EP1519250A1 - Résonateur balancier-spiral thermocompensé - Google Patents

Résonateur balancier-spiral thermocompensé Download PDF

Info

Publication number
EP1519250A1
EP1519250A1 EP03021787A EP03021787A EP1519250A1 EP 1519250 A1 EP1519250 A1 EP 1519250A1 EP 03021787 A EP03021787 A EP 03021787A EP 03021787 A EP03021787 A EP 03021787A EP 1519250 A1 EP1519250 A1 EP 1519250A1
Authority
EP
European Patent Office
Prior art keywords
spiral
quartz
axis
balance
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03021787A
Other languages
German (de)
English (en)
Other versions
EP1519250B1 (fr
Inventor
Thierry Hessler
Rudolf Dinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Priority to DE60333191T priority Critical patent/DE60333191D1/de
Priority to EP03021787A priority patent/EP1519250B1/fr
Priority to TW093128448A priority patent/TWI372952B/zh
Priority to US10/943,855 priority patent/US7503688B2/en
Priority to KR1020040075712A priority patent/KR20050030558A/ko
Priority to CNB2004100801241A priority patent/CN100483271C/zh
Priority to JP2004279139A priority patent/JP4805560B2/ja
Publication of EP1519250A1 publication Critical patent/EP1519250A1/fr
Priority to HK05106159.9A priority patent/HK1073697A1/xx
Application granted granted Critical
Publication of EP1519250B1 publication Critical patent/EP1519250B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/22Compensation of mechanisms for stabilising frequency for the effect of variations of temperature
    • G04B17/222Compensation of mechanisms for stabilising frequency for the effect of variations of temperature with balances
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B18/00Mechanisms for setting frequency
    • G04B18/04Adjusting the beat of the pendulum, balance, or the like, e.g. putting into beat

Definitions

  • the present invention relates to a spring-balance resonator thermally compensated to reduce the diurnal temperature difference of a mechanical watch movement at a level comparable to that of a watch electronic quartz.
  • the daytime deviation of a mechanical movement depends mainly on the regulating devices, and in particular the sprung balance the frequency of oscillation can be influenced by variations in the factors outside, such as a change in temperature or the presence of a field magnetic.
  • the temperature acts in particular on the moment of inertia of the pendulum and on the elastic constant of the spiral, and modifies the frequency of the balance-spiral which is indeed a function of these two parameters.
  • the pendulum As for the pendulum, it is generally made of an alloy non-magnetic such as glucydur, making the oscillatory movement of the pendulum can not be disturbed by the proximity of magnetic materials.
  • an alloy non-magnetic such as glucydur
  • the object of the invention is to overcome the disadvantages of the aforementioned prior art in providing a balance-spring with an even smaller gap in especially because of a spiral made of a non-magnetic material whose coefficients of expansion and the thermal variation of the modulus of elasticity allow, during the manufacture, to adapt the elastic constant of said spiral to the moment of inertia of the balance.
  • E the modulus of elasticity
  • h the height of the spiral
  • e its thickness
  • L its developed length.
  • I mr 2 in which m represents the mass and r the radius of gyration, which obviously depends on the coefficient of expansion ⁇ of the pendulum.
  • the invention relates to a balance spring for mechanical horological movement in which the spiral is formed of turns of height h made from a single crystal quartz crystallographic axes x, y, z, the x axis, being the electric axis and the y axis the mechanical axis, the height h of the turns having substantially the same orientation as the crystallographic axis z. More precisely, the height h forms with the axis z an angle ⁇ which can vary between + 25 ° and -25 °, preferably between + 10 ° and -15 °, which makes it possible to vary the elastic constant of the spiral without modify the geometry.
  • quartz for the manufacture of a spiral also offers the advantage, besides its excellent thermal characteristics, to possess also excellent mechanical and chemical properties, particularly in aging, oxidation and sensitivity to magnetic fields.
  • the technique of photolithography and etching allows, on the one hand, to form in the quartz blade, together with the spiral as such, its attachment to the outside and the fastening shell in the center, on the other hand to freely choose other spiral parameters such as the thickness e of the turns or their pitch, at a point any of its development.
  • the quartz slide is cut according to a plane forming an angle ⁇ / 2 - ⁇ with respect to the crystallographic axis z, equivalent by rotating about the x axis, an angle ⁇ with respect to the direction of the height h of the spiral.
  • FIG. 1 there is shown the first step of the method of manufacturing a spiral according to the invention.
  • This step consists in taking a quartz bar 1 having for crystallographic axes xyz, and in cutting a blade 3 having for thickness the height h desired for the blade 3, for example of a few tenths millimeters.
  • the desired height h can also be obtained by cutting a blank which is then subjected in a known manner to a machining operation by chemical, physical or physicochemical means to thin the blade up to the height h .
  • This blade is cut along a plane xy 'forming an angle ⁇ with the xy plane perpendicular to the crystallographic axis z, that is to say by rotation of the xy plane by an angle ⁇ about the x axis.
  • Figure 2 also shows schematically, for an enlarged portion spiral near the curve in the center, the following steps of the process. These steps consist, according to known methods for the manufacture of micro-structures, to photolithographically form a mask for delimiting the contour 5 of the spiral, and define outside of said contour areas 7 to be eliminated to create the spiral.
  • the photolithography and etching process allows, if desired, at the same time form the clip on the outside and attach it to the center, ie a ferrule coming from material with the spiral. It also allows to freely choose other spiral parameters to improve its performance, such as the thickness of turns and / or their pitch, and this at any point of the development of the spiral.
  • the elimination of the zones 7 situated outside the contour can be carried out according to known methods, for example for the manufacture of tuning forks of electronic watches.
  • a wet etching can be carried out, in particular etching by means of a mixture of hydrofluoric acid and ammonium fluoride (HF / NH 4 F). It is also possible to carry out a dry attack, for example using the technique of reactive ion etching.
  • FIG. 4 represents a beam of curves giving the variation of running as a function of the temperature and showing how it is possible, by a simple variation of the angle ⁇ to obtain a minimum difference of market with balances having different coefficients of dilation, as shown in Table 1 below: coefficient of expansion ⁇ Angle ⁇ curve of 5.10 -6 K -1 - 14.6 ° curve e 10.10 -6 K -1 - 7 ° curve f 15.10 -6 K -1 + 7 °
  • the curve g corresponds to the tuning fork of an electronic watch taken as a reference.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Springs (AREA)
  • Micromachines (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Le spiral est structuré par photolithographie et gravure dans une lame préalablement découpée dans un monocristal de quartz de sorte que la hauteur h des spires forment avec l'axe cristallographique z un angle θ permettant d'adapter le comportement thermique du spiral à celui du balancier en réduisant ainsi l'écart de marche du aux variations de température. <IMAGE>

Description

La présente invention à pour objet un résonateur balancier-spiral thermocompensé permettant de réduire l'écart thermique de marche diurne d'un mouvement horloger mécanique à un niveau comparable à celui d'une montre électronique à quartz.
Il est bien connu que l'écart de marche diurne d'un mouvement mécanique dépend essentiellement des organes réglants, et notamment du balancier-spiral dont la fréquence d'oscillation peut être influencée par des variations des facteurs extérieurs, tels qu'un changement de température ou la présence d'un champ magnétique. La température agit notamment à la fois sur le moment d'inertie du balancier et sur la constante élastique du spiral, et modifie la fréquence du balancier-spiral qui est en effet fonction de ces deux paramètres.
En ce qui concerne le balancier, il est généralement réalisé un alliage amagnétique tels que le glucydur, faisant que le mouvement oscillatoire du balancier ne peut pas être perturbé par la proximité de matériaux magnétiques. Pour minimiser l'influence de la température sur le moment d'inertie du balancier, c'est-à-dire en fait sur la variation de son rayon de giration, de très nombreux dispositifs ont été proposés dès les années 1900, ces dispositifs étant essentiellement basés sur le principe du balancier bimétallique coupé.
Ces dispositifs ne seront pas décrits plus avant, étant donné que l'invention ne concerne pas des caractéristiques géométriques du balancier en tant que tel.
En ce qui concerne le spiral, on a déjà depuis longtemps, d'une façon encore considérée comme satisfaisante, minimisé les écarts de marche dus aux variations de température en les fabriquant dans des alliages dont l'élasticité reste pratiquement constante dans la gamme de températures usuelles d'utilisation. Il s'agit notamment d'alliages fer-nickel contenant également du chrome et du titane comme durcissants ainsi que divers autres éléments (C, Mo, Be, etc). De tels alliages, bien connus sous les dénominations telles que l'"Elinvar" permettent, dans la meilleure qualité d'obtenir un écart de marche de ± 0,6 seconde par degré en 24h, mais peuvent encore être sensibles à l'effet d'un champs magnétique. De plus leur fabrication fait appel à des procédés métallurgiques complexes ne permettant pas de garantir une reproductibilité parfaite des caractéristiques recherchées, de sorte qu'il est encore nécessaire de procéder à l'appairage du balancier et du spiral lors du montage.
L'invention a pour but de pallier aux inconvénients de l'art antérieur précité en procurant un balancier-spiral présentant un écart de marche encore plus faible en raison notamment d'un spiral réalisé en un matériau amagnétique dont les coefficients de dilatation et la variation thermique du module d'élasticité permettent, lors de la fabrication, d'adapter la constante élastique dudit spiral au moment d'inertie du balancier.
On rappellera que la constante élastique du spiral, autrement désignée par "couple unitaire du spiral" répond à la formule I : C = Ehe 3 12L dans laquelle E est le module d'élasticité, h la hauteur du spiral, e son épaisseur et L sa longueur développée. La fréquence du balancier-spiral peut être reliée à la formule I par la formule II : f = 1 C I dans laquelle I représente le moment d'inertie du balancier, correspondant à la formule III : I = mr 2 dans laquelle m représente la masse et r le rayon de giration qui dépend évidemment du coefficient de dilatation α du balancier.
A cet effet l'invention concerne un balancier-spiral pour mouvement horloger mécanique dans lequel le spiral est formé de spires de hauteur h réalisées à partir d'un monocristal de quartz d'axes cristallographiques x, y, z, l'axe x, étant l'axe électrique et l'axe y l'axe mécanique, la hauteur h des spires ayant sensiblement la même orientation que l'axe cristallographique z. Plus précisément la hauteur h forme avec l'axe z un angle  qui peut varier entre + 25° et - 25°, de préférence entre + 10° et - 15°, ce qui permet de faire varier la constante élastique du spiral sans en modifier la géométrie.
Grâce à cette conception du spiral, il est ainsi possible d'adapter très simplement la constante élastique dudit spiral (formule I) au coefficient de dilatation linéaire α du balancier, qui modifie le moment d'inertie (formule III) dudit balancier, afin que la fréquence (formule II) du résonateur balancier-spiral soit thermocompensée.
L'utilisation du quartz pour la fabrication d'un spiral offre également l'avantage, outre ses excellentes caractéristiques thermiques, de posséder aussi d'excellentes propriétés mécaniques et chimiques, en particulier au niveau du vieillissement, de l'oxydation et de la sensibilité aux champs magnétiques.
L'invention concerne également un procédé de fabrication d'un tel spiral consistant à :
  • découper dans un barreau de quartz d'axes cristallographiques x y z une lame dont l'épaisseur sera éventuellement amincie à une hauteur h désirée pour les spires ;
  • former par photolithographie à la surface de la lame un masque dont le contour délimite la forme désirée pour le spiral,
  • effectuer une gravure par voie humide ou par voie sèche pour éliminer le quartz se trouvant à l'extérieur du contour créé, et libérer le spiral.
La technique de photolithographie et gravure permet, d'une part de former dans la lame de quartz, en même temps que le spiral en tant que tel, son attache à l'extérieur et la virole de fixation au centre, d'autre part de choisir librement d'autres paramètres du spiral tels que l'épaisseur e des spires ou leur pas, en un point quelconque de son développement.
Pour modifier le couple élastique du spiral et l'adapter au coefficient de dilatation linéaire d'un balancier donné, la lame de quartz est découpée selon un plan formant un angle π/2 -  par rapport à l'axe cristallographique z, soit de façon équivalente en formant par rotation autour de l'axe x, un angle  par rapport à la direction de la hauteur h du spiral.
D'autres caractéristiques et avantages de la présente invention apparaítront dans la description qui suit, faite à titre illustratif et non limitatif en référence aux dessins annexés dans lesquels :
  • les figures 1 et 2 représentent les étapes essentielles du procédé de fabrication d'un spiral en quartz selon l'invention;
  • la figure 3 est un graphique représentant l'écart de marche en fonction de la température d'un spiral en quartz selon l'invention, avec une courbe de comparaison, et
  • la figure 4 est un graphique comparable à celui de la figure 3 dans lequel le spiral est réalisé à partir de lames de quartz découpées selon différents angles de coupe.
A la figure 1 on a représenté la première étape du procédé de fabrication d'un spiral selon l'invention. Cette étape consiste à prendre un barreau de quartz 1 ayant pour axes cristallographiques x y z, et à découper une lame 3 ayant pour épaisseur la hauteur h désirée pour la lame 3, par exemple de quelques dixièmes millimètres. La hauteur h désirée précise peut également être obtenue en découpant une ébauche qu'on soumet ensuite de façon connue à une opération d'usinage par des moyens chimiques, physiques ou physico-chimiques pour amincir la lame jusqu'à la hauteur h. Cette lame est découpée selon un plan x y' formant un angle  avec le plan x y perpendiculaire à l'axe cristallographique z, c'est-à-dire par rotation du plan x y d'un angle  autour de l'axe x.
Comme on peut le voir sur la figure 2 représentant une portion de cette même lame 3 à plat, la direction de la hauteur h selon l'axe z' forme un angle  avec l'axe cristallographique z.
La figure 2 représente également schématiquement, pour une portion agrandie de spiral près de la courbe au centre, les étapes suivantes du procédé. Ces étapes consistent, selon des procédés connus pour la fabrication de micro-structures, à former par photolithographie un masque permettant de délimiter le contour 5 du spiral, et de définir à l'extérieur dudit contour des zones 7 devant être éliminées pour créer le spiral.
Le procédé de photolithographie et gravure permet, si on le souhaite, de former en même temps l'attache à l'extérieur et l'attache au centre, c'est-à-dire une virole venant de matière avec le spiral. Il permet aussi de choisir librement d'autres paramètres du spiral pour en améliorer ses performances, tels que l'épaisseur des spires et/ou leur pas, et ceci en un point quelconque du développement du spiral.
L'élimination des zones 7 situées à l'extérieur du contour peut être effectuée selon des procédés connus, par exemple pour la fabrication des diapasons des montres électroniques. On peut effectuer une attaque par voie humide en particulier une attaque chimique au moyen d'un mélange d'acide fluorhydrique et de fluorure d'ammonium (HF/NH4F). On peut également effectuer une attaque par voie sèche, en faisant par exemple appel à la technique de gravure ionique réactive.
En se référant maintenant à la figure 3, on a représenté l'écart de marche en secondes par jour en fonction de la température pour un spiral en quartz (courbe a) lorsque le balancier est réalisé en un matériau ayant un coefficient de dilatation α = 14 10-6 K-1 et un diapason de montre électronique (courbe b), tous les deux fabriqués avec un angle  = 2°. On a également représenté par des traits verticaux la gamme de températures à retenir à fin de comparaison selon les normes COSC (Contrôle Officiel Suisse des Chronomètres), à savoir entre + 8°C et + 38°C. On peut observer que les courbes a et b sont très proches l'une de l'autre dans la gamme COSC, l'écart maximum à partir du point de retournement 10 ayant respectivement pour valeurs Δa = 0,5s/j et Δb = 1,2s/j.
La figure 4 représente un faisceau de courbes donnant l'écart de marche en fonction de la température et montrant comment il est possible, par une simple variation de l'angle  d'obtenir un écart de marche minimum avec des balanciers ayant différents coefficients de dilatation, comme indiqué dans le tableau 1 ci-après :
coefficient de dilatation α Angle 
courbe d 5.10-6 K-1 - 14,6°
courbe e 10.10-6 K-1 - 7°
courbe f 15.10-6 K-1 + 7°
La courbe g correspond au diapason d'une montre électronique pris comme référence.
On peut observer que, dans la gamme COSC couvrant 30°C, l'écart maximum est d'environ Δmax = -0,6s/j, soit encore de l'ordre de 0,02 seconde par degré en 24h, valeur très inférieure à celle qu'on peut obtenir avec un spiral métallique de la meilleure qualité.

Claims (12)

  1. Résonateur balancier-spiral pour mouvement horloger mécanique comportant un spiral de constante élastique C et un balancier de moment d'inertie I, caractérisé en ce que le spiral est formé de spires de hauteur h réalisées à partir d'un monocristal de quartz.
  2. Résonateur balancier-spiral selon la revendication 1, caractérisé en ce que le quartz est sous forme cristallisée selon des axes cristallographiques x y z, l'axe x étant l'axe électrique et y l'axe mécanique.
  3. Résonateur balancier-spiral selon la revendication 2, caractérisé en ce que la direction z' selon la hauteur h des spires forme un angle  avec l'axe de cristallisation z du quartz, après rotation autour de l'axe x.
  4. Résonateur balancier-spiral selon la revendication 3, caractérisé en ce que l'angle  a une valeur comprise entre + 25° et - 25°, de préférence entre +10° et -15°.
  5. Résonateur balancier-spiral selon la revendication 4, caractérisé en ce que les valeurs limites de l'angle  permettent d'adapter la constante élastique dudit spiral au coefficient de dilatation du balancier.
  6. Résonateur balancier-spiral selon la revendication 3, caractérisé en ce que l'appairage de la constante élastique C du spiral et du moment d'inertie I du balancier, en ce qui concerne leurs caractéristiques thermiques, est effectué en choisissant une valeur appropriée de l'angle .
  7. Procédé de fabrication d'un résonateur balancier-spiral comportant un spiral dont la courbe au centre est assujettie par une virole à un balancier, caractérisé en ce que le spiral de hauteur h est obtenu en effectuant les étapes consistant à :
    découper dans un monocristal de quartz d'axes cristallographiques x y z, l'axe x étant l'axe électrique et y l'axe mécanique, une lame d'axes x y' z', amincie si nécessaire à la hauteur h;
    former par photolithographie à la surface de la lame un masque permettant de délimiter le contour désiré pour le spiral; et
    effectuer une gravure pour éliminer le quartz se trouvant à l'extérieur du contour du spiral, et libérer le spiral.
  8. Procédé selon la revendication 7, caractérisé en ce que la lame dans laquelle est formé le spiral est découpée dans le quartz selon un plan x y' z' formant un angle  par rapport au plan défini par les axes cristallographiques x y z du quartz par rotation autour de l'axe x, ledit angle  pouvant varier entre + 25° et -25°, de préférence entre +10° et -15°.
  9. Procédé selon la revendication 7, caractérisé en ce que l'attaque permettant d'éliminer le quartz situé à l'extérieur du contour du spiral est effectuée par voie humide, de préférence par attaque chimique au moyen d'un mélange HF/NH4F.
  10. Procédé selon la revendication 7, caractérisé en ce que l'attaque permettant d'éliminer le quartz situé à l'extérieur du contour du spiral est effectuée par voie sèche, telle que par gravure ionique réactive.
  11. Procédé selon la revendication 7, caractérisé en ce que les étapes de photolithographie et gravure permettent de former en même temps que le spiral son attache à l'extérieur, la virole de fixation au centre et de choisir d'autres paramètres de construction tels que l'épaisseur des spires ou leur pas.
  12. Procédé selon la revendication 8, caractérisé en ce que les valeurs limites de l'angle de coupe  permettent d'adapter la constante élastique du spiral obtenu au coefficient de dilatation d'un balancier.
EP03021787A 2003-09-26 2003-09-26 Résonateur balancier-spiral thermocompensé Expired - Lifetime EP1519250B1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE60333191T DE60333191D1 (de) 2003-09-26 2003-09-26 Spiralfeder-Unruh-Resonator mit Thermokompensation
EP03021787A EP1519250B1 (fr) 2003-09-26 2003-09-26 Résonateur balancier-spiral thermocompensé
US10/943,855 US7503688B2 (en) 2003-09-26 2004-09-20 Thermoregulated sprung balance resonator
TW093128448A TWI372952B (en) 2003-09-26 2004-09-20 Thermoregulated sprung balance resonator
KR1020040075712A KR20050030558A (ko) 2003-09-26 2004-09-22 열조절 스프링 밸런스 공진기
CNB2004100801241A CN100483271C (zh) 2003-09-26 2004-09-23 温控的游丝摆轮谐振器
JP2004279139A JP4805560B2 (ja) 2003-09-26 2004-09-27 温度変化に対して調節されるばねてんぷ共振器
HK05106159.9A HK1073697A1 (en) 2003-09-26 2005-07-21 Thermoregulated sprung balance resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03021787A EP1519250B1 (fr) 2003-09-26 2003-09-26 Résonateur balancier-spiral thermocompensé

Publications (2)

Publication Number Publication Date
EP1519250A1 true EP1519250A1 (fr) 2005-03-30
EP1519250B1 EP1519250B1 (fr) 2010-06-30

Family

ID=34178504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03021787A Expired - Lifetime EP1519250B1 (fr) 2003-09-26 2003-09-26 Résonateur balancier-spiral thermocompensé

Country Status (8)

Country Link
US (1) US7503688B2 (fr)
EP (1) EP1519250B1 (fr)
JP (1) JP4805560B2 (fr)
KR (1) KR20050030558A (fr)
CN (1) CN100483271C (fr)
DE (1) DE60333191D1 (fr)
HK (1) HK1073697A1 (fr)
TW (1) TWI372952B (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1791039A1 (fr) 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Spiral en verre athermique pour mouvement d'horlogerie et son procédé de fabrication
JP2008501967A (ja) * 2004-06-08 2008-01-24 セーエスエーエム サントル スイス ドュレクトロニック エ ドゥ ミクロテクニック エスアー ルシェルシュ エ デヴロプマン 温度補償天輪/ヒゲゼンマイ発振器
WO2012127035A1 (fr) 2011-03-23 2012-09-27 Lvmh Swiss Manufactures Sa Element oscillant pour organe reglant horloger
EP2703910A2 (fr) 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
EP3056948A1 (fr) * 2015-02-17 2016-08-17 Master Dynamic Limited Spirale de silicium

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445670A1 (fr) 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
US8333501B2 (en) * 2005-05-14 2012-12-18 Carbontime Limited Balance spring, regulated balance wheel assembly and methods of manufacture thereof
EP1818736A1 (fr) * 2006-02-09 2007-08-15 The Swatch Group Research and Development Ltd. Virole anti-choc
KR20070096834A (ko) * 2006-03-24 2007-10-02 에타 쏘시에떼 아노님 마누팍투레 홀로게레 스위세 절연성 물질로 만들어지는 미세-기계 부분 및 상기 부분을제조하기 위한 방법
EP1921516B1 (fr) * 2006-11-09 2010-01-13 ETA SA Manufacture Horlogère Suisse Elément d'assemblage comportant deux séries de structures élastiques et pièce d'horlogerie comportant cet élément
DE602006014280D1 (de) * 2006-11-09 2010-06-24 Eta Sa Mft Horlogere Suisse Montageelement, das dehnbare Strukturen in Form von Gabeln umfasst, und dieses Element umfassende Uhr
DE602006014554D1 (de) * 2006-11-09 2010-07-08 Eta Sa Mft Horlogere Suisse Montageelement, das dehnbare Strukturen in Form von aufeinander liegenden Plättchen umfasst, und mit diesem Element ausgerüstete Uhr
WO2009068091A1 (fr) * 2007-11-28 2009-06-04 Manufacture Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S.A. Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP2105807B1 (fr) * 2008-03-28 2015-12-02 Montres Breguet SA Spiral à élévation de courbe monobloc et son procédé de fabrication
EP2151722B8 (fr) 2008-07-29 2021-03-31 Rolex Sa Spiral pour résonateur balancier-spiral
CH699882A2 (fr) * 2008-11-06 2010-05-14 Montres Breguet Sa Spiral à élévation de courbe en matériau micro-usinable.
CH700059A2 (fr) * 2008-12-15 2010-06-15 Montres Breguet Sa Spiral à élévation de courbe en matériau à base de silicium.
US8720286B2 (en) * 2009-11-06 2014-05-13 Baker Hughes Incorporated Temperature insensitive devices and methods for making same
EP2395661A1 (fr) * 2010-06-10 2011-12-14 The Swatch Group Research and Development Ltd. Résonateur thermocompensé aux premier et second ordres
US8562206B2 (en) * 2010-07-12 2013-10-22 Rolex S.A. Hairspring for timepiece hairspring-balance oscillator, and method of manufacture thereof
EP2867734B1 (fr) * 2012-06-28 2016-05-04 Nivarox-FAR S.A. Ressort-moteur pour une piece d'horlogerie
JP6486697B2 (ja) * 2014-02-26 2019-03-20 シチズン時計株式会社 ひげぜんまいの製造方法及びひげぜんまい
FR3032810B1 (fr) * 2015-02-13 2017-02-24 Tronic's Microsystems Oscillateur mecanique et procede de realisation associe
EP3176651B1 (fr) * 2015-12-02 2018-09-12 Nivarox-FAR S.A. Procédé de fabrication d'un ressort-spiral d'horlogerie

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732635A1 (fr) 1995-03-17 1996-09-18 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Pièce de micro-mécanique et procédé de réalisation
US20030011119A1 (en) * 2000-02-07 2003-01-16 Masato Imai Quartz coil spring and method of producing the same
EP1302821A2 (fr) * 2001-10-10 2003-04-16 Franck Muller-Watchland SA Ressort spiral pour appareil à mesurer le temps

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH564219A (fr) * 1969-07-11 1975-07-15
JPS5329518B2 (fr) * 1974-03-15 1978-08-21
US4410827A (en) * 1980-04-24 1983-10-18 Kabushiki Kaisha Suwa Seikosha Mode coupled notched tuning fork type quartz crystal resonator
JPH06117470A (ja) * 1992-10-07 1994-04-26 Yokogawa Electric Corp 渦巻きバネ及び指示電気計器
DE19651321C2 (de) * 1996-12-11 2002-08-14 Lothar Schmidt Unruh
US6877893B2 (en) * 1998-07-14 2005-04-12 Elmar Mock Timepiece with mechanical regulation
JP2004007420A (ja) * 2002-03-26 2004-01-08 Seiko Epson Corp 圧電振動片、圧電振動子および圧電デバイス
FR2842313B1 (fr) * 2002-07-12 2004-10-22 Gideon Levingston Oscilliateur mecanique (systeme balancier et ressort spiral) en materiaux permettant d'atteindre un niveau superieur de precision, applique a un mouvement d'horlogerie ou autre instrument de precision
EP1422436B1 (fr) * 2002-11-25 2005-10-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Ressort spiral de montre et son procédé de fabrication
EP1445670A1 (fr) * 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0732635A1 (fr) 1995-03-17 1996-09-18 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Pièce de micro-mécanique et procédé de réalisation
US20030011119A1 (en) * 2000-02-07 2003-01-16 Masato Imai Quartz coil spring and method of producing the same
EP1302821A2 (fr) * 2001-10-10 2003-04-16 Franck Muller-Watchland SA Ressort spiral pour appareil à mesurer le temps

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501967A (ja) * 2004-06-08 2008-01-24 セーエスエーエム サントル スイス ドュレクトロニック エ ドゥ ミクロテクニック エスアー ルシェルシュ エ デヴロプマン 温度補償天輪/ヒゲゼンマイ発振器
EP1791039A1 (fr) 2005-11-25 2007-05-30 The Swatch Group Research and Development Ltd. Spiral en verre athermique pour mouvement d'horlogerie et son procédé de fabrication
WO2007059876A2 (fr) 2005-11-25 2007-05-31 The Swatch Group Research And Development Ltd Spiral en verre athermique pour mouvement d’horlogerie et son procede de fabrication
JP2009517637A (ja) * 2005-11-25 2009-04-30 ザ スウォッチ グループ リサーチ アンド ディベロップメント リミティド. 時計のムーブメント用の熱ガラス製ゼンマイとその製造方法
US7753581B2 (en) 2005-11-25 2010-07-13 The Swatch Group Research And Development Ltd Spiral spring made of athermal glass for clockwork movement and method for making same
WO2012127035A1 (fr) 2011-03-23 2012-09-27 Lvmh Swiss Manufactures Sa Element oscillant pour organe reglant horloger
EP2703910A2 (fr) 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
EP2703909A1 (fr) 2012-09-04 2014-03-05 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
EP2703910A3 (fr) * 2012-09-04 2014-05-14 The Swatch Group Research and Development Ltd. Résonateur balancier - spiral appairé
US9030920B2 (en) 2012-09-04 2015-05-12 The Swatch Group Research And Development Ltd. Resonator with matched balance spring and balance
EP3056948A1 (fr) * 2015-02-17 2016-08-17 Master Dynamic Limited Spirale de silicium
US9903049B2 (en) 2015-02-17 2018-02-27 Master Dynamic Limited Silicon hairspring

Also Published As

Publication number Publication date
TW200512553A (en) 2005-04-01
TWI372952B (en) 2012-09-21
US7503688B2 (en) 2009-03-17
HK1073697A1 (en) 2005-10-14
KR20050030558A (ko) 2005-03-30
JP2005106819A (ja) 2005-04-21
EP1519250B1 (fr) 2010-06-30
CN100483271C (zh) 2009-04-29
US20050068852A1 (en) 2005-03-31
DE60333191D1 (de) 2010-08-12
CN1601402A (zh) 2005-03-30
JP4805560B2 (ja) 2011-11-02

Similar Documents

Publication Publication Date Title
EP1519250B1 (fr) Résonateur balancier-spiral thermocompensé
EP2154583B1 (fr) Spiral pour résonateur balancier-spiral
EP3181938B1 (fr) Procede de fabrication d&#39;un spiral d&#39;une raideur predeterminee par retrait de matiere
EP2175328B1 (fr) Mouvement horloger comportant un spiral plat
WO2009068091A1 (fr) Oscillateur mécanique présentant un coefficient thermoélastique optimisé
EP3181939B1 (fr) Procede de fabrication d&#39;un spiral d&#39;une raideur predeterminee par ajout de matiere
EP2104006B1 (fr) Double spiral monobloc et son procédé de fabrication
EP3181940B2 (fr) Procede de fabrication d&#39;un spiral d&#39;une raideur predeterminee par retrait localise de matiere
EP2423764B1 (fr) Dispositif pour la mesure du couple d&#39;un spiral
EP1605182B1 (fr) Oscillateur balancier-spiral compensé en température
EP3159746B1 (fr) Spiral en silicium fortement dopé pour pièce d&#39;horlogerie
EP3769161A1 (fr) Procede de fabrication de spiraux horlogers thermocompenses de raideur precise
EP3416001B1 (fr) Procédé de fabrication d&#39;un oscillateur à pivot flexible
CN111801627B (zh) 硅基钟表弹簧的制造方法
EP2703909A1 (fr) Résonateur balancier - spiral appairé
EP3982205A1 (fr) Procede de fabrication d&#39;un ressort horloger de raideur precise
CH710308A2 (fr) Résonateur en silicium thermocompensé.
CH717124A2 (fr) Procédé de fabrication d&#39;un dispositif à lames flexibles monobloc en silicium, notamment pour l&#39;horlogerie.
EP3865954A1 (fr) Procédé de fabrication d&#39;un dispositif à lames flexibles monobloc en silicium, pour l&#39;horlogerie
EP4111264A1 (fr) Composant horloger en silicium pour pièce d&#39;horlogerie
EP3908887A1 (fr) Organe régulateur pour mouvement horloger
FR2883370A1 (fr) Procede de fabrication d&#39;un resonateur mecanique en etoile pour dispositif de mesure gyrometrique
CH705127A2 (fr) Résonateur thermocompensé à deux spiraux.
CH706911A2 (fr) Résonateur balancier - spiral appairé.
CH711960A2 (fr) Procédé de fabrication d&#39;un spiral d&#39;une raideur prédéterminée par retrait de matière.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050930

AKX Designation fees paid

Designated state(s): CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 20060911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60333191

Country of ref document: DE

Date of ref document: 20100812

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60333191

Country of ref document: DE

Effective date: 20110330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: THE SWATCH GROUP RESEARCH AND DEVELOPMENT LTD , CH

Free format text: FORMER OWNER: ASULAB S.A., CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220819

Year of fee payment: 20

Ref country code: DE

Payment date: 20220616

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220818

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221001

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60333191

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230925