EP1518235A1 - Corrosion resistive silver metal alloys for optical data storage and recordable optical storage media containing same - Google Patents
Corrosion resistive silver metal alloys for optical data storage and recordable optical storage media containing sameInfo
- Publication number
- EP1518235A1 EP1518235A1 EP03739290A EP03739290A EP1518235A1 EP 1518235 A1 EP1518235 A1 EP 1518235A1 EP 03739290 A EP03739290 A EP 03739290A EP 03739290 A EP03739290 A EP 03739290A EP 1518235 A1 EP1518235 A1 EP 1518235A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- optical data
- storage medium
- data recording
- silver
- silver alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/06—Alloys based on silver
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/259—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on silver
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04186—Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
- H01M8/04194—Concentration measuring cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/257—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
- G11B7/2578—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/2585—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/2595—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on gold
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/146—Laser beam
Definitions
- the present invention relates to optical data storage and, more particularly to storage media containing reflective layers formed from silver-reactive metal alloys, specifically alloys of silver with the rare earth metal samarium.
- Reflective metal thin films are used in creating optical storage media. These thin metal layers are sputtered onto patterned transparent disks to reflect a laser light source. The reflected laser light is read as light and dark spots of certain length, converted into electrical signals, and transformed into images and sounds associated with music, movies, and data. All optical media formats, including compact disk (CD), laser disk (LD), and digital video disk (DVD), employ at least a single reflective metal layer, LI, for which aluminum is the metal of choice . More advanced optical media technology utilizes multiple reflective layers to increase the storage capacity of the media. For instance, many DVD's such as DVD 9, DVD 14, and DVD 18 contain two reflective layers, which enables two layers of information to be read from one side of the disk.
- the second layer known as the L0 semi- reflective layer, must be thin enough, typically less than 10 run, to allow the underlying LI layer to be read, but it must still be sufficiently reflective, about 18% to about 30% reflectivity, to be read.
- the disk can further include one or more additional semi-reflective layers read from the same side as the LI and L0 layers. The construction and reading methodology of a DVD containing two reflective layers is shown in FIG. 1.
- the lengths of the pits are read using an internal clock timing and converted into a high frequency electrical signal, which is truncated to generate square waves and transformed into a binary electrical data stream.
- PI the total number of unreadable pits within a specified area; while industry standards allow for 280 defects, many companies hold this parameter to a maximum of 100
- the initial quality of the master used for making the polycarbonate disks, the polycarbonate, and the reflective materials are critical to the production of accurate data. Not only must the metallizing material be capable of uniform deposition and reflectivity, it must also be capable of fully filling the data storage pits that store the data.
- the industry uses an environmental test that subjects the disk to a specific temperature and humidity for a specified period of time. The industry standard for this test is temperature of 70°C at 50% relative humidity for 96 hours (70/50/96). Many companies have adapted stricter internal specifications to raise the temperature to 80°C and humidity to 85% for 96 hours (80/85/96).
- the data storage disks are scanned for errors, exposed to the environmental testing chamber, and subsequently re-analyzed for errors. Any failures at any testing stage, based on industry standards for error rates, or marked deterioration, even if not actually failing, after environmental testing will lead to rejections.
- the environmental testing demands a corrosion resistant material for the reflective metallizations. While a thickness of 20 nm of Al generally is adequate for the fully reflective layer as produced, a thickness of 40 nm may be required to provide adequate reflectivity after environmental exposure. Typically, about half of the original aluminum layer is transformed into transparent aluminum oxide during this environmental test. The semi-reflective layer is dramatically more critical since its apparent thickness and reflecting qualities cannot change by more than about 10% of its original relative value during environmental exposure.
- Aluminum, gold, silicon and silver alloys have been successfully used to create reflective layers for optical storage media. Because of its low cost, excellent reflectivity and sputtering characteristics on polymeric materials, aluminum is an especially preferred metal for a reflective coating that is used almost exclusively whenever there is only one reflective data layer and is also used to form the fully reflective LI layer on a two-layer DVD. However, aluminum oxidizes readily, and its reflectivity can be compromised upon environmental exposure. This oxidation prohibits the use of aluminum for all but the fully reflective layer, where it is deposited more heavily than the semi-reflective layer would allow. Gold and silicon were the first materials to be used for the semi-reflective layer in DVD construction, but both materials have significant drawbacks.
- Gold provides excellent reflectivity of red laser light, excellent sputtering characteristics, and superior corrosion resistance but is very costly. Silicon is also reflective and free from corrosion but does not sputter as efficiently as the other metals. Furthermore, silicon is brittle, and cracks may form during thermal cycling and mechanical flexing, which prevents delicate data from being read.
- U.S. Patent No. 5,640,382 describes the construction of a DVD data storage disk, and U.S. Patent No. 5,171,392 describes the use of gold and silicon for the semi-reflective data storage layer; the disclosures of these patents are incorporated herein by reference. Silver, like gold, has excellent sputtering characteristics and reflectivity, but the corrosion resistance of pure silver is inadequate for it to be used as the semi- reflective layer.
- the present invention is directed to an optical data recording and storage medium that includes a reflective layer formed from a silver alloy that comprises, in addition to silver, about 0.1 to about 4.0 wt.%, based on the total weight of alloy, of samarium (Sm).
- a reflective layer formed from a silver alloy that comprises, in addition to silver, about 0.1 to about 4.0 wt.%, based on the total weight of alloy, of samarium (Sm).
- FIG. 1 is a schematic representation of an optical data storage disk that depicts two reflective layers, one of which is a thin semi-reflective layer, and their positions in the disk.
- FIG 2 is a schematic representation of pits and lands corresponding to digital data recorded on an optical data storage disk , together with a reflective signal produced by this layer.
- FIG 3 is a graph showing the reflectivity of metallic silver, aluminum, and gold over the visible spectrum of light.
- FIG 4 is a schematic illustration of an electrical signal as it is read from an optical media storage disk.
- FIG 5 is an illustration of the data tracks in various optical media formats.
- FIG. 1 schematically depicts an optical data storage disk D containing reflective layers LI and L0.
- Reflective layer LI is the fully reflective layer and is typically formed from aluminum.
- the thin semireflective layer L0 is formed from a silver alloy of the present invention.
- Light from a laser source that is reflected from layer LI is designated RLl; similarly, light reflected from layer L0 is designated RLO.
- the reflected light RLl and RLO is sensed by detectors. It should be noted that the light from a laser source must penetrate the semi-reflective layer L0 twice in order to read layer LI .
- layers 1 and 3 which typically are formed from a plastic such as polycarbonate or poly(methyl methacrylate) (PMMA), are imprinted with digital information comprising pits and lands.
- Layer 2 is an adhesive layer, typically comprising a UV-curable epoxy material, that is used to join layers 1 and 3.
- FIG. 2 schematically illustrates the digital interpretation of the information stored on optical data disk D.
- the lands are at a distance from the laser and the detector such that reflected signals return to the detector in phase (bright), while the pits are at a second distance such that the signal returns to the detector out of phase (dark).
- FIG. 3 shows the reflectivity of several important metals — -silver, aluminum, and gold — over the visible spectrum of light. Most optical data disks are read with light waves approximately 650 nm, in the red portion of the visible spectrum. More recently, however, blue light-emitting laser diodes have become commercially available, which enables the storage and reading of much denser data. As shown in FIG. 3, metallic silver exhibits high reflectivity across the entire visible light spectrum.
- FIG 4 illustrates the sinusoidal electrical signal read from an optical media storage disk that depicts how it is truncated and compared to an internal clock to decipher the pulse length and data contained on the disk.
- FIG 5 is an illustration of the data tracks and pits used for data storage on CD, DVD and Blu-ray optical media formats.
- the new blue laser format which employs a higher frequency (higher clock rate) laser to discern smaller data pits with less distance between tracks, allows for five times as much data as on a disk using a red laser, making it especially useful for high definition television (HDTV) formats.
- Optical data recording and storage disks having reflective layers formed from silver alloys of the present invention can be used with blue lasers.
- Corrosion resistant silver based alloys are formed, in accordance with the present invention, by the inclusion of about 0.1 to about 4.0 wt.%, preferably about 0.2 to about 1.0 wt.%, more preferably, about 0.25 to about 0.35 wt.%, based on the total weight of alloy, of the rare earth metal samarium (Sm).
- the high solubility of samarium (Sm) compared to other reactive rare earth metals enables it to be added in relatively large amounts of the metal without the formation of secondary phases, which can become particulates during sputtering and cause defects in the reflective coating.
- a multiphase alloy may sputter as a single-phase layer, but if the coated layer is not stable as a single-phase material, then thermal exposure can cause the precipitation of the second phase, and this too will result in defects, particularly under harsh test conditions. For example, separation of a rare earth metal phase in a silver alloy comprising a semi-reflective layer may create dark spots and cause errors in the optical data.
- the added rare earth metal exhibit high reactivity to air.
- Sm samarium
- samarium (Sm) has the highest solubility in silver. Also, as a consequence of its high reactivity, addition of small amounts of samarium (Sm) provides desirably high corrosion resistance.
- the rare earth metal neodymium (Nd) is included in silver-based alloys described in U.S. Patent Application Publication No. 2002/0150772, the disclosure of which is incorporated by reference. However, as shown in TABLE 1, the solubility in silver of neodymium (Nd) is substantially less than that of Samarium (Sm).
- Copper (Cu) can also be optionally included in the silver alloys of the present invention to facilitate their manufacturability as well as to improve their shelf life and their corrosion resistance when exposed to the harshest environmental testing conditions.
- the amount of copper (Cu) included in the alloys is preferably about 0.2 to about 2.0 wt.%, more preferably, about 0.25 to about 1.0 wt.%, based on the total weight of alloy.
- Titanium (Ti) while it does not add substantially to corrosion resistance, has good solubility, 2 wt.%, in silver, and can also be optionally included in the silver alloys of the present invention because of its scavenging effect during melting and alloying. It also acts as a grain refiner during rolling and annealing of the cast alloy ingots used to make the sputtering targets.
- the amount of titanium (Ti) included in the alloys is preferably about 0.05 to about 0.5 wt%, more preferably, about 0.1 to about 0.3 wt%, based on the total weight of the alloy.
- Manganese (Mn) although it may add only marginally to corrosion resistance, has high solubility, 33 wt%, in silver and can also be optionally included in the silver alloys of the present invention, providing improvement in sputtering characteristics and control of reflectivity.
- the amount of manganese (Mn) included in the alloys is preferably about 0.1 to about 1.5 wt%, more preferably, about 0.2 to about 0.8 wt%, based on the total weight of the alloy.
- the amount of aluminum (Al) included in the alloys is preferably about 0.1 to about 0.8 wt%, more preferably, about 0.2 to about 0.4 wt%, based on the total weight of the alloy.
- Samarium (Sm) is included in the silver-based alloy of the present invention in an amount not exceeding more than about 4.0 wt.%, based on the total weight of the alloy. Addition of samarium (Sm) in an amount greater than about 4.0 wt.% may negatively affect silver reflectivity and thereby compromise the semi-reflective layer.
- the silver alloys of the present invention can also include, for the purpose of further enhancing corrosion resistance, a small amount of a precious metal such as gold, palladium, platinum, or mixtures thereof, preferably in a combined amount of up to about 2.5 wt.% based on the total weight of alloy.
- a precious metal such as gold, palladium, platinum, or mixtures thereof, preferably in a combined amount of up to about 2.5 wt.% based on the total weight of alloy.
- Thin semi-reflective layers can be formed from the alloys of the present invention by sputtering techniques well known in the art.
- the following examples of useful silver alloys are presented to illustrate the scope of the invention:
- Example 1 A silver based alloy containing about 3.0 wt.% Sm
- Example 2 A silver based alloy containing about 1.0 wt.% Sm
- Example 3 A silver based alloy containing about 0.5 wt.% Sm and about 0.5 wt.% Ti
- Example 4 A silver based alloy containing about 0.3 wt.% Sm and about 1.0 wt.% Cu
- Example 5 A silver based alloy containing about 1.5 wt.% Sm and about 0.5 wt.% Mn
- Example 6 A silver based alloy containing about 0.7 wt.% Sm and about 0.4 wt.% Al
- Example 7 A silver based alloy containing about 0.1 wt.% Sm, about 1.0 wt.% Cu, and about 0.5 wt.%> Ti
- Example 8 A silver based alloy containing about 0.9 wt.% Sm, about 0.1 wt.%) Ti, and about 1.0 wt.% Mn
- Example 9 A silver based alloy containing about 0.3 wt.% Sm, about 0.7 wt.% Cu , and about 0.7 wt.% Pt
- Example 10 A silver based alloy containing about 0.3 wt.% Sm, about 0.7 wt.% Cu , and about 0.7 wt.% Pd
- Example II A silver based alloy containing about 0.3 wt.% Sm, about 0.5 wt.%) Ti , and about 0.5 wt.% Au
- Example 12 A silver based alloy containing about 1.0 wt.%> Sm, about 0.3 wt.% Mn, and about 0.3 wt.% Pd
- Example 13 A silver based alloy containing about 0.5 wt.% Sm, about 1.0 wt.% Cu, about 0.5 wt.% Ti, and about 1.0 wt.% Mn
- Example 14 A silver based alloy containing about 0.3 wt.% Sm, about 0.7 wt.% Cu, about 0.2 wt.% Ti, and about 0.5 wt.% Mn
- TABLE 2 below contains test data showing the testing data from DVD's containing semi-reflective layers made from samarium (Sm)-containing silver alloys, along with various comparison DVD's. Three test conditions are shown for each alloy: 1) an initial test run shortly after preparation of the DVD; 2) 70/50/96 - a test following exposure of the DVD to a chamber at 70°C, 50%> relative humidity (RH) for 96 hours; 3) 80/85/96 - a test following chamber exposure at 80°C, 85%RH for 96 hours.
- RH relative humidity
- PI is the industry standard terminology for defective pits within a certain area
- jitter is caused by a combination of factors and is limited to 8%
- 1-14 is a measure of the longest pit based on the length of the internal clock.
- the test data are presented in pass (P) and fail (F) notation for each of the conditions and criteria.
- Current requirements for DVD environmental testing are based on the less harsh test of 70/50/96. However, most of the major DVD replicators use the more severe 80/85/96 test for internal quality assurance.
- a pure silver semi-reflective layer almost passes the industry specifications, failing only in jitter after the 70/50/96 test.
- control C-l can no longer be read.
- Inclusion of 0.7 wt.% copper (Cu) in the silver semi-reflective layer in comparison DVD C-2 improves jitter to a passing result under the standard industry test, but the more severe 80/85/96 exposure results in failure in all tests.
- the semi-reflective layers in comparison DVD's C-3 and C-4 are formed from silver-copper alloys that further include, respectively, 0.25 wt.%> aluminum (Al) and 0.75 wt.% manganese (Mn). Inclusion of these metals results in passing results in both the PI and jitter tests under 80/85/96 exposure conditions. However DVD's C-3 and C-4 fail the 1-14 test initially and under the two environmental exposure conditions.
- the semi-reflective layer in comparison DVD's C-5 and C-6 are formed from silver-copper alloys that further include, respectively, 0.75 wt.% of the medium air- reactive rare earth metal dysprosium (Dy) and 1.0 wt.% of the more air-reactive rare earth metal neodymium (Nd).
- Dy medium air- reactive rare earth metal dysprosium
- Nd more air-reactive rare earth metal neodymium
- comparison DVD's C-5 and C-6 fail the 1-14 test initially and under the two environmental exposure conditions.
- DVD C-5 also fails the 80/85/96 PI test.
- DVD's C-7, C-8, and C-9 are formed from silver alloys each containing 0.7 wt.% copper (Cu) and 0.5 wt.%> manganese (Mn) and, in addition, 0.25 wt.% of, respectively, the rare earth metals dysprosium (Dy), neodymium (Nd), and. cerium (Ce). Similar results are obtained from DVD's C-7, C-8, and C-9; each passes all tests except PI and Jitter under the 80/85/96 exposure conditions. As shown by comparison with DVD's C-5 and C-6, inclusion of manganese (Mn) in DVD's C-7, C-8, and C-9 results in improved 1-14 results under all test conditions.
- DVD's 1-1 and 1-2 of the present invention which include, respectively, 1.0 and 0.25 wt.%> samarium (Sm) in the silver semi-reflective layer, produce passing results in all three of the standard industry tests under 70/50/96 exposure conditions but failure in the same tests under 80/85/96 conditions.
- Sm samarium
- DVD 1-3 of the invention in which the semi-reflective layer is formed from a silver alloy containing 0.25 wt.% samarium (Sm) and 0.7 wt.%> copper (Cu), gives passing results in the three tests both under the standard 70/50/96 exposure conditions as well as under the more stringent 80/85/96 conditions.
- Sm samarium
- Cu copper
- DVD's 1-3, 1-4, and 1-5 of the present invention whose semi-reflective layers are formed from samarium (Sm)-containing silver alloys, with DVD's C-5 through C-9, in which the semi-reflective layers are formed from alloys containing other rare earth metals, specifically, dysprosium (Dy), neodymium (Nd), and cerium (Ce), shows the advantage of samarium (Sm) over other rare earths for protecting DVD's against damage, even under severe exposure conditions.
- Dy dysprosium
- Nd neodymium
- Ce cerium
- DVD 1-6 of the invention is similar to DVD 1-3 except for its silver alloy containing a higher concentration of samarium (Sm), 0.75 wt.% vs 0.25 wt.%; the concentration of copper in both alloys is the same, 0.7 wt.%. DVD 1-6 also produces very good test results, failing only the PI test under the stringent 80/85/96 conditions.
- Sm samarium
- DVD 1-7 of the invention which contains the same concentration of samarium (Sm), 1.0 wt.%, as DVD 1-1 but also includes 0.5 wt.% copper (Cu), gives very good results, failing only the 1-14 test under the 80/85/96 exposure conditions.
- DVD 1-8 of the invention is similar to DVD 1-3 except for its silver alloy containing a considerably higher concentration of samarium (Sm), 4.0 wt.% vs 0.25 wt.%; the concentration of copper in both alloys is the same, 0.7 wt.%.
- DVD 1-8 passes all three tests under the industry standard conditions but fails the PI and 1-14 tests under the stringent 80/85/96 conditions.
- samarium (Sm) at levels of preferably up to about 1.0 wt.%, more preferably, about 0.25 to about 0.35 wt.%>, in silver alloys comprising DVD semi-reflective layers, provides beneficial results under severe environmental test conditions.
- Further inclusion of copper (Cu) in amounts preferably up to about 1.0 wt.%, in the samarium (Sm)- containing silver alloys enhances the benefit.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Organic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Manufacturing Optical Record Carriers (AREA)
- Fuel Cell (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Magnetic Record Carriers (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39272902P | 2002-06-28 | 2002-06-28 | |
PCT/US2003/019866 WO2004003903A1 (en) | 2002-06-28 | 2003-06-24 | Corrosion resistive silver metal alloys for optical data storage and recordable storage media containing same |
US392729P | 2010-10-13 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1518235A1 true EP1518235A1 (en) | 2005-03-30 |
EP1518235B1 EP1518235B1 (en) | 2006-05-24 |
EP1518235B9 EP1518235B9 (en) | 2006-08-30 |
Family
ID=30000927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03739290A Expired - Lifetime EP1518235B9 (en) | 2002-06-28 | 2003-06-24 | Corrosion resistive silver metal alloys for optical data storage and recordable optical storage media containing same |
Country Status (9)
Country | Link |
---|---|
US (2) | US7033730B2 (en) |
EP (1) | EP1518235B9 (en) |
CN (1) | CN1326134C (en) |
AT (1) | ATE327553T1 (en) |
AU (1) | AU2003245661A1 (en) |
CA (1) | CA2490901C (en) |
DE (1) | DE60305495T2 (en) |
ES (1) | ES2263985T3 (en) |
WO (1) | WO2004003903A1 (en) |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7045187B2 (en) * | 1998-06-22 | 2006-05-16 | Nee Han H | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US7384677B2 (en) * | 1998-06-22 | 2008-06-10 | Target Technology Company, Llc | Metal alloys for the reflective or semi-reflective layer of an optical storage medium |
US7314657B2 (en) * | 2000-07-21 | 2008-01-01 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US6905750B2 (en) * | 1998-06-22 | 2005-06-14 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US6852384B2 (en) * | 1998-06-22 | 2005-02-08 | Han H. Nee | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US7316837B2 (en) * | 2000-07-21 | 2008-01-08 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US7314659B2 (en) * | 2000-07-21 | 2008-01-01 | Target Technology Company, Llc | Metal alloys for the reflective or semi-reflective layer of an optical storage medium |
US7374805B2 (en) * | 2000-07-21 | 2008-05-20 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
SG116432A1 (en) * | 2000-12-26 | 2005-11-28 | Kobe Steel Ltd | Reflective layer or semi-transparent reflective layer for use in optical information recording media, optical information recording media and sputtering target for use in the optical information recording media. |
KR100506474B1 (en) * | 2002-03-25 | 2005-08-03 | 히타치 긴조쿠 가부시키가이샤 | Ag FILM AND SPUTTERING-TARGET FOR FORMING THE Ag FILM |
CN100446101C (en) * | 2003-03-13 | 2008-12-24 | 三菱麻铁里亚尔株式会社 | Silver alloy sputterig target for forming reflective layer of optical recording medium |
EP1560704B1 (en) * | 2003-04-18 | 2012-06-13 | Target Technology Company, LLC. | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
WO2005020358A1 (en) * | 2003-08-22 | 2005-03-03 | Nec Corporation | Fuel supply unit for fuel cell and fuel cell using same |
DE10348879B4 (en) * | 2003-10-21 | 2007-06-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for increasing the fuel concentration in a liquid stream supplied to the anode of a fuel cell and use thereof |
JP2005158335A (en) * | 2003-11-21 | 2005-06-16 | Denso Corp | Fuel cell system |
CA2575877A1 (en) * | 2004-08-06 | 2006-02-16 | Williams Advanced Materials, Inc. | Copper based alloys and optical media containing same |
US20060283864A1 (en) * | 2005-02-10 | 2006-12-21 | Angstrom Power | Shipping container and method of use |
US20070014963A1 (en) * | 2005-07-12 | 2007-01-18 | Nee Han H | Metal alloys for the reflective layer of an optical storage medium |
JP4377861B2 (en) * | 2005-07-22 | 2009-12-02 | 株式会社神戸製鋼所 | Ag alloy reflecting film for optical information recording medium, optical information recording medium, and Ag alloy sputtering target for forming Ag alloy reflecting film for optical information recording medium |
JP2007035104A (en) * | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM AND Ag ALLOY SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM |
WO2008026601A1 (en) * | 2006-08-28 | 2008-03-06 | Kabushiki Kaisha Kobe Seiko Sho | Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR Ag ALLOY REFLECTION FILM FOR OPTICAL INFORMATION RECORDING MEDIUM FORMATION |
TWI353681B (en) | 2008-01-15 | 2011-12-01 | Nan Ya Printed Circuit Board | Energy management module and driving device utiliz |
US8130438B2 (en) * | 2008-07-03 | 2012-03-06 | Ajjer Llc | Metal coatings, conductive nanoparticles and applications of the same |
WO2010035944A2 (en) * | 2008-09-29 | 2010-04-01 | 서울반도체 주식회사 | Light-emitting device |
JP5682165B2 (en) * | 2010-07-23 | 2015-03-11 | セイコーエプソン株式会社 | Interference filter, optical module, and analyzer |
CN102304640B (en) * | 2010-08-10 | 2014-06-25 | 上海集强金属工业有限公司 | Silver-base rare-earth alloy material and preparation method and application thereof |
EP3168325B1 (en) | 2015-11-10 | 2022-01-05 | Materion Advanced Materials Germany GmbH | Silver alloy based sputter target |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS515983B2 (en) * | 1972-03-17 | 1976-02-24 | ||
NL7803069A (en) | 1978-03-22 | 1979-09-25 | Philips Nv | MULTI-LAYER INFORMATION DISK. |
NL8102283A (en) * | 1981-05-11 | 1982-12-01 | Philips Nv | OPTICALLY READABLE INFORMATION DISC WITH A REFLECTION LAYER FORMED FROM A METAL ALLOY. |
JPS61133349A (en) * | 1984-12-03 | 1986-06-20 | Hitachi Ltd | Alloy capable of varying spectral reflectance and recording material |
JP2742089B2 (en) | 1988-10-21 | 1998-04-22 | 沖電気工業株式会社 | Magneto-optical recording medium |
US5171392A (en) | 1988-11-08 | 1992-12-15 | Pioneer Electronic Corporation | Method of producing an optical information record carrier |
JP2834550B2 (en) * | 1989-08-02 | 1998-12-09 | 古河電気工業株式会社 | Sliding contact material for small current region and method of manufacturing the same |
JPH05159363A (en) * | 1991-12-11 | 1993-06-25 | Ricoh Co Ltd | Optical recording medium |
CN1027822C (en) * | 1991-12-12 | 1995-03-08 | 中国有色金属工业总公司昆明贵金属研究所 | Silver-based alloy electrical contact material |
JPH06139617A (en) * | 1992-09-10 | 1994-05-20 | Taiyo Yuden Co Ltd | Optical information recording medium |
EP0598377B1 (en) | 1992-11-17 | 1999-09-22 | Mitsubishi Chemical Corporation | Magneto-optical recording medium and optical information recording and reading-out method |
JPH07207384A (en) * | 1994-01-14 | 1995-08-08 | Tanaka Kikinzoku Kogyo Kk | Ag or agcu alloy for ornament to be brazed |
JPH07228931A (en) * | 1994-02-18 | 1995-08-29 | Tanaka Kikinzoku Kogyo Kk | Sliding contact material |
JPH07301705A (en) * | 1994-05-10 | 1995-11-14 | Kobe Steel Ltd | Al alloy thin film and sputtering target for formation of al alloy thin film |
JPH08291347A (en) * | 1995-04-19 | 1996-11-05 | Tokuriki Honten Co Ltd | Gold alloy |
JP3635588B2 (en) * | 1995-09-19 | 2005-04-06 | パイオニア株式会社 | Optical disc manufacturing method and multilayer optical disc |
US5640382A (en) | 1995-12-19 | 1997-06-17 | Imation Corp. | Dual layer optical medium having partially reflecting metal alloy layer |
JP3688044B2 (en) | 1996-02-06 | 2005-08-24 | 三井化学株式会社 | Optical recording medium |
JPH1011799A (en) | 1996-06-19 | 1998-01-16 | Mitsui Petrochem Ind Ltd | Optical recording medium |
US6306285B1 (en) * | 1997-04-08 | 2001-10-23 | California Institute Of Technology | Techniques for sensing methanol concentration in aqueous environments |
US6544616B2 (en) * | 2000-07-21 | 2003-04-08 | Target Technology Company, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US6007889A (en) | 1998-06-22 | 1999-12-28 | Target Technology, Llc | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium |
US6351446B1 (en) | 1998-10-02 | 2002-02-26 | Unaxis Balzers Aktiengesellschaft | Optical data storage disk |
JP2001209981A (en) * | 1999-02-09 | 2001-08-03 | Ricoh Co Ltd | Device and method for forming optical disk substrate film, manufacturing method for substrate holder, substrate holder, optical disk and phase change recording optical disk |
US6292457B1 (en) | 1999-03-31 | 2001-09-18 | Eastman Kodak Company | Recordable optical media with a silver-gold reflective layer |
KR100796084B1 (en) * | 1999-07-22 | 2008-01-21 | 소니 가부시끼 가이샤 | Reproduction only optical recording medium, optical recording method, optical reproducing method, optical recording device, optical reproducing device, and optical recording/reproducing device |
US6527943B1 (en) | 1999-11-08 | 2003-03-04 | Ballard Power Systems, Inc. | Fuel cell concentration sensor |
AU2001250054A1 (en) * | 2000-03-30 | 2001-10-15 | Manhattan Scientifics, Inc. | Diffusion fuel ampoules for fuel cells |
JP3365762B2 (en) * | 2000-04-28 | 2003-01-14 | 株式会社神戸製鋼所 | Reflective layer or translucent reflective layer for optical information recording medium, optical information recording medium, and sputtering target for optical information recording medium |
US6824899B2 (en) | 2000-11-22 | 2004-11-30 | Mti Microfuel Cells, Inc. | Apparatus and methods for sensor-less optimization of methanol concentration in a direct methanol fuel cell system |
US6696189B2 (en) * | 2000-12-15 | 2004-02-24 | Motorola, Inc. | Direct methanol fuel cell system including an integrated methanol sensor and method of fabrication |
SG116432A1 (en) | 2000-12-26 | 2005-11-28 | Kobe Steel Ltd | Reflective layer or semi-transparent reflective layer for use in optical information recording media, optical information recording media and sputtering target for use in the optical information recording media. |
-
2003
- 2003-06-24 ES ES03739290T patent/ES2263985T3/en not_active Expired - Lifetime
- 2003-06-24 DE DE60305495T patent/DE60305495T2/en not_active Expired - Lifetime
- 2003-06-24 WO PCT/US2003/019866 patent/WO2004003903A1/en not_active Application Discontinuation
- 2003-06-24 CN CNB038189925A patent/CN1326134C/en not_active Expired - Fee Related
- 2003-06-24 EP EP03739290A patent/EP1518235B9/en not_active Expired - Lifetime
- 2003-06-24 AT AT03739290T patent/ATE327553T1/en not_active IP Right Cessation
- 2003-06-24 CA CA2490901A patent/CA2490901C/en not_active Expired - Fee Related
- 2003-06-24 AU AU2003245661A patent/AU2003245661A1/en not_active Abandoned
- 2003-06-26 US US10/606,885 patent/US7033730B2/en not_active Expired - Lifetime
- 2003-06-27 US US10/608,355 patent/US7041404B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2004003903A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2003245661A1 (en) | 2004-01-19 |
EP1518235B9 (en) | 2006-08-30 |
CA2490901A1 (en) | 2004-01-08 |
US7041404B2 (en) | 2006-05-09 |
CN1326134C (en) | 2007-07-11 |
CN1675700A (en) | 2005-09-28 |
DE60305495D1 (en) | 2006-06-29 |
ATE327553T1 (en) | 2006-06-15 |
DE60305495T2 (en) | 2006-12-28 |
WO2004003903A1 (en) | 2004-01-08 |
ES2263985T3 (en) | 2006-12-16 |
CA2490901C (en) | 2011-08-23 |
US7033730B2 (en) | 2006-04-25 |
US20040058222A1 (en) | 2004-03-25 |
US20040048193A1 (en) | 2004-03-11 |
EP1518235B1 (en) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1518235B1 (en) | Corrosion resistive silver metal alloys for optical data storage and recordable optical storage media containing same | |
EP0594516B1 (en) | High stability silver based alloy reflectors for use in a writable compact disk | |
KR100445083B1 (en) | Reflection layer or semi-transparent reflection layer for use in optical information recording medium, optical information recording medium and sputtering target for use in the optical information recording medium | |
CN1901054B (en) | Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media | |
KR100789059B1 (en) | Semi-reflective film and reflective film for optical information recording medium, optical information recording medium, and sputtering target | |
CN1901053B (en) | Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media | |
TW432369B (en) | Metal alloys for the reflective or the semi-reflective layer of an optical storage medium | |
KR100799842B1 (en) | Silver alloy reflective films for optical information recording media, silver alloy sputtering targets therefor, and optical information recording media | |
JP2008156753A (en) | Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM, OPTICAL INFORMATION RECORDING MEDIUM, AND SPUTTERING TARGET FOR FORMING Ag ALLOY REFLECTIVE LAYER FOR OPTICAL INFORMATION RECORDING MEDIUM | |
JP2002015464A (en) | Reflecting layer or translucent reflecting layer for optical information recording medium, optical information recording medium and sputtering target for the medium | |
US20050048251A1 (en) | Silver alloys for optical data storage and optical media containing same | |
TWI381377B (en) | Optical information recording media | |
US20060127630A1 (en) | Copper based alloys and optical media containing same | |
US20110222392A1 (en) | Read-only optical information recording medium and sputtering target for depositing reflective film for the optical information recording medium | |
JP2002074752A (en) | Information recording medium, base material for depositing thin film and method for producing the same | |
TWI267844B (en) | Silver-reactive metal alloys for optical data storage and recordable storage media containing same | |
CN1040452A (en) | Discontinuous film optical storage media | |
JP4099517B1 (en) | Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium | |
JP4099516B2 (en) | Sputtering target for forming Ag alloy reflective film for optical information recording medium, optical information recording medium, and Ag alloy reflective film for optical information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050121 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HALUSKA, SCOTT Inventor name: LICHTENBERGER, HEINER Inventor name: BROWN, DERRICK, L. |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60305495 Country of ref document: DE Date of ref document: 20060629 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060824 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060824 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20060402775 Country of ref document: GR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061024 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2263985 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110628 Year of fee payment: 9 Ref country code: FR Payment date: 20110629 Year of fee payment: 9 Ref country code: GR Payment date: 20110629 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110628 Year of fee payment: 9 Ref country code: NL Payment date: 20110630 Year of fee payment: 9 Ref country code: LU Payment date: 20110706 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110627 Year of fee payment: 9 |
|
BERE | Be: lapsed |
Owner name: *WILLIAMS ADVANCED MATERIALS INC. Effective date: 20120630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120624 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20060402775 Country of ref document: GR Effective date: 20130104 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120624 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120702 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130104 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130627 Year of fee payment: 11 Ref country code: IE Payment date: 20130625 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130624 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120624 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60305495 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60305495 Country of ref document: DE Effective date: 20150101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140624 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150101 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140624 |