EP1509627B1 - VERFAHREN ZUM HERSTELLEN EINES KALTGEWALZTEN STAHLBANDES MIT EINEM Si-GEHALT VON MINDESTENS 3,2 GEW.-% FÜR ELEKTROMAGNETISCHE ANWENDUNGEN - Google Patents

VERFAHREN ZUM HERSTELLEN EINES KALTGEWALZTEN STAHLBANDES MIT EINEM Si-GEHALT VON MINDESTENS 3,2 GEW.-% FÜR ELEKTROMAGNETISCHE ANWENDUNGEN Download PDF

Info

Publication number
EP1509627B1
EP1509627B1 EP03722586A EP03722586A EP1509627B1 EP 1509627 B1 EP1509627 B1 EP 1509627B1 EP 03722586 A EP03722586 A EP 03722586A EP 03722586 A EP03722586 A EP 03722586A EP 1509627 B1 EP1509627 B1 EP 1509627B1
Authority
EP
European Patent Office
Prior art keywords
cold
foregoing
strip
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03722586A
Other languages
English (en)
French (fr)
Other versions
EP1509627A1 (de
Inventor
Yvan Houbaert
Carl-Dieter Wuppermann
Olaf Fischer
Jürgen Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Stahl AG filed Critical ThyssenKrupp Stahl AG
Priority to SI200330094T priority Critical patent/SI1509627T1/sl
Publication of EP1509627A1 publication Critical patent/EP1509627A1/de
Application granted granted Critical
Publication of EP1509627B1 publication Critical patent/EP1509627B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Definitions

  • the invention relates to a method for producing a cold-rolled steel strip or sheet in thicknesses of ⁇ 0.70 mm for electromagnetic Applications with Si contents of at least 3.2 wt .-% and Al contents of less than 2% by weight.
  • Such based high-silicon FeSi steels produced cold strips or sheets are usually considered non-grain oriented Electric sheets used.
  • non-grain oriented electrical sheet are here under the DIN EN 10106 ("final annealed Electrical sheet ”) and DIN EN 10165 ("not fully annealed Elektroblech ”) falling products also more anisotropic varieties are included, as long as they are not considered as grain-oriented electrical sheets.
  • DIN EN 10106 final annealed Electrical sheet
  • DIN EN 10165 not fully annealed Elektroblech
  • the steel alloy melts the melt into a slab or thin slab potted.
  • This material is then in Direct deployment without reheating or after one Cooling and reheating in one Descaling, a rough rolling and one in a rule multistage hot roll relay performed Finished hot rolling comprehensive hot rolling process to a Rolled hot strip.
  • the hot strip is then one usually subjected to a pickling surface treatment, which can be combined with a glow. If necessary, in addition, a hot strip annealing performed before the hot strip is cold rolled to cold strip becomes. Finally, the tape is final annealed or one Subjected to annealing with subsequent post-deformation.
  • FeSi materials with an Si content of approximately 6.5% by weight are available on the market.
  • the production These products are made by chemical means Deposition of a highly-silica FeSi layer on one conventional electrical steel and a subsequent Diffusion annealing.
  • EP 0 377 734 B1 discloses a process for FeSi alloys been described in which after the Reheating the slab a transformation at temperatures of not less than 600 ° C and then one Direct use for another hot rolling or another Heating to temperatures of not less than 400 ° C with subsequent hot rolling is performed. Subsequently Cold rolling takes place to final thickness. These Process parameters are not specific for higher silicided alloys. In practice, that shows up when using the known from EP 0377 734 B1 Process steps for highly-silicided FeSi alloys of According to the invention processed kind no satisfactory Achieve work results.
  • the Cooling of the hot strip in direct connection to the Hot rolling to be performed. Otherwise, with the Start the rapid cooling wait until the temperature of the hot strip in the predetermined by the invention Area has dropped, within which the rapid Refrigeration should begin.
  • the cooled according to the invention Hot strip at a suitable time of Production process to be coiled before it the further processing is fed to cold strip.
  • the cooling rate ⁇ T / ⁇ t is at least 2000 ° C / min.
  • the reheating of the starting material preferably takes place at Temperatures ranging from 1000 ° C to 1190 ° C to the Formation of feyalite sure to avoid.
  • Another essential feature of the invention is in that during cold rolling those of the invention given upper limit of the temperature of the processed Bandes in the context of manufacturing unavoidable Tolerance is maintained. Basically, therefore, is favorable when the hot strip is at room temperature at the beginning of cold rolling having. It should be in consequence of the entry to Deformation energy unavoidable heat generation during the cold rolling preferably be performed so that Temperatures of ⁇ 200 ° C are not exceeded. Should Nevertheless, taking into account the above-explained Research findings elevated the cold rolling at Temperatures should be carried out so these should be in the Range of 200 ° C and 500 ° C lie. The for the Preheating the hot strip provided before cold rolling Time should be limited to less than 20 minutes be, to otherwise occurring structural changes avoid. These emasculate embrittlement phenomena yourself.
  • the invention is suitable for the production of the lower Area of high-silicon steels settled, 4.0-5.0% by weight Si-containing electric sheets for which Production of in the middle range of high-silicon steels settled, more than 5.0 wt .-% Si containing electrical sheets and to Production of in the upper region of the most silicon-containing Steels containing 6.0 to 6.8 wt .-% Si containing Electrical sheets. It can especially in the higher Si-containing alloys, the content of A1 limited the range of unavoidable impurities be.
  • the invention is based on Embodiments explained in more detail.
  • the slabs are reheated to a reheating temperature T R , pre-rolled and final hot rolled in a seven roll stand hot roll stand at a hot rolling end temperature T F to a hot strip of WB D thickness.
  • the hot strip was cooled with a cooling rate ⁇ T / At at least 400 ° C / min as soon as its temperature T c was in the range of 750 ° C to 850 ° C.
  • the thus cooled to room temperature hot strip is then subjected to a mechanical pretreatment of its surfaces and then pickled.
  • Table 2 shows the process parameters observed in the course of production for six cold strips E1 to E6 produced according to the invention.
  • three cold strips V1 to V3 are made from the alloy HiSi and a cold strip V4 from the alloy LoSi using the method steps used to produce the samples E1 to E6 according to the invention, but with process parameters outside the specifications of the invention , The relevant parameters are listed in Table 3 for the non-inventive cold strips V1 to V4 produced for comparison.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines kaltgewalzten Stahlbandes oder -bleches in Dicken von ≤ 0,70 mm für elektromagnetische Anwendungen mit Si-Gehalten von mindestens 3,2 Gew.-% und Al-Gehalten von weniger als 2 Gew.-%. Solche auf Basis höchstsiliziumhaltiger FeSi-Stähle erzeugter Kaltbänder oder -bleche werden üblicherweise als nichtkornorientierte Elektrobleche eingesetzt.
Unter dem Begriff "nichtkornorientiertes Elektroblech" werden hier unter die DIN EN 10106 ("schlussgeglühtes Elektroblech") und DIN EN 10165 ("nicht schlussgeglühtes Elektroblech") fallende Produkte verstanden. Darüber hinaus werden auch stärker anisotrope Sorten einbezogen, solange sie nicht als kornorientierte Elektrobleche gelten. Insoweit werden im folgenden die Begriffe "Stahlband für elektromagnetische Zwecke" und "Stahlblech für elektromagnetische Zwecke" sowie "Elektroband" und "Elektroblech" synonym verwendet.
Üblicherweise werden für die Erzeugung von nichtkornorientierten Elektroblechen FeSi-Stähle verwendet, deren Si-Gehalte maximal 3,5 Gew.-% betragen. Derart begrenzte Si-Gehalte aufweisende FeSi-Stahllegierungen gestatten eine problemlose Fertigung auf dem üblichen Herstellungsweg. Insbesondere wird durch eine Beschränkung des Si-Gehaltes auf Gehalte ≤ 3,0 Gew.-% sichergestellt, dass bei konventioneller Vorgehensweise das erhaltene Blech nach dem Kaltwalzen rissfrei ist.
Im Zuge der konventionellen Fertigung wird nach dem Erschmelzen der Stahllegierung die Schmelze zu einer Bramme oder Dünnbramme vergossen. Dieses Vormaterial wird dann im Direkteinsatz ohne Wiedererwärmung oder nach einer Abkühlung und einer Wiedererwärmung in einem ein Entzundern, ein Vorwalzen und ein in einer in der Regel mehrgerüstigen Warmwalzstaffel durchgeführtes Fertigwarmwalzen umfassenden Warmwalzprozess zu einem Warmband gewalzt. Das Warmband wird dann einer in der Regel als Beizen durchgeführten Oberflächenbehandlung unterzogen, die mit einem Glühen kombiniert sein kann. Erforderlichenfalls wird zusätzlich eine Warmbandglühung durchgeführt, bevor das Warmband zu Kaltband kaltgewalzt wird. Schließlich wird das Band schlussgeglüht oder einer Glühung mit anschließender Nachverformung unterzogen.
Schon bei Si-Gehalten von mehr als 3 Gew.-% zeigen sich erste Schwierigkeiten beim Kaltwalzen in Form von hohen Walzkräften und einer zunehmenden Rissanfälligkeit. So treten beim Kaltwalzen von aus FeSi-Legierungen mit FeSi-Gehalten mit mehr als 3,5 Gew.-% erzeugten Warmbändern regelmäßig Risse auf, die die Erzeugung eines qualitativ hochwertigen Elektroblechproduktes mit Dicken ≤ 0,75 mm über den konventionellen Fertigungsweg ausschließen.
Den Schwierigkeiten bei der Herstellung steht gegenüber, dass die Erhöhung des Si-Gehaltes zu einer Erhöhung des elektrischen Widerstands und damit zu einer Erniedrigung der magnetischen Verluste im Einsatzfall führt. Für eine Reihe von Anwendungen, speziell für in der Audio-, Video-, Datenverarbeitungs- und Medizintechnik eingesetzte Klein- und Kleinstmaschinen sowie für Antriebe und für Magnetkerne in elektromagnetischen Anwendungen, die mit höheren Frequenzen arbeiten, sind daher aus FeSi-Legierungen mit Si-Gehalten im Bereich von 3,5 Gew.-% bis 7,0 Gew.-% erzeugte Elektrobleche von besonderem Interesse. Diese höchstsiliziumhaltigen Materialien weisen gegenüber den anderen weichmagnetischen Materialien, wie amorphe Fe-, FeNi-, FeCo-Basislegierungen, nanokristalline weichmagnetische Materialien oder weichmagnetische Ferrite, eine hohe Sättigungsmagnetisierung auf. Diese höhere Sättigungsmagnetisierung ist kombiniert mit im Vergleich zu konventionellen elektrotechnischen Stählen höheren Werten des elektrischen Widerstands und damit geringeren magnetischen Verlusten, wodurch eine Anwendung bei höheren Frequenzen ermöglicht wird.
FeSi-Werkstoffe mit einem Si-Gehalt von annähernd 6,5 Gew.-% sind auf dem Markt erhältlich. Die Herstellung dieser Produkte erfolgt auf dem Wege einer chemischen Abscheidung einer höchstsilizierten FeSi-Schicht auf einem konventionellen Elektroband und einem anschließenden Diffusionsglühen.
Auf diese Weise lassen sich zwar die bei konventioneller Produktion von hohe Silizumgehalte aufweisenden Blechen auftretenden Schwierigkeiten vermeiden. Es sind dazu jedoch zusätzliche Arbeitsschritte erforderlich, die die Herstellung verkomplizieren und verteuern.
In der wissenschaftlichen Literatur finden sich zahlreiche Arbeiten, in denen das Umformverhalten von FeSi-Legierungen mit Si-Gehalten von mehr als 3,2 Gew.-% untersucht und die Möglichkeiten der Fertigung eines derartigen Stahls auf dem üblichen metallurgischen Weg betrachtet worden sind. So haben G. Schlatte, W. Pietsch in der Zeitschrift für Metallkunde, Band 66 (1975) Heft 11, Seite 661 ff., und W. Pepperhoff, W. Pietsch in Archiv Eisenhüttenwesen 47 (1976), Nr. 11, Seite 685 ff., erwähnt, dass ein Stahl mit bis zu ca. 6 Gew.-% Silizium noch bei rund 400 °C bis 300 °C umformbar sei (kritische Temperatur: 300 °C). Unterhalb einer von dem Si-Gehalt abhängigen kritischen Temperatur stelle sich ein sprödes Verhalten und infolgedessen eine Kaltsprödigkeit ein, die keine Kaltverformung gestatte. Oberhalb der kritischen Temperatur sei dagegen für FeSi-Legierungen mit mehr als 4 Gew.-% Silizium eine Umformung möglich, sofern zusätzlich die jeweils verarbeitete Legierung von Temperaturen unterhalb 700 °C auf eine Temperatur unterhalb 400 °C gekühlt werde. Auch die in den genannten Fachartikeln festgestellte Einschränkung der Verformbarkeit auf einen Temperaturbereich oberhalb der kritischen Temperatur schränkt die Möglichkeiten der Herstellung von höchstsilizierten Elektrostahlprodukten über den konventionellen Fertigungsweg somit stark ein.
Von G. Rassmann, P. Klemm ist in Neue Hütte, Heft 7, 8. Jahrgang, 1963, Seite 403 ff. festgestellt worden, dass für Legierungen mit 5 und 6 Gew.-% Si ein Kaltwalzen bei 220 °C oder 350 °C mit einer Gesamtumformung bis etwa 40 % und ein Weiterwalzen bei Raumtemperatur realisierbar ist. Vergleichbare Hinweise finden sich im US-Patent 3,099,176. Bei dieser Art des zweistufig bei unterschiedlichen Temperaturen erfolgenden Kaltwalzens findet jedoch die Vorgeschichte des Materials bis zum Kaltwalzen keinen Niederschlag.
In der Praxis zeigt sich jedoch, dass, wie die oben erwähnten Arbeiten von G. Schlatte und W. Pietsch bestätigen, ein solches Kaltwalzen in der Realität nicht ohne weiteres für ein beliebig gefertigtes Warmband verwirklicht werden kann, die Warmbandfertigung also einen erheblichen Einfluss auf die Verarbeitbarkeit eines höchste Siliziumgehalte aufweisenden Warmbandes zu Kaltband hat.
Neben dem voranstehend erwähnten Stand der Technik ist es aus der EP 0 229 846 B1 bekannt, den beim Warmwalzen erreichten Gesamtumformgrad in Abhängigkeit von der Korngröße vor dem Finalwalzen (Fertigwarmwalzen) einzustellen. Diesem Verfahrensweg haftet jedoch der Nachteil an, dass die Korngröße vor dem Finalwalzen von den Bedingungen der Wiedererwärmung und des Vorwalzens sowie von der jeweiligen chemischen Zusammensetzung abhängig ist. Infolgedessen lassen sich die vor dem Eintritt in die Fertigwarmwalzstaffel im vorgewalzten Stahlvorprodukt vorhandenen Korngrößen nicht eindeutig vorgeben. Zudem ist die Messung von Korngröße in einem in der Praxis kontinuierlich ablaufenden Fertigungsprozess nicht mit einem technisch und kostenmäßig vertretbaren Aufwand durchführbar.
In der EP 0 377 734 B1 ist ein Verfahren für FeSi-Legierungen beschrieben worden, bei dem nach der Wiedererwärmung der Bramme eine Umformung bei Temperaturen von nicht weniger als 600 °C erfolgt und danach ein Direkteinsatz für ein weiteres Warmwalzen oder eine erneute Erwärmung auf Temperaturen von nicht weniger als 400 °C mit anschließendem Warmwalzen durchgeführt wird. Anschließend erfolgt das Kaltwalzen auf Enddicke. Diese Verfahrensparameter sind nicht spezifisch für höher silizierte Legierungen. In der Praxis zeigt sich, dass sich bei Anwendung der aus der EP 0 377 734 B1 bekannten Verfahrenschritte für höchstsilizierte FeSi-Legierungen der erfindungsgemäß verarbeiteten Art keine befriedigenden Arbeitsergebnisse erreichen lassen.
Gemäß der EP 0 467 265 A2 lässt sich ein höchstsilizierter FeSi-Stahl kaltwalzen, indem das Kaltwalzen bei Blechtemperaturen im Bereich von 120 °C bis 350 °C erfolgt. Allerdings wird dabei nicht angegeben, wie das Warmband erzeugt werden muss, welches in dieser Weise verarbeitet werden kann. Bei der praktischen Anwendung dieses bekannten Verfahrens stellt sich daher das Problem, dass, wie die oben erwähnten Fachartikel und eigene Untersuchungen der Anmelderin belegen, die Verarbeitung von höchstsiliziertem Elektrostahl gerade nicht unabhängig ist von den während des Warmbandprozessing eingehaltenen Parameter. So ergaben praktische Versuche, dass es bei konventioneller Herstellweise von Warmband mit über 3,5 Gew.-% liegenden Si-Gehalten und anschließendem Kaltwalzen unter den in der EP 0 467 265 A2 angegebenen Bedingungen regelmäßig schon im ersten Kaltwalzstich zur Rissbildung kam.
Ausgehend von dem voranstehend erläuterten Stand der Technik bestand die Aufgabe der Erfindung darin, ein koslengünstiges und praktikables Herstellungsfahren für kaltgewalztes Stahlblech oder -band mit Dicken von höchstens 0,70 mm und einem Si-Gehalt von 3,5 Gew.-% und mehr zu schaffen, welches für elektromagnetische Anwendungen geeignet ist. .
Diese Aufgabe wird gelöst durch ein Verfahren nach Anspruch 1.
Bei der Herstellung eines kaltgewalzten Stahlbands oder -blechs für elektromagnetische Anwendungen werden folgende Schritte durchlaufen :
  • Erschmelzen eines (in Gew.-%) C: < 0,01 %, Si: 3,2 - 7 %, Al: < 2 %, Mn: < 1 %, Rest Eisen und übliche Verunreinigungen enthaltenden Stahls,
  • Vergießen des Stahls zu einem Vormaterial, wie einer Bramme, einer Dünnbramme oder einem Dünnband,
  • Durchwärmen des Vormaterials auf eine Temperatur TR > 1000 °C,
  • Fertigwarmwalzen des durchwärmten Vormaterials bei einer Warmwalzendtemperatur TF von > 800 °C zu einem Warmband,
  • Abkühlen des Warmbands im Anschluss an das Fertigwarmwalzen ausgehend von einer mindestens 750 °C jedoch weniger als 850 °C betragenden Temperatur TC des Warmbands mit einer mindestens 400 °C/min betragenden Abkühlgeschwindigkeit ΔT/Δt auf eine weniger als 300 °C betragende Temperatur,
  • Oberflächenbehandeln des abgekühlten Warmbands,
  • Kaltwalzen des oberflächenbehandelten Warmbands bei einer höchstens 500 °C betragenden Temperatur TCR und
  • Schlussglühen des erhaltenen kaltgewalzten Stahlbands oder -blechs.
Der Erfindung liegt die Erkenntnis zugrunde, dass sich ausgehend von einer konventionell zusammengesetzten, höchste Gehalte an Silizium von 3,2 Gew.-% bis 7 Gew.-% sowie Al-Gehalte von bis zu 2 Gew.-% enthaltenden Stahllegierung unter Beibehaltung der bei konventioneller Kaltbanderzeugung angewendeten Arbeitsschritte ein qualitativ hochwertiges, insbesondere rissfreies Kaltband herstellen lässt, wenn
  • die Wiederwärmungstemperatur,
  • die Warmwalzendtemperatur,
  • die von einer in einem bestimmten Temperaturbereich liegenden Temperatur ausgehende gezielte rasche Abkühlung des Warmbands nach dem Ende des Fertigwalzens
    und
  • die Temperatur des Bandes beim Kaltwalzen
in der durch die Erfindung vorgegebenen Weise aufeinander abgestimmt werden.
Überraschend hat sich gezeigt, dass nur durch Einhaltung der erfindungsgemäßen Kombination der betreffenden Parameter eine übermäßige Sprödigkeit des verarbeiteten Materials vermieden werden kann und das Warmband eine für ein ordnungsgemäßes Kaltwalzen ausreichende Duktilität besitzt, welche für die Herstellung von rissfreiem Elektroblech mit der gewünschten Enddicke von höchstens 0,70 mm, vorzugsweise höchstens 0,35 mm erforderlich ist.
Dabei kommt jedem der betreffenden Parameter eine gleichwertige Bedeutung zu. So ist festgestellt worden, dass sich in solchen Fällen, in denen die für den Beginn der Abkühlung angegebene Temperaturspanne über einen Toleranzbereich hinausgehend über- oder unterschritten worden ist, kein rissfreies Produkt erhalten ließ.
In Fällen, in denen die Warmwalzendtemperatur mehr als 800 °C, jedoch weniger als 850 °C beträgt, kann die Abkühlung des Warmbandes in unmittelbarem Anschluss an das Warmwalzen durchgeführt werden. Andernfalls ist mit dem Beginn der raschen Kühlung zu warten, bis die Temperatur des Warmbands in den durch die Erfindung vorgegebenen Bereich abgesunken ist, innerhalb dessen die rasche Abkühlung einsetzen soll.
Selbstverständlich kann das erfindungsgemäß abgekühlte Warmband zu einem geeigneten Zeitpunkt des Fertigungsablaufs zu einem Coil gehaspelt werden, bevor es der Weiterverarbeitung zu Kaltband zugeführt wird.
Selbstverständlich ist es ebenso möglich, den erfindungsgemäßen Fertigungsweg auf Tafeln zu beschränken.
In Bezug auf den Übergang von der Warmbanderzeugung zur Herstellung des Kaltbandes kommt dabei der Geschwindigkeit, mit der die rasche Abkühlung des Warmbandes im Anschluss an das Warmwalzen durchgeführt wird, besondere Bedeutung zu. Erfolgt die Weiterverarbeitung des Warmbands zu Kaltband in einem Zeitraum, innerhalb dessen es auch bei im Bereich der erfindungsgemäß einzuhaltenden Untergrenze der Abkühlgeschwindigkeit noch nicht zur Kaltversprödung kommt, so lässt sich auch bei relativ niedrigen Abkühlgeschwindigkeiten ein rissfreies kaltgewalztes Stahlprodukt erzeugen. Vergeht jedoch zwischen der Warmbanderzeugung und dem Kaltwalzen ein längerer Zeitraum, wie beispielsweise viele Tage oder Wochen, so lässt sich ein in erfindungsgemäßer Weise erzeugtes, rissfreies Stahlband oder -blech für elektromagnetische Zwecke immer noch dadurch sicher erzeugen, dass die Abkühlgeschwindigkeit ΔT/Δt mindestens 2000 °C/min beträgt.
Durch eine derart hohe Abkühlgeschwindigkeit lassen sich die bei einer längeren Lagerzeit des Warmbands und einer langsamer erfolgenden Abkühlung zu erwartenden Versprödungseffekte sicher vermeiden.
Bevorzugt erfolgt die Wiedererwärmung des Vormaterials bei Temperaturen im Bereich von 1000 °C bis 1190 °C, um die Bildung von Feyalit sicher zu vermeiden.
Besonders gute elektromagnetische Eigenschaften des erhaltenen kaltgewalzten Elektroblechs stellen sich ein, wenn das gegebenenfalls vorgewalzte Vormaterial in maximal sieben Stichen bei einer Gesamtumformung von mehr als 90 % auf eine Warmbandenddicke des von höchstens 1,5 mm fertigwarmgewalzt wird. Dem gleichen Zweck dient es, wenn der Umformgrad beim Kaltwalzen größer 60 % jedoch kleiner als 82 % ist.
Ein weiteres wesentliches Merkmal der Erfindung besteht darin, dass während des Kaltwalzens die von der Erfindung vorgegebene Obergrenze der Temperatur des verarbeiteten Bandes im Rahmen der fertigungsbedingt unvermeidbaren Toleranz eingehalten wird. Grundsätzlich ist daher günstig, wenn das Warmband zu Beginn des Kaltwalzens Raumtemperatur aufweist. Dabei sollte die in Folge des Eintrags an Verformungsenergie unvermeidbare Wärmeentwicklung während des Kaltwalzens bevorzugt so geführt werden, dass Temperaturen von ≤ 200 °C nicht überschritten werden. Soll dennoch unter Berücksichtigung der eingangs erläuterten Forschungsergebnisse das Kaltwalzen bei erhöhten Temperaturen durchgeführt werden, so sollten diese im Bereich von 200 °C und 500 °C liegen. Die für das Vorerwärmen des Warmbands vor dem Kaltwalzen vorgesehene Zeit sollte dabei auf weniger als 20 Minuten beschränkt sein, um andernfalls eintretende Gefügeveränderungen zu vermeiden. Diese ziehen Versprödungserscheinungen nach sich.
Die Erfindung eignet sich zur Erzeugung von im unteren Bereich der höchstsiliziumhaltigen Stähle angesiedelten, 4,0 - 5,0 Gew. -% Si enthaltenden Elektrobleche, für die Erzeugung von im mittleren Bereich der höchstsiliziumhaltigen Stähle angesiedelten, mehr als 5,0 Gew.-% Si enthaltenden Elektrobleche sowie zur Erzeugung von im oberen Bereich der höchstsiliziumhaltigen Stähle angesiedelten, 6,0 - 6,8 Gew.-% Si enthaltenden Elektrobleche. Dabei kann insbesondere bei den die höheren Si-Gehalte aufweisenden Legierungen der Gehalt an A1 auf den Bereich der unvermeidbaren Verunreinigungen beschränkt sein.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
Zum Nachweis der Wirkung der Erfindung wurden ein Stahl HiSi und ein Stahl LoSi erschmolzen und zu Brammen vergossen. Die Legierungen der Stähle HiSi und LoSi sind in Tabelle 1 angegeben.
Legierung Si Al C Mn S Rest
LoSi 4,2 0,003 0,009 0,047 0,003 Fe, sonstige Verunreinigungen
HiSi 6,3 0,002 0,006 0,088 0,002 Fe, sonstige Verunreinigungen
Angaben in Gew.-%
Die Brammen sind auf eine Wiedererwärmungstemperatur TR wiedererwärmt, vorgewalzt und in einer sieben Walzgerüste umfassenden Warmwalzstaffel bei einer Warmwalzendtemperatur TF zu einem Warmband mit einer Dicke WBD finalwarmgewalzt worden.
Nach dem Verlassen der Warmwalzstaffel ist das Warmband mit einer mindestens 400 °C/min betragenden Abkühlgeschwindigkeit ΔT/Δt abgekühlt worden, sobald seine Temperatur Tc im Bereich von 750 °C bis 850 °C lag. Das derart auf Raumtemperatur abgekühlte Warmband ist anschließend einer mechanischen Vorbehandlung seiner Oberflächen unterzogen und dann gebeizt worden.
Um den Einfluss einer Erwärmung des Warmbands vor dem Kaltwalzen nachzuweisen, sind ein Teil der in der voranstehend beschriebenen Weise erzeugten Warmbänder innerhalb einer Zeit tCR auf jeweils eine Temperatur TCR erwärmt worden.
Beim Kaltwalzen selbst sind Gesamtumformgrade ΔKW erzielt worden.
In Tabelle 2 sind für sechs erfindungsgemäß erzeugte Kaltbänder E1 bis E6 die im Zuge der Herstellung eingehaltenen Prozessparameter eingetragen.
E1 E2 E3 E4 E5 E6
Legierung HiSi HiSi HiSi LoSi LoSi LoSi
TR [°C] 1150 1150 1150 1150 1150 1150
TF [°C] ≈940 ≈940 ≈940 ≈950 ≈950 ≈950
WBD [mm] 1, 8 1,8 1,8 1,7 1, 7 1,7
TC [°C] ≈780 ≈780 ≈780 ≈820 ≈820 ≈820
ΔT/Δt [°C/min] ≈2100 ≈2100 ≈2100 ≈2100 ≈2100 ≈2100
TCR [°C] RT 300 500 RT *) 300 500
tCR [min] - ≈18 ≈18 ≈14 ≈18
ΔKW [%] 67 68 68 72 72 72
Rissbildung NEIN NEIN NEIN NEIN NEIN NEIN
Mit diesen Beispielen ist belegt, dass trotz der hohen Siliziumgehalte beider verarbeiteter Stahllegierungen HiSi bzw. LoSi rissfreie Elektrobleche erzeugt werden können, solange die Wiedererwärmungstemperatur, die Warmwalzendtemperatur, die Temperatur, bei der die Abkühlung beginnt, die Abkühlgeschwindigkeit und die Temperatur beim Warmwalzen im von der Erfindung vorgegebenen Rahmen bleiben.
Um dies weiter zu verifizieren, sind aus der Legierung HiSi drei Kaltbänder V1 bis V3 und aus der Legierung LoSi ein Kaltband V4 unter Anwendung der bei der Erzeugung der erfindungsgemäßen Proben E1 bis E6 angewendeten Verfahrensschritte, jedoch bei außerhalb der Vorgaben der Erfindung liegenden Prozessparametern hergestellt worden. Die betreffenden Parameter sind für die zum Vergleich hergestellten, nicht erfindungsgemäßen Kaltbänder V1 bis V4 in Tabelle 3 eingetragen.
V1 V2 V3 V4
Legierung HiSi HiSi HiSi LoSi
TR [°C] 1150 1150 1250 1250
TF [°C] ≈1000 ≈730 ≈850 ≈800
WBD [mm] 2,1 1,4 1,65 1,85
TC [°C] ≈1000 ≈650 ≈800 ≈800
ΔT/Δt [°C/min] ≈2100 ≈2100 ≈1 ≈1
TCR [°C] RT RT *) RT *) RT *)
tCR [min] - - - -
ΔKW [%] **) **) **)
Rissbildung JA JA JA JA
Es zeigte sich, dass schon eine Abweichung bei nur einem Verfahrensparameter dazu führt, dass kein rissfreies Kaltband mehr erzeugt werden kann. So führt bei der Vergleichsprobe V1 schon die zu hohe Temperatur Tc, von der ausgehend die rasche Abkühlung erfolgte, bei im übrigen mit der erfindungsgemäßen Probe E1 im wesentlichen übereinstimmenden, innerhalb der Erfindung liegenden Parametern zur Rissbildung. Denselben Effekt hatten die zu niedrige Temperatur Tc bei der Vergleichsprobe V2 und die zu niedrige Abkühlgeschwindigkeit ΔT/Δt bei den Vergleichsproben V3, V4.

Claims (16)

  1. Verfahren zum Herstellen eines kaltgewalzten Stahlbands oder -blechs für elektromagnetische Anwendungen, bei dem folgende Schritte durchlaufen werden:
    Erschmelzen eines (in Gew.-%)
    C: < 0,01 %,
    Si: 3,2 - 7 %,
    Al: < 2 %,
    Mn: ≤ 1 %,
    Rest Eisen und übliche Verunreinigungen enthaltenden Stahls,
    Vergießen des Stahls zu einem Vormaterial, wie Brammen, Dünnbrammen oder Dünnband,
    Durchwärmen des Vormaterials auf eine Temperatur
    TR > 1000 °C,
    Fertigwarmwalzen des durchwärmten Vormaterials bei einer Warmwalzendtemperatur TF von > 800 °C zu einem Warmband,
    Abkühlen des Warmbands im Anschluss an das Fertigwärmwalzen ausgehend von einer mindestens 750 °C jedoch weniger als 850 °C betragenden Temperatur Tc des Warmbands mit einer mindestens 400 °C/min betragenden Abkühlgeschwindigkeit ΔT/Δt auf eine weniger als 300 °C betragende Temperatur,
    Oberflächenbehandeln des abgekühlten Warmbands,
    Kaltwalzen des oberflächenbehandelten Warmbands bei einer höchstens 500 °C betragenden Temperatur TCR und
    Schlussglühen des erhaltenen kaltgewalzten Stahlbands oder -blechs.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abkühlgeschwindigkeit ΔT/Δt ≥ 2000 °C/min ist.
  3. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Wiedererwärmung des Vormaterials bei Temperaturen im Bereich von 1000 °C bis 1190 °C erfolgt.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Vormaterial in maximal sieben Stichen bei einer Gesamtumformung von mehr als 90 % auf eine Dicke des Warmbands von höchstens 1,5 mm fertigwarmgewalzt wird.
  5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Umformgrad beim Kaltwalzen größer 60 % jedoch kleiner als 82 % ist.
  6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das erhaltene kaltgewalzte Stahlband oder -blech eine Dicke von höchstens 0,35 mm aufweist.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Warmband zu Beginn des Kaltwalzens Raumtemperatur aufweist.
  8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Kaltwalzen bei Temperaturen durchgeführt wird, welche ≤ 200 °C betragen.
  9. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Warmband vor dem Kaltwalzen innerhalb eines Zeitraums von weniger als 20 Minuten auf eine 200 °C bis 500 °C betragende Temperatur erwärmt und bei in diesem Temperaturbereich liegenden Temperaturen kaltgewalzt wird.
  10. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Schlussglühung in einer entkohlenden Atmosphäre erfolgt.
  11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Schlussglühung in einer nichtentkohlenden Atmosphäre erfolgt.
  12. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Stahl 4,0 - 5,0 Gew.-% Si enthält.
  13. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Stahl >5,0 - 6,8 Gew.-% Si enthält.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Stahl 6,0 - 6,8 Gew.-% Si enthält.
  15. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der Gehalt an Al auf den Bereich der unvermeidbaren Verunreinigungen beschränkt ist.
  16. Verfahren nach einem der.voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Oberflächenbehandlung ein mechanisches Entzundern und / oder ein Beizen umfasst.
EP03722586A 2002-05-07 2003-05-02 VERFAHREN ZUM HERSTELLEN EINES KALTGEWALZTEN STAHLBANDES MIT EINEM Si-GEHALT VON MINDESTENS 3,2 GEW.-% FÜR ELEKTROMAGNETISCHE ANWENDUNGEN Expired - Lifetime EP1509627B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200330094T SI1509627T1 (sl) 2002-05-07 2003-05-02 POSTOPEK ZA IZDELAVO HLADNO VALJANEGA JEKLENEGA TRAKU Z VSEBNOSTJO Si NAJMANJ 3,2 MAS.% ZA ELEKTROMAGNETNE UPORABE

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10220282 2002-05-07
DE10220282A DE10220282C1 (de) 2002-05-07 2002-05-07 Verfahren zum Herstellen von kaltgewalztem Stahlband mit Si-Gehalten von mindestens 3,2 Gew.-% für elektromagnetische Anwendungen
PCT/EP2003/004588 WO2003095683A1 (de) 2002-05-07 2003-05-02 KALTGEWALZTES STAHLBAND MIT Si-GEHALTEN VON MINDESTENS 3,2 GEW.-% FÜR ELEKTROMAGNETISCHE ANWENDUNGEN

Publications (2)

Publication Number Publication Date
EP1509627A1 EP1509627A1 (de) 2005-03-02
EP1509627B1 true EP1509627B1 (de) 2005-08-31

Family

ID=29285151

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03722586A Expired - Lifetime EP1509627B1 (de) 2002-05-07 2003-05-02 VERFAHREN ZUM HERSTELLEN EINES KALTGEWALZTEN STAHLBANDES MIT EINEM Si-GEHALT VON MINDESTENS 3,2 GEW.-% FÜR ELEKTROMAGNETISCHE ANWENDUNGEN

Country Status (8)

Country Link
US (1) US20060086429A1 (de)
EP (1) EP1509627B1 (de)
JP (1) JP2005530033A (de)
AT (1) ATE303455T1 (de)
AU (1) AU2003229765A1 (de)
DE (2) DE10220282C1 (de)
ES (1) ES2248742T3 (de)
WO (1) WO2003095683A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115174A1 (de) 2021-06-11 2021-11-11 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Verfahren zur Herstellung eines höherpermeablen, nichtkornorientierten Elektrobleches und dessen Verwendung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005004037B3 (de) * 2005-01-27 2006-06-14 Thyssenkrupp Steel Ag Verfahren zum Herstellen von magnetischem Band oder Tafeln
TWI462783B (zh) * 2011-09-08 2014-12-01 China Steel Corp Steel surface rusting device
CN110172634B (zh) * 2019-06-28 2020-11-24 辽宁石油化工大学 一种高硅电工钢薄板及其制备方法
AT524149B1 (de) * 2020-08-20 2022-11-15 Nntech Gmbh Verfahren zur Bearbeitung eines Stahlblechs
CN112899581B (zh) * 2021-01-22 2022-06-21 北京北冶功能材料有限公司 一种高硅钢及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE572663A (de) * 1957-11-06
EP0229846B1 (de) * 1985-06-14 1992-03-18 Nippon Kokan Kabushiki Kaisha Herstellungsverfahren für siliziumblattstahl mit weichmagnetischen merkmalen
JPH07115041B2 (ja) * 1987-03-11 1995-12-13 日本鋼管株式会社 無方向性高Si鋼板の製造方法
JPH032358A (ja) * 1989-05-27 1991-01-08 Nkk Corp 鉄損特性に優れた高珪素鋼板
KR930011625B1 (ko) * 1990-07-16 1993-12-16 신닛뽄 세이데쓰 가부시끼가이샤 냉간압연에 의한 판두께가 얇은 초고규소 전자강판의 제조방법
KR100316896B1 (ko) * 1993-09-29 2002-02-19 에모또 간지 철손이낮은무방향성규소강판및그제조방법
JP3275712B2 (ja) * 1995-10-06 2002-04-22 日本鋼管株式会社 加工性に優れた高珪素鋼板およびその製造方法
CN1153227C (zh) * 1996-10-21 2004-06-09 杰富意钢铁株式会社 晶粒取向电磁钢板及其生产方法
EP0926250B1 (de) * 1997-04-16 2009-04-15 Nippon Steel Corporation Unidirektionales elektromagnetisches stahlblech mit hervorragenden film- und magnetischen eigenschaften, herstellungsverfahren und entkohlungsglühungskonfiguration dafür
TW476790B (en) * 1998-05-18 2002-02-21 Kawasaki Steel Co Electrical sheet of excellent magnetic characteristics and its manufacturing method
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021115174A1 (de) 2021-06-11 2021-11-11 Technische Universität Bergakademie Freiberg, Körperschaft des öffentlichen Rechts Verfahren zur Herstellung eines höherpermeablen, nichtkornorientierten Elektrobleches und dessen Verwendung

Also Published As

Publication number Publication date
AU2003229765A1 (en) 2003-11-11
US20060086429A1 (en) 2006-04-27
DE10220282C1 (de) 2003-11-27
WO2003095683A1 (de) 2003-11-20
EP1509627A1 (de) 2005-03-02
ATE303455T1 (de) 2005-09-15
DE50301115D1 (de) 2005-10-06
ES2248742T3 (es) 2006-03-16
JP2005530033A (ja) 2005-10-06

Similar Documents

Publication Publication Date Title
EP0619376B1 (de) Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
DE60306365T2 (de) Verfahren zum kontinuierlichen giessen von nichtorientiertem elektrostahlband
EP2761041B1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrobands oder -blechs
EP1194600B1 (de) Verfahren zum herstellen von nichtkornorientiertem elektroblech
EP1025268B1 (de) Verfahren zur herstellung von kornorientiertem elektroblech mit geringem ummagnetisierungsverlust und hoher polarisation
EP2729588B1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrostahlflachprodukts
DE1921656A1 (de) Verfahren zur Herstellung duenner Magnet-Stahlbleche fuer hohe magnetische Induktionen
WO2012168253A1 (de) Verfahren zum herstellen eines kornorientierten, für elektrotechnische anwendungen bestimmten elektrostahlflachprodukts
DE3882502T2 (de) Verfahren zur Herstellung von kornorientierten Elektrostahlblechen mit hoher Flussdichte.
DE69420058T2 (de) Kornorientiertes Elektroblech mit sehr geringen Eisenverlusten und Herstellungsverfahren
EP1192287B1 (de) Verfahren zum herstellen von nicht kornorientiertem elektroblech
DE10221793C1 (de) Nichtkornorientiertes Elektroband oder -blech und Verfahren zu seiner Herstellung
DE3147584C2 (de) Verfahren zur Herstellung von kornorientiertem Siliciumstahl in Band- oder Blechform
EP1509627B1 (de) VERFAHREN ZUM HERSTELLEN EINES KALTGEWALZTEN STAHLBANDES MIT EINEM Si-GEHALT VON MINDESTENS 3,2 GEW.-% FÜR ELEKTROMAGNETISCHE ANWENDUNGEN
DE68921479T2 (de) Verfahren zur herstellung nichtorientierter elektrobleche mit ausgezeichneten magnetischen eigenschaften.
DE69123410T2 (de) Verfahren zum Herstellen von kornorientierten Siliciumstahlblechen mit verbesserten magnetischen Eigenschaften
DE69025537T2 (de) Verfahren zur herstellung von gerichteten siliziumstahlblechen mit ausgezeichneten magnetischen eigenschaften
EP2942417B1 (de) Verfahren zur herstellung von hochpermeablem kornorientiertem elektroband
DE69310218T2 (de) Orientierte magnetische Stahlbleche und Verfahren zu ihrer Herstellung
EP1194599B1 (de) Verfahren zum herstellen von nicht kornorientiertem elektroblech
DE10060950C2 (de) Verfahren zum Erzeugen von kornorientiertem Elektroblech
EP0513729A1 (de) Verfahren zur Herstellung von kornorientierten Elektroblechen
EP1420072B1 (de) Verfahren zum Herstellen eines für die Verarbeitung zu nicht kornorientiertem Elektroband bestimmten Warmbands und daraus hergestelltes nicht kornorientiertes Elektroblech
AT335497B (de) Eisenlegierungen und verfahren zu deren herstellung
DE2740756A1 (de) Verfahren zur herstellung von stahlplatten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20040924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RTI1 Title (correction)

Free format text: PROCESS FOR PRODUCING COLD-ROLLED STEEL STRIP HAVING A SI-CONTENT OF AT LEAST 3.2 WT.-% USED FOR ELECTROMAGNETIC PURPOSES

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50301115

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2248742

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20200325

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200519

Year of fee payment: 18

Ref country code: ES

Payment date: 20200619

Year of fee payment: 18

Ref country code: DE

Payment date: 20200519

Year of fee payment: 18

Ref country code: NL

Payment date: 20200520

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200519

Year of fee payment: 18

Ref country code: GB

Payment date: 20200518

Year of fee payment: 18

Ref country code: SI

Payment date: 20200423

Year of fee payment: 18

Ref country code: IT

Payment date: 20200522

Year of fee payment: 18

Ref country code: BE

Payment date: 20200520

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200520

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50301115

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210601

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 303455

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210502

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210502

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 367

Country of ref document: SK

Effective date: 20210502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210502

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210502

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20220121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210502

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210503

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200502