EP1507746A2 - Substrat mit einer titanoxid/ceroxid-schutzschicht - Google Patents

Substrat mit einer titanoxid/ceroxid-schutzschicht

Info

Publication number
EP1507746A2
EP1507746A2 EP03755136A EP03755136A EP1507746A2 EP 1507746 A2 EP1507746 A2 EP 1507746A2 EP 03755136 A EP03755136 A EP 03755136A EP 03755136 A EP03755136 A EP 03755136A EP 1507746 A2 EP1507746 A2 EP 1507746A2
Authority
EP
European Patent Office
Prior art keywords
protective layer
glass
alkali
substrate
resistant protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03755136A
Other languages
English (en)
French (fr)
Inventor
Martin Amlung
Klaus Endres
Martin Mennig
Helmut Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEIBNIZ-INSTITUT fur NEUE MATERIALIEN GEMEINNUETZ
Original Assignee
Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH filed Critical Leibniz Institut fuer Neue Materialien Gemeinnuetzige GmbH
Publication of EP1507746A2 publication Critical patent/EP1507746A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/256Coating containing TiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5045Rare-earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/212TiO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the present invention relates to a substrate with an alkali-resistant protective layer based on titanium oxide / cerium oxide, the substrate or at least one surface layer of the substrate consisting of an inorganic non-metallic matrix material.
  • Substrates or coatings made of glass, glass ceramics and ceramics are often attacked by bases.
  • high-energy radiation such as UV radiation, high temperatures or a combination of these factors can also cause damage.
  • chemical and pharmaceutical industry e.g. The dissolution and aging of glass in production machines, laboratory equipment and also in windows is a major problem.
  • the aging or dissolution process of the glass network can, e.g. can be represented by the following equation:
  • Some high-temperature resistant materials such as Ti-sputtered BN layers are extremely durable. However, the production of these layers is technically complex and therefore very expensive. In addition, they are not transparent and cannot be applied to geometrically sophisticated glasses.
  • JP-A-2002036427, EP-A-1050603 and EP-A-696624 describe coatings made of metal oxides such as Zr0 2 , Al 2 0 3 , Y 2 0 3 and La 2 0 3 , which are also Ce0 2 - and / or Ti0 2 additives can contain, described as protection for metals and metal alloys against corrosion.
  • metal oxides such as Zr0 2 , Al 2 0 3 , Y 2 0 3 and La 2 0 3 , which are also Ce0 2 - and / or Ti0 2 additives can contain, described as protection for metals and metal alloys against corrosion.
  • the object of the present invention was to protect inorganic non-metallic materials from attack by alkaline media.
  • the protective layer should also have high heat resistance, be stable against UV light and not impair the optical effects of the material.
  • the manufacture should be simple and inexpensive.
  • a protective layer based on titanium oxide / cerium oxide which is obtainable by applying a coating composition comprising titanium oxide and cerium oxide precursors to a substrate with a surface made of an inorganic non-metallic matrix material and compacting the coating composition at a temperature of at least 500 ° C. Astonishingly, when compaction takes place at a temperature of at least 500 ° C., there is a layer whose permeability to alkaline media is severely restricted, so that alkali and OH " ions can no longer attack the underlying substrate or its coating
  • the barrier or protective layer used according to the invention provides excellent protection for inorganic non-metallic materials, in particular glass, glass ceramic and ceramic, against attack by alkaline media.
  • the alkali-resistant protective layer is also resistant to high temperatures, stable against UV radiation and transparent.
  • the protective layer can be coated by conventional wet chemical coating processes, e.g. Spraying or dipping can be applied in one step. The production is therefore simple and inexpensive.
  • the titanium oxide / cerium oxide layer is therefore suitable as an alkali-resistant, high-temperature-resistant, UV-stable and transparent protective layer for inorganic non-metallic materials.
  • the substrate can have different geometries.
  • An advantage of the invention is that even objects with more complex geometries can be coated easily.
  • the substrate can also only be partially provided with the protective layer. For example, it is possible to only coat the inside of glass jars.
  • Coated or uncoated substrates are suitable as substrates, part or all of the surface consisting of an inorganic non-metallic matrix material. Coated substrates can also have more than one layer. If there is a coating of an inorganic non-metallic matrix material, the substrate can be made of any other material.
  • the inorganic matrix may also contain organic groups, e.g. Methyl groups.
  • the inorganic non-metallic materials for the substrate itself or the coating are, for example, glass, glass ceramic or ceramic. This closes also oxide ceramics and enamel.
  • Oxide ceramics are usually understood to mean ceramics that are not based on silica as the main component.
  • semiconductors such as optionally doped Si or Ge, are also suitable as inorganic non-metallic matrix materials.
  • Glass substrates such as e.g. B. borosilicate glass, soda-lime glass or silica glass. It can be flat glass, hollow glass such as container glass, or laboratory equipment glass.
  • ceramics are ceramics based on the oxides Si0 2 , Al 2 0 3 , Zr0 2 or MgO or the corresponding mixed oxides.
  • additional components can be contained in the matrix made of glass, glass ceramic or ceramic, which serve, for example, as function carriers.
  • the matrix can contain, for example, pigments or metal colloids as coloring components.
  • Substrates can have a functional coating, for example made of glass, glass ceramic or ceramic, which, for example, has a decorative effect or has electrical conductivity or optoelectronic effects.
  • the substrates can, for example, be coated with indium tin oxide (ITO), antimony tin oxide (ATO) or fluorine-doped tin oxide (FTO) in order to achieve optoelectronic effects.
  • Metals can be coated with a layer of glass or an enamel before the protective layer is applied. An example of such a Si0 2 coating of metal surfaces is described in DE-A-19714949.
  • the inorganic non-metallic materials for the substrate itself or the coating can optionally also be organically modified inorganic polycondensates (for example made from tetraalkoxysilanes and methyltrialkoxysilanes), which are usually glass-like.
  • These glass-like materials are glasses that can contain organic groups in the inorganic matrix structure. It is known that organic groups such as methyl may remain in the matrix even at the high temperatures required to compact the protective layer.
  • the alkali-resistant protective layer is preferably applied directly to glass, glass ceramic or ceramic substrates, to glass-coated metals or to glass substrates provided with at least one functional layer.
  • a coating composition comprising titanium oxide and cerium oxide precursors is applied to the surface of the substrate.
  • the coating composition is usually obtained from cerium and titanium compounds in a solvent, preferably by the so-called sol-gel process.
  • At least one cerium salt and at least one hydrolyzable titanium compound are preferably converted in a solvent according to the sol-gel process into the titanium oxide and cerium oxide precursors, usually in the form of a sol.
  • hydrolyzable compounds are usually hydrolyzed with water, if appropriate with acidic or basic catalysis, and, if appropriate, at least partially condensed.
  • the reaction of the cerium salts with water is also regarded here as hydrolysis.
  • the hydrolysis and / or condensation reactions lead to the formation of compounds or condensates with hydroxyl, oxo groups and / or oxo bridges, which serve as titanium oxide and cerium oxide precursors, which precursors can also consist of condensates which contain both elements (Ce, Ti ) contain.
  • Stoichiometric amounts of water but also smaller or larger amounts can be used.
  • the sol that forms can be adjusted by suitable parameters, e.g.
  • Cerium (III) salts are preferably used as cerium compounds.
  • Cerium (III) salts which are found at room temperature in dissolving an alcohol are, for example, the nitrate and the chloride, the nitrate being particularly preferred.
  • the titanium compound is in particular a hydrolyzable compound of the formula TiX 4 , where the hydrolyzable groups X are, for example, hydrogen, halogen (F, Cl, Br or I, in particular Cl and Br), alkoxy (preferably C.sub.14-alkoxy, in particular C. ⁇ alkoxy, such as methoxy, ethoxy, n-propoxy, i- propoxy, butoxy, i-butoxy, sec-butoxy and tert-butoxy), aryloxy (preferably C6. 10, aryloxy, such as phenoxy), acyloxy (preferably C ⁇ acyloxy, such as acetoxy or propionyloxy) or alkylcarbonyl (preferably C 2.
  • the hydrolyzable groups X are, for example, hydrogen, halogen (F, Cl, Br or I, in particular Cl and Br), alkoxy (preferably C.sub.14-alkoxy, in particular C. ⁇ alkoxy, such as methoxy, ethoxy,
  • alkylcarbonyl such as acetyl
  • Preferred hydrolyzable radicals are alkoxy groups, in particular C 1-4 alkoxy.
  • Specific and preferably used titanates are Ti (OCH 3 ) 4 , Ti (OC 2 H 5 ) 4 and Ti (n- or i-OC 3 H 7 ) 4 .
  • an organic solvent in which the cerium and titanium compounds used are soluble is used as the solvent.
  • alcohols are used, preferably an alcohol having 1 to 4 carbon atoms, e.g. Methanol, ethanol, propanol and isopropanol, or a mixture thereof.
  • the resulting solution is in the presence of water, for example under reflux, at room temperature (about 20 ° C.) or at a slightly elevated temperature for a time-dependent period, for example from 1 min to several days ( for example up to 8 days), in order to obtain the coating composition comprising the titanium oxide and cerium oxide precursors, in particular in the form of a sol.
  • the treatment can, for example, take place under reflux for 1 minute to 24 hours or at 30 ° C. for 10 hours to 5 days.
  • the amounts of the titanium and cerium starting compounds are preferably chosen so that the molar ratio, based on Ti: Ce, is 1: 2 to 2: 1.
  • brine by dissolving cerium (III) salt eg cerium (III) nitrate hexahydrate
  • cerium (III) salt eg cerium (III) nitrate hexahydrate
  • a titanium tetraalkoxide in concentrations of 0.05 to 0.5 mol per liter, preferably 0.2 to 0.3 mol per liter
  • heating the clear solution under reflux or at a slightly elevated temperature 25 to 40 ° C
  • Prehydrolysis and / or condensation takes place, forming a sol and increasing the viscosity.
  • These brines can be stored for several weeks, especially when stored at temperatures around -20 ° C.
  • the coating composition may optionally contain other components, e.g. B. hydrolyzable compounds or salts of other elements for the matrix or other additives such as sintering aids.
  • the hydrolyzable compounds of other elements which can optionally be incorporated into the oxide matrix are, in particular, compounds of glass- or ceramic-forming elements, for example compounds of at least one element M from the main groups IM to V and / or the subgroups II to IV of the periodic table of the elements. These can be hydrolyzable compounds of Si, Al, B, Sn, Ti, Zr, V or Zn.
  • hydrolyzable compounds can also be used, such as those of elements of main groups I and II of the periodic table (for example Na, K, Ca and Mg) and subgroups V to VIII of the periodic table (for example Mn, Cr, Fe and Ni) or hydrolyzable compounds other lanthanides.
  • such other components based on the solids content of the finished protective layer, make up no more than 20% by weight, preferably no more than 5% by weight and in particular no more than 2% by weight.
  • the protective layer is particularly preferably formed only from the titanium oxide / cerium oxide.
  • the coating composition is applied to the substrates to be coated using the usual coating methods after the viscosity has been adjusted, if appropriate, by adding or removing solvent.
  • the coating can be done, for example, by spraying, dipping, brushing or spin coating.
  • the substrates are generally dried at room temperature or at elevated temperature (for example up to 100 ° C.). This is followed by compaction of the applied layer at temperatures in the range from 500 ° C. to just below the softening point of the substrate or coating material. Temperatures are preferably chosen just below the softening point of the material to be coated (Tg of the glass), which of course depends on the type of substrate or coating.
  • the coating composition can be compacted into crack-free, transparent and homogeneous coatings despite the possibly present organic components.
  • the heat treatment for compression can e.g. in the oven, by means of IR radiation or by flaming.
  • the protective layer is annealed by the heat treatment.
  • a matrix of oxides or mixed oxides (double oxides) of titanium and cerium (TiOj / CeO ;,) is obtained, here referred to as titanium oxide / cerium oxide, the stoichiometry depending on the molar ratio of the starting compounds used.
  • the protective layer obtained offers extremely good protection against attack by alkaline media.
  • the coating was able to achieve exceptional alkali resistance. In this way, a 30% sodium hydroxide solution could be heated to 80 ° C. in the reactor coated in this way without damage to the reactor being observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Ein Substrat mit einer Oberfläche aus einem anorganischen nichtmetallischen Matrixmaterial weist eine Schutzschicht auf Basis von Titanoxid/Ceroxid auf, die erhältlich ist durch Aufbringen einer Titanoxid- und Ceroxid-Vorstufen umfassenden Beschichtungszusammensetzung auf die Oberfläche des Substrats und Verdichten der Beschichtungszusammensetzung bei einer Temperatur von mindestens 500 DEG C.Die Beschichtung eignet sich als wärmebeständiger, UV-stabiler und transparenter Schutz für anorganische nichtmetallische Materialien, insbesondere Glas, Glaskeramik und Keramik, gegen Angriff durch alkalische Medien.

Description

SUBSTRAT MIT EINER TITANOXID/CEROXID-SCHUTZSCHICHT
Die vorliegende Erfindung betrifft ein Substrat mit einer alkalibeständigeπ Schutzschicht auf Basis von Titanoxid/Ceroxid, wobei das Substrat oder zumindest eine Oberflächenschicht des Substrats aus einem anorganischen nichtmetallischen Matrixmaterial bestehen.
Substrate oder Beschichtungen aus Glas, Glaskeramik und Keramik werden häufig durch Basen angegriffen. Aber auch energiereiche Strahlung wie UV-Strahlung, hohe Temperaturen oder eine Kombination dieser Faktoren können zu Schädigungen führen. In der chemischen und pharmazeutischen Industrie stellt daher z.B. die Auflösung und die Alterung von Glas in Produktionsmaschinen, Laborausrüstungen und auch in Fenstern ein großes Problem dar.
Der Alterungs- bzw. Auflösungsprozess des Glasnetzwerkes kann bei alkalischem Angriff z.B. durch die folgende Gleichung wiedergegeben werden:
R3Si-0-SiR3 + ROH → R3Si-0-R' + HO-SiR3 R = Glasnetzwerk, R' = ü, Na, K
Die Forschung zur Vermeidung dieser Schädigungen beschäftigt sich nahezu ausnahmslos mit einer hermetischen Versiegelung der zu schützenden Glasoberfläche mit Schichten, die gegen den alkalischen Angriff stabil sind. Häufig ist eine transparente Versiegelung wünschenswert, z.B. um die optischen Effekte des Substrats oder der darauf befindlichen Beschichtungen nicht zu beeinträchtigen oder um eine freie Sicht durch den Gegenstand zu gewährleisten.
Die meisten Schutzbeschichtungen, die bisher für solche Substrate vorgeschlagen worden sind, zeigen eine geringe Wärmebeständigkeit und/oder sie sind nicht transparent. Schutzbeschichtungen aus Polyethylen, Polystyrol oder Polypropylen zeigen eine gute Transparenz, sind aber auf Temperaturen bis maximal 150°C begrenzt, weswegen sie für viele Anwendungen ungeeignet sind. Auch Polyurethane und Polyester werden häufig verwendet, der Temperaturbereich, in dem sie eingesetzt werden können, ist aber ebenfalls begrenzt.
Einige hochtemperaturbeständige Materialien wie Ti-besputterte BN-Schichten sind extrem beständig. Die Herstellung dieser Schichten ist jedoch technisch aufwendig und damit sehr teuer. Überdies sind sie nicht transparent und können nicht auf geometrisch anspruchsvolle Gläser appliziert werden.
Weitere gebräuchliche Methoden zum Schutz vor alkalischen Medien sind spezielle Glasmischungen, die z.B. B203, BaO, CaO und Al203 enthalten, oder synthetische Saphir-Gläser. Diese Gläser sind aber für Massenprodukte in der chemischen Industrie aufgrund ihres hohen Preises ebenfalls ungeeignet.
In JP-A-2002036427, EP-A-1050603 und EP-A-696624 werden Beschichtungen aus Metalloxiden wie z.B. Zr02, Al203, Y203 und La203, die auch Ce02- und/oder Ti02- Zusätze enthalten können, als Schutz für Metalle und Metalllegierungen vor Korrosion beschrieben.
Die Aufgabe der vorliegenden Erfindung bestand darin, anorganische nichtmetallische Materialen vor dem Angriff durch alkalische Medien zu schützen. Die Schutzschicht sollte überdies eine hohe Wärmebeständigkeit aufweisen, stabil gegen UV-Licht sein und optische Effekte des Materials nicht beeinträchtigen. Außerdem sollte die Herstellung einfach und preiswert sein.
Überraschenderweise konnte dies durch eine Schutzschicht auf Basis von Titanoxid/Ceroxid erreicht werden, die erhältlich ist durch Aufbringen einer Titanoxid- und Ceroxid-Vorstufen umfassenden Beschichtungszusammensetzung auf ein Substrat mit einer Oberfläche aus einem anorganischen nichtmetallischen Matrixmaterial und Verdichten der Beschichtungszusammensetzung bei einer Temperatur von mindestens 500°C. Erstauniicherweise ergibt sich bei einer Verdichtung bei einer Temperatur von mindestens 500°C eine Schicht, deren Durchlässigkeit gegenüber alkalischen Medien stark eingeschränkt ist, so dass Alkali- und OH"-lonen das darunter liegende Substrat oder dessen Beschichtung nicht mehr angreifen können. Daher bietet die erfindungsgemäß verwendete Sperr- oder Schutzschicht einen ausgezeichneten Schutz für anorganische nichtmetallische Materialien, insbesondere Glas, Glaskeramik und Keramik, gegen Angriff durch alkalische Medien.
Die alkalibeständige Schutzschicht ist ferner hochtemperaturbeständig, stabil gegen UV-Strahlung und transparent. Außerdem kann die Schutzschicht durch gängige nasschemische Beschichtungsverfahren, z.B. Sprühen oder Tauchen, in einem Schritt aufgebracht werden. Die Herstellung ist daher einfach und preisgünstig. Die Titanoxid/Ceroxid-Schicht eignet sich somit als alkalibeständige, hochtemperaturbeständige, UV-stabile und transparente Schutzschicht für anorganische nichtmetallische Materialien.
Das Substrat kann verschiedene Geometrien aufweisen. Ein Vorteil der Erfindung besteht darin, dass auch Gegenstände mit komplexeren Geometrien ohne weiteres beschichtet werden können. Das Substrat kann auch nur teilweise mit der Schutzschicht versehen werden. So besteht zum Beispiel die Möglichkeit, nur das Innere von Glasgefäßen zu beschichten.
Als Substrate kommen beschichtete oder unbeschichtete Substrate in Betracht, wobei ein Teil der Oberfläche oder die ganze Oberfläche aus einem anorganischen nichtmetallischen Matrixmaterial besteht. Bei beschichteten Substraten kann auch mehr als eine Schicht vorhanden sein. Sofern eine Beschichtung aus einem anorganischen nichtmetallischen Matrixmaterial vorliegt, kann das Substrat aus einem beliebigen anderen Material bestehen. Die anorganische Matrix kann gegebenenfalls auch organische Gruppen enthalten, z.B. Methylgruppen.
Bei den anorganischen nichtmetallischen Materialien für das Substrat selbst oder die Beschichtung handelt es sich z.B. um Glas, Glaskeramik oder Keramik. Dies schließt auch Oxidkeramik und Email ein. Unter Oxidkeramik wird gewöhnlich eine Keramik verstanden, die nicht auf Kieselsäure als Hauptbestandteil basiert. Aber auch Halbleiter, wie gegebenenfalls dotiertes Si oder Ge, sind als anorganische nichtmetallische Matrixmaterialien geeignet. Besonders bevorzugt sind Glassubstrate, wie z. B. Borosilicatglas, Natronkalkglas oder Kieselglas. Es kann sich um Flachglas, Hohlglas wie Behälterglas, oder um Laborgeräteglas handeln. Beispiele für Keramiken sind Keramiken auf Basis der Oxide Si02, Al203, Zr02 oder MgO oder der entsprechenden Mischoxide.
Selbstverständlich können in der Matrix aus Glas, Glaskeramik oder Keramik zusätzliche Komponenten enthalten sein, die z.B. als Funktionsträger dienen. Die Matrix kann z.B. Pigmente oder Metallkolloide als farbgebende Komponenten enthalten. Substrate können eine Funktionsbeschichtung, z.B. aus Glas, Glaskeramik oder Keramik, aufweisen, die z.B. eine dekorative Wirkung hat oder elektrische Leitfähigkeit oder optoelektronische Effekte bewirkt. Die Substrate können z.B. mit Indium-Zinn-Oxid (ITO), Antimon-Zinn-Oxid (ATO) oder fluor-dotiertem Zinnoxid (FTO) beschichtet sein, um optoelektronische Effekte zu erzielen. Metalle können vor Aufbringen der Schutzschicht mit einer Glasschicht oder einem Email versehen werden. Ein Beispiel für eine derartige Si02-Beschichtung von Metalloberflächen ist in DE-A-19714949 beschrieben.
Bei den anorganischen nichtmetallischen Materialien für das Substrat selbst oder die Beschichtung kann es sich gegebenenfalls auch um organisch modifizierte anorganische Polykondensate (z.B. hergestellt aus Tetraalkoxysilanen und Methyltri- alkoxysilanen) handeln, die meist glasartig sind. Bei diesen glasartigen Materialien handelt es sich um Gläser, die organische Gruppen im anorganischen Matrixgerüst enthalten können. Es ist bekannt, dass organische Gruppen wie Methyl gegebenenfalls auch bei den hohen Temperaturen, die für das Verdichten der Schutzschicht erforderlich sind, in der Matrix verbleiben können. Die alkalibeständige Schutzschicht wird bevorzugt unmittelbar auf Glas-, Glaskeramik- oder Keramiksubstrate, auf glasbeschichtete Metalle oder auf mit mindestens einer Funktionsschicht versehene Glassubstrate aufgebracht.
Zur Herstellung der Schutzschicht wird eine Titanoxid- und Ceroxid-Vorstufen umfassende Beschichtungszusammensetzung auf die Oberfläche des Substrats aufgebracht. Die Beschichtungszusammensetzung wird gewöhnlich aus Cer- und Titanverbindungen in einem Lösungsmittel erhalten, vorzugsweise nach dem sogenannten Sol-Gel-Verfahren. Bevorzugt werden mindestens ein Cersalz und mindestens eine hydrolysierbare Titanverbindung in einem Lösungsmittel nach dem Sol-Gel-Verfahren in die Titanoxid- und Ceroxid-Vorstufen, gewöhnlich in Form eines Sols, überführt.
Beim Sol-Gel-Verfahren werden gewöhnlich hydrolysierbare Verbindungen mit Wasser, gegebenenfalls unter saurer oder basischer Katalyse, hydrolysiert und gegebenenfalls zumindest teilweise kondensiert. Dabei wird hier auch die Reaktion der Cersalze mit Wasser als Hydrolyse angesehen. Die Hydrolyse- und/oder Kondensationsreaktionen führen zur Bildung von Verbindungen oder Kondensaten mit Hydroxy-, Oxogruppen und/oder Oxobrücken, die als Titanoxid- und Ceroxid-Vorstufen dienen, wobei diese Vorstufen auch aus Kondensaten bestehen können, die beide Elemente (Ce, Ti) enthalten. Es können stöchiometrische Wassermengen, aber auch geringere oder größere Mengen verwendet werden. Das sich bildende Sol kann durch geeignete Parameter, z.B. Kondensationsgrad, Lösungsmittel oder pH- Wert, auf die für die Beschichtungszusammensetzung gewünschte Viskosität eingestellt werden. Weitere Einzelheiten des Sol-Gel-Verfahrens sind z.B. bei C.J. Brinker, G.W. Scherer: "Sol-Gel Science - The Physics and Chemistry of Sol-Gel- Processing", Academic Press, Boston, San Diego, New York, Sydney (1990) beschrieben.
Als Cerverbindungen werden bevorzugt in Alkohol lösliche Verbindungen, insbesondere Cer(lll)-Salze, eingesetzt. Cer(lll)-Salze, die sich bei Raumtemperatur in einem Alkohol lösen, sind z.B. das Nitrat und das Chlorid, wobei das Nitrat besonders bevorzugt wird. Erfindungsgemäß ist es auch bevorzugt, ein Kristallwasser-haltiges Cer(lll)-Salz (wie z.B. Cernitrat-hexahydrat) einzusetzen, so dass zumindest ein Teil des Wassers (vorzugsweise das gesamte Wasser), das im Verfahren eingesetzt wird, durch dieses Kristallwasser bereitgestellt wird.
Bei der Titanverbindung handelt es sich insbesondere um eine hydrolysierbare Verbindung der Formel TiX4, wobei die hydrolysierbaren Gruppen X beispielsweise Wasserstoff, Halogen (F, Cl, Br oder I, insbesondere Cl und Br), Alkoxy (vorzugsweise C^-Alkoxy, insbesondere C^-Alkoxy, wie z.B. Methoxy, Ethoxy, n-Propoxy, i- Propoxy, Butoxy, i-Butoxy, sek.-Butoxy und tert.-Butoxy), Aryloxy (vorzugsweise C6.10-Aryloxy, wie z.B. Phenoxy), Acyloxy (vorzugsweise C^-Acyloxy, wie z.B. Acetoxy oder Propionyloxy) oder Alkylcarbonyl (vorzugsweise C2.7-Alkylcarbonyl, wie z.B. Acetyl) sind. Bevorzugte hydrolysierbare Reste sind Alkoxygruppen, insbesondere C^-Alkoxy. Konkrete und bevorzugt eingesetzte Titanate sind Ti(OCH3)4, Ti(OC2H5)4 und Ti(n- oder i-OC3H7)4.
Als Lösungsmittel wird insbesondere ein organisches Lösungsmittel verwendet, in dem die eingesetzten Cer- und Titanverbindungen löslich sind. Am zweckmäßigsten werden Alkohole verwendet, vorzugsweise ein Alkohol mit 1 bis 4 Kohlenstoffatomen, wie z.B. Methanol, Ethanol, Propanol und Isopropanol, oder eine Mischung davon.
Nach Zugabe der Titan- und Cerverbindungen in das Lösungsmittel wird die resultierende Lösung in Anwesenheit von Wasser z.B. unter Rückfluss, bei Raumtemperatur (etwa 20°C) oder bei leicht erhöhter Temperatur über einen von der Temperatur abhängigen Zeitraum, z.B. 1 min bis mehrere Tage (z.B. bis zu 8 Tage), gerührt, um die Titanoxid- und Ceroxid-Vorstufen umfassende Beschichtungszusammensetzung, insbesondere in Form eines Sols, zu erhalten. Die Behandlung kann z.B. 1 min bis 24 Stunden unter Rückfluss oder über 10 h bis 5 Tage bei 30°C erfolgen. Die Mengen der Titan- und Cer-Ausgangsverbindungen werden bevorzugt so gewählt, dass das molare Verhältnis, bezogen auf Ti: Ce, 1 :2 bis 2:1 beträgt.
Es kann z.B. so vorgegangen werden, daß Sole durch Auflösung von Cer(lll)-Salz (z.B. Cer(lll)nitrat-hexahydrat) in einem kurzkettigen Alkohol in Konzentrationen von 0,05 bis 0,5 Mol pro Liter, vorzugsweise 0,2 bis 0,3 Mol pro Liter, portionierte Zugabe eines Titantetraalkoxids in Konzentrationen von 0,05 bis 0,5 Mol pro Liter, vorzugsweise 0,2 bis 0,3 Mol pro Liter, und Erhitzen der klaren Lösung unter Rückfluss oder bei leicht erhöhter Temperatur (25 bis 40°C) für eine bestimmte Zeit erzeugt werden. Dabei erfolgt eine Vorhydrolyse und/oder -kondensation unter Bildung eines Sols und Zunahme der Viskosität. Diese Sole sind, insbesondere bei Aufbewahrung bei Temperaturen um -20°C, über mehrere Wochen haltbar.
Die Beschichtungszusammensetzung kann gegebenenfalls weitere Komponenten enthalten, z. B. hydrolysierbare Verbindungen oder Salze anderer Elemente für die Matrix oder andere Zusätze wie Sinterhilfsmittel. Bei den hydrolysierbaren Verbindungen von anderen Elementen, die gegebenenfalls in die Oxidmatrix eingebaut werden können, handelt es sich insbesondere um Verbindungen von glas- oder keramikbildenden Elementen, z.B. Verbindungen mindestens eines Elements M aus den Hauptgruppen IM bis V und/oder den Nebengruppen II bis IV des Periodensystems der Elemente. Dies können hydrolysierbare Verbindungen von Si, AI, B, Sn, Ti, Zr, V oder Zn sein. Auch andere hydrolysierbare Verbindungen können eingesetzt werden, wie solche von Elementen der Hauptgruppen I und II des Periodensystems (z.B. Na, K, Ca und Mg) und der Nebengruppen V bis VIII des Periodensystems (z.B. Mn, Cr, Fe und Ni) oder hydrolysierbare Verbindungen anderer Lanthaniden. Im allgemeinen machen solche andere Komponenten aber, bezogen auf den Feststoffgehalt der fertigen Schutzschicht, nicht mehr als 20 Gew.-%, bevorzugt nicht mehr als 5 Gew.-% und insbesondere nicht mehr als 2 Gew.-% aus. Besonders bevorzugt wird die Schutzschicht aber, abgesehen von möglichen Verunreinigungen (unter 1 Gew.-%), nur aus dem Titanoxid/Ceroxid gebildet. Die Beschichtungszusammensetzung wird, nachdem gegebenenfalls die Viskosität durch Zugabe oder Entfernen von Lösungsmittel eingestellt wurde, mit den üblichen Beschichtungsverfahren auf die zu beschichtenden Substrate aufgebracht. Die Beschichtung kann z.B. durch Sprühen, Tauchen, Aufstreichen oder Schleuderbeschichten erfolgen.
Nach erfolgter Beschichtung werden die Substrate im allgemeinen bei Raumtemperatur oder erhöhter Temperatur (beispielsweise bis zu 100 °C) getrocknet. Daran schließt sich eine Verdichtung der aufgebrachten Schicht bei Temperaturen im Bereich von 500 °C bis kurz unter den Erweichungspunkt des Substrat- bzw. des Beschichtungsmaterials an. Vorzugsweise werden Temperaturen knapp unterhalb des Erweichungspunktes des zu beschichtenden Materials (Tg des Glases) gewählt, der naturgemäß von der Art des Substrats bzw. der Beschichtung abhängt. Die Beschichtungszusammensetzung kann trotz der eventuell vorhandenen organischen Bestandteile zu rissfreien, transparenten und homogenen Beschichtungen verdichtet werden.
Die Wärmebehandlung zum Verdichten kann z.B. im Ofen, mittels IR-Bestrahlung oder durch Beflammen erfolgen. Durch die Wärmebehandlung wird die Schutzschicht getempert.
Es wird eine Matrix aus Oxiden bzw. Mischoxiden (Doppeloxiden) von Titan und Cer (TiOj/CeO;,) erhalten, hier als Titanoxid/Ceroxid bezeichnet, wobei die Stöchiometrie vom molaren Verhältnis der eingesetzten Ausgangsverbindungen abhängt. Die erhaltene Schutzschicht bietet einen außerordentlich guten Schutz gegen einen Angriff durch alkalische Medien.
Die folgenden Beispiele erläutern die Erfindung. Beispie! 1
48,85 g Cer(lll)nitrat-hexahydrat werden in 450 ml abs. Ethanol gelöst. Nach Zugabe von 32,00 g Tetraisopropylorthotitanat wird das Gemisch 1 h unter Rückfluß gekocht. Das so hergestellte Sol kann eisgekühlt mehrere Wochen gelagert werden. Das Beschichtungssol wird mittels Tauchbeschichtung (z. B. mit 4 mm/s) auf eine zuvor intensiv gereinigte Natronkalkscheibe appliziert, bei 100°C getrocknet und bei 500°C verdichtet.
Beispiel 2
48,85 g Cer(lll)nitrat-hexahydrat werden in 450 ml abs. Ethanol gelöst. Nach Zugabe von 32,00 g Tetraisopropylorthotitanat wird das Gemisch 4 d bei 30 °C gerührt. Das so hergestellte Sol kann eisgekühlt mehrere Wochen gelagert werden. Als Substrat wird ein Laborreaktor aus Borosilicatglas verwendet, der einen ITO-Primer als Beschichtung aufweist. Das Beschichtungssol wird mittels Sprühbeschichtung (z. B. mit einer kommerziell erhältlichen Lackierpistole) auf den Laborreaktor aufgebracht, bei 100 °C getrocknet und bei 600 °C verdichtet.
Durch die Beschichtung konnte eine außerordentliche Alkalibeständigkeit erzielt werden. So konnte eine 30%ige Natronlauge 500 h in dem so beschichteten Reaktor auf 80°C erwärmt werden, ohne dass eine Schädigung des Reaktors zu beobachten war.

Claims

PATENTANSPRÜCHE
1. Mit einer alkalibeständigen Schutzschicht auf Basis von Titanoxid/Ceroxid versehenes Substrat mit einer Oberfläche aus einem anorganischen nicht- metallischen Matrixmaterial, erhältlich durch Aufbringen einer Titanoxid- und Ceroxid-Vorstufen umfassenden Beschichtungszusammensetzung auf die Oberfläche des Substrats und Verdichten der Beschichtungszusammensetzung bei einer Temperatur von mindestens 500°C.
2. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach Anspruch 1 , dadurch gekennzeichnet, dass das gesamte Substrat, eine Oberfläche des Substrats oder einer Beschichtung auf dem Substrat aus dem anorganischen nicht-metallischen Matrixmaterial gebildet sind.
3. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das anorganische nicht-metallische Matrixmaterial ausgewählt ist aus Glas, Glaskeramik oder Keramik, einschließlich Oxidkeramik.
4. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Schutzschicht auf ein Glas-, Glaskeramik- oder Keramiksubstrat, ein mit mindestens einer Funktionsschicht beschichtetes Glas-, Glaskeramik- oder Keramiksubstrat oder ein mit einer Glas-, Glaskeramik- oder Keramikschicht beschichtetes Metall aufgebracht ist.
5. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das anorganische Matrixmaterial durch organische Gruppen modifiziert ist.
6. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schutzschicht transparent ist.
7. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Schutzschicht im wesentlichen aus Titanoxid/Ceroxid besteht.
8. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die aufgebrachte Beschichtungszusammensetzung vor dem Verdichten zur Entfernung des Lösungsmittels getrocknet wird.
9. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das molare Verhältnis von Ti:Ce in der Beschichtungszusammensetzung im Bereich von 2:1 bis 1 :2 liegt.
10. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Titanoxid- und Ceroxid- Vorstufen umfassende Beschichtungszusammensetzung aus mindestens einem Cersalz und mindestens einer hydrolysierbaren Titanverbindung in einem Lösungsmittel nach dem Sol-Gel-Verfahren unter Bildung eines Sols erhalten wird.
11. Mit einer alkalibeständigen Schutzschicht versehenes Substrat nach Anspruch 10, dadurch gekennzeichnet, dass die hydrolysierbare Titanverbindung eine Tetraalkoxytitanverbindung ist.
EP03755136A 2002-05-27 2003-05-26 Substrat mit einer titanoxid/ceroxid-schutzschicht Withdrawn EP1507746A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10223531 2002-05-27
DE2002123531 DE10223531A1 (de) 2002-05-27 2002-05-27 Substrat mit einer Titanoxid/Ceroxid-Schutzschicht
PCT/EP2003/005502 WO2003099735A2 (de) 2002-05-27 2003-05-26 Substrat mit einer titanoxid/ceroxid-schutzschicht

Publications (1)

Publication Number Publication Date
EP1507746A2 true EP1507746A2 (de) 2005-02-23

Family

ID=29432345

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03755136A Withdrawn EP1507746A2 (de) 2002-05-27 2003-05-26 Substrat mit einer titanoxid/ceroxid-schutzschicht

Country Status (3)

Country Link
EP (1) EP1507746A2 (de)
DE (1) DE10223531A1 (de)
WO (1) WO2003099735A2 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324583B4 (de) * 2003-05-30 2005-08-11 Schott Ag Sol-Gel-Beschichtungslösung zur späteren Herstellung Li-Ionen transparenter Speicherschichten für Lithium-Ionen, Verfahren zur Herstellung der Sol-Gel-Beschichtungslösung sowie Verfahren zur Herstellung einer transparenten Li-Ionen-Speicherschicht
DE102005018246A1 (de) 2005-04-19 2006-10-26 Schott Ag Glas- oder Glaskeramik-Artikel mit dekorativer Beschichtung
US7744951B2 (en) * 2006-04-13 2010-06-29 Guardian Industries Corp. Coated glass substrate with infrared and ultraviolet blocking characteristics
US8322754B2 (en) 2006-12-01 2012-12-04 Tenaris Connections Limited Nanocomposite coatings for threaded connections
DE102008062881B4 (de) 2008-12-16 2021-04-08 Schott Ag Verfahren zur Herstellung eines hohlen Glasformkörpers
AR100953A1 (es) 2014-02-19 2016-11-16 Tenaris Connections Bv Empalme roscado para una tubería de pozo de petróleo
GB2614722A (en) * 2022-01-13 2023-07-19 Pilkington Group Ltd Corrosion-resistant and/or cleanable coated glass substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0168710B1 (ko) 1994-08-11 1999-01-15 후지이 히로시 내식성 음극전착도료
EP0890556B1 (de) * 1996-12-25 2002-04-24 Nippon Sheet Glass Co., Ltd. Dünnschicht für optik, zusammensetzung zu deren herstellung und damit hergestelltes uv-absorbierendes und wärmereflektierendes glas
DE19714949A1 (de) 1997-04-10 1998-10-15 Inst Neue Mat Gemein Gmbh Verfahren zum Versehen einer metallischen Oberfläche mit einer glasartigen Schicht
KR100347449B1 (ko) 1998-11-08 2002-11-30 닛폰 고칸 가부시키가이샤 내식성이 우수한 표면처리 강판 및 그 제조방법
JP4532690B2 (ja) 2000-07-24 2010-08-25 新日本製鐵株式会社 樹脂系耐食性層を有する金属材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO03099735A3 *

Also Published As

Publication number Publication date
DE10223531A1 (de) 2003-12-11
WO2003099735A3 (de) 2004-12-09
WO2003099735A2 (de) 2003-12-04

Similar Documents

Publication Publication Date Title
EP1685075B1 (de) Gegenstand mit leicht reinigbarer oberfläche und verfahren zu seiner herstellung
DE102014013528B4 (de) Beschichtetes Glas-oder Glaskeramiksubstrat mit beständigen multifunktionellen Oberflächeneigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung
EP0897898B1 (de) Verfahren zur Abscheidung optischer Schichten
DE69611618T3 (de) Substrat mit einer photokatalytischen beschichtung auf basis titandioxyd
EP1284307B1 (de) Verfahren zum Versehen einer metallischen Oberfläche mit einer glasartigen Schicht
DE102008056792B4 (de) Verfahren zum Aufbringen einer porösen selbstreinigenden Entspiegelungsschicht sowie Glas mit dieser Entspiegelungsschicht und Verwendung einer selbstreinigenden porösen Entspiegelungsschicht
EP1681370B1 (de) Verfahren zur Herstellung von photokatalytisch aktiven TiO2-Teilchen und von Substraten mit photokatalytischer TiO2-Schicht
EP0642475B1 (de) Verfahren zur herstellung von glassubstraten mit verbesserter langzeitstandfähigkeit bei erhöhten temperaturen
DE69432348T2 (de) Multifunktionelles material mit photokatalytischer funktion und verfahren zur dessen herstellung
EP2041228B1 (de) Alkaliresistente beschichtung auf leichtmetalloberflächen
DE69801217T2 (de) Verfahren zur herstellung eines mehrschichtigen optischen gegenstands mit vernetzungs-verdichtung durch belichtung mit uv-strahlung und so erhaltener optischer gegenstand
JPH11228183A (ja) 親水性基材およびその製造方法
DE3408342A1 (de) Niedertemperaturverfahren zum erhalt duenner glasschichten
EP0294830B1 (de) Verfahren zur Herstellung von Gläsern mit erhöhter Bruchfestigkeit
DE102007059958A1 (de) Fluor-dotiertes transparentes leitendes Zinnoxid-Filmglas und Verfahren zur Herstellung desselben
DE1941191B2 (de) Verfahren zur Herstellung von transparenten,glasigen,glasig-kristallinen oder kristallinen anorganischen Mehrkomponentenstoffen,vorzugsweise in duennen Schichten,bei Temperaturen weit unterhalb des Schmelzpunktes
EP2593302A1 (de) Verfahren zur verbesserung von hitzeschutzverglasungen durch verhinderung der glaskorrosion, verursacht durch alkalischen glasangriff, und durch primerung
EP0701977B1 (de) Verfahren zur pyrolytischen Beschichtung von Glas-, Glaskeramik- und Emailprodukten
EP1507746A2 (de) Substrat mit einer titanoxid/ceroxid-schutzschicht
DE19828231C2 (de) Verfahren zur Abscheidung poröser optischer Schichten
WO2001028948A1 (de) Beschichtungszusammensetzung auf basis organisch modifizierter anorganischer kondensate
WO2011116980A1 (de) Verfahren zum aufbringen einer entspiegelungsschicht auf ein solarreceivermodul sowie solarreceivermodul mit einer entspiegelungsschicht
DE4117041A1 (de) Verfahren zur herstellung von gegenstaenden aus bleikristall mit verringerter bleilaessigkeit
DE202004021240U1 (de) Gegenstand mit leicht reinigbarer Oberfläche
JPH1160281A (ja) 光触媒ガラス及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040825

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUET

17Q First examination report despatched

Effective date: 20061218

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUETZ

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091201