EP1517405A1 - Connecteur électrique ou borne électrique, et feuille ou bande métallique pour son procédé de fabrication - Google Patents
Connecteur électrique ou borne électrique, et feuille ou bande métallique pour son procédé de fabrication Download PDFInfo
- Publication number
- EP1517405A1 EP1517405A1 EP03078003A EP03078003A EP1517405A1 EP 1517405 A1 EP1517405 A1 EP 1517405A1 EP 03078003 A EP03078003 A EP 03078003A EP 03078003 A EP03078003 A EP 03078003A EP 1517405 A1 EP1517405 A1 EP 1517405A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strip
- steel
- thickness
- copper clad
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R43/00—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors
- H01R43/16—Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors for manufacturing contact members, e.g. by punching and by bending
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R13/00—Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
- H01R13/02—Contact members
- H01R13/03—Contact members characterised by the material, e.g. plating, or coating materials
Definitions
- the invention relates to an electrical connector or electrical terminal comprising an electrically conductive metallic element, wherein the metallic element comprises a steel backing component and a metal component having a high electrical conductivity.
- the invention also relates to a metal sheet or strip for the manufacture of such metallic elements for electrical connectors or electrical terminals.
- One-component connectors combine the electrically conductive element and backing element in one metal component, which is usually a copper alloy.
- the connector should have, copper-beryllium, CuNi9Sn2, CuFe2P, CuNiSi, CuSn6, CuNi12Zn24 or another copper alloy is used.
- the higher the amount of alloying elements in the copper alloy the lower the electrical conductivity will be, but the higher the mechanical strength and string back property of the component will be.
- the best alloying element is beryllium, the copper-beryllium alloy combining a reasonable conductivity with excellent mechanical properties, but beryllium is regarded as carcinogenic and therefore the use of beryllium is banned.
- two-component connectors consisting of two separate components: an outside clamp housing and an inside copper connector part.
- the mechanical strength and the spring back property are usually provided by a high strength stainless spring steel (like e.g. 1.4310) housing and the electrical conductivity is provided by a pure copper component in the housing.
- a high strength stainless spring steel like e.g. 1.4310
- the electrical conductivity is provided by a pure copper component in the housing.
- the drawback of this known two-component connector is that the manufacturing costs of such a two-component connector are high due to the pressing of two components and the low speed of such pressing, the expensive design of such a connector, et cetera.
- an electrical connector or electrical terminal comprising an electrically conductive metallic element, wherein the metallic element has been manufactured from a copper clad steel sheet or strip, wherein the steel is a stainless steel or a high strength steel and the copper clad layer has a purity of 92,0 % Cu or higher.
- This connector or terminal thus has a metallic element that does not consist of two separate components, but of one component made from a copper clad steel sheet or strip.
- a metallic element which forms the heart of an electrical connector or terminal, is far easier to produce and handle than a metallic element consisting of two separate parts.
- the producer of the connector or terminal now only has to cut the metallic element from the clad sheet or strip and form it into the desired shape, whereas for the known connectors the producer has to cut two components from two sheets or strips, has to form both components and had to combine those components as well. Though the clad sheet or strip could be more expensive than the two separate sheets or strips, the production costs for producing connectors or terminals from one sheet or strip are far lower.
- IACS is the abbreviation of International Annealed Copper Standard.
- the copper clad layer has a purity of 99,0 % Cu or higher.
- a purity of 99,0 % Cu or higher provides an electrical conductivity that is still higher, being equivalent to at least 52 m/Ohm ⁇ mm 2 (90 % IACS).
- the copper has a purity of 99,5 % Cu or higher, being equivalent to at least at least 55 m/Ohm x mm 2 (95 % IACS), still more preferably 99,9 % Cu or higher, being equivalent to at least 58 m/Ohm x mm 2 (100 % IACS). These purities are for special purposes.
- the copper clad layer has a purity of 92,0 % Cu or higher, the copper clad layer comprises nickel, tin, zinc and/or iron. These elements are environment friendly.
- the copper clad layer preferably consists of CuSn2, Cu Fe2P, CuZn8, CuNi3Si, CuAg0,1Cr1Zr or CuCo2. These are known copper alloys that can be clad.
- the copper layer clad onto the steel sheet or strip is Cu-HCP, Cu-PHC, Cu-DHP or Cu-OF copper strip. These are known international standards for copper strip. See standard EN 13599 and EN 1652.
- the copper clad layer is present on both sides of the steel sheet or strip. This is often preferred over a single-sided clad layer in view of the electrical connection.
- the stainless steel is ferritic stainless steel.
- Ferritic stainless steel has a good corrosion resistance and provides reasonable mechanical strength properties at a reasonable price level.
- the stainless steel is austenitic stainless steel. This type of steel is often more expensive, but can be more suitable in certain cases.
- the stainless steel is type 301 stainless steel (ASTM). This is a commercially available stainless steel type, 1.4310 (EN 10088-2). This steel type shows excellent mechanical and spring properties, is extremely corrosion resistant, but shows poor electrical conductivity (approximately 5 % IACS). It is the preferred stainless steel type for connectors at a higher price level.
- the high strength steel is a carbon steel, for instance C30 or C60.
- This steel type (all grades in EN 10132) is cheaper and can be used in many applications.
- the high strength steel is a high strength low alloy (HSLA) steel, for instance ZE 800 (EN 10268) or a dual phase (DP) steel, for instance S690 (EN 10149-2).
- HSLA high strength low alloy
- DP dual phase steel
- S690 EN 10149-2
- An electrical connector or terminal according to the invention using HSLA or DP steel will have good electrical properties and result in major cost savings, and encapsulation in plastic or installation in less corrosive environments will overcome the disadvantage of the lower corrosion resistance.
- the metallic element has a gauge of 0.1 to 0.5 mm, preferably 0.15 to 0.3 mm. This gauge is preferred for producing connectors or terminals.
- the copper clad layer has been applied on one side of the steel sheet or strip, the copper clad layer having a thickness of 1 to 70 % of the total thickness of the steel sheet or strip, preferably a thickness of 5 to 40 % of the thickness of the steel sheet or strip, more preferably a thickness of 10 to 30 % of the thickness of the steel sheet or strip. These thicknesses depend on the use of the connector or terminal.
- the copper clad layer has been applied on both sides of the steel sheet or strip, the copper clad layers together having a thickness of 2 to 70 % of the total thickness of the copper clad steel sheet or strip, preferably the copper clad layers together having a thickness of 10 to 50 % of the total thickness of the steel sheet or strip, more preferably together having a thickness of 20 to 30 % of the total thickness of the steel sheet or strip.
- the metallic element will need a copper clad layer on both sides of the steel layer when the connection to be made by the connector or terminal needs a good electrical conductivity on both sides of the metallic element.
- the copper clad layers could for example each have a thickness of 10 % of the total thickness of the sheet or strip.
- the copper clad layer on one side of the steel sheet or strip has a thickness that is different from the thickness of the copper clad layer on the other side of the steel sheet or strip. This can be useful when the requirements of conductivity for one side of the metallic element differ from those for the other side.
- the copper clad layer on one side has a thickness of 10 to 50 % and the copper clad layer on the other side has a thickness of 0 to 5 % of the total thickness of the sheet or strip.
- the metallic element is coated with a tin or tin alloy layer on both sides, the tin layer preferably having a thickness of 1 to 10 ⁇ m on each side, preferably a thickness of 2 to 4 ⁇ m.
- a tin or tin alloy layer is applied for lubrication, contact resistance and corrosion protection.
- a clad metal sheet or strip for the manufacture of metallic elements for electrical connectors or electrical terminals according to the first aspect of the invention, wherein the clad metal sheet or strip is a copper clad sheet or strip comprising a steel core layer, wherein the steel is a stainless steel or a high strength steel, and a copper clad layer, the copper having a purity of 92,0 % Cu or higher, on at least one side of the steel core layer.
- the sheet or strip according to the second aspect of the invention can be directly use for manufacturing the electrical connectors and electrical terminals according to the first aspect of the invention, and as such replaces the two sheets or strips (a steel strip and a copper or copper alloy strip) that until now have to be used for the manufacture of such connectors or terminals.
- the steel sheet or strip has a thickness of 0.5 to 3.0 mm, preferably 0.7 to 1.3 mm.
- a copper strip is clad and rolled to a desired thickness for manufacturing the electrical connectors or terminals according to the first aspect of the invention.
- the clad metal sheet or strip has been annealed and rolled to a thickness of 0.1 to 0.5 mm, preferably to a thickness of 0.15 to 0.3 mm. These thicknesses are commonly used for manufacturing electrical connectors and terminals; in most cases a thickness of 0.15 to 0.3 mm is used.
- a tin or tin alloy layer is present on both sides of the clad metal sheet or strip, each tin or tin alloy layer preferably having a thickness of 1 to 10 ⁇ m, more preferably 2 to 4 ⁇ m.
- the tin or tin alloy layer has been provided on the clad metal sheet or strip to provide a better lubrication, contact resistance and corrosion resistance of the electrical connectors or terminal manufactured from the sheet or strip.
- a copper clad steel strip is manufactured starting from a steel strip having a width of 500 mm and a thickness of 1,0 mm, and a copper strip Cu-HCP having a purity of 99,5 %, having a width of 540 mm and a thickness of 0,1 mm.
- the sides that have to contact each other are subjected to a pretreatment with a chemical alkaline cleaner and a mechanical brushing.
- the two strips are clad under the usual condition with a reduction of 25 to 60 %.
- the strip After cladding the strip is cold rolled and annealed under protective gas atmosphere (nitrogen/hydrogen or pure hydrogen, for instance) and recrystallised at approximately 800° C for high strength steel (for instance C30, Z800 or S690) or at approximately 900 to 1000° C for stainless steel type 301 (1.4310 EN 10088-2).
- protective gas atmosphere nitrogen/hydrogen or pure hydrogen, for instance
- a final cold rolling step is applied with a reduction of at least 5 %, to provide a final thickness of 0,25 mm.
- the width of the strip remains 500 mm.
- a coating with a thin tin or tin alloy layer (1 to 10 ⁇ m) is provided, for instance by hot dipping or electrolytic coating.
- the clad strip is slit into strips of smaller width before it is packed and sent to the manufacturer of electrical connectors or electrical terminals. There, the clad strips are (partially) cut into the desired form and formed into the desired shape as metallic element for the electrical connector or terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
- Electroplating Methods And Accessories (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03078003A EP1517405A1 (fr) | 2003-09-22 | 2003-09-22 | Connecteur électrique ou borne électrique, et feuille ou bande métallique pour son procédé de fabrication |
PCT/EP2004/010458 WO2005029648A1 (fr) | 2003-09-22 | 2004-09-14 | Connecteur ou borne electrique et feuille ou bande metallique pour fabriquer ce connecteur ou cette borne |
TW093128453A TW200520320A (en) | 2003-09-22 | 2004-09-20 | Electrical connector or electrical terminal, and metal sheet or strip for the manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03078003A EP1517405A1 (fr) | 2003-09-22 | 2003-09-22 | Connecteur électrique ou borne électrique, et feuille ou bande métallique pour son procédé de fabrication |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1517405A1 true EP1517405A1 (fr) | 2005-03-23 |
Family
ID=34178546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03078003A Withdrawn EP1517405A1 (fr) | 2003-09-22 | 2003-09-22 | Connecteur électrique ou borne électrique, et feuille ou bande métallique pour son procédé de fabrication |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1517405A1 (fr) |
TW (1) | TW200520320A (fr) |
WO (1) | WO2005029648A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067850A1 (fr) * | 2007-11-28 | 2009-06-04 | Shihuang Li | Conducteur de fiche, de douille ou de connecteur qui est amélioré grâce à un matériau conducteur |
DE102013103090A1 (de) * | 2013-03-26 | 2014-10-16 | Borgwarner Beru Systems Gmbh | Glühkerzensteuergerät |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB475644A (en) * | 1935-02-14 | 1937-11-15 | Thomas B Chace | Improvements in and relating to the production of metal clad iron or steel |
US4467954A (en) * | 1981-10-05 | 1984-08-28 | Olin Corporation | Process for obtaining a composite article |
US5224884A (en) * | 1990-01-22 | 1993-07-06 | Digital Equipment Corporation | High current, low voltage drop, separable connector |
EP0645843A2 (fr) * | 1993-09-28 | 1995-03-29 | The Whitaker Corporation | Borne électrique et méthode de fabrication |
EP1020247A1 (fr) * | 1998-06-03 | 2000-07-19 | Sumitomo Special Metals Company Limited | Materiau revetu et son procede de fabrication |
US20030010410A1 (en) * | 2000-02-23 | 2003-01-16 | Veikko Polvi | Method for making a joint between copper and stainless steel |
-
2003
- 2003-09-22 EP EP03078003A patent/EP1517405A1/fr not_active Withdrawn
-
2004
- 2004-09-14 WO PCT/EP2004/010458 patent/WO2005029648A1/fr active Application Filing
- 2004-09-20 TW TW093128453A patent/TW200520320A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB475644A (en) * | 1935-02-14 | 1937-11-15 | Thomas B Chace | Improvements in and relating to the production of metal clad iron or steel |
US4467954A (en) * | 1981-10-05 | 1984-08-28 | Olin Corporation | Process for obtaining a composite article |
US5224884A (en) * | 1990-01-22 | 1993-07-06 | Digital Equipment Corporation | High current, low voltage drop, separable connector |
EP0645843A2 (fr) * | 1993-09-28 | 1995-03-29 | The Whitaker Corporation | Borne électrique et méthode de fabrication |
EP1020247A1 (fr) * | 1998-06-03 | 2000-07-19 | Sumitomo Special Metals Company Limited | Materiau revetu et son procede de fabrication |
US20030010410A1 (en) * | 2000-02-23 | 2003-01-16 | Veikko Polvi | Method for making a joint between copper and stainless steel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009067850A1 (fr) * | 2007-11-28 | 2009-06-04 | Shihuang Li | Conducteur de fiche, de douille ou de connecteur qui est amélioré grâce à un matériau conducteur |
DE102013103090A1 (de) * | 2013-03-26 | 2014-10-16 | Borgwarner Beru Systems Gmbh | Glühkerzensteuergerät |
US9273662B2 (en) | 2013-03-26 | 2016-03-01 | Borgwarner Ludwigsburg Gmbh | Glow plug control device |
DE102013103090B4 (de) * | 2013-03-26 | 2016-07-14 | Borgwarner Ludwigsburg Gmbh | Glühkerzensteuergerät |
Also Published As
Publication number | Publication date |
---|---|
WO2005029648A1 (fr) | 2005-03-31 |
TW200520320A (en) | 2005-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5458931B2 (ja) | 端子付き電線 | |
KR100434617B1 (ko) | 배전어셈블리 | |
CN100528550C (zh) | 耐热性保护薄膜,其制造方法及电气电子元件 | |
EP1352993B1 (fr) | Procede de preparation du materiau revetu d'un placage metallique | |
WO2015045856A1 (fr) | Matériau de contact électrique pour connecteur et son procédé de fabrication | |
JP6361477B2 (ja) | コネクタ用端子 | |
JP2009079250A (ja) | 最表層として銀合金層が形成された銅または銅合金部材およびその製造方法 | |
CN102439796A (zh) | 连接器端子 | |
US9884467B2 (en) | Copper-based material and method for producing the same | |
JP6060875B2 (ja) | 基板用端子および基板コネクタ | |
JPH0364969B2 (fr) | ||
US6641930B2 (en) | Electrically conductive metal tape and plug connector | |
US7015406B2 (en) | Electric contact | |
JP5261278B2 (ja) | コネクタおよびコネクタ用金属材料 | |
JP4771316B2 (ja) | 電気プラグ接点とその製造のための半製品 | |
US20170162969A1 (en) | Terminal pair and connector | |
EP1517405A1 (fr) | Connecteur électrique ou borne électrique, et feuille ou bande métallique pour son procédé de fabrication | |
JP2005344188A (ja) | めっき材料の製造方法、そのめっき材料を用いた電気・電子部品 | |
CN109715864B (zh) | 导电性条材 | |
JP6553333B2 (ja) | 電子部品用金属材料、それを用いたコネクタ端子、コネクタ及び電子部品 | |
JP2003328157A (ja) | めっき材料とその製造方法、それを用いた電気・電子部品 | |
JP2014075255A (ja) | コネクタ端子及びコネクタ端子用材料 | |
JPH10223290A (ja) | 接続用端子 | |
WO2013115079A1 (fr) | Borne | |
JP6053564B2 (ja) | 端子及び端子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20050924 |