invention will now be further described with reference to the following, non-limiting examples.
  • Example 1
  • Under a nitrogen purge, 1,3-BHPM (20.0 g, 0.0616 mole) was transferred into a 2 liter reactor equipped with a condenser, an addition funnel, and an agitator. A 1,3-BHPM solution was created by additionally charging the reactor with methylene chloride (200 ml) and triethylamine (21.5 ml), thereby dissolving the 1,3-BHPM. A phthaloyl chloride solution was prepared by dissolving terephthaloyl chloride (12.75 g, 0.0628 mole) in methylene chloride (40 ml). The phthaloyl chloride solution was transferred to an addition funnel and the phthaloyl chloride solution brought to a total volume of 80 ml through the addition of methylene chloride. A reaction mixture, under constant stirring and nitrogen, was formed by adding the phthaloyl chloride solution to the 1,3-BHPM solution over a time period of approximately 20 minutes. Para-cumyl phenol (PCP, 0.54g, 2.5 mmole) was added to the reactor with methylene chloride (50 ml) and the reaction stirred for about 5 minutes. A hydrochloric acid solution (1 N, 400 ml) was charged to the reactor and the mixture stirred for an additional 5 minutes. The methylene chloride layer was separated and washed with a hydrochloric acid solution (1 N) and subsequently with deionized water for up to five times or until the water layer had a pH of about 5-6. The polymer solution was added to hot water in a blender to flash off the methylene chloride, thereby precipitating the polyphthalate. The polyphthalate was filtered and then dried at about 90°C in a convection oven. The Tg of the resulting polyphthalate was 284°C and possessed a molecular weight of 53,000 by PC standard.
  • Example 2
  • The procedure of Example 1 was performed except the phthaloyl chloride solution was prepared by dissolving equal amounts of terephthaloyl chloride (6.38g, 0.0314 mole) and isophthalate chloride (6.38 g, 0.0314 mole) in methylene chloride (40 ml). The Tg of the resulting polyphthalate derived from equal amounts of terephthaloyl chloride and isophthaloyl chloride was 246°C and possessed a molecular weight of 32,000 by PC standard.
  • Example 3
  • To make 1,3-BHPM Polyarylate/polycarbonate copolymer, under N2 purge, 64.90 grams (0.200 mole) of 1,3-BHPM and 1.274 grams (6.00 mmole) of PCP were transferred into a 2L reactor equipped with a condenser, an addition funnel, a phosgene inlet tube, a caustic addition tube, a pH probe, and an agitator. To the reactor were charged 400 mL of methylene chloride (MeCl2), 230 mL of DI water, and ~0.42 mL (~3.0 mmole) of triethylamine (TEA) and the mechanical stir was started. 20.30 grams of terephthaloyl chloride were dissolved in ~50 mL of methylene chloride and the solution was added to the reactor through the addition funnel, while 25wt% caustic was added to maintain the reaction pH at ~9. The terephthaloyl chloride solution addition was complete in ~7 min. The pH was then raised to ~10.5 and the mixture was stirred for ~10 min. Phosgene was introduced to the reaction at 2 gram/min for 7 min while caustic was added at the same time to maintain the reaction pH at ~10. The reaction mixture was stirred for 10 min. The agitator was turned off and the mixture split into two layers. The methylene chloride layer was transferred into a 2L separation funnel and washed with 1N HCl solution once, and then DI water until the pH of the water layer was ~5-6. The polymer solution was added to a hot water bath in a blender to flash off the MeCl2 and precipitate the polymer. The polymer was isolated by filtration, and dried at ~115°C in a convection oven.
  • Example 4
  • 2 grams of 1,3-BHPM polyphthalate made in accordance with Example 1 were dissolved in ~40 mL of methylene chloride at room temperature. The polymer solution was cast in an 10.32 cm x 7.74 cm (4in x 3in) aluminum pan and dried in a convection oven at 60°C. An optically clear film was obtained.

Claims (8)

  1. A bis-hydroxyphenyl menthane (BHPM) polyester copolymer, comprising:
    phthalate residues; and
    BHPM residues selected from the group consisting of 1,3-BHPM, 2,8-BHPM, and combinations thereof; wherein
    at least 25% of the phthalate residues are terephthalate residues, and
    the glass transition temperature is 150°C or greater.
  2. The copolymer of claim 1, wherein the BHPM residues consist of 1,3 BHPM.
  3. The copolymer of claim 1, wherein the phthalate residues further comprise isophthalate residues.
  4. The copolymer of claim 1, wherein all of the phthalate residues comprise terephthalate residues.
  5. The copolymer of claim 1, wherein the copolymer further comprises endcaps.
  6. The copolymer of claim 1, wherein the endcaps are p-cumyl phenol residues.
  7. The copolymer of claim 1, wherein the copolymer further comprises bisphenol A residues.
  8. A method for producing a bis-hydroxyphenyl menthane (BHPM) polyester having a glass transition temperature of 150°C or greater, comprising the steps of:
    (a) combining a phthalic acid chloride wherein at least 25% of the phthalic acid chloride is terephthalic acid chloride, and a BHPM selected from the group consisting of 1,3- BHPM, 2,8-BHPM, and combinations thereof, to form a reaction mixture under conditions suitable for esterification to form a BHPM polyester having a glass transition temperature of 150°C or greater; and
    (b) recovering the BHPM polyester.
EP03734315A 2002-07-02 2003-05-28 Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for making same Expired - Lifetime EP1519976B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US64323 2002-07-02
US10/064,323 US6713592B2 (en) 2002-07-02 2002-07-02 Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for preparing same
PCT/US2003/017176 WO2004005367A1 (en) 2002-07-02 2003-05-28 Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for making same

Publications (2)

Publication Number Publication Date
EP1519976A1 EP1519976A1 (en) 2005-04-06
EP1519976B1 true EP1519976B1 (en) 2008-07-02

Family

ID=29998835

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03734315A Expired - Lifetime EP1519976B1 (en) 2002-07-02 2003-05-28 Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for making same

Country Status (10)

Country Link
US (1) US6713592B2 (en)
EP (1) EP1519976B1 (en)
JP (1) JP4468808B2 (en)
KR (1) KR100980517B1 (en)
CN (1) CN1678657A (en)
AT (1) ATE399807T1 (en)
AU (1) AU2003238858A1 (en)
DE (1) DE60321912D1 (en)
TW (1) TW200400980A (en)
WO (1) WO2004005367A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689862B2 (en) * 2002-07-03 2004-02-10 General Electric Company Polyestercarbonates and methods of manufacture
US8497343B2 (en) * 2005-04-06 2013-07-30 Sabic Innovative Plastics Ip B.V. Polyarylate compositions and articles therefrom
JP4832559B2 (en) * 2009-09-14 2011-12-07 ニッタ株式会社 Polyester and process for producing the same
JP2011084638A (en) * 2009-10-15 2011-04-28 Muroran Institute Of Technology Aromatic polyester
JP2011190334A (en) * 2010-03-13 2011-09-29 Muroran Institute Of Technology Modifier for aromatic polyester and aromatic polyester resin composition containing the same
WO2012017540A1 (en) * 2010-08-05 2012-02-09 国立大学法人室蘭工業大学 Aromatic polyester and method for producing same
KR200487739Y1 (en) 2018-06-27 2018-10-26 심동욱 Functional roaster

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726126A (en) * 1993-07-13 1995-01-27 Unitika Ltd Resin composition

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380965A (en) 1964-02-10 1968-04-30 Union Carbide Corp Process of preparing acetylenically unsaturated polycarbonates
JPS529048A (en) 1975-07-11 1977-01-24 Matsushita Electric Ind Co Ltd A flame-retardant thermoplastic resin composition
JPS6256488A (en) 1985-09-05 1987-03-12 Mitsui Petrochem Ind Ltd Quinazoline derivative and pharmaceutical use
JP2845475B2 (en) 1989-02-16 1999-01-13 王子製紙株式会社 Dye thermal transfer image receiving sheet
JPH073002A (en) 1992-09-15 1995-01-06 Yasuhara Chem Kk Production of polycarbonate resin
US5480959A (en) 1993-05-17 1996-01-02 General Electric Company Substantially pure bisphenols and polymers comprising bisphenols
JPH08198791A (en) 1995-01-26 1996-08-06 Yasuhara Chem Kk New terpene diphenol compound
JP3608865B2 (en) 1995-03-30 2005-01-12 三井化学株式会社 Epoxy resin composition for laminates with high heat resistance and low dielectric constant
JP3973239B2 (en) * 1995-04-06 2007-09-12 日本ジーイープラスチックス株式会社 Dihydroxy compound mixtures and polymers
JPH0962007A (en) 1995-08-25 1997-03-07 Yasuhara Chem Kk Positive type photoresist composition
JPH0962000A (en) 1995-08-25 1997-03-07 Yasuhara Chem Kk Positive photoresist composition
JPH0961999A (en) 1995-08-25 1997-03-07 Yasuhara Chem Kk Positive photoresist composition
JP3468935B2 (en) 1995-09-01 2003-11-25 出光興産株式会社 Electrophotographic photoreceptor
JPH0990636A (en) 1995-09-26 1997-04-04 Yasuhara Chem Kk Positive type photoresist composition
JPH09160234A (en) 1995-12-08 1997-06-20 Fuji Photo Film Co Ltd Positive type photoresist composition
JPH09255770A (en) 1996-03-26 1997-09-30 Teijin Ltd Copolycarbonate and production thereof
JP3710214B2 (en) * 1996-07-04 2005-10-26 ユニチカ株式会社   Insulating film and dielectric film
JPH1025333A (en) 1996-07-10 1998-01-27 Yuka Shell Epoxy Kk Epoxy resin composition for sealing semiconductor
JPH10110007A (en) 1996-10-08 1998-04-28 Yasuhara Chem Kk Energy beam-curable resin composition
JP3789603B2 (en) 1997-06-30 2006-06-28 三井化学株式会社 Thermosetting resin composition for multilayer printed wiring boards
JPH1180306A (en) 1997-09-08 1999-03-26 Yasuhara Chem Co Ltd Urethane resin composition
JP2000273160A (en) * 1999-03-24 2000-10-03 Unitika Ltd Film-forming resin and coating fluid obtained therefrom
JP2001279167A (en) 2000-03-31 2001-10-10 Chugoku Marine Paints Ltd Corrosion resistant coating composition, film formed therewith, substrate coated thereby, and method for corrosion resistance
JP4351367B2 (en) * 2000-08-10 2009-10-28 帝人株式会社 Resin composition
US20020197441A1 (en) * 2001-03-29 2002-12-26 Ramesh Hariharan Storage medium for data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726126A (en) * 1993-07-13 1995-01-27 Unitika Ltd Resin composition

Also Published As

Publication number Publication date
JP4468808B2 (en) 2010-05-26
WO2004005367A1 (en) 2004-01-15
TW200400980A (en) 2004-01-16
JP2005531682A (en) 2005-10-20
KR100980517B1 (en) 2010-09-06
US6713592B2 (en) 2004-03-30
KR20050016707A (en) 2005-02-21
CN1678657A (en) 2005-10-05
ATE399807T1 (en) 2008-07-15
EP1519976A1 (en) 2005-04-06
US20040006193A1 (en) 2004-01-08
DE60321912D1 (en) 2008-08-14
AU2003238858A1 (en) 2004-01-23

Similar Documents

Publication Publication Date Title
JP3426064B2 (en) Manufacturing method of macrocyclic polyester oligomer
JP2005517782A (en) Process for the production of poly (carbonate-co-ester) copolymers
EP1519976B1 (en) Bis-hydroxyphenyl menthane polyesters and polyester/polycarbonates and methods for making same
JPH0662753B2 (en) Hydroquinone-bisphenol cyclic copolycarbonate and process for producing the same
EP0718341A2 (en) High molecular weight stabilizer compounds for stabilizing polymers
JPH08311192A (en) Production of resin composition from cyclic polycarbonate oligomer
JPH04292621A (en) Large ring polyarylate composition with reduced crystallinity
US5104963A (en) Two-stage process for the production of polycarbonates based on special dihydroxydiphenylalkanes
JP2532127B2 (en) Method for producing aromatic polycarbonate
JP2003507548A (en) Production of copolycarbonate by solid state polymerization
JP3164889B2 (en) Method for producing aromatic polyester
US6455666B1 (en) Polyesters and production process thereof
JP2001064374A (en) Novel polyester polymer and its production
JPH05262864A (en) Preparation of aromatic polyester
JPH06100675A (en) Aromatic polyester carbonate and its production
JP3162482B2 (en) Method for producing aromatic polyester
JP2980795B2 (en) Method for producing aromatic polyester
JP2002069164A (en) All aromatic polyrster carbonate and its production method
JPH0565337A (en) Production of cyclic polyarylate oligomer
JPH10101623A (en) Cyclic oligocarbonate mixture, production and use thereof
JPH1135665A (en) New polyester and its production
JPH11246655A (en) Interfacial production of copolyester carbonate
JP2003525959A (en) Production of copolycarbonate by solid state polymerization
JP3352997B2 (en) Method for producing aromatic polyester
JP2004099683A (en) Wholly aromatic polyester and its manufacturing process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SU, ZHAOHUI

17Q First examination report despatched

Effective date: 20050816

17Q First examination report despatched

Effective date: 20050816

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60321912

Country of ref document: DE

Date of ref document: 20080814

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SABIC INNOVATIVE PLASTICS IP B.V.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SABIC INNOVATIVE PLASTICS IP B.V.

Effective date: 20080924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081002

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

26N No opposition filed

Effective date: 20090403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

BERE Be: lapsed

Owner name: GENERAL ELECTRIC CY

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081002

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702