JP2742089B2 - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JP2742089B2
JP2742089B2 JP1118330A JP11833089A JP2742089B2 JP 2742089 B2 JP2742089 B2 JP 2742089B2 JP 1118330 A JP1118330 A JP 1118330A JP 11833089 A JP11833089 A JP 11833089A JP 2742089 B2 JP2742089 B2 JP 2742089B2
Authority
JP
Japan
Prior art keywords
recording medium
film
ratio
atomic
reflective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1118330A
Other languages
Japanese (ja)
Other versions
JPH02192046A (en
Inventor
政信 小林
仁典 前野
佳代子 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to US07/423,033 priority Critical patent/US5040166A/en
Publication of JPH02192046A publication Critical patent/JPH02192046A/en
Application granted granted Critical
Publication of JP2742089B2 publication Critical patent/JP2742089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は光磁気記録媒体に関するものであり、特
に、CN比(Carrier Noise Ratio:搬送波対雑音比)と記
録感度とに優れた反射膜を具える光磁気記録媒体に関す
る。
Description: BACKGROUND OF THE INVENTION The present invention relates to a magneto-optical recording medium, and more particularly, to a reflective film having an excellent CN ratio (Carrier Noise Ratio) and recording sensitivity. The present invention relates to a magneto-optical recording medium provided.

(従来の技術) 光磁気記録媒体(以下、単に記録媒体と称する場合も
有る。)は、書換えの出来る磁性膜を具えた高密度記録
媒体として、研究開発が活発に行なわれている。
(Prior Art) Magneto-optical recording media (hereinafter sometimes simply referred to as recording media) are being actively researched and developed as high-density recording media having a rewritable magnetic film.

このような記録媒体の磁性膜を構成する光磁気記録材
料の内でも、希土類金属と遷移金属との非晶質合金(以
下、単にRE−TM合金と称する場合も有る。)は、磁化方
向が成膜面に対して垂直に配向した垂直磁化膜となるこ
と、保磁力が数(KOe)と大きいこと、スパッタ、真空
蒸着またはその他の被着技術で比較的容易に成膜が可能
であること等の点で、最も研究が進み、実用化が進んで
いる。
Among the magneto-optical recording materials constituting the magnetic film of such a recording medium, the magnetization direction of an amorphous alloy of a rare earth metal and a transition metal (hereinafter may be simply referred to as an RE-TM alloy) is also known. Being a perpendicular magnetization film oriented perpendicular to the film-forming surface, having a large coercive force (KOe), and being relatively easy to form by sputtering, vacuum deposition or other deposition techniques In this respect, research is progressing most and practical application is progressing.

このようなRE−TM合金を用いた記録媒体では、磁性膜
が垂直磁化膜であることから108(ビット/cm2)という
極めて高密度な記録が可能であり、さらに、原理的に
は、情報の消去と再書込みとの繰り返しを無限回に近く
行なうことができるという優れた特色を有する。
In a recording medium using such an RE-TM alloy, an extremely high-density recording of 10 8 (bits / cm 2 ) is possible because the magnetic film is a perpendicular magnetization film. It has an excellent feature that information erasing and rewriting can be repeated almost infinitely.

しかしながら、RE−TM合金から成る磁性膜は耐食性が
低く(例えば文献I:「光磁気ディスク」(今村修武監
修,(株)トリケップス発行,第427頁)参照)、しか
も、磁気光学的な結果(カー(Kerr)効果)が小さいと
いう欠点が有る。
However, the magnetic film made of the RE-TM alloy has low corrosion resistance (for example, see Reference I: “Magneto-optical disk” (supervised by Shutake Imamura, published by Trikeps Co., Ltd., p. 427)). (Kerr effect) is small.

そこで、上述した磁性膜の、読取り側とは相反する位
置に反射膜を設けたり、保護膜によって磁性膜を挟んで
配設することにより、光の屈折及び反射を利用して見掛
け上のカー(Kerr)回転角を大きくする構造が知られて
いる(前記文献I:第119頁)。
Therefore, by providing a reflective film at a position opposite to the reading side of the magnetic film described above, or by arranging the magnetic film with a protective film sandwiching the magnetic film, the apparent Kerr ( Kerr) A structure for increasing the rotation angle is known (the aforementioned document I: p. 119).

以下、図面を参照して、上述した従来の光磁気記録媒
体につき説明する。
Hereinafter, the above-described conventional magneto-optical recording medium will be described with reference to the drawings.

第5図(A)は、従来の記録媒体の一構成例を説明す
るため、概略的な断面により示す説明図である。尚、同
図中、断面を示すハッチングは一部省略する。
FIG. 5 (A) is an explanatory diagram schematically showing a cross section for explaining one configuration example of a conventional recording medium. In the figure, hatching indicating a cross section is partially omitted.

この第5図(A)に示すように、基板11の表面に保護
膜13a、磁性膜15、保護膜13b及び反射膜17を順次形成す
ることによって記録媒体19が構成される。
As shown in FIG. 5A, a recording medium 19 is formed by sequentially forming a protective film 13a, a magnetic film 15, a protective film 13b, and a reflective film 17 on the surface of the substrate 11.

このうち、基板11は、ポリカーボネート樹脂、ガラ
ス、エポキシ樹脂のように記録媒体の書込みや読出しに
用いられる光の波長で透明な材料から構成される。
Among them, the substrate 11 is made of a material that is transparent at the wavelength of light used for writing and reading on the recording medium, such as polycarbonate resin, glass, and epoxy resin.

また、保護膜13aと13bとは、例えばSiO、SiO2、AlN、
Si3N4、AlSiN、AlSiONといった保護膜材料を被着させて
形成する。
Further, the protective films 13a and 13b are, for example, SiO, SiO 2 , AlN,
It is formed by applying a protective film material such as Si 3 N 4 , AlSiN, or AlSiON.

さらに、磁性膜15は前述したRE−TM合金から構成さ
れ、このような合金として例えばTb−Fe合金、Tb−Co合
金、Tb−Fe−Co合金またはその他、希土類金属と遷移金
属との組み合わせが、種々、知られている。
Further, the magnetic film 15 is composed of the above-described RE-TM alloy, and examples of such an alloy include a Tb-Fe alloy, a Tb-Co alloy, a Tb-Fe-Co alloy, or a combination of a rare earth metal and a transition metal. Are variously known.

これに加えて、反射膜17を構成する材料としては、ア
ルミニウム(Al)、金(Au)、銀(Ag)、銅(Cu)また
はチタン(Ti)といった反射膜材料が知られている。
In addition, as a material forming the reflective film 17, a reflective film material such as aluminum (Al), gold (Au), silver (Ag), copper (Cu), or titanium (Ti) is known.

また、上述の反射膜17を具えて構成した記録媒体とし
ては、基板11の表面に、保護膜13a、磁性膜15、反射膜1
7及び保護膜13bを順次積層した構成の記録媒体21(第5
図(B)参照)も知られている。
In addition, as a recording medium including the above-described reflective film 17, a protective film 13a, a magnetic film 15, a reflective film 1
7 and the protective film 13b are sequentially laminated on the recording medium 21 (fifth
FIG. (B) is also known.

このような記録媒体は、外部磁界をかけた状態で、基
板11から磁性膜15へ向かう方向に1(μm)程度のスポ
ット径に絞ったレーザビームを照射し、所謂、熱磁気書
込み方式によって情報の書込みが行なわれる。即ち、上
述のレーザビームによって局部的に加熱された磁性膜は
保磁力が低下し、この際、記録情報を担った外部磁界に
より、磁性膜に情報が書き込まれる。また、このような
記録情報の書込みを上述したレーザビームのピット長や
間隔によって行なうことも成されている。
Such a recording medium is irradiated with a laser beam having a spot diameter of about 1 (μm) in a direction from the substrate 11 to the magnetic film 15 in a state where an external magnetic field is applied. Is written. That is, the coercive force of the magnetic film locally heated by the above-described laser beam is reduced, and at this time, information is written to the magnetic film by an external magnetic field that carries recorded information. Further, such recording information is written by the pit length and interval of the laser beam described above.

上述した説明からも理解できるように、光磁気記録媒
体の記録感度は、磁性膜に対する保温性と多重反射の度
合とに大きく影響を受ける。
As can be understood from the above description, the recording sensitivity of the magneto-optical recording medium is greatly affected by the heat retention for the magnetic film and the degree of multiple reflection.

従って、このような観点から反射膜を見た場合、熱伝
導率が小さい材料で反射膜を構成して書込み時の放熱を
抑制すると共に、反射率が高い材料で当該膜を構成し、
読出し時の多重反射を効率良く行なうことが要求され
る。
Therefore, when looking at the reflective film from such a viewpoint, while suppressing the heat radiation during writing by forming the reflective film with a material having a small thermal conductivity, configuring the film with a material having a high reflectance,
Efficient multiple reflection at the time of reading is required.

(発明が解決しようとする課題) 上述したように、従来知られている反射膜材料のう
ち、銀(Ag)を用いて反射膜を構成する場合には、Agが
高い反射率を有するため、約48(dB)のCN比を達成する
ことができる。しかしながら、この反面、熱伝導率が大
きいので、磁性膜の放熱を補うために、書込みに用いる
レーザビームの出力に相当する記録パワーを高エネルギ
ーとする必要が有った。
(Problems to be Solved by the Invention) As described above, among the conventionally known reflective film materials, when a reflective film is formed using silver (Ag), Ag has a high reflectance, A CN ratio of about 48 (dB) can be achieved. However, on the other hand, since the thermal conductivity is large, it is necessary to increase the recording power corresponding to the output of the laser beam used for writing in order to compensate for the heat radiation of the magnetic film.

この発明の目的は、上述した従来の問題点に鑑み、銀
単体で反射膜を構成した場合に比べて小さな記録パワー
で書込むことができ、しかも実用的な読出し感度を有す
る光磁気記録媒体を提供することに有る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magneto-optical recording medium that can be written with a smaller recording power than a case where a reflective film is composed of silver alone and has practical read sensitivity in view of the above-described conventional problems. It is in providing.

(課題を解決するための手段) この発明の目的の達成のため、この出願の第一発明に
よれば、基板上に少なくとも磁性膜と反射膜とを具えて
成る光磁気記録媒体において、反射膜が、銀(Ag)とマ
ンガン(Mn)とから成り、マンガン(Mn)の添加率を2
(原子%)以上32(原子%)以下としたことを特徴とし
ている。
(Means for Solving the Problems) In order to achieve the object of the present invention, according to the first invention of the present application, in a magneto-optical recording medium comprising at least a magnetic film and a reflective film on a substrate, a reflective film Consists of silver (Ag) and manganese (Mn), and the addition rate of manganese (Mn) is 2
(Atomic%) or more and 32 (atomic%) or less.

この第二発明によれば、基板上に少なくとも磁性膜と
反射膜とを具えて成る光磁気記録媒体において、 前記反射膜が、銀(Ag)とマンガン(Mn)と錫(Sn)
とから成り、銀(Ag)の添加率を71(原子%)以上98
(原子%)以下、マンガン(Mn)の添加率を1(原子
%)以上15(原子%)以下、錫(Sn)の添加率を1(原
子%)以上23(原子%)以下としている。
According to the second invention, in a magneto-optical recording medium comprising at least a magnetic film and a reflective film on a substrate, the reflective film is formed of silver (Ag), manganese (Mn), and tin (Sn).
And the addition rate of silver (Ag) is 71 (at.%) Or more.
(Atomic%) or less, the addition ratio of manganese (Mn) is 1 (at.%) To 15 (at.%), And the addition ratio of tin (Sn) is 1 (at.%) To 23 (at.%).

この第二発明の実施に当たり、上述した銀(Ag)−マ
ンガン(Mn)−錫(Sn)からなる反射膜の組成を、 銀(Ag)−マンガン(Mn)−錫(Sn)におけるマンガ
ン(Mn)の添加率を1(原子%)とし、かつ錫(Sn)の
添加率を1(原子%)以上23(原子%)以下 銀(Ag)−マンガン(Mn)−錫(Sn)におけるマンガ
ン(Mn)の添加率を7(原子%)とし、かつ錫(Sn)の
添加率を1(原子%)以上20(原子%)以下 銀(Ag)−マンガン(Mn)−錫(Sn)におけるマンガ
ン(Mn)の添加率を15(原子%)とし、かつ錫(Sn)の
添加率を1(原子%)以上14(原子%)以下の範囲とす
ることが好適である。
In carrying out the second invention, the composition of the above-mentioned reflective film composed of silver (Ag) -manganese (Mn) -tin (Sn) is changed to manganese (Mn) in silver (Ag) -manganese (Mn) -tin (Sn). ) Is 1 (at.%), And the addition ratio of tin (Sn) is 1 (at.%) Or more and 23 (at.%) Or less. Manganese in silver (Ag) -manganese (Mn) -tin (Sn) Mn) is 7 (at.%) And tin (Sn) is 1 (at.%) Or more and 20 (at.%) Or less. Manganese in silver (Ag) -manganese (Mn) -tin (Sn) It is preferable that the addition rate of (Mn) is 15 (atomic%) and the addition rate of tin (Sn) is in the range of 1 (at.%) To 14 (at.%).

(作用) この出願の第一発明に係る光磁気記録媒体によれば、
CN比を高く採り得る銀(Ag)と、マンガン(Mn)とによ
って反射膜を構成する。これがため、Mnを含む構成とす
ることによりAg単体で構成された反射膜に比べて記録パ
ワーの低減を図ることができる。
(Operation) According to the magneto-optical recording medium of the first invention of this application,
A reflection film is composed of silver (Ag), which can have a high CN ratio, and manganese (Mn). For this reason, by employing a configuration including Mn, it is possible to reduce the recording power as compared with a reflective film composed of Ag alone.

また、この出願の第二発明に係る光磁気記録媒体によ
れば、CN比を高く採り得る銀(Ag)と、マンガン(Mn)
及び錫(Sn)との組み合わせで反射膜を構成する。これ
がため、Mn及びSnを含む構成とすることにより、Ag単体
で構成された反射膜に比べて記録パワーの低減を図るこ
とができる。
According to the magneto-optical recording medium of the second invention of this application, silver (Ag), which can have a high CN ratio, and manganese (Mn)
The reflection film is constituted by a combination of tin and tin (Sn). For this reason, by employing a configuration including Mn and Sn, it is possible to reduce the recording power as compared with a reflective film composed of Ag alone.

(実施例) 以下、図面を参照して、この発明の実施例につき説明
する。尚、以下説明する実施例は、この発明の範囲内の
好ましい数値例、その他の条件で説明するが、これらは
単なる例示であって、この発明がこれら条件にのみ限定
されるものではないことを理解されたい。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. It should be noted that the following embodiments will be described with preferred numerical examples and other conditions within the scope of the present invention, but these are merely examples, and the present invention is not limited only to these conditions. I want to be understood.

以下、第一発明に係る銀(Ag)とマンガン(Mn)とに
よって反射膜を構成する場合を実施例1とし、第二発明
に係る銀(Ag)とマンガン(Mn)及び錫(Sn)とによっ
て反射膜を構成する場合を実施例2として説明する。
Hereinafter, the case where a reflective film is formed by silver (Ag) and manganese (Mn) according to the first invention is referred to as Example 1, and silver (Ag), manganese (Mn), and tin (Sn) according to the second invention are used. Embodiment 2 describes a case where a reflection film is formed by using this embodiment.

実施例1 まず、この実施例1では、銀(Ag)とマンガン(Mn)
とで構成される反射膜におけるMnの添加率を種々に変
え、異なる膜厚の反射膜を形成した複数の光磁気記録媒
体につき、記録パワーとCN比とを測定した。
Example 1 First, in Example 1, silver (Ag) and manganese (Mn) were used.
The recording power and the CN ratio were measured for a plurality of magneto-optical recording media on which reflective films having different thicknesses were formed by changing the addition ratio of Mn in the reflective film composed of the above.

<光磁気記録媒体の作製> 始めに、図面を参照して、測定試料となる光磁気記録
媒体の作製手順につき説明する。
<Production of Magneto-Optical Recording Medium> First, a procedure for producing a magneto-optical recording medium as a measurement sample will be described with reference to the drawings.

この実施例では、前述した第5図(B)に示す構成で
記録媒体を作製し、基板11の表面に、保護膜13a、磁性
膜15、反射膜17及び保護膜13bを順次積層して、測定試
料となる光磁気記録媒体21を得た。
In this embodiment, a recording medium is manufactured with the configuration shown in FIG. 5B, and a protective film 13a, a magnetic film 15, a reflective film 17, and a protective film 13b are sequentially laminated on the surface of the substrate 11, A magneto-optical recording medium 21 serving as a measurement sample was obtained.

まず、ポリカーボネートから成る基板11の表面に、膜
厚700(Å)で窒化珪素アルミニウム(AlSiN)から成る
保護膜13aを被着せしめる。この被着はマグネトロンス
パッタ法によって行ない、被着条件は、投入電力が約50
0(W)、アルゴンのガス圧が3(mTorr)とした。
First, a protective film 13a made of silicon aluminum nitride (AlSiN) having a thickness of 700 (Å) is applied to the surface of a substrate 11 made of polycarbonate. This deposition is performed by a magnetron sputtering method.
0 (W) and the gas pressure of argon was 3 (mTorr).

続いて、上述の被着方法及び被着条件によって、テル
ビウム:鉄:コバルトの原子数の比が22:70:8の組成を
有するターゲットを用い、保護膜13aの表面に約300
(Å)の膜厚で磁性膜15を被着する。
Subsequently, according to the above-described deposition method and deposition conditions, a target having a composition of terbium: iron: cobalt having a ratio of the number of atoms of 22: 70: 8 was used, and about 300 μm was formed on the surface of the protective film 13a.
The magnetic film 15 is deposited with a thickness of (Å).

次に、上述した保護膜13bの表面に、AgとMnとにおけ
るMnの添加率を0〜45(原子%)の範囲内で種々に変
え、さらに、膜厚を200(Å)、300(Å)及び400
(Å)として、Mn添加率と膜厚とが異なる反射膜17を、
夫々、被着形成する。
Next, on the surface of the above-mentioned protective film 13b, the addition ratio of Mn in Ag and Mn is variously changed within a range of 0 to 45 (atomic%), and further, the film thickness is set to 200 (Å) and 300 (Å). ) And 400
As (Å), a reflective film 17 having a different Mn addition rate and a different film thickness is used.
Each is formed by adhesion.

この時の被着条件は、前述と同様に投入電力500
(W)、アルゴンガス圧3(mTorr)とし、各々の単一
金属から成るターゲット同士を重ねた際の、被スパッタ
面における面積比を変えることにより、上述したMnの添
加率を種々に変えた。
At this time, the deposition condition is 500
(W), the argon gas pressure was 3 (mTorr), and the above-mentioned Mn addition rate was variously changed by changing the area ratio on the surface to be sputtered when the targets made of each single metal were overlapped. .

然る後、上述した反射膜17の表面に、保護膜13aと同
一の被着条件及び膜厚によって、AlSiNから成る保護膜1
3bを被着し、測定試料として、反射膜17の組成が異なる
複数の光磁気記録媒体21を得た。
Thereafter, the protective film 1 made of AlSiN is formed on the surface of the above-described reflective film 17 under the same deposition conditions and film thickness as the protective film 13a.
3b was applied, and a plurality of magneto-optical recording media 21 having different compositions of the reflective film 17 were obtained as measurement samples.

<特性測定の手順> 次に、上述した測定試料としての記録媒体につき、記
録パワー及びCN比を測定した手順につき説明する。
<Procedure for Characteristic Measurement> Next, a procedure for measuring the recording power and the CN ratio of the recording medium as the above-described measurement sample will be described.

まず、各試料の記録パワーの測定に当っては、波長83
0(nm)の光を用い、回転数1800(r.p.m.)、デューテ
ィー33(%)、記録周波数3.7(MHz)の記録条件に統一
して行なった。
First, when measuring the recording power of each sample, the wavelength 83
Using 0 (nm) light, the recording was performed under the same recording conditions of a rotation speed of 1800 (rpm), a duty of 33 (%), and a recording frequency of 3.7 (MHz).

また、CN比の測定は上述した条件で夫々の試料に応じ
た記録パワーを以って書込んだ後、読出しパワー1.0(m
W)、バンド幅30(KHz)の読出し条件で行なった。
The measurement of the CN ratio was performed under the above-described conditions with writing at a recording power corresponding to each sample, and then at a reading power of 1.0 (m
W), and the readout condition was 30 band (KHz).

<特性測定の結果> 次に、図面を参照して、上述した記録パワー及びCN比
の測定結果と、Ag−MnにおけるMnの添加率との関係につ
き説明する。
<Results of Characteristic Measurement> Next, with reference to the drawings, the relationship between the above-described measurement results of the recording power and the CN ratio and the addition ratio of Mn in Ag-Mn will be described.

第1図は、上述した添加率と記録パワーとの関係を説
明するため、縦軸に記録パワー(mW)及び横軸にはAg−
Mnにおける添加率(原子%)を夫々採って示す特性曲線
図である。同図中、曲線aは膜厚を400(Å)として反
射膜を具えた試料の結果、曲線bは膜厚を300(Å)と
して反射膜を具えた試料の結果、及び曲線cは膜厚を20
0(Å)として反射膜を具えた試料の結果を、各々、表
わしている。
FIG. 1 shows the recording power (mW) on the vertical axis and Ag- on the horizontal axis to explain the relationship between the above-mentioned addition rate and recording power.
FIG. 3 is a characteristic curve diagram showing the addition ratio (atomic%) of Mn. In the figure, curve a is the result of the sample provided with a reflective film with a film thickness of 400 (Å), curve b is the result of the sample provided with a reflective film with a film thickness of 300 (Å), and curve c is the film thickness 20
The results of the samples provided with the reflection film as 0 (Å) are respectively shown.

この第1図からも理解できるように、反射膜における
Mn添加率が0(原子%)(Agのみから成る反射膜に相
当)である試料の場合、記録パワーは反射膜の膜厚によ
って異なり、膜厚が400(Å)では約8.0(mW)、300
(Å)では約6.2(mW)、200(Å)では約5.4(mW)で
あった。
As can be understood from FIG.
In the case of a sample in which the Mn addition rate is 0 (atomic%) (corresponding to a reflective film composed only of Ag), the recording power varies depending on the film thickness of the reflective film. When the film thickness is 400 (Å), the recording power is about 8.0 (mW). 300
It was about 6.2 (mW) for (Å) and about 5.4 (mW) for 200 (Å).

これに対して、Mnの添加率を増加させることによって
記録パワーは減少し、例えば、Mn添加率を2(原子%)
(Ag98Mn2の反射膜に相当)として作製した試料では、
膜厚が400(Å)では約6.0(mW)、300(Å)では約5.0
(mW)、200(Å)では約4.4(mW)にまで、夫々、記録
パワーを低減させることができた。
On the other hand, the recording power is reduced by increasing the Mn addition rate. For example, the Mn addition rate is set to 2 (atomic%).
(Corresponding to the reflective film of Ag 98 Mn 2 )
Approximately 6.0 (mW) at 400 (Å) and approximately 5.0 at 300 (300)
(MW) and 200 (Å), the recording power could be reduced to about 4.4 (mW), respectively.

また、反射膜の膜厚を400(Å)とした場合、曲線a
から理解できるように、Mn添加率を上述した2(原子
%)から増加させるに従って記録パワーは減少傾向を示
し、Mn添加率を45(原子%)として作製した試料では約
4.0(mW)の記録パワーが得られ、当該添加率を45(原
子%)以上としても、実質的な記録パワーの低減は図れ
なかった。
When the thickness of the reflective film is 400 (Å), the curve a
As can be understood from the above, as the Mn addition rate is increased from 2 (atomic%) described above, the recording power shows a decreasing tendency, and the sample manufactured with the Mn addition rate of 45 (atomic%) has a recording power of about 45%.
A recording power of 4.0 (mW) was obtained, and even if the addition rate was 45 (atomic%) or more, a substantial reduction in the recording power could not be achieved.

一方、この膜厚を300(Å)(曲線b)または200
(Å)(曲線c)とした場合には、いずれも一度は減少
傾向を示した記録パワーが、Mn添加率を増加させるに従
って、再度、増大してしまうのが理解できる。
On the other hand, this film thickness is set to 300 (Å) (curve b) or 200 (curve b).
In the case of (Å) (curve c), it can be understood that the recording power, which once showed a decreasing tendency, increases again as the Mn addition rate increases.

続いて、第2図を参照して、上述した実施例1の記録
媒体に関するCN比の測定結果とMn添加率との関係につき
説明する。
Next, with reference to FIG. 2, the relationship between the measurement result of the CN ratio and the Mn addition ratio for the recording medium of Example 1 will be described.

第2図は、上述した添加率とCN比との関係を説明する
ため、縦軸にCN比(dB)及び横軸にはAg−MnにおけるMn
の添加率(原子%)を夫々採って示す特性曲線図であ
る。同図中においても、第1図と同様に、各々の膜厚に
対応させて曲線に符号を付して有る。
FIG. 2 is a graph showing the relationship between the addition ratio and the CN ratio described above, in which the vertical axis represents the CN ratio (dB) and the horizontal axis represents the Mn in Ag-Mn.
FIG. 4 is a characteristic curve diagram showing the addition rate (atomic%) of each of them. In the same figure, like in FIG. 1, reference numerals are given to the curves corresponding to the respective film thicknesses.

この第2図からも理解できるように、反射膜における
Mn添加率が0(原子%)(Agのみから成る反射膜に相
当)である試料(曲線a)の場合、いずれの膜厚であっ
ても、CN比は約48.0(dB)であった。Mn添加率を増加さ
せることによるCN比の低下は当該添加率が7(原子%)
(Ag93Mn7の反射膜に相当)程度までの範囲内では実質
的に認められず、約48.0(dB)の値が維持された。さら
に、Mnの添加率を上述の7(原子%)から増加させるに
従ってCN比は低下するのが理解できる。その低下の度合
は、反射膜の膜厚が小さい程大きく成り、Mn添加率を45
(原子%)(Ag55Mn45)として作製した記録媒体では、
膜厚が400(Å)の場合に約44.0(dB)(曲線a)、300
(Å)では約43.0(dB)(曲線b)、200(Å)では39
(dB)程度(曲線c)のCN比であった。
As can be understood from FIG. 2, the reflection film
In the case of the sample (curve a) in which the Mn addition rate was 0 (atomic%) (corresponding to a reflection film composed of only Ag), the CN ratio was about 48.0 (dB) regardless of the film thickness. The decrease in the CN ratio due to the increase in the Mn addition rate is due to the fact that the addition rate is 7 (atomic%).
(Equivalent to the reflective film of Ag 93 Mn 7 ) was not substantially observed in the range up to about 48.0 (dB). Further, it can be understood that the CN ratio decreases as the Mn addition rate increases from 7 (atomic%) described above. The degree of the decrease becomes larger as the thickness of the reflection film becomes smaller, and the Mn addition rate becomes 45%.
(Atomic%) (Ag 55 Mn 45 )
Approximately 44.0 (dB) when the film thickness is 400 (Å) (curve a), 300
About 43.0 (dB) (curve b) in (Å), 39 in 200 (Å)
(DB) (CN).

以下、上述した第1図及び第2図を参照して、第一発
明のAg−Mnによって構成される反射膜におけるMn添加率
の好適範囲につき説明する。
Hereinafter, with reference to FIGS. 1 and 2 described above, a preferred range of the Mn addition rate in the reflective film composed of Ag-Mn of the first invention will be described.

これら2つの特性曲線図に示す結果からも理解できる
ように、Mn添加率と記録パワーとの関係は反射膜の膜厚
によって異なり、当該膜厚を400(Å)とした場合に
は、Mn添加率を大きくするに従って記録パワーの低減を
図ることができる。しかしながら、300(Å)以下の膜
厚で反射膜を形成した場合、Mn添加率の増加による反射
特性の劣化を来して光が投下してしまう割合のほうが大
きくなり、CN比の低下及び記録パワーの増大を来す。
As can be understood from the results shown in these two characteristic curves, the relationship between the Mn addition rate and the recording power differs depending on the thickness of the reflective film. As the rate is increased, the recording power can be reduced. However, when the reflective film is formed with a thickness of 300 (Å) or less, the ratio of light dropping due to the deterioration of the reflection characteristics due to the increase of the Mn addition ratio becomes larger, and the CN ratio decreases and the recording rate decreases. Comes with increased power.

これらの知見から、Mn添加率の好適範囲の下限は記録
パワーの測定結果から設定し、当該範囲の上限はCN比の
測定結果から設定すれば良い。
From these findings, the lower limit of the preferable range of the Mn addition rate may be set from the measurement result of the recording power, and the upper limit of the range may be set from the measurement result of the CN ratio.

まず、第1図に示す曲線から理解できるように、Mn添
加率を比較的低い値の範囲内で増加させるに従って記録
パワーの低減を図ることができる。ここで、曲線の傾き
に注目すれば、この傾きはMn添加率が約3.5(原子%)
近傍から徐々に小さくなり始めるのが理解できる。従っ
て、Ag−MnにおけるMnの添加率の下限は上述した値を含
み、2(原子%)以上とするのが好適である。
First, as can be understood from the curve shown in FIG. 1, the recording power can be reduced as the Mn addition rate is increased within a relatively low value range. Here, paying attention to the slope of the curve, this slope indicates that the Mn addition rate is about 3.5 (atomic%).
It can be understood that it gradually starts to decrease from the vicinity. Therefore, the lower limit of the addition ratio of Mn in Ag-Mn includes the above-mentioned values, and is preferably set to 2 (atomic%) or more.

また、CN比については、ISO(International Organiz
ation for Standardization:国際標準化機構)の国際規
格によって、回転数1800(r.p.m.)及び周波数3.7(MH
z)で書き込みを行なった場合に45(dB)以上を満たす
ことが要求されている。従って、この規格を満たすMnの
添加率を第2図から求め、当該添加率を32(原子%)以
下とすれば良いことが理解できる。
For CN ratio, see ISO (International Organiz
According to international standards of the International Standards Organization, the number of revolutions is 1800 (rpm) and the frequency is 3.7 (MH
When writing in z), it is required to satisfy 45 (dB) or more. Therefore, it can be understood that the addition rate of Mn that satisfies this standard is determined from FIG. 2 and the addition rate should be 32 (atomic%) or less.

上述した説明からも理解できるように、銀単体で反射
膜を構成した場合に比べて小さな記録パワーで書込むこ
とができ、しかも実用的な読出し感度を有する反射膜を
得るには、Ag−MnにおけるMnの添加率を2(原子%)以
上、32(原子%)以下とするのが好適である。
As can be understood from the above description, Ag-Mn can be used to obtain a reflective film that can be written with a smaller recording power as compared with the case where the reflective film is composed of silver alone and has a practical read sensitivity. It is preferable that the addition ratio of Mn is set to 2 (at.%) Or more and 32 (at.%) Or less.

実施例2 この実施例2では、銀(Ag)とマンガン(Mn)及び錫
(Sn)とで構成される反射膜において、MnとSnとの添加
率を種々に変えて反射膜を形成した試料につき、記録パ
ワーとCN比とを測定した結果を説明する。尚、特性測定
と当該測定に当っての試料となる記録媒体の作製とにつ
いては、実施例1で述べた条件に統一して行なった。従
って、以下の説明においては重複説明を回避するため、
測定結果についてのみ図面を参照して説明する。また、
MnとSnとの添加率を変えるに当っては、Ag−Mn−Snにお
けるMnの添加率を一定とした条件下でSnの添加率のみを
種々に変えて複数の記録媒体を作製することにより行な
った。さらに、この実施例では、反射膜の膜厚を400
(Å)として作製した記録媒体と、当該膜厚を200
(Å)として作製した記録媒体との測定結果につき説明
する。
Example 2 In Example 2, a reflective film formed of silver (Ag), manganese (Mn), and tin (Sn) was formed by changing the addition ratio of Mn and Sn to various values. The results of measuring the recording power and the CN ratio will be described. The measurement of characteristics and the production of a recording medium serving as a sample for the measurement were performed under the same conditions as described in Example 1. Therefore, in the following description, in order to avoid redundant description,
Only the measurement results will be described with reference to the drawings. Also,
In changing the addition rate of Mn and Sn, a plurality of recording media were prepared by changing only the addition rate of Sn under the condition that the addition rate of Mn in Ag-Mn-Sn was constant. Done. Further, in this embodiment, the thickness of the reflective film is set to 400
The recording medium prepared as (作 製) and the film thickness of 200
The measurement results with the recording medium manufactured as (Å) will be described.

第3図(A)及び(B)は、Ag−Mn−SnにおけるMn添
加率及びSn添加率と、記録パワーとの関係を説明するた
め、縦軸に記録パワー(mW)及び横軸にはSnの添加率
(原子%)を夫々採って示す特性曲線図である。これら
特性曲線図のうち、第3図(A)は反射膜の膜厚を400
(Å)とした場合の測定結果を表わし、第3図(B)は
当該膜厚を200(Å)とした場合の結果を表わしてい
る。さらに、これら図中、曲線Iは第二発明に係る反射
膜との比較を行なうため、Mnを添加することなくAgとSn
との組成を種々に変えて作製した試料の測定結果を示し
ている。また、曲線II〜曲線Vは、Mnの添加率を1(原
子%)、7(原子%)、15(原子%)または30(原子
%)で一定とし、各々、0〜35(原子%)の範囲内でSn
の添加率を種々に変えて作製した複数の試料の測定結果
を示す。これら曲線に関する説明の理解を容易とするた
め、曲線Iには「Ag100-XSnX」、曲線IIには「Ag99-XMn
SnX」、曲線IIIには「Ag93-XMn7SnX」、曲線IVには「Ag
85-XMn15SnX」及び曲線Vには「Ag70-XMn30SnX」(但
し、X>0)のように、各々の曲線が表わす測定試料の
反射膜の組成を包括的に表わす表現を付してある。
FIGS. 3A and 3B show the relationship between the Mn addition ratio and Sn addition ratio in Ag-Mn-Sn and the recording power, and the recording power (mW) on the vertical axis and the horizontal axis on the horizontal axis. FIG. 5 is a characteristic curve diagram showing the addition ratio (atomic%) of Sn. Of these characteristic curves, FIG. 3 (A) shows that the thickness of the reflective film is 400.
FIG. 3B shows the measurement results when the film thickness was set to 200 (Å). Further, in these figures, the curve I represents Ag and Sn without addition of Mn in order to compare with the reflection film according to the second invention.
3 shows the measurement results of the samples prepared by changing the composition in various ways. In curves II to V, the addition ratio of Mn is constant at 1 (at.%), 7 (at.%), 15 (at.%) Or 30 (at.%), And is 0 to 35 (at.%), Respectively. Within the range of
3 shows the measurement results of a plurality of samples prepared by changing the addition ratios of various samples. To facilitate understanding of the description of these curves, Curve I is “Ag 100-X Sn X ” and Curve II is “Ag 99-X Mn
`` Sn X '', Curve III `` Ag 93-X Mn 7 Sn X '', Curve IV `` Ag
The composition of the reflective film of the measurement sample represented by each curve, such as “Ag 70-X Mn 30 Sn X ” (where X> 0), is comprehensively included in “ 85-X Mn 15 Sn X ” and curve V. Expressions are given.

まず、400(Å)の膜厚を有する反射膜では、この第
3図(A)に示す曲線Iと曲線IIとの比較から、AgにSn
のみを添加した場合に比べて、Agに1(原子%)のMnと
Snとを添加した場合には、記録パワー低減の度合が大き
い。また、上述の曲線Iと、曲線III〜Vとの各々の比
較から、所定のSn添加率ではMn添加率を大きく採った記
録媒体ほど、記録パワーは小さな値を採ることが理解で
きる。
First, in the reflection film having a thickness of 400 (Å), from the comparison between the curves I and II shown in FIG.
Compared to the case of adding only Mn, 1 (atomic%) Mn
When Sn is added, the recording power is greatly reduced. Further, from the comparison between the curves I and III to V, it can be understood that the recording power takes a smaller value as the Mn addition ratio is larger at a predetermined Sn addition ratio.

以下、この第3図(A)の曲線I〜Vにより示される
反射膜組成と記録パワーとの関係につき、具体的な数値
を例示する。
Hereinafter, specific numerical values will be exemplified for the relationship between the reflective film composition and the recording power indicated by the curves IV in FIG. 3 (A).

まず、Snの添加率を1(原子%)即ちx=1とした場
合の記録パワーにつき比較すれば、曲線Iに係る記録媒
体(Ag100-xSnx:即ちAg99Sn1)では約7.6(mW)の記録
パワーであるのに対して、曲線IIに係る記録媒体(Ag
99-xMn1Snx:即ちAg98Mn1Sn1)では約5.7(mW)、曲線II
Iに係る記録媒体(Ag93-xMn7Snx:即ちAg92Mn7Sn1)では
約5.0(mW)、曲線IVに係る記録媒体(Ag85-xMn15Snx:
即ちAg84Mn15Sn1)では約4.3(mW)及び曲線Vに係る記
録媒体(Ag70-xMn30Snx:即ちAg69Mn30Sn1)では約4.0
(mW)の、夫々の記録パワーが得られた。
First, comparing the recording power when the Sn addition rate is 1 (atomic%), that is, x = 1, the recording medium (Ag 100-x Sn x : ie, Ag 99 Sn 1 ) according to the curve I is about 7.6. (MW) recording power, whereas the recording medium (Ag
99-x Mn 1 Sn x : about 5.7 (mW) for Ag 98 Mn 1 Sn 1 ), curve II
The recording medium according to curve I (Ag 93-x Mn 7 Sn x : Ag 92 Mn 7 Sn 1 ) is about 5.0 (mW), and the recording medium according to curve IV (Ag 85-x Mn 15 Sn x :
That is, about 4.3 (mW) for Ag 84 Mn 15 Sn 1 ) and about 4.0 for the recording medium according to curve V (Ag 70-x Mn 30 Sn x : Ag 69 Mn 30 Sn 1 ).
(MW) of each recording power.

さらに、この実施例2の記録パワー測定の上限である
Snの添加率が35(原子%)即ちx=35につき比較すれ
ば、曲線Iに係る記録媒体(Ag100-xSnx:即ちAg65S
n35)では約5.5(mW)の記録パワーであるのに対して、
曲線IIに係る記録媒体(Ag99-xMn1Snx:即ちAg64Mn1S
n35)では約4.1(mW)、曲線IIIに係る記録媒体(Ag
93-xMn7Snx:即ちAg58Mn7Sn35)では約3.8(mW)、曲線I
Vに係る記録媒体(Ag85-xMn15Snx:即ちAg50Mn15Sn35
では約3.6(mW)及び曲線Vに係る記録媒体(Ag70-xMn
30Snx:即ちAg35Mn30Sn35)では約3.3(mW)となった。
尚、Mn添加率を上述した30(原子%)よりも大きな値と
した場合であっても、各々のSn添加率に応じて記録パワ
ーの低減を図ることができた。しかしながら、この第3
図(A)に示す曲線II〜Vの比較からも理解できるよう
に、Ag−Mn−Snの反射膜においてMnの占める割合が大き
いほど、Snの添加率を増加させてゆく際に得られる記録
パワーの低減の度合は小さくなる傾向が認められる。
Further, this is the upper limit of the recording power measurement of the second embodiment.
If the addition ratio of Sn is 35 (atomic%), that is, x = 35, the recording medium (Ag 100-x Sn x : that is, Ag 65 S
n 35 ) has a recording power of about 5.5 (mW),
Recording medium according to curve II (Ag 99-x Mn 1 Sn x : Ag 64 Mn 1 S
n 35 ) is about 4.1 (mW), and the recording medium (Ag
93-x Mn 7 Sn x : about 58 (mW) for Ag 58 Mn 7 Sn 35 ), curve I
Recording medium according to V (Ag 85-x Mn 15 Sn x: i.e. Ag 50 Mn 15 Sn 35)
Then, about 3.6 (mW) and the recording medium (Ag 70-x Mn
30 Sn x : Ag 35 Mn 30 Sn 35 ) was about 3.3 (mW).
Even when the Mn addition ratio was set to a value larger than 30 (atomic%), the recording power could be reduced in accordance with each Sn addition ratio. However, this third
As can be understood from the comparison of the curves II to V shown in FIG. 7A, the recording obtained when the Sn addition rate is increased as the proportion of Mn in the Ag—Mn—Sn reflection film increases. It is recognized that the degree of power reduction tends to be small.

次に、200(Å)の膜厚を有する反射膜でも、第3図
(B)に示す曲線Iと曲線IIとの比較から、Ag−Snの反
射膜を具えた記録媒体に比べて、Agと1(原子%)のMn
とにSnを添加した記録媒体では、記録パワー低減の度合
が大きい。また、上述の曲線Iと、曲線III〜Vとの各
々の比較から、反射膜の膜厚が200(Å)と薄い場合、
記録パワーは、Mn添加率とSn添加率とに依存して、複雑
な変化を示すのが理解できる。
Next, even with the reflective film having a film thickness of 200 (Å), the comparison between the curves I and II shown in FIG. 3B shows that Ag is smaller than that of the recording medium having the Ag-Sn reflective film. And 1 (atomic%) Mn
On the other hand, in the recording medium to which Sn is added, the degree of reduction of the recording power is large. Further, from the comparison between the above-described curve I and the curves III to V, when the thickness of the reflective film is as thin as 200 (Å),
It can be understood that the recording power shows a complicated change depending on the Mn addition rate and the Sn addition rate.

この第3図(B)の曲線I〜Vにより示される反射膜
組成と記録パワーとの関係につき、具体的な数値を例示
する。
Specific numerical values are shown as examples of the relationship between the composition of the reflective film and the recording power indicated by the curves IV in FIG. 3B.

まず、Snの添加率を1(原子%)即ちx=1とした場
合の記録パワーにつき比較すれば、曲線Iに係る記録媒
体(Ag100-xSnx:即ちAg99Sn1)では約5.5(mW)の記録
パワーであるのに対して、曲線IIに係る記録媒体(Ag
99-xMn1Snx:即ちAg98Mn1Sn1)では約4.4(mW)、曲線II
Iに係る記録媒体(Ag93-xMn7Snx:即ちAg92Mn7Sn1)では
約3.4(mW)、曲線IVに係る記録媒体(Ag85-xMn15Snx:
即ちAg84Mn15Sn1)では約2.9(mW)及び曲線Vに係る記
録媒体(Ag70-xMn30Snx:即ちAg69Mn30Sn1)では約3.5
(mW)の、夫々の記録パワーが得られた。
First, when comparing the recording power when the Sn addition rate is 1 (atomic%), that is, x = 1, the recording medium (Ag 100-x Sn x : ie, Ag 99 Sn 1 ) according to the curve I is about 5.5. (MW) recording power, whereas the recording medium (Ag
For 99-x Mn 1 Sn x : Ag 98 Mn 1 Sn 1 ), about 4.4 (mW), curve II
For the recording medium according to I (Ag 93-x Mn 7 Sn x : ie Ag 92 Mn 7 Sn 1 ), about 3.4 (mW), the recording medium according to curve IV (Ag 85-x Mn 15 Sn x :
That is, about 2.9 (mW) for Ag 84 Mn 15 Sn 1 ) and about 3.5 for the recording medium (Ag 70-x Mn 30 Sn x : Ag 69 Mn 30 Sn 1 ) related to the curve V.
(MW) of each recording power.

この第3図(B)から見て採れるように、Sn添加率を
増加せしめることによって、当該添加率が比較的小さな
範囲では、いずれのMn添加率の場合であっても、Ag−Sn
の反射膜に比べて記録パワーの低減を図ることができる
が、Sn添加率が大きくなると、記録パワーが増大傾向を
示すように成る。これは、反射膜が200(Å)程度の小
さな膜厚で形成されているため、Snの添加率が多く成る
程透過率が高まり、書込みに用いた記録パワーを有効に
利用できないためと考えられる。
As can be seen from FIG. 3 (B), by increasing the Sn addition rate, Ag-Sn is obtained regardless of the Mn addition rate in a range where the addition rate is relatively small.
Although the recording power can be reduced as compared with the reflective film, the recording power tends to increase as the Sn addition rate increases. This is probably because the reflective film is formed with a small film thickness of about 200 (Å), so that the transmittance increases as the Sn addition rate increases, and the recording power used for writing cannot be used effectively. .

また、Ag−Mn−Snから成る反射膜において、Mn添加率
を大きく採るほど、記録パワーが増大に転じる際のSn添
加率は少ないのが理解できる。
Also, it can be understood that, in the reflective film made of Ag-Mn-Sn, the higher the Mn addition ratio is, the smaller the Sn addition ratio when the recording power starts to increase.

続いて、第4図(A)及び(B)を参照して、上述し
た実施例2の記録媒体に関するCN比の測定結果と、Mn及
びSnの添加率との関係につき説明する。
Next, with reference to FIGS. 4A and 4B, the relationship between the measurement result of the CN ratio of the recording medium of the above-described embodiment 2 and the addition rates of Mn and Sn will be described.

第4図(A)及び(B)は、実施例2に係る記録媒体
に関するMn及びSnの添加率とCN比との関係を説明するた
め、縦軸にCN比(dB)及び横軸にはSnの添加率(原子
%)を夫々採って示す特性曲線図であり、第4図(A)
は反射膜の膜厚が400(Å)の場合の結果を表わし、第
4図(B)は当該膜厚を200(Å)とした場合の結果を
表わす。さらに、これら図に示す曲線には、第3図
(A)及び(B)に対応して曲線I〜Vの符号と共に、
各々の曲線が表わす記録媒体の反射膜の包括的な組成式
を付してある。
FIGS. 4 (A) and (B) illustrate the relationship between the Mn and Sn addition rates and the CN ratio for the recording medium according to Example 2, and the vertical axis shows the CN ratio (dB) and the horizontal axis shows the CN ratio. FIG. 4 (A) is a characteristic curve diagram showing Sn addition rates (atomic%), respectively.
4 shows the result when the thickness of the reflection film is 400 (Å), and FIG. 4 (B) shows the result when the thickness is 200 (Å). Further, the curves shown in these figures are accompanied by the signs of the curves I to V corresponding to FIGS. 3 (A) and (B).
A comprehensive composition formula of the reflection film of the recording medium represented by each curve is given.

まず、比較的膜厚が大きな400(Å)の反射膜を具え
た記録媒体の場合、第4図(A)に示す曲線I〜Vから
も理解できるように、銀単体に対してMn或いはSnを添加
して作製した記録媒体では、総じてCN比の低下を来たし
た。前述したISOの国際規格である45(dB)のCN比にま
で低下するSnの添加率を示せば、Mnを添加せずに作製し
た記録媒体(曲線I)では約32(原子%)、Mnを1(原
子%)添加した記録媒体(曲線II)では約28(原子
%)、Mnを7(原子%)添加した記録媒体(曲線III)
では約24(原子%)、Mnを15(原子%)添加した記録媒
体(曲線IV)では約18(原子%)及びMnを30(原子%)
を添加した記録媒体(曲線V)では約6.5(原子%)
の、夫々の値であった。
First, in the case of a recording medium provided with a reflective film having a relatively large film thickness of 400 (Å), as can be understood from the curves IV shown in FIG. In the recording medium prepared by adding C, the CN ratio generally decreased. If the addition ratio of Sn, which decreases to the CN ratio of 45 (dB), which is the above-mentioned ISO international standard, is shown, the recording medium (curve I) manufactured without adding Mn has a Mn content of about 32 (atomic%). Is about 28 (atomic%) in the recording medium (curve II) to which 1 (atomic%) is added, and is recording medium (curve III) in which Mn is added to 7 (atomic%).
Is about 24 (at.%), And about 18 (at.%) And Mn is 30 (at.%) For the recording medium (curve IV) to which Mn is added at 15 (at.%).
About 6.5 (atomic%) in the recording medium (curve V) to which is added
Of the respective values.

次に、第4図(B)に示す曲線からも理解できるよう
に、比較的膜厚が小さな200(Å)の反射膜を具えた記
録媒体の場合であっても、総じてCN比の低下を来たし
た。前述した45(dB)のCN比にまで低下するSnの添加率
に着目すれば、Mnを添加せずに作製した記録媒体(曲線
I)では約27(原子%)、Mnを1(原子%)添加した記
録媒体(曲線II)では約23(原子%)、Mnを7(原子
%)添加した記録媒体(曲線III)では約20(原子
%)、Mnを15(原子%)添加した記録媒体(曲線IV)で
は約14(原子%)及びMnを30(原子%)添加した記録媒
体(曲線V)では約3(原子%)の、夫々の値であっ
た。
Next, as can be understood from the curve shown in FIG. 4 (B), even in the case of a recording medium having a reflective film having a relatively small film thickness of 200 (Å), the decrease in the CN ratio is generally reduced. I came. Focusing on the addition ratio of Sn, which is reduced to the above-mentioned 45 (dB) CN ratio, in the recording medium (curve I) manufactured without adding Mn, approximately 27 (atomic%) and Mn is 1 (atomic%) ) The added recording medium (Curve II) was about 23 (atomic%), the Mn added 7 (atomic%) was about 20 (atomic%), and Mn was added at 15 (atomic%). The value was about 14 (atomic%) for the medium (curve IV) and about 3 (atomic%) for the recording medium (curve V) to which Mn was added at 30 (atomic%).

上述した第3図(A)及び第4図(A)と、第3図
(B)及び第4図(B)との比較からも理解できるよう
に、同一組成の反射膜の膜厚を小さく採ることによっ
て、CN比が低下してしまう。従って、実用に供し得るCN
比を達成し、しかも記録パワー低減を図るためには、Ag
−Mn−Snから成る反射膜を構成するに当って、膜厚が小
さい場合の結果を尺度として、Mn添加率及びSn添加率
に、より狭い好適範囲を設定する必要が有る。
As can be understood from a comparison between FIGS. 3 (A) and 4 (A) and FIGS. 3 (B) and 4 (B), the thickness of the reflective film having the same composition is reduced. By adopting it, the CN ratio decreases. Therefore, a practically usable CN
In order to achieve the ratio and reduce the recording power, Ag
In constructing the reflective film made of -Mn-Sn, it is necessary to set narrower suitable ranges for the Mn addition rate and the Sn addition rate based on the result when the film thickness is small.

以下、第3図(B)及び第4図(B)を参照して、第
二発明のAg−Mn−Snで構成される反射膜の、Mn添加率と
Sn添加率の好適範囲につき説明する。
Hereinafter, with reference to FIG. 3 (B) and FIG. 4 (B), the Mn addition rate of the reflective film composed of Ag-Mn-Sn of the second invention will be described.
The preferred range of the Sn addition rate will be described.

始めに、マンガン(Mn)添加率の好適範囲につき説明
する。
First, a preferable range of the manganese (Mn) addition rate will be described.

まず、第3図(B)に示す曲線Iと曲線II〜Vとの比
較から理解できるように、Mn添加率を1(原子%)以上
とすれば、AgにSnのみを添加する場合に比して、充分な
記録パワーの低減効果が得られる。
First, as can be understood from a comparison between the curves I and II to V shown in FIG. 3 (B), when the Mn addition rate is 1 (atomic%) or more, the ratio is higher than when only Sn is added to Ag. As a result, a sufficient effect of reducing the recording power can be obtained.

一方、第4図(B)に示す45(dB)以上のCN比を達成
し得るSn添加率の範囲に着目し、曲線IV(Mn添加率15
(原子%))のうちでSn添加率が約3〜7(原子%)の
範囲内ではCN比の低下が比較的緩やかになっている。こ
のような傾向は曲線II(Mn添加率1(原子%))、曲線
III(Mn添加率7(原子%))及び曲線IV(Mn添加率15
(原子%))に関しても認められる。これに対して、Mn
添加率を30(原子%)とした曲線Vでは、測定した範囲
内のいずれのSn添加率でもCN比の低下傾向が連続して見
られる。これから理解できるように、Mn添加率の好適範
囲は15(原子%)以下とすれば良い。
On the other hand, paying attention to the range of the Sn addition rate which can achieve the CN ratio of 45 (dB) or more shown in FIG.
(Atomic%)), the decrease in the CN ratio is relatively gradual when the Sn addition rate is in the range of about 3 to 7 (atomic%). This tendency is indicated by curve II (Mn addition rate 1 (atomic%)), curve
III (Mn addition rate 7 (atomic%)) and curve IV (Mn addition rate 15
(Atomic%)). In contrast, Mn
In the curve V where the addition rate is 30 (atomic%), the tendency of the decrease in the CN ratio is continuously observed at any Sn addition rate within the measured range. As can be understood from the above, the preferable range of the Mn addition rate may be set to 15 (atomic%) or less.

上述したように、記録パワーの低減効果とCN比の低下
とから、Mn添加率の好適範囲を1(原子%)以上15(原
子%)以下に設定すれば良いことが理解できる。
As described above, it can be understood that the preferable range of the Mn addition rate should be set to 1 (at.%) Or more and 15 (at.%) Or less from the effect of reducing the recording power and the decrease in the CN ratio.

次に、錫(Sn)添加率の好適範囲につき説明する。 Next, a preferable range of the tin (Sn) addition rate will be described.

まず、第3図(B)から、Ag単体で構成した反射膜を
具える記録媒体が約5.7(mW)の記録パワーであるのに
対して、Sn添加率を1(原子%)以上に設定すれば、曲
線II〜Vとして示すいずれのMn添加率であっても20
(%)以上の記録パワー低減を図ることができる。
First, from FIG. 3 (B), while the recording medium having a reflective film composed of Ag alone has a recording power of about 5.7 (mW), the Sn addition rate is set to 1 (atomic%) or more. Then, any of the Mn addition rates shown as curves II to V,
(%) Or more of the recording power can be reduced.

また、第4図(B)に示すCN比の測定結果を参照して
既に説明したように、Sn添加率の上限は実用上充分な特
性とされる国際規格から、45(dB)以上のCN比を満足す
るように設定すれば良い。
Further, as already described with reference to the measurement results of the CN ratio shown in FIG. 4 (B), the upper limit of the Sn addition rate is set to a value of 45 dB or more according to the international standard which is considered to be sufficient for practical use. What is necessary is just to set so that a ratio may be satisfied.

従って、第二発明に係る実施例2の測定結果から得ら
れ、Ag−Mn−Snを反射膜とした場合の組成範囲は、 曲線IIに示す結果から、Ag99-xMn1Snxの組成式で表わ
される反射膜組成の場合には、錫(Sn)の添加率を1
(原子%)以上23(原子%)以下 曲線IIIに示す結果から、Ag93-xMn7Snxの組成式で表
わされる反射膜組成の場合には、錫(Sn)の添加率を1
(原子%)以上20(原子%)以下 曲線IVに示す結果から、Ag85-xMn15Snxの組成式で表
わされる反射膜組成の場合には、錫(Sn)の添加率を1
(原子%)以上14(原子%)以下 の夫々の範囲内とするのが好適であり、上記、及び
からマンガン(Mn)の組成範囲は1(原子%)以上15
(原子%)以下となり、さらに銀(Ag)の組成範囲に関
してはその最大値は上記から98(原子%)、その最小
値は上記から71(原子%)となり、従って、、及
びを総合すれば、Ag−Mn−Snの反射膜の各成分の組成
範囲はマンガン(Mn)の添加率を1(原子%)以上15
(原子%)以下、錫(Sn)の添加率を1(原子%)以上
23以下、銀(Ag)の添加率を71(原子%)以上98(原子
%)以下とするのが好ましい。
Therefore, the composition range obtained from the measurement results of Example 2 according to the second invention and using Ag-Mn-Sn as the reflection film is as follows from the result shown by the curve II, the composition of Ag 99-x Mn 1 Sn x In the case of the reflective film composition represented by the formula, the tin (Sn) addition rate is 1
(Atomic%) or more and 23 (atomic%) or less From the results shown in the curve III, in the case of the reflective film composition represented by the composition formula of Ag 93-x Mn 7 Sn x , the addition rate of tin (Sn) was 1
(Atomic%) or more 20 (atomic%) The results shown below the curve IV, when the reflective film composition represented by a composition formula of Ag 85-x Mn 15 Sn x is the addition ratio of tin (Sn) 1
(Atomic%) or more and 14 (atomic%) or less, respectively, and the composition range of manganese (Mn) is preferably 1 (atomic%) or more and 15 (atomic%) or less.
(At.%) Or less, and further, regarding the composition range of silver (Ag), the maximum value is 98 (at.%) From the above, and the minimum value is 71 (at.%) From the above. , Ag-Mn-Sn, the composition range of each component of the reflection film is such that the addition ratio of manganese (Mn) is 1 (at.%) Or more.
(Atomic%) or less, tin (Sn) addition rate is 1 (atomic%) or more
It is preferable that the addition ratio of silver (Ag) is set to 71 (at%) or more and 98 (at%) or less.

実施例3 この実施例3では、上述した実施例1及び実施例2の
記録媒体の代わりに、光磁気記録媒体の他の構成例とし
て、第5図(A)に示す積層関係で記録媒体を作製し、
記録パワー及びCN比を測定した。
Third Embodiment In the third embodiment, instead of the recording medium of the first and second embodiments, a recording medium having a lamination relationship shown in FIG. 5A is used as another configuration example of the magneto-optical recording medium. Made,
The recording power and CN ratio were measured.

各構成成分の膜厚及び材料につき説明すれば、ポリカ
ーボネートからなる基板11の表面に、膜厚700(Å)で
窒化珪素アルミニウム(AlSiN)から成る保護膜13a、膜
厚300(Å)で前述した組成のTb−Fe−Coから成る磁性
膜15及び膜厚1000(Å)で上述のAlSiNから成る保護膜1
3bを順次被着形成する。
Describing the film thickness and material of each component, the protective film 13a made of silicon aluminum nitride (AlSiN) with a film thickness of 700 (Å) and the film thickness of 300 (Å) are formed on the surface of the substrate 11 made of polycarbonate. The magnetic film 15 composed of Tb-Fe-Co having a composition and the protective film 1 composed of AlSiN described above with a thickness of 1000 (上述)
3b is sequentially formed.

然る後、この保護膜13bの表面に、第二発明に係るAg
−Mn−Sn系の反射膜構成の一例として、Ag86Mn7Sn7の組
成式で表わされる反射膜を400(Å)或いは200(Å)の
膜厚で被着形成し、実施例3に係る光磁気記録媒体19を
得た。
Thereafter, the surface of the protective film 13b is coated with the Ag according to the second invention.
An example of reflective film structure -mn-Sn-based, Ag 86 Mn 7 a reflective film represented by the composition formula of Sn 7 is deposited in a film thickness of 400 (Å) or 200 (Å), Example 3 Such a magneto-optical recording medium 19 was obtained.

尚、これら保護膜を含む構成成分の被着は前述した実
施例1及び実施例2と同一の条件として行なった。
The deposition of the components including the protective film was performed under the same conditions as those in the above-described Examples 1 and 2.

また、Agのみから成る反射膜を具えることを除いては
同一の条件で記録媒体を別途作製し、これら2つの記録
媒体につき、前述した手順及び数値条件で、記録パワー
とCN比とを測定した。
In addition, a recording medium was separately manufactured under the same conditions except that a reflective film made of only Ag was provided, and the recording power and CN ratio of these two recording media were measured by the above-described procedure and numerical conditions. did.

その結果、反射膜の膜厚を400(Å)として作製した
比較例に係る記録媒体では、8(mW)の記録パワー及び
50.4(dB)のCN比が得られた。一方、上述の膜厚を200
(Å)とした比較例に係る記録媒体では、5.7(mW)の
記録パワー及び50.2(dB)のCN比が得られた。
As a result, in the recording medium according to the comparative example manufactured by setting the thickness of the reflective film to 400 (Å), the recording power of 8 (mW) and
A CN ratio of 50.4 (dB) was obtained. On the other hand, when the above film thickness is 200
With the recording medium according to the comparative example described as (Å), a recording power of 5.7 (mW) and a CN ratio of 50.2 (dB) were obtained.

これに対して、反射膜の膜厚を400(Å)とした実施
例3に係る記録媒体では、4.5(mW)の記録パワーと、
実質的に比較例と同程度である50.1(dB)のCN比とが得
られた。さらに、当該膜厚を200(Å)とした実施例3
に係る記録媒体では、3.1(mW)の記録パワー及び50.0
(dB)のCN比とが得られた。
On the other hand, in the recording medium according to the third embodiment in which the thickness of the reflective film is 400 (Å), the recording power of 4.5 (mW) and
A CN ratio of 50.1 (dB), which is substantially the same as that of the comparative example, was obtained. Example 3 in which the film thickness was set to 200 (Å)
In the recording medium according to the above, the recording power of 3.1 (mW) and 50.0
(DB) CN ratio was obtained.

この結果からも理解できるように、この出願に係る実
施例2の記録媒体と、比較例に係る従来の記録媒体のい
ずれであっても、保護膜の配設位置を変更することによ
って、記録感度を低下させることなく、カー効果エンハ
ンスメントによるCN比の向上を図ることができる。従っ
て、種々の積層関係で光磁気記録媒体を作製するに当っ
て、この出願に係る発明を利用することにより、実施例
1及び実施例2に係る記録媒体として測定した結果より
も高いCN比を実現することができる。
As can be understood from the results, the recording sensitivity of the recording medium of Example 2 according to the present application and the conventional recording medium according to the comparative example can be changed by changing the arrangement position of the protective film. The CN ratio can be improved by the Kerr effect enhancement without lowering the CNR. Therefore, in producing a magneto-optical recording medium with various lamination relationships, by using the invention according to this application, a CN ratio higher than the result measured as the recording medium according to Example 1 and Example 2 can be obtained. Can be realized.

以上、この出願に係る発明の実施例につき詳細に説明
したが、この発明は、上述した実施例にのみ限定される
ものではないこと明らかである。
Although the embodiments of the invention according to the present application have been described above in detail, it is obvious that the invention is not limited to the above-described embodiments.

例えば、上述の実施例では、光磁気記録媒体を構成す
る基板、磁性膜及び保護膜につき、材料、膜厚及びその
他、特定の条件を例示して説明した。しかしながら、こ
の発明は、これら条件に限定してのみ効果が得られるも
のではない。
For example, in the above-described embodiment, the material, the film thickness, and other specific conditions have been described for the substrate, the magnetic film, and the protective film constituting the magneto-optical recording medium. However, the effect of the present invention cannot be obtained only under these conditions.

また、第一発明及び第二発明に係る実施例として所定
の反射膜組成を有する記録媒体を作製し、好適範囲につ
き説明したが、この出願に係る発明は、この好適範囲内
でのみ効果が得られるものではないこと明らかである。
例えば実施例2においては、説明の理解を容易とするた
め、所定のMn添加率を例示し、Mn添加率を一定とした条
件下でSn添加率の好適範囲につき検討した。しかしなが
ら、Mn添加率とSn添加率との組成範囲は、実施例として
例示した好適範囲内でのみ効果が得られるものではな
く、例示した反射膜組成を任意好適に変更して作製した
記録媒体であっても同等の効果を期待し得る。
Further, a recording medium having a predetermined reflection film composition was manufactured as an example according to the first invention and the second invention, and the preferred range was described. However, the invention according to this application can obtain an effect only within this preferred range. It is clear that this is not something that can be done.
For example, in Example 2, in order to facilitate understanding of the description, a predetermined Mn addition rate was exemplified, and a suitable range of the Sn addition rate was examined under the condition where the Mn addition rate was constant. However, the composition range of the Mn addition rate and the Sn addition rate is not effective only within the preferred range exemplified as the examples, and the recording medium manufactured by arbitrarily suitably changing the exemplified reflection film composition. Even so, the same effect can be expected.

これに加えて、上述した一連の実施例では、反射膜を
構成するに当って、所定の膜厚を例示して説明したが、
この出願に係る発明は、例示した膜厚にのみ限定される
ものではない。詳細なデータを省略するが、この出願に
係る発明者の実験によれば、反射膜の膜厚を500(Å)
とした場合には、磁性膜での書き込みに利用し得る熱が
反射膜を介して散逸してしまい、良好な記録パワーを達
成することが難しかった。さらに、反射膜の膜厚を100
(Å)とした場合には、反射膜自体に透過性を生じ、有
効なカーエンハンスメント効果を得ることができず、CN
比の低下及び記録パワーの増大が著しかった。従って、
この発明を適用するに当っては、反射膜の膜厚を200〜4
00(Å)程度に設定すれば、良好な記録感度を有する光
磁気記録媒体を実現し得る。
In addition to this, in the above-described series of embodiments, when configuring the reflection film, a description has been given by exemplifying a predetermined film thickness.
The invention according to this application is not limited only to the illustrated film thickness. Although detailed data is omitted, according to the experiment of the inventor of the present application, the thickness of the reflective film is set to 500 (Å).
In this case, heat that can be used for writing in the magnetic film is dissipated through the reflective film, making it difficult to achieve good recording power. Furthermore, the thickness of the reflective film is set to 100
In the case of (Å), the reflective film itself becomes transparent, and an effective car enhancement effect cannot be obtained.
The decrease in the ratio and the increase in the recording power were remarkable. Therefore,
In applying the present invention, the thickness of the reflective film is set to 200 to 4
If it is set to about 00 (Å), a magneto-optical recording medium having good recording sensitivity can be realized.

これら、材料、膜厚、配置関係、数値的条件及びその
他、特定の条件は、この発明の目的の範囲内で、任意好
適な設計の変更及び変形を行ない得ること明らかであ
る。
It is clear that these materials, film thicknesses, arrangement relations, numerical conditions, and other specific conditions can be changed and modified in any suitable design within the scope of the present invention.

(発明の効果) 上述した説明からも明らかなように、まず、この出願
の第一発明に係る光磁気記録媒体によれば、銀(Ag)と
マンガン(Mn)とによって反射膜を構成することによ
り、Agが有する反射率を利用すると共に、Mnによって反
射膜の熱伝導率を下げることができる。
(Effects of the Invention) As is clear from the above description, first, according to the magneto-optical recording medium of the first invention of this application, a reflection film is formed by silver (Ag) and manganese (Mn). Thereby, the reflectivity of Ag can be used, and the thermal conductivity of the reflective film can be reduced by Mn.

また、この出願の第二発明に係る光磁気記録媒体によ
れば、銀(Ag)、マンガン(Mn)及び錫(Sn)の3つの
元素によって反射膜を構成することにより、第一発明と
同様に、Agの反射率を利用すると共に、MnとSnとによっ
て反射膜の熱伝導率を下げることができる。
Further, according to the magneto-optical recording medium of the second invention of the present application, the reflection film is composed of three elements of silver (Ag), manganese (Mn) and tin (Sn), thereby achieving the same effect as the first invention. In addition, while utilizing the reflectivity of Ag, the thermal conductivity of the reflective film can be reduced by Mn and Sn.

従って、この出願に係る第一発明及び第二発明を実施
することにより、実用上充分なCN比を維持し、しかも小
さな熱伝導率を実現することによって記録パワーの低減
を図り、優れた光磁気記録媒体を提供することができ
る。
Therefore, by implementing the first invention and the second invention according to this application, it is possible to maintain a practically sufficient CN ratio and achieve a low thermal conductivity, thereby reducing the recording power and achieving an excellent magneto-optical A recording medium can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、第一発明に係る実施例1を説明するため、縦
軸に記録パワー、及び横軸にはAg−MnにおけるMnの添加
率を各々採って示す特性曲線図、 第2図は、第一発明に係る実施例1を説明するため、縦
軸にCN比、及び横軸にはAg−MnにおけるMnの添加率を夫
々採って示す特性曲線図、 第3図(A)及び(B)は、第二発明に係る実施例2を
説明するため、縦軸に記録パワー、及び横軸にはAg−Mn
−SnにおけるSnの添加率を各々採って示す特性曲線図、 第4図(A)及び(B)は、第二発明に係る実施例2を
説明するため、縦軸にCN比、及び横軸にはAg−Mn−Snに
おけるSnの添加率を夫々採って示す特性曲線図、 第5図(A)及び(B)は、従来技術及び実施例を説明
するため、光磁気記録媒体の構成を概略的断面により示
す説明図である。 11……基板、13a,13b……保護膜 15……磁性膜、17……反射膜 19,21……光磁気記録媒体。
FIG. 1 is a characteristic curve diagram showing the recording power on the vertical axis and the addition ratio of Mn in Ag-Mn on the horizontal axis, respectively, for explaining Example 1 according to the first invention. In order to explain Example 1 according to the first invention, a vertical axis shows a CN ratio, and a horizontal axis shows a Mn addition ratio in Ag-Mn, and FIG. 3 (A) and FIG. B) describes the second embodiment according to the second invention, in which the vertical axis represents the recording power and the horizontal axis represents Ag-Mn.
FIG. 4 (A) and (B) are characteristic curve diagrams each showing the addition ratio of Sn in -Sn, in which the vertical axis represents the CN ratio, and the horizontal axis represents the second embodiment according to the second invention. FIG. 5 is a characteristic curve diagram showing the addition ratio of Sn in Ag-Mn-Sn. FIGS. 5 (A) and (B) show the configuration of a magneto-optical recording medium in order to explain a conventional technique and an embodiment. It is explanatory drawing shown by a schematic cross section. 11 ... substrate, 13a, 13b ... protective film 15 ... magnetic film, 17 ... reflective film 19, 21 ... magneto-optical recording medium.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に少なくとも磁性膜と反射膜とを具
えて成る光磁気記録媒体において、 前記反射膜が、銀(Ag)とマンガン(Mn)とから成り、
マンガン(Mn)の添加率を2(原子%)以上32(原子
%)以下としたことを特徴とする光磁気記録媒体。
1. A magneto-optical recording medium comprising at least a magnetic film and a reflective film on a substrate, wherein the reflective film comprises silver (Ag) and manganese (Mn);
A magneto-optical recording medium, wherein the addition ratio of manganese (Mn) is 2 (at.%) Or more and 32 (at.%) Or less.
【請求項2】基板上に少なくとも磁性膜と反射膜とを具
えて成る光磁気記録媒体において、 前記反射膜が、銀(Ag)とマンガン(Mn)と錫(Sn)と
から成り、銀(Ag)の添加率を71(原子%)以上98(原
子%)以下、マンガン(Mn)の添加率を1(原子%)以
上15(原子%)以下、錫(Sn)の添加率を1(原子%)
以上23(原子%)以下としたことを特徴とする光磁気記
録媒体。
2. A magneto-optical recording medium comprising at least a magnetic film and a reflective film on a substrate, wherein the reflective film comprises silver (Ag), manganese (Mn), tin (Sn), and silver (Ag). Ag) is added at 71 (at.%) To 98 (at.%), Manganese (Mn) is added at 1 (at.%) To 15 (at.%), And tin (Sn) is added at 1 (at.). atom%)
A magneto-optical recording medium characterized by being at least 23 (atomic%) or less.
【請求項3】前記反射膜の、銀(Ag)−マンガン(Mn)
−錫(Sn)におけるマンガン(Mn)の添加率を1(原子
%)とし、かつ錫(Sn)の添加率を1(原子%)以上23
(原子%)以下としたことを特徴とする請求項2に記載
の光磁気記録媒体。
3. A silver (Ag) -manganese (Mn) of the reflection film.
-The addition rate of manganese (Mn) in tin (Sn) is set to 1 (at.%), And the addition rate of tin (Sn) is set to 1 (at.%) Or more.
3. The magneto-optical recording medium according to claim 2, wherein the content is (atomic%) or less.
【請求項4】前記反射膜の、銀(Ag)−マンガン(Mn)
−錫(Sn)におけるマンガン(Mn)の添加率を7(原子
%)とし、かつ錫(Sn)の添加率を1(原子%)以上20
(原子%)以下としたことを特徴とする請求項2に記載
の光磁気記録媒体。
4. A silver (Ag) -manganese (Mn) for the reflection film.
-The addition rate of manganese (Mn) in tin (Sn) is 7 (at.%), And the addition rate of tin (Sn) is 1 (at.%) Or more.
3. The magneto-optical recording medium according to claim 2, wherein the content is (atomic%) or less.
【請求項5】前記反射膜の、銀(Ag)−マンガン(Mn)
−錫(Sn)におけるマンガン(Mn)の添加率を15(原子
%)とし、かつ錫(Sn)の添加率を1(原子%)以上14
(原子%)以下としたことを特徴とする請求項2に記載
の光磁気記録媒体。
5. The reflective film according to claim 1, wherein said reflective film is silver (Ag) -manganese (Mn).
The tin (Sn) addition rate of manganese (Mn) is 15 (atomic%), and the tin (Sn) addition rate is 1 (atomic%) or more;
3. The magneto-optical recording medium according to claim 2, wherein the content is (atomic%) or less.
JP1118330A 1988-10-21 1989-05-11 Magneto-optical recording medium Expired - Lifetime JP2742089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/423,033 US5040166A (en) 1988-10-21 1989-10-18 Magneto-optical recording medium having a reflective film of Ag and Mn or Ag, Mn and Sn

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-265626 1988-10-21
JP26562688 1988-10-21

Publications (2)

Publication Number Publication Date
JPH02192046A JPH02192046A (en) 1990-07-27
JP2742089B2 true JP2742089B2 (en) 1998-04-22

Family

ID=17419745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118330A Expired - Lifetime JP2742089B2 (en) 1988-10-21 1989-05-11 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2742089B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7384677B2 (en) 1998-06-22 2008-06-10 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US6905750B2 (en) 1998-06-22 2005-06-14 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US6852384B2 (en) 1998-06-22 2005-02-08 Han H. Nee Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314657B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7045187B2 (en) 1998-06-22 2006-05-16 Nee Han H Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314659B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US7374805B2 (en) 2000-07-21 2008-05-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7316837B2 (en) 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
ATE327553T1 (en) 2002-06-28 2006-06-15 Williams Advanced Materials In CORROSION-RESISTANT SILVER METAL ALLOYS FOR OPTICAL RECORDING AND RECORDABLE OPTICAL RECORDING MEDIA CONTAINING THIS ALLOY
US7572517B2 (en) 2002-07-08 2009-08-11 Target Technology Company, Llc Reflective or semi-reflective metal alloy coatings
CN100430215C (en) 2003-04-18 2008-11-05 目标技术有限公司 Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598150A (en) * 1982-07-02 1984-01-17 Sharp Corp Magnetooptical storage element

Also Published As

Publication number Publication date
JPH02192046A (en) 1990-07-27

Similar Documents

Publication Publication Date Title
JPH0789414B2 (en) Optical storage element
JP2742089B2 (en) Magneto-optical recording medium
KR970001374B1 (en) Magneto optical recording medium
JP2960824B2 (en) Magneto-optical recording medium
JPH0325737A (en) Magneto-optical recording medium
JPS63206935A (en) Magnetooptical memory
US5643650A (en) Magneto-optical recording medium
JP2541677B2 (en) Optical recording medium
EP0349271A2 (en) Magneto-optic memory device
US5040166A (en) Magneto-optical recording medium having a reflective film of Ag and Mn or Ag, Mn and Sn
JP2750177B2 (en) Magneto-optical recording medium
JP2507592B2 (en) Optical recording medium
JP2921590B2 (en) Magneto-optical recording medium
JPH0376038A (en) Magneto-optical recording medium
JP2960470B2 (en) Magneto-optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JP2503268B2 (en) Magneto-optical recording medium and manufacturing method thereof
JP2775853B2 (en) Magneto-optical recording medium
JP2552345B2 (en) Method for manufacturing magneto-optical recording medium
JP2804165B2 (en) Magneto-optical recording medium
JP2528188B2 (en) Optical recording medium
JP2654676B2 (en) Magneto-optical recording element
JPH03122845A (en) Optical recording medium
KR100194131B1 (en) Optical recording media
EP0316803A2 (en) Magneto-optical recording medium