EP1506345B1 - Antriebs- und verstellsystem für variable ventilsteuerungen - Google Patents

Antriebs- und verstellsystem für variable ventilsteuerungen Download PDF

Info

Publication number
EP1506345B1
EP1506345B1 EP03725134A EP03725134A EP1506345B1 EP 1506345 B1 EP1506345 B1 EP 1506345B1 EP 03725134 A EP03725134 A EP 03725134A EP 03725134 A EP03725134 A EP 03725134A EP 1506345 B1 EP1506345 B1 EP 1506345B1
Authority
EP
European Patent Office
Prior art keywords
drive
valve
lever
roller
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03725134A
Other languages
English (en)
French (fr)
Other versions
EP1506345A1 (de
Inventor
Herbert Naumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Technologies AG
Original Assignee
ThyssenKrupp Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Automotive AG filed Critical ThyssenKrupp Automotive AG
Publication of EP1506345A1 publication Critical patent/EP1506345A1/de
Application granted granted Critical
Publication of EP1506345B1 publication Critical patent/EP1506345B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0068Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "BMW-Valvetronic" type

Definitions

  • the present invention relates to a drive and adjustment system for mechanically variable valve controls with one on a shaft or axle rotatably mounted pivot lever, by engaging in the role or Contact surface of a rocker arm actuates the valves, wherein the shaft or axle is arranged in fixedly connected to the cylinder head bearings.
  • the Swing levers can also drive tilt or angle lever. See, for example, EP 1 039 103.
  • valve controls can be adjusted according to the invention such that the valves can be steplessly adjusted from a constant closed to the largest planned valve lift at a time coinciding with the magnification the valve lift continuously variable valve opening duration are actuated.
  • the valve controls for a throttle-free load control are suitable.
  • valve controls can in addition to the drive of a valve also simultaneously actuate several valves, and optionally only one valve of a Working space can be actuated while the other valve of the working space is always kept closed.
  • the pivot lever by a drive lever driven, with its lower end the pivot lever via a swivel joint drives, wherein the drive lever at its upper end by means of a roller or engages its contact surface in a parking cam of a parking camshaft and centered driven by a cam via a cam roller or its contact surface becomes.
  • the drive lever also drives with its lower End the pivot lever via a swivel joint, but with the drive lever at its upper end via a cam roller or its contact surface of one Cam is driven and centrally by means of a roller or its contact surface in engages an adjusting cam of an actuating camshaft.
  • Valve controls in an arrangement of a star-shaped adjusting cam on the Stellnockenwelle having different contact surfaces, through a corresponding rotational movement of the actuating camshaft, the engine of a Vehicle operated by several programs, where on the one hand an economic operation and on the other a sporty enterprise as well as a adjusted between these modes of operation of the engine can be. Due to the star-shaped arrangement of adjusting cams on the Stellnockenwelle is the production of a mechanical, largely fully variable Valve control allows, as to each set valve stroke different Valve opening times can be assigned.
  • Fig. 1 shows a valve control in the side view with a driving lever formed by a drive and adjustment, wherein the drive lever is driven approximately centrally via a cam roller; arranged with a arranged at its upper end role in a rotationally fixed manner on an actuating camshaft adjusting cam engages and drives a arranged on its lower end pivot a rotatably mounted on the actuating cam pivot lever.
  • the valve control is shown in Fig. 1 in the position of the constant closed keeping of the valves.
  • Fig. 2 shows the valve control of Fig. 1 in the side view in the position of the largest valve lift and the longest valve opening time.
  • Fig. 3 shows a valve control in the side view with a drive lever formed by a drive and adjustment, wherein the drive lever is driven at its upper end via a cam roller; engages with an approximately centrally arranged role in a rotationally fixed on an actuating camshaft adjusting cam and drives a arranged on its lower end pivot a rotatably mounted on the actuating cam pivot lever.
  • the valve control is shown in Fig. 3 in the position of the constant closed keeping of the valves.
  • Fig. 4 shows the valve control of Fig. 3 in the side view in the position of the largest valve lift and the longest valve opening time.
  • the pivot lever can also be rotatably mounted on a separate axis, which is fixedly connected to the cylinder head,
  • the valve controls on a drive lever which is supported at its upper end on an actuating cam provided only as a control shaft actuating cam shaft by means of a roller and via the arranged at its lower end pivot the pivot lever thereby drives that the drive lever itself is driven by a cam between the engaging in the adjusting cam roller and the pivot cam roller arranged.
  • the drive lever can also be driven at its upper end via a cam roller by a cam, wherein the drive lever has engaging in the adjusting cam of the actuating camshaft roller between the cam roller and arranged at the lower end of the drive lever rotary joint.
  • a cam engagement is possible here from both longitudinal sides of the drive lever, wherein the support by the adjusting cam always takes place on the side opposite to the cam engagement.
  • the control cam can be forged or cast in one piece.
  • the adjusting cams are rotatably connected via a pin rivet or screw with the actuating camshaft to avoid shared bearings in the pivoting levers.
  • axle with the pivoting levers, with the bearings can be arranged the pivot levers connected via the hinge drive levers and with the with the drive levers associated actuating camshaft as a unit in the Cylinder head used and mounted there, although the bearings of the Stellnockenwelle also run divided.
  • Fig. 1 shows a mechanically variable valve control in the setting of the constant closed keeping of the valve 1, in which a pivoting lever 2 which is rotatably mounted on a control camshaft 3 and provided by a provided for the drive and the adjustment lever 4 via a rotary joint 5 in a Pivoting movement is offset.
  • the rotary joint is arranged at the lower end of the drive lever 4 and in the vicinity of the contact surface formed of two sections 6 and 7 of the pivot lever 2 5 and serves as a bearing of the pivot lever 2 actuating cam shaft 3 is disposed in fixed to the cylinder head 8 bearings.
  • a valve 1 is actuated rocker arm 9 is driven via its roller 10 , wherein the rocker arm 9 can also be driven via a contact surface.
  • the actuating camshaft 3 has a control cam associated with its actuating cam 11 , in which the drive lever 4 engages with a roller 12 arranged at its upper end.
  • the drive lever 4 between the pivot 5 and the roller 12 has a cam roller 13 , in which a cam 14 engages.
  • the region 6 of the contact surface of the pivot lever 2 extends in a circle around the axis of rotation of the control shaft 3 and is provided for a constant closed keeping of the valve 1 .
  • the area 7 of the contact surface of the pivot lever 2 has an inwardly curved, shaped as a nose curve and is provided for the actuation of the valve 1 .
  • the roller 12 of the drive lever 4 engages here in the base circle of which is arranged on the adjusting cam shaft 3 controlling pin 11, which cam roller 13 is located on the base circle of the cam 14 and the roller 10 of the swing lever 9 is in the point A, the starting point of the region 6 the contact surface of the pivot lever 2.
  • the pivot lever 2 engages with its circular extending around its pivot axis region 6 of its contact surface to the roller 10 of the rocker arm 9 in a reciprocating motion between the point a and the point B , wherein the valve 1 is not actuated.
  • the roller 12 of the drive lever 4 is on the elevation curve of the actuating cam 11 of the actuating camshaft 3, whereby the drive lever 4 performs a rotational movement in the clockwise direction about the axis of rotation of its cam roller 13 and the pivot lever 2 via the hinge 5 is pivoted to the left.
  • the roller 10 of the rocker arm 9 is moved in the direction of the point B from the point A, in which a continuous keeping closed of the valve 1 is set.
  • the engagement of the roller 10 of the rocker arm 9 shifts in addition in the direction of the point B.
  • a compression spring 16 between the pivot lever 2 and a rotatably connected to the control shaft 3 actuating arm 17 is arranged as a return spring, wherein both the pivot lever 2 a spring plate 18 and the actuating arm 17 has a spring plate 19 .
  • the compression spring 16 is shortened in length, whereby the force acting on the pivot lever 2 restoring force of the compression spring 16 is increased.
  • the actuating arm 17 can be combined with the actuating cam 11 to form a component.
  • the drive lever 4 in addition to its pivoting movement also performs a longitudinal movement; whereby the drive lever 4 with its roller 12 on the actuating cam 11 performs a reciprocating motion. Due to the shape of the elevation curve of the actuating cam 11 , the valve lift curve generated by the cam 14 can be changed.
  • the roller 12 of the drive lever 4 by a corresponding rotation of the actuating camshaft 3 to each other different contact surfaces of the actuating cam 11 can be made.
  • the elevation curves of the contact surfaces of the actuating cam 11 may be curved inward, arched outwards, rectilinear or s-shaped, whereby for each set valve stroke different valve opening times can be provided at different valve lift curves and an engine can be operated in different work programs.
  • the provided for the largest valve lift contact surface of the actuating cam 11 can be extended by means of a subsequent arc here, which has the center of rotation of the actuating camshaft 3 , whereby by means of a rotation of the actuating camshaft 3 by the hereby changed width of the engagement of the roller 12th of the drive lever 4 in the circular arc of the contact surface of the control cam 11 at the largest valve lift the valve lift curve can be changed.
  • the contact surfaces of the parking cam 11 of two each actuate a valve 1 valve controllers be designed such that by a rotation of the adjusting cam shaft 3 by the driving lever 4 at first a pivot lever 2 for actuating a valve 1 and will hereinafter be set for the upper power range of the other pivot lever 2 for the actuation of the other valve 1, according to which both valves 1 be operated simultaneously.
  • the engine can also be operated alternately with an intake port advantageous, wherein for the operation of the engine at idle and in the lower power range, an inlet channel with a small diameter and a valve 1 with the small plate diameter and an intake duct for the medium power range after the switching of the valve 1 with the smaller disc diameter in a permanent keeping closed with the larger diameter and a valve 1 with the major plate diameter to the operation of the engine can be used.
  • a twist of the intake air in the upper power range is advantageously generated by the different diameters of the two inlet channels and the valves 1 , when both valves 1 are actuated.
  • Fig. 2 shows the valve timing in the setting of the largest valve lift and the longest valve opening time, wherein the roller 12 of the drive lever 4 is at the highest specified point of the elevation curve of the actuating cam 11 and the cam roller 13 engages in the base circle of the cam 14 .
  • the actuator arm 17 has placed with the rotation of the actuating camshaft 3 in the clockwise direction on the axis C , whereby the compression spring 16 exerts a reduced restoring force on the pivot lever 2 by the greater length thus obtained in an advantageous manner.
  • Fig. 3 shows a mechanically variable valve control in the setting of the constant closed keeping of the valve 20, in which a pivoting lever 21 which is rotatably mounted on a control camshaft 22 and provided by a provided for the drive and the adjustment lever 23 via a rotary joint 24 in a Pivoting movement is offset.
  • the rotary joint 24 is arranged at the lower end of the drive lever 23 in the vicinity of the two regions 25 and 26 contact surface formed of the pivot lever 21 and serving as a bearing of the pivot lever 21 control shaft 22 is disposed in fixed to the cylinder head 27 camps.
  • a valve 20 is actuated rocker arm 28 is driven via its roller 29 , wherein the rocker arm 28 can also be driven via a contact surface.
  • the drive lever 23 at its upper end to a cam roller 30 , in which a cam 31 engages.
  • a roller 32 is arranged, which engages in a rotatably connected to the actuating cam shaft 22 adjusting cam 33 .
  • the region 25 of the contact surface of the pivot lever 21 extends in a circle around the axis of rotation of the actuating camshaft 22 and is provided for a continuous closed keeping of the valve 20 .
  • the region 26 of the contact surface of the pivot lever 21 has an inwardly curved, shaped as a nose curvature and is provided for the actuation of the valve 20 .
  • the roller 32 of the drive lever 23 engages here in the base circle of which is arranged on the actuating camshaft 22 controlling pin 33, which cam roller 30 is located on the base circle of the cam 31 and the roller 29 of the swing lever 28 is in the point A, the starting point of the region 25 the contact surface of the pivot lever 21.
  • the pivot lever 21 of the swing lever 28 engages with its circular extending around its axis of rotation area 25 its contact surface to the roller 29 in a reciprocating motion between the point a and the point B , wherein the valve 20 is not actuated.
  • the roller 32 of the drive lever 23 is on the elevation curve of the actuating cam 33 of the actuating camshaft 22, whereby the drive lever 23 performs a counterclockwise rotation about the axis of rotation of its cam roller 30 and the pivot lever 21 via the hinge 24 is pivoted to the right.
  • the roller 29 of the rocker arm 28 is moved in the direction of the point B from the point A, in which a continuous keeping closed of the valve 20 is set.
  • the engagement of the roller 29 of the rocker arm 28 shifts in addition in the direction of the point B.
  • a torsion spring 35 are arranged as a return spring on both sides of the pivot lever 21 , of which one leg has the axis of the arranged on the pivot lever 21 and drive lever 23 pivot 24 and the other leg arranged in the actuating arm 36 dome 37 as an abutment.
  • the axis C to the axis D reduces the torsion springs 35 in their rotation angle, whereby the force acting on the pivot lever 21 restoring force of the torsion springs 35 is increased.
  • the actuating arm 36 can be combined with the adjusting cam 33 to form a component.
  • the drive lever 23 in addition to its pivotal movement also performs a longitudinal movement, whereby the drive lever 23 with its roller 32 on the actuating cam 33 performs a reciprocating motion.
  • the valve lift curve generated by the cam 31 can be changed.
  • an adjusting cam 33 can be advantageously arranged rotatably on the actuating cam shaft 22 with a plurality of contact surfaces, whereby the roller 32 of the drive lever 23 by a corresponding rotation of the actuating cam shaft 22 to each other different contact surfaces of the actuating cam 33 can be provided.
  • the elevation curves of the contact surfaces of the control cam 11 may be curved inward, arched outwards, rectilinear or s-shaped, whereby for each set valve stroke length different valve opening times at different valve lift curves can be provided and an engine can be operated in different work programs.
  • the provided for the largest valve lift contact surface of the actuating cam 33 can be extended by means of a subsequent arc here, which has the axis of rotation of the actuating camshaft 22 as a center, whereby by means of a rotation of the actuating camshaft 22 by the hereby changed width of the engagement of the roller 32nd of the drive lever 23 in the circular arc of the contact surface of the actuating cam 33 at the largest valve lift the valve lift curve can be changed.
  • Valve controls be designed such that by a rotation of the actuating camshaft 22 by the drive lever 23 first a pivot lever 21 for the operation of a valve 20 and thereafter for the upper power range of the other pivot lever 21 is set for the actuation of the other valve 20 , after which both valves 20 be operated simultaneously.
  • the engine can also be operated alternately with an intake port, wherein for the operation of the engine in idle and in the lower power range, an inlet channel with a small diameter and a valve 20 with the small plate diameter and for the medium power range by the circuit of the valve 20, an intake passage having the larger diameter and a valve 20 may be used with the larger disc diameter for the operation of the engine with the smaller disc diameter in a permanent keeping closed.
  • an intake passage having the larger diameter and a valve 20 may be used with the larger disc diameter for the operation of the engine with the smaller disc diameter in a permanent keeping closed.
  • Fig. 4 shows the valve timing in the setting of the largest valve lift and the longest valve opening time, wherein the roller 32 of the drive lever 23 is at the highest predetermined point of the elevation curve of the control cam 33 and the cam roller 30 engages in the base circle of the cam 31 .
  • the actuator arm 36 has placed with the rotation of the actuating camshaft 22 counterclockwise on the axis D , whereby the torsion spring 35 by the resulting smaller bias advantageously a reduced restoring force on the pivot lever 21 exerts.
  • the drive lever 23 on both sides drive a pivot lever 21 which actuates a valve 20 via a rocker arm 28 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Means For Warming Up And Starting Carburetors (AREA)

Description

Die vorliegende Erfindung bezieht sich auf ein Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen mit einem auf einer Welle oder Achse drehbar gelagerten Schwenkhebel, der durch den Eingriff in die Rolle oder Kontaktfläche eines Schwinghebels die Ventile betätigt, wobei die Welle oder Achse in mit dem Zylinderkopf fest verbundenen Lagerungen angeordnet ist. Die Schwenkhebel können hierbei auch Kipp- oder Winkelhebel antreiben. Siehe zum Beispiel EP 1 039 103.
Die Ventilsteuerungen können gemäß der Erfindung derart eingestellt werden, dass die Ventile von einem ständigen Geschlossenhalten stufenlos bis zu dem größten vorgesehenen Ventilhub bei einer sich gleichzeitig mit der Vergrößerung des Ventilhubes stufenlos verlängernden Ventilöffnungsdauer betätigt werden. Hierdurch sind die Ventilsteuerungen für eine drosselfreie Laststeuerung geeignet.
Die Ventilsteuerungen können neben dem Antrieb eines Ventiles auch gleichzeitig mehrere Ventile betätigen, wobei auch wahlweise nur ein Ventil eines Arbeitsraumes betätigt werden kann, während das andere Ventil des Arbeitsraumes ständig geschlossen gehalten ist.
Gemäß der Erfindung werden die Schwenkhebel durch einen Antriebshebel angetrieben, der mit seinem unteren Ende den Schwenkhebel über ein Drehgelenk antreibt, wobei der Antriebshebel an seinem oberen Ende mittels einer Rolle oder seiner Kontaktfläche in einen Stellnocken einer Stellnockenwelle eingreift und mittig über eine Nockenrolle oder seine Kontaktfläche von einem Nocken angetrieben wird.
In einer weiteren Bauweise treibt der Antriebshebel ebenfalls mit seinem unteren Ende den Schwenkhebel über ein Drehgelenk an, wobei jedoch der Antriebshebel an seinem oberen Ende über eine Nockenrolle oder seine Kontaktfläche von einem Nocken angetrieben wird und mittig mittels einer Rolle oder seiner Kontaktfläche in einen Stellnocken einer Stellnockenwelle eingreift.
Durch den Antrieb des Schwenkhebels mittels eines gesonderten Antriebshebels wird die Herstellung von mechanisch variablen Ventilsteuerungen in einer einfachen und Raum sparenden Bauweise ermöglicht, wobei die Ventilsteuerungen weitgehend vormontiert in einfacher Weise in den Zylinderkopf eingesetzt werden können.
Durch den Eingriff des Antriebshebels in einen Stellnocken einer Stellnockenwelle und dadurch, dass der Antriebshebel neben seiner Schwenkbewegung auch eine Längsbewegung ausführt und hierdurch mit seiner Rolle oder Kontaktfläche auf der Kontaktfläche des Stellnocken eine Hin- und Herbewegung ausführt, kann durch die Ventilsteuerungen bei einer Anordnung eines sternförmigen Stellnockens auf der Stellnockenwelle, der einander unterschiedliche Kontaktflächen aufweist, durch eine entsprechende Drehbewegung der Stellnockenwelle die Kraftmaschine eines Fahrzeuges nach mehreren Programmen betrieben werden, bei denen zum einen ein wirtschaftlicher Betrieb und zum anderen ein sportlicher Betrieb sowie ein zwischen diesen Betriebsarten liegender Betrieb der Kraftmaschine eingestellt werden kann. Durch die sternförmige Anordnung von Stellnocken auf der Stellnockenwelle wird die Herstellung einer mechanischen, weitgehend vollvariablen Ventilsteuerung ermöglicht, da zu jeder eingestellten Ventilhublänge verschiedene Ventilöffnungszeiten zugeordnet werden können.
Fig. 1 zeigt eine Ventilsteuerung in der Seitenansicht mit einem durch einen Antriebshebel gebildeten Antriebs- und Verstellsystem, wobei der Antriebshebel etwa mittig über eine Nockenrolle angetrieben wird; mit einer an seinem oberen Ende angeordneten Rolle in einen auf einer Stellnockenwelle drehfest gelagerten Stellnocken eingreift und über ein an seinem unteren Ende angeordnetes Drehgelenk einen auf der Stellnockenwelle drehbar gelagerten Schwenkhebel antreibt. Die Ventilsteuerung ist in der Fig. 1 in der Stellung des ständigen Geschlossenhaltens der Ventile dargestellt.
Fig. 2 zeigt die Ventilsteuerung der Fig. 1 in der Seitenansicht in der Stellung des größten Ventilhubes und der längsten Ventilöffnungszeit.
Fig. 3 zeigt eine Ventilsteuerung in der Seitenansicht mit einem durch einen Antriebshebel gebildeten Antriebs- und Verstellsystem, wobei der Antriebshebel an seinem oberen Ende über eine Nockenrolle angetriebenen wird; mit einer etwa mittig angeordneten Rolle in einen auf einer Stellnockenwelle drehfest gelagerten Stellnocken eingreift und über ein an seinem unteren Ende angeordnetes Drehgelenk einen auf der Stellnockenwelle drehbar gelagerten Schwenkhebel antreibt. Die Ventilsteuerung ist in der Fig. 3 in der Stellung des ständigen Geschlossenhaltens der Ventile dargestellt.
Fig. 4 zeigt die Ventilsteuerung der Fig. 3 in der Seitenansicht in der Stellung des größten Ventilhubes und der längsten Ventilöffnungszeit.
Gemäß der Erfindung können die Schwenkhebel auch auf einer gesonderten Achse drehbar gelagert werden, die mit dem Zylinderkopf fest verbunden ist, Hierbei weisen die Ventilsteuerungen einen Antriebshebel auf, der sich an seinem oberen Ende auf einem Stellnocken einer nur als Steuerwelle vorgesehenen Stellnockenwelle mittels einer Rolle abstützt und über das an seinem unteren Ende angeordnete Drehgelenk den Schwenkhebel dadurch antreibt, dass der Antriebshebel selbst über eine zwischen der in den Stellnocken eingreifenden Rolle und dem Drehgelenk angeordnete Nockenrolle von einem Nocken angetrieben wird. Der Antriebshebel kann auch an seinem oberen Ende über eine Nockenrolle von einem Nocken angetrieben werden, wobei der Antriebshebel die in den Stellnocken der Stellnockenwelle eingreifende Rolle zwischen der Nockenrolle und dem an dem unteren Ende des Antriebshebels angeordneten Drehgelenk aufweist. Ein Nockeneingriff ist hier von beiden Längsseiten des Antriebshebels möglich, wobei die Abstützung durch den Stellnocken immer auf der dem Nockeneingriff entgegengesetzten Seite erfolgt. Gegenüber den Ventilsteuerungen der Fig. 1 und 2 ist der Raumbedarf der Ventilsteuerungen mit der gesonderten Achse, auf der die Schwenkhebel gelagert sind, erheblich größer. In vorteilhafter Weise lässt sich hier die Stellnockenwelle einteilig geschmiedet oder gegossen herstellen.
Bei der Stellnockenwelle der Ventilsteuerungen gemäß Fig. 1 und 2, die auch als Lagerung der Schwenkhebel vorgesehen ist, sind die Stellnocken über eine Stift-Niet- oder Schraubverbindung drehfest mit der Stellnockenwelle verbunden, um geteilte Lagerungen bei den Schwenkhebeln zu vermeiden.
Weist die Stellnockenwelle in dem Zylinderkopf geteilte Lagerungen auf, kann die Stellnockenwelle mit den auf ihr montierten Schwenkhebeln und mit den an den Schwenkhebeln über das Drehgelenk verbundenen Antriebshebeln als Einheit in den Zylinderkopf eingesetzt und dort montiert werden.
Sind die Schwenkhebel auf einer Achse in dem Zylinderkopf in geteilten Lagerungen angeordnet, kann auch die Achse mit den Schwenkhebeln, mit den an den Schwenkhebeln über das Drehgelenk verbundenen Antriebshebeln und mit der mit den Antriebshebeln verbundenen Stellnockenwelle als Einheit in den Zylinderkopf eingesetzt und dort montiert werden, wenn auch die Lagerungen der Stellnockenwelle ebenfalls geteilt ausgeführt sind.
Fig. 1 zeigt eine mechanisch variable Ventilsteuerung in der Einstellung des ständigen Geschlossenhaltens des Ventiles 1, bei dem ein Schwenkhebel 2, der auf einer Stellnockenwelle 3 drehbar gelagert ist und von einem für den Antrieb und die Einstellung vorgesehenen Antriebshebel 4 über ein Drehgelenk 5 in eine Schwenkbewegung versetzt wird. Hierbei ist das Drehgelenk 5 an dem unteren Ende des Antriebshebels 4 und in der Nähe der aus zwei Bereichen 6 und 7 gebildeten Kontaktfläche des Schwenkhebels 2 angeordnet und die als Lagerung des Schwenkhebels 2 dienende Stellnockenwelle 3 ist in fest mit dem Zylinderkopf 8 verbundenen Lagern angeordnet. Durch die aus zwei Bereichen 6 und 7 gebildete Kontaktfläche des Schwenkhebels 2 wird ein das Ventil 1 betätigender Schwinghebel 9 über seine Rolle 10 angetrieben, wobei der Schwinghebel 9 auch über eine Kontaktfläche angetrieben werden kann. Die Stellnockenwelle 3 weist einen drehfest mit ihr verbundenen Stellnocken 11 auf, in den der Antriebshebel 4 mit einer an seinem oberen Ende angeordneten Rolle 12 eingreift. Für seinen Antrieb weist der Antriebshebel 4 zwischen dem Drehgelenk 5 und der Rolle 12 eine Nockenrolle 13 auf, in die ein Nocken 14 eingreift. Der Bereich 6 der Kontaktfläche des Schwenkhebels 2 verläuft kreisförmig um die Drehachse der Steuerwelle 3 und ist für ein ständiges Geschlossenhalten des Ventiles 1 vorgesehen. Der Bereich 7 der Kontaktfläche des Schwenkhebels 2 weist eine nach innen gewölbte, als Nase geformte Krümmung auf und ist für die Betätigung des Ventiles 1 vorgesehen.
Die Rolle 12 des Antriebshebels 4 greift hier in den Grundkreis des auf der Stellnockenwelle 3 angeordneten Stellnockens 11 ein, die Nockenrolle 13 befindet sich auf dem Grundkreis des Nockens 14 und die Rolle 10 des Schwinghebels 9 steht in dem Punkt A, dem Anfangspunkt des Bereiches 6 der Kontaktfläche des Schwenkhebels 2. Während der Antriebshebel 4 von dem Nocken 14 angetrieben wird, greift der Schwenkhebel 2 mit seinem kreisförmig um seine Drehachse verlaufenden Bereich 6 seiner Kontaktfläche in die Rolle 10 des Schwinghebels 9 in einer Hin- und Herbewegung zwischen dem Punkt A und dem Punkt B ein, wobei das Ventil 1 nicht betätigt wird.
Wird die Stellnockenwelle 3 in dem Uhrzeigersinn gedreht, stellt sich die Rolle 12 des Antriebshebels 4 auf die Erhebungskurve des Stellnockens 11 der Stellnockenwelle 3, wodurch der Antriebshebel 4 eine Drehbewegung in dem Uhrzeigersinn um die Drehachse seiner Nockenrolle 13 ausführt und der Schwenkhebel 2 über das Drehgelenk 5 nach links verschwenkt wird. Hierbei wird die Rolle 10 des Schwinghebels 9 von dem Punkt A, in dem ein ständiges Geschlossenhalten des Ventiles 1 eingestellt ist, in die Richtung des Punktes B verstellt. Durch den hiernach erfolgenden Eingriff der Nockenrolle 13 in die Erhebungskurve des Nockens 14 verschiebt sich der Eingriff der Rolle 10 des Schwinghebels 9 zusätzlich in die Richtung des Punktes B.
Wenn die Rolle 12 des Antriebshebels 4 den höchsten festgelegten Punkt der Erhebungskurve des Stellnockens 11 erreicht hat und die Nockenrolle 13 des Antriebshebels 4 in den Grundkreis des Nockens 14 eingreift, beginnt der Eingriff der Rolle 10 des Schwinghebels 9 in dem Punkt B, wobei hier der größte Ventilhub und die längste Ventilöffnungsdauer eingestellt ist.
Erfolgt der Eingriff der Rolle 10 des Schwinghebels 9 in einem kurzen Abstand zu dem Punkt A in die Richtung des Punktes B, wenn die Nockenrolle 13 sich auf dem Grundkreis des Nockens 14 befindet, und greift die Nockenrolle 13 des Antriebshebels 4 nun in die Erhebungskurve des Nockens 14 ein, beginnt die Rolle 10, den Punkt B zu überschreiten und in den vorderen, nasenförmigen Bereich 7 der Kontaktfläche des Schwenkhebels 2 einzugreifen. Hierdurch wird das Ventil 1 mit einem kurzen Ventilhub und einer kurzen Ventilöffnungszeit betätigt. Wird die Rolle 12 des Antriebshebels 4 weitergehend auf die Erhebungskurve des Stellnockens 11 der Stellnockenwelle 3 gestellt, vergrößert sich der Ventilhub und es verlängert sich die Ventilöffnungsdauer. Hierbei steht die Größe des Ventilhubes und die hiervon abhängige Länge der Ventilöffnungsdauer in Abhängigkeit von der Weite des Eingriffs der Rolle 10 des Schwinghebels 9 in den nasenförmigen Bereich 7 der Kontaktfläche des Schwenkhebels 2.
Solange die Rolle 10 des Schwinghebels 9 in den nasenförmigen Bereich 7 der Kontaktfläche des Schwenkhebels 2 eingreift, erfolgt eine Rückstellung des Schwenkhebels 2 durch die Kraft der Ventilfeder 15, wobei sich die auf den Schwenkhebel 2 übertragene Rückstellkraft, wenn der Ventilhub verkleinert und die Ventilöffnungsdauer verkürzt wird, mit der Verstellung der Rolle 10 des Schwinghebels 9 in die Richtung des Bereiches 6 der Kontaktfläche des Schwenkhebels 2 verringert und wobei die Rückstellkraft nicht mehr vorhanden ist, wenn die Rolle 10 in den um die Drehachse des Schwenkhebels 2 kreisförmig verlaufenden Bereich 6 der Kontaktfläche des Schwenkhebels 2 eingreift. Aus diesem Grunde ist als Rückstellfeder eine Druckfeder 16 zwischen dem Schwenkhebel 2 und einem drehfest mit der Steuerwelle 3 verbundenen Stellarm 17 angeordnet, wobei sowohl der Schwenkhebel 2 einen Federteller 18 als auch der Stellarm 17 einen Federteller 19 aufweist.
In vorteilhafter Weise wird während der Verstellung der Ventilsteuerung auf einen geringeren Ventilhub und eine verkürzte Ventilöffnungsdauer, bei der sich die von der Ventilfeder 15 auf den Schwenkhebel 2 einwirkende Kraft vermindert, durch die hierbei mit der Steuerwelle 3 erfolgende Drehbewegung des Stellarmes 17 gegen den Uhrzeigersinn von der Achse C zu der Achse D die Druckfeder 16 in ihrer Länge verkürzt, wodurch die auf den Schwenkhebel 2 einwirkende Rückstellkraft der Druckfeder 16 vergrößert wird.
In einfacher Weise kann der Stellarm 17 mit dem Stellnocken 11 zu einem Bauteil zusammengefasst sein.
Während der Schwenkbewegung des Schwenkhebels 2 führt der Antriebshebel 4 neben seiner Schwenkbewegung auch eine Längsbewegung aus; wodurch der Antriebshebel 4 mit seiner Rolle 12 auf dem Stellnocken 11 eine Hin- und Herbewegung ausführt. Durch die Formgebung der Erhebungskurve des Stellnockens 11 lässt sich die durch den Nocken 14 erzeugte Ventilerhebungskurve verändern.
Aus diesem Grunde kann vorteilhaft auf der Stellnockenwelle 3 ein mehrere Kontaktflächen aufweisender Stellnocken 11 drehfest angeordnet sein, wodurch die Rolle 12 des Antriebshebels 4 durch eine entsprechende Drehung der Stellnockenwelle 3 auf einander unterschiedliche Kontaktflächen des Stellnockens 11 gestellt werden kann. Hierbei können die Erhebungskurven der Kontaktflächen des Stellnockens 11 nach innen gewölbt, nach außen gewölbt, geradlinig oder s-förmig gestaltet sein, wodurch für jede eingestellte Ventilhublänge unterschiedliche Ventilöffnungszeiten bei unterschiedlichen Ventilerhebungskurven vorgesehen werden können und eine Kraftmaschine in unterschiedlichen Arbeitsprogrammen betrieben werden kann.
In einfacher Weise kann die für den größten Ventilhub vorgesehene Kontaktfläche des Stellnockens 11 mittels eines sich hier anschließenden Kreisbogens verlängert werden, der als Mittelpunkt die Drehachse der Stellnockenwelle 3 aufweist, wodurch mittels einer Drehung der Stellnockenwelle 3 durch die hierbei veränderte Weite des Eingriffs der Rolle 12 des Antriebshebels 4 in den Kreisbogen der Kontaktfläche des Stellnockens 11 bei dem größten Ventilhub die Ventilerhebungskurve verändert werden kann.
Um eine Abschaltung eines Einlasskanals einer zwei Einlasskanäle aufweisenden Kraftmaschine zu bewirken, wodurch eine Kraftmaschine im Leerlauf und unteren Leistungsbereich für die Erzeugung eines vorteilhaften Dralls der Ansaugluft nur mit einem Einlasskanal betrieben werden kann, können die Kontaktflächen der Stellnocken 11 von zwei jeweils ein Ventil 1 betätigenden Ventilsteuerungen derart ausgebildet sein, dass durch eine Drehung der Stellnockenwelle 3 durch die Antriebshebel 4 zuerst ein Schwenkhebel 2 für die Betätigung eines Ventiles 1 und hiernach für den oberen Leistungsbereich der andere Schwenkhebel 2 für die Betätigung des anderes Ventiles 1 eingestellt wird, wonach beide Ventile 1 gleichzeitig betätigt werden.
Bei einer Anordnung von zwei Ventilen 1 mit einander unterschiedlichen Tellerdurchmessem kann die Kraftmaschine auch wechselseitig mit einem Einlasskanal vorteilhaft betrieben werden, wobei für den Betrieb der Kraftmaschine im Leerlauf und in dem unteren Leistungsbereich ein Einlasskanal mit einem kleinen Durchmesser und einem Ventil 1 mit dem kleinen Tellerdurchmesser und für den mittleren Leistungsbereich nach der Schaltung des Ventiles 1 mit dem kleineren Tellerdurchmesser in ein ständiges Geschlossenhalten ein Einlasskanal mit dem größeren Durchmesser und einem Ventil 1 mit dem größeren Tellerdurchmesser für den Betrieb der Kraftmaschine herangezogen werden können. Hierbei wird auch durch die unterschiedlichen Durchmesser der beiden Einlasskanäle und der Ventile 1 vorteilhaft ein Drall der Ansaugluft im oberen Leistungsbereich erzeugt, wenn beide Ventile 1 betätigt sind.
Fig. 2 zeigt die Ventilsteuerung in der Einstellung des größten Ventilhubes und der längsten Ventilöffnungszeit, wobei sich die Rolle 12 des Antriebshebels 4 auf dem höchsten festgelegten Punkt der Erhebungskurve des Stellnockens 11 befindet und die Nockenrolle 13 in den Grundkreis des Nockens 14 eingreift. Der Stellarm 17 hat sich mit der Drehung der Stellnockenwelle 3 in dem Uhrzeigersinn auf die Achse C gestellt, wodurch die Druckfeder 16 durch die hierdurch erhaltene größere Länge in vorteilhafter Weise eine verminderte Rückstellkraft auf den Schwenkhebel 2 ausübt.
Durch eine beiderseitige Verlängerung der Achse des Drehgelenkes 5 kann der Antriebshebel 4 beiderseitig einen Schwenkhebel 2 antreiben, der ein Ventil 1 über einen Schwinghebel 9 betätigt.
Fig. 3 zeigt eine mechanisch variable Ventilsteuerung in der Einstellung des ständigen Geschlossenhaltens des Ventiles 20, bei dem ein Schwenkhebel 21, der auf einer Stellnockenwelle 22 drehbar gelagert ist und von einem für den Antrieb und die Einstellung vorgesehenen Antriebshebel 23 über ein Drehgelenk 24 in eine Schwenkbewegung versetzt wird. Hierbei ist das Drehgelenk 24 an dem unteren Ende des Antriebshebels 23 in der Nähe der aus zwei Bereichen 25 und 26 gebildeten Kontaktfläche des Schwenkhebels 21 angeordnet und die als Lagerung des Schwenkhebels 21 dienende Steuerwelle 22 ist in fest mit dem Zylinderkopf 27 verbundenen Lagern angeordnet. Durch die aus zwei Bereichen 25 und 26 gebildete Kontaktfläche des Schwenkhebels 21 wird ein das Ventil 20 betätigender Schwinghebel 28 über seine Rolle 29 angetrieben, wobei der Schwinghebel 28 auch über eine Kontaktfläche angetrieben werden kann. Für seinen Antrieb weist der Antriebshebel 23 an seinem oberen Ende eine Nockenrolle 30 auf, in die ein Nocken 31 eingreift. Zwischen der Nockenrolle 30 und dem Drehgelenk 24 des Antriebshebels 23 ist eine Rolle 32 angeordnet, die in einen drehfest mit der Stellnockenwelle 22 verbundenen Stellnocken 33 eingreift. Der Bereich 25 der Kontaktfläche des Schwenkhebels 21 verläuft kreisförmig um die Drehachse der Stellnockenwelle 22 und ist für ein ständiges Geschlossenhalten des Ventiles 20 vorgesehen. Der Bereich 26 der Kontaktfläche des Schwenkhebels 21 weist eine nach innen gewölbte, als Nase geformte Krümmung auf und ist für die Betätigung des Ventiles 20 vorgesehen.
Die Rolle 32 des Antriebshebels 23 greift hier in den Grundkreis des auf der Stellnockenwelle 22 angeordneten Stellnockens 33 ein, die Nockenrolle 30 befindet sich auf dem Grundkreis des Nockens 31 und die Rolle 29 des Schwinghebels 28 steht in dem Punkt A, dem Anfangspunkt des Bereiches 25 der Kontaktfläche des Schwenkhebels 21. Während der Antriebshebel 23 von dem Nocken 31 angetrieben wird, greift der Schwenkhebel 21 mit seinem kreisförmig um seine Drehachse verlaufenden Bereich 25 seiner Kontaktfläche in die Rolle 29 des Schwinghebels 28 in einer Hin- und Herbewegung zwischen dem Punkt A und dem Punkt B ein, wobei das Ventil 20 nicht betätigt wird.
Wird die Steuerwelle 22 gegen den Uhrzeigersinn gedreht, stellt sich die Rolle 32 des Antriebshebels 23 auf die Erhebungskurve des Stellnockens 33 der Stellnockenwelle 22, wodurch der Antriebshebel 23 eine Drehbewegung gegen den Uhrzeigersinn um die Drehachse seiner Nockenrolle 30 ausführt und der Schwenkhebel 21 über das Drehgelenk 24 nach rechts verschwenkt wird. Hierbei wird die Rolle 29 des Schwinghebels 28 von dem Punkt A, in dem ein ständiges Geschlossenhalten des Ventiles 20 eingestellt ist, in die Richtung des Punktes B verstellt. Durch den hiernach erfolgenden Eingriff der Nockenrolle 30 in die Erhebungskurve des Nockens 31 verschiebt sich der Eingriff der Rolle 29 des Schwinghebels 28 zusätzlich in die Richtung des Punktes B.
Wenn die Rolle 32 des Antriebshebels 23 den höchsten festgelegten Punkt der Erhebungskurve des Stellnockens 33 erreicht hat und die Nockenrolle 30 des Antriebshebels 23 in den Grundkreis des Nockens 31 eingreift, beginnt der Eingriff der Rolle 29 des Schwinghebels 28 in dem Punkt B, wobei hier der größte Ventilhub und die längste Ventilöffnungsdauer eingestellt ist.
Erfolgt der Eingriff der Rolle 29 des Schwinghebels 28 in einem kurzen Abstand zu dem Punkt A in die Richtung des Punktes B, wenn die Nockenrolle 30 sich auf dem Grundkreis des Nockens 31 befindet und greift die Nockenrolle 30 des Antriebshebels 23 nun in die Erhebungskurve des Nockens 31 ein, beginnt die Rolle 29, den Punkt B zu überschreiten und in den vorderen, nasenförmigen Bereich 26 der Kontaktfläche des Schwenkhebels 21 einzugreifen. Hierdurch wird das Ventil 20 mit einem kurzen Ventilhub und einer kurzen Ventilöffnungszeit betätigt. Wird die Rolle 32 des Antriebshebels 23 weitergehend auf die Erhebungskurve des Stellnockens 33 der Stellnockenwelle 22 gestellt, vergrößert sich der Ventilhub und es verlängert sich die Ventilöffnungsdauer. Hierbei steht die Größe des Ventilhubes und die hiervon abhängige Länge der Ventilöffnungsdauer in Abhängigkeit von der Weite des Eingriffs der Rolle 29 des Schwinghebels 28 in den nasenförmigen Bereich 26 der Kontaktfläche des Schwenkhebels 21.
Solange die Rolle 29 des Schwinghebels 28 in den nasenförmigen Bereich 26 der Kontaktfläche des Schwenkhebels 21 eingreift, erfolgt eine Rückstellung des Schwenkhebels 21 durch die Kraft der Ventilfeder 34, wobei sich die auf den Schwenkhebel 21 übertragene Rückstellkraft, wenn der Ventilhub verkleinert und die Ventilöffnungsdauer verkürzt wird, mit der Verstellung der Rolle 29 des Schwinghebels 28 in die Richtung des Bereiches 25 der Kontaktfläche des Schwenkhebels 21 verringert und die Rückstellkraft nicht mehr vorhanden ist, wenn die Rolle 29 in den um die Drehachse des Schwenkhebels 21 kreisförmig verlaufenden Bereich 25 der Kontaktfläche des Schwenkhebels 21 eingreift. Aus diesem Grunde sind als Rückstellfeder beiderseitig von dem Schwenkhebel 21 je eine Drehfeder 35 angeordnet, von denen ein Schenkel die Achse des auf dem Schwenkhebel 21 und Antriebshebel 23 angeordneten Drehgelenkes 24 und der andere Schenkel einen in dem Stellarm 36 angeordneten Dom 37 als Widerlager besitzt.
In vorteilhafter Weise werden während der Verstellung der Ventilsteuerung auf einen geringeren Ventilhub und eine verkürzte Ventilöffnungsdauer, bei der sich die von der Ventilfeder 20 auf den Schwenkhebel 21 einwirkende Kraft vermindert, durch die hierbei mit der Stelinockenwelle 22 erfolgende Drehbewegung des Stellarmes 36 in dem Uhrzeigersinn von der Achse C zu der Achse D die Drehfedern 35 in ihrem Drehwinkel verkleinert, wodurch die auf den Schwenkhebel 21 einwirkende Rückstellkraft der Drehfedern 35 vergrößert wird.
In einfacher Weise kann der Stellarm 36 mit dem Stellnocken 33 zu einem Bauteil zusammengefasst sein.
Während der Schwenkbewegung des Schwenkhebels 21 führt der Antriebshebel 23 neben seiner Schwenkbewegung auch eine Längsbewegung aus, wodurch der Antriebshebel 23 mit seiner Rolle 32 auf dem Stellnocken 33 eine Hin- und Herbewegung ausführt. Durch die Formgebung der Erhebungskurve des Stellnockens 33 lässt sich die durch den Nocken 31 erzeugte Ventilerhebungskurve verändern.
Aus diesem Grunde kann vorteilhaft drehfest auf der Stellnockenwelle 22 ein Stellnocken 33 mit mehreren Kontaktflächen angeordnet werden, wodurch die Rolle 32 des Antriebshebels 23 durch eine entsprechende Drehung der Stellnockenwelle 22 auf einander unterschiedliche Kontaktflächen des Stellnockens 33 gestellt werden kann. Hierbei können die Erhebungskurven der Kontaktflächen des Stellnockens 11 nach innen gewölbt, nach außen gewölbt, geradlinig oder s-förmig gestaltet sein, wodurch für jede eingestellte Ventilhublänge einander unterschiedliche Ventilöffnungszeiten bei verschiedenen Ventilerhebungskurven vorgesehen werden können und eine Kraftmaschine in unterschiedlichen Arbeitsprogrammen betrieben werden kann.
In einfacher Weise kann die für den größten Ventilhub vorgesehene Kontaktfläche des Stellnockens 33 mittels eines sich hier anschließenden Kreisbogens verlängert werden, der als Mittelpunkt die Drehachse der Stellnockenwelle 22 aufweist, wodurch mittels einer Drehung der Stellnockenwelle 22 durch die hierbei veränderte Weite des Eingriffs der Rolle 32 des Antriebshebels 23 in den Kreisbogen der Kontaktfläche des Stellnockens 33 bei dem größten Ventilhub die Ventilerhebungskurve verändert werden kann.
Um eine Abschaltung eines Einlasskanals einer zwei Einlasskanäle aufweisenden Kraftmaschine zu bewirken, wodurch eine Kraftmaschine im Leerlauf und unteren Leistungsbereich für die Erzeugung eines vorteilhaften Dralls der Ansaugluft nur mit einem Ansaugkanal betrieben werden kann, können die Kontaktflächen der Stellnocken 33 von zwei jeweils ein Ventil 20 betätigenden Ventilsteuerungen derart ausgebildet sein, dass durch eine Drehung der Stellnockenwelle 22 durch die Antriebshebel 23 zuerst ein Schwenkhebel 21 für die Betätigung eines Ventiles 20 und hiernach für den oberen Leistungsbereich der andere Schwenkhebel 21 für die Betätigung des anderes Ventiles 20 eingestellt wird, wonach beide Ventile 20 gleichzeitig betätigt werden.
Bei einer Anordnung von zwei Ventilen 20 mit einander unterschiedlichen Tellerdurchmessern kann die Kraftmaschine auch wechselseitig mit einem Einlasskanal vorteilhaft betrieben werden, wobei für den Betrieb der Kraftmaschine im Leerlauf und in dem unteren Leistungsbereich ein Einlasskanal mit einem kleinen Durchmesser und einem Ventil 20 mit dem kleinen Tellerdurchmesser und für den mittleren Leistungsbereich nach der Schaltung des Ventiles 20 mit dem kleineren Tellerdurchmesser in ein ständiges Geschlossenhalten ein Einlasskanal mit dem größeren Durchmesser und einem Ventil 20 mit dem größeren Tellerdurchmesser für den Betrieb der Kraftmaschine herangezogen werden können. Hierbei wird auch durch die unterschiedlichen Durchmesser der beiden Einlasskanäle und der Ventile 20 vorteilhaft ein Drall der Ansaugluft im oberen Leistungsbereich erzeugt, wenn beide Ventile 20 betätigt sind.
Fig. 4 zeigt die Ventilsteuerung in der Einstellung des größten Ventilhubes und der längsten Ventilöffnungszeit, wobei sich die Rolle 32 des Antriebshebels 23 auf dem höchsten festgelegten Punkt der Erhebungskurve des Steuernockens 33 befindet und die Nockenrolle 30 in den Grundkreis des Nockens 31 eingreift. Der Stellarm 36 hat sich mit der Drehung der Stellnockenwelle 22 gegen den Uhrzeigersinn auf die Achse D gestellt, wodurch die Drehfeder 35 durch die hierdurch erhaltene kleinere Vorspannung in vorteilhafter Weise eine verminderte Rückstellkraft auf den Schwenkhebel 21 ausübt.
Durch eine beiderseitige Verlängerung der Achse des Drehgelenkes 24 kann der Antriebshebel 23 beiderseitig einen Schwenkhebel 21 antreiben, der ein Ventil 20 über einen Schwinghebel 28 betätigt.

Claims (12)

  1. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen, die einen auf einer Achse drehbar gelagerten Schwenkhebel aufweisen, der für ein ständiges Geschlossenhalten des Venbles eine kreisförmige Kontaktfläche und für die Betätigung des Ventiles eine sich anschließende, nasenförmige Kontaktfläche für den Eingriff einer Rolle oder Kontaktfläche eines das Ventil betätigenden Schwinghebels besitzt, wobei in Abhängigkeit von der Weite des Eingriffs der Rolle oder Kontaktfläche des Schwinghebels das Ventil sowohl mit einem stufenlos variablen Ventilhub als auch mit einer hiervon abhängigen Ventilöffnungsdauer betätigt werden kann, dadurch gekennzeichnet, dass der Schwenkhebel (2) mittels eines aus einem Antriebshebels (4) gebildeten Antriebs- und Verstellsystem über ein Drehgelenk (5) des Antriebshebels (4) mit einer stufenlos einstellbaren Weite der Schwenkbewegung angetrieben wird, wobei der Antriebshebel (4) selbst über eine Nockenrolle (13) oder Kontaktfläche von einem Nocken (14) angetrieben wird und die Schwenkbewegung des Schwenkhebels (2) durch den Eingriff des Antriebshebels (4) in den Stelinocken (11) einer Stellnockenwelle (3) verändert werden kann.
  2. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 1, dadurch gekennzeichnet, dass der Antriebshebel (4) etwa mittig von einem Nocken (14) über eine Nockenrolle (13) oder über seine Kontaktfläche angetrieben wird, wobei der Antriebshebel (4) an seinem oberen Ende mit einer Rolle (12) oder seiner Kontaktfläche in einen Stellnocken (11) einer Stellnockenwelle (3) eingreift und mit seinem unteren Ende über ein Drehgelenk (5) den Schwenkhebel (2) antreibt.
  3. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 1, dadurch gekennzeichnet dass der Antriebshebel (23) an seinem oberen Ende von einem Nocken (31) über eine Nockenrolle (30) oder über seine Kontaktfläche angetrieben wird, wobei der Antriebshebel (23) etwa mittig mit einer Rolle (32) oder seiner Kontaktfläche in einen Stellnocken (33) einer Stellnockenwelle (22) eingreift und mit seinem unteren Ende über ein Drehgelenk (24) den Schwenkhebel (21) antreibt.
  4. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, dass der Schwenkhebel (2) oder (21) auf der Stellnockenwelle (3) oder (22) drehbar gelagert ist, wobei der Stellnocken (11) oder (33) über eine Stift- Niet- oder Schraubverbindung drehfest mit der Stellnockenwelle (3) oder (22) verbunden ist, um geteilte Lagerungen bei den Schwenkhebeln (2) oder (21) zu vermeiden.
  5. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, dass auf der Stellnockenwelle (3) oder (22) drehfest ein mehrere Kontaktflächen aufweisender Stellnocken (11) oder (33) angeordnet ist, wodurch die Rolle (12) oder (32) des Antriebshebels (4) oder (23) durch eine entsprechende Drehung der Stellnockenwelle (3) oder (22) auf einander unterschiedliche Kontaktflächen des Stellnockens (11) oder (33) gestellt werden kann.
  6. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 5, dadurch gekennzeichnet, dass die Erhebungskurven der Kontaktflächen des Stellnockens (11) oder (33) nach innen gewölbt, nach außen gewölbt, geradlinig oder s-förmig gestaltet sind, wodurch für jede eingestellte Ventilhublänge einander unterschiedliche Ventilöffnungszeiten bei unterschiedlichen Ventilerhebungskurven vorgesehen werden können
  7. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 5, dadurch gekennzeichnet, dass die für den größten Ventilhub vorgesehene Kontaktfläche des Stellnockens (11) oder (33) mittels eines sich anschließenden Kreisbogens verlängert ist, der als Mittelpunkt die Drehachse der Stellnockenwelle (3) oder (22) aufweist, wodurch mittels einer Drehung der Stellnockenwelle (3) oder (22) durch die hierbei veränderte Weite des Eingriffs der Rolle (12) oder (32) des Antriebshebels (4) oder (23) in den Kreisbogen der Kontaktfläche des Stellnockens (11) oder (33) bei dem größten Ventilhub die Ventilerhebungskurve verändert werden kann.
  8. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 5, dadurch gekennzeichnet, dass die Kontaktflächen der Stellnocken (11) oder (33) zweier für einen Arbeitsraum vorgesehener Einlassventile (1) oder (20) derart gestaltet sind, dass nach einem ständigen Geschlossenhalten beider Einlassventile (1) oder (20) für den Betrieb des Arbeitsraumes nur über einen Einlasskanal durch eine Drehung der Stellnockenwelle (3) oder (22) für den unteren Leistungsbereich der Kraftmaschine zuerst ein Einlassventil (1) oder (20) betätigt wird und für den oberen Leistungsbereiche auch das zweite Einlassventil (1) oder (20) betätigt wird.
  9. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 5, dadurch gekennzeichnet, dass die Kontaktflächen der Stelinocken (11) oder (33) zweier für einen Arbeitsraum vorgesehener, verschiedene Tellerdurchmesser aufweisender Einlassventile (1) oder (20), die jeweils einen eigenen Einlasskanal besitzen können, derart gestaltet sind, dass nach einem ständigen Geschlossenhalten beider Einlassventile (1) oder (20) für den Betrieb des Arbeitsraumes in dem unteren Leistungsbereich durch eine Drehung der Stellnockenwelle (3) oder (22) zuerst das Einlassventil (1) oder (20) mit dem kleinen Tellerdurchmesser betätigt wird, für den Betrieb in dem mittleren Leistungsbereich das Ventil (1) oder (20) mit dem kleinen Tellerdurchmesser in ein ständiges Geschlossenhalten geschaltet wird, wonach das Ventil (1) oder (20) mit dem großen Tellerdurchmesser betätigt wird und für den Betrieb in dem oberen Leistungsbereich beide Ventile (1) und (20) betätigt werden, wodurch in allen Leistungsbereichen ein vorteilhafter Drall der Ansaugluft in dem Arbeitsraum entsteht.
  10. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, dass drehfest auf der Stellnockenwelle (3) oder (22) Stellarme (17) oder (36) angeordnet sind, die als Widerlager für Druckfedern (16) oder Drehfedern (35) vorgesehen sind, wobei die Anordnung der Druckfedern (26) oder Drehfedern (35) derart angeordnet sind, dass mit der Drehung der Stellnockenwelle (3) oder (22) auf einen kleineren Ventilhub und auf eine kürzere Vertilöffnungsdauer sich die auf den Schwenkhebel (2) oder (21) einwirkende Rückstellkraft durch die Verkürzung der Länge der Druckfeder (16) oder durch die Verkleinerung des Drehwinkels der Drehfeder (35) vergrößert.
  11. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 10, dadurch gekennzeichnet, dass der Stellarm (17) oder (36) mit dem Stellnocken (11) oder (33) eine Einheit bilden.
  12. Antriebs- und Verstellsystem für mechanisch variable Ventilsteuerungen nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, dass mittels einer beiderseitigen Verlängerung der Achse des Drehgelenkes (5) oder (24) der Antriebshebel (4) oder (23) beiderseitig einen Schwenkhebel (2) oder (21) antreibt, der jeweils ein Ventil (1) oder (20) über einen Schwinghebel (28) betätigt.
EP03725134A 2002-05-13 2003-05-02 Antriebs- und verstellsystem für variable ventilsteuerungen Expired - Lifetime EP1506345B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10221133 2002-05-13
DE10221133A DE10221133A1 (de) 2002-05-13 2002-05-13 Antriebs- und Verstellsystem für variable Ventilsteuerungen
PCT/EP2003/004627 WO2003095805A1 (de) 2002-05-13 2003-05-02 Antriebs und verstellsystem für variable ventilsteuerungen

Publications (2)

Publication Number Publication Date
EP1506345A1 EP1506345A1 (de) 2005-02-16
EP1506345B1 true EP1506345B1 (de) 2005-11-30

Family

ID=29285321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03725134A Expired - Lifetime EP1506345B1 (de) 2002-05-13 2003-05-02 Antriebs- und verstellsystem für variable ventilsteuerungen

Country Status (5)

Country Link
EP (1) EP1506345B1 (de)
AT (1) ATE311526T1 (de)
AU (1) AU2003227706A1 (de)
DE (2) DE10221133A1 (de)
WO (1) WO2003095805A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0325278D0 (en) * 2003-10-29 2003-12-03 Ricardo Uk Ltd Engine valvegear
DE112004001267B4 (de) * 2004-03-23 2010-06-24 Mitsubishi Fuso Truck And Bus Corp. Variabler Ventiltrieb eines Verbrennungsmotors
JP4221327B2 (ja) * 2004-04-13 2009-02-12 三菱ふそうトラック・バス株式会社 内燃機関の可変動弁装置
US6994063B2 (en) * 2004-04-13 2006-02-07 Mitsubishi Fuso Truck And Bus Corporation Variable valve unit for internal combustion engine
JP4342372B2 (ja) * 2004-04-28 2009-10-14 本田技研工業株式会社 内燃機関の動弁装置
JP4507997B2 (ja) * 2005-06-15 2010-07-21 三菱自動車工業株式会社 内燃機関の可変動弁装置
DE102005035315B4 (de) * 2005-07-28 2007-05-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Variabler Ventiltrieb für Verbrennungskraftmaschinen
JP5028952B2 (ja) * 2006-10-24 2012-09-19 トヨタ自動車株式会社 内燃機関の動弁機構
JP4380695B2 (ja) * 2006-12-18 2009-12-09 トヨタ自動車株式会社 可変動弁機構付き内燃機関
ITMI20070443A1 (it) * 2007-03-05 2008-09-06 Piaggio & C Spa Sistema per la variazione continua dell'alzata e della fase delle valvole in un motore a combustione interna
DE102008034092A1 (de) * 2008-07-21 2010-01-28 Fev Motorentechnik Gmbh Schaltbarer Ventilhebel für Ventiltriebe mit Ventilschaltfunktion mit einer gebogenen Schraubenfeder
DE102011016384A1 (de) * 2011-04-07 2012-10-11 Kurt Imren Yapici Vollvariabler Ventiltrieb
DE102017009326A1 (de) 2017-10-09 2019-04-11 Kurt Imren Yapici Ventiltrieb

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532334A1 (de) * 1995-09-01 1997-03-06 Bayerische Motoren Werke Ag Variabler Ventiltrieb, insbesondere für Brennkraftmaschinen
DE19640520A1 (de) * 1996-07-20 1998-04-09 Dieter Dipl Ing Reitz Ventiltrieb und Zylinderkopf einer Brennkraftmaschine
US6019076A (en) * 1998-08-05 2000-02-01 General Motors Corporation Variable valve timing mechanism
DE19913742A1 (de) * 1999-03-26 2000-09-28 Bayerische Motoren Werke Ag Vorrichtung zur Hubverstellung eines Gaswechselventils im Zylinderkopf einer Brennkraftmaschine
DE10006018B4 (de) * 2000-02-11 2009-09-17 Schaeffler Kg Variabler Ventiltrieb zur Laststeuerung einer fremdgezündeten Brennkraftmaschine
DE10052811A1 (de) * 2000-10-25 2002-05-08 Ina Schaeffler Kg Variabler Ventiltrieb zur Laststeuerung einer fremdgezündeten Brennkraftmaschine

Also Published As

Publication number Publication date
AU2003227706A1 (en) 2003-11-11
EP1506345A1 (de) 2005-02-16
ATE311526T1 (de) 2005-12-15
DE10221133A1 (de) 2003-11-27
DE50301810D1 (de) 2006-01-05
WO2003095805A1 (de) 2003-11-20

Similar Documents

Publication Publication Date Title
EP1412621B1 (de) Variable hubventilsteuerung
DE60014827T2 (de) Desmodromische nocken geführte variable ventilsteuerungseinrichtug
EP1506345B1 (de) Antriebs- und verstellsystem für variable ventilsteuerungen
DE102010048709B4 (de) Mechanisch steuerbarer Ventiltrieb sowie mechanisch steuerbare Ventiltriebanordnung
DE10314683A1 (de) Variable Ventilhubsteuerung für einen Verbrennungsmotor mit untenliegender Nockenwelle
DE102008015197B4 (de) Ventilmechanismus eines Motors
DE3302194A1 (de) Vorrichtung zur betaetigung von einlass- und auslassventilen bei einer brennkraftmaschine
DE102005040959A1 (de) Hubvariabler Ventiltrieb für eine Brennkraftmaschine
DE10228022A1 (de) Ventilhubvorrichtung zur Hubverstellung der Gaswechselventile einer Verbrennungskraftmaschine
EP1608850B1 (de) Vorrichtung zur variablen betätigung der gaswechselventile von verbrennungsmotoren
DE60320670T2 (de) Motor mit ventilmechanismus mit variablem hub
DE102005017069B4 (de) Variable Ventileinheit für V-Motor
EP1387048B1 (de) Schwenkhebel für einen hubvariablen Ventiltrieb
EP1446561B1 (de) Variable hubventilsteuerung
DE10235402A1 (de) Schwenkhebel für einen hubvariablen Ventiltrieb
DE102008047124B4 (de) Stufenlos verstellbare Ventilhubvorrichtung
DE102006026694B4 (de) Variable Ventilvorrichtung eines Verbrennungsmotors
DE102008047377A1 (de) Verstellbare Ventilbetätigungseinrichtung
DE10323665A1 (de) Variable Ventilhubvorrichtung zur Hubverstellung der Gaswechselventile einer Verbrennungskraftmaschine
DE102004040652A1 (de) Vollvariabler fünfgliedriger Ventiltrieb einer Brennkraftmaschine
EP2716882A1 (de) Mechanisch steuerbarer Ventiltrieb für eine Hubkolbenmaschine
DE202005017088U1 (de) vollvariable Hubventilsteuerung einer Brennkraftmaschine
DE10342075A1 (de) Vollvariable Hubventilsteuerung einer Brennkraftmaschine
DE202004016360U1 (de) Vollvariabler fünfgliedriger Ventiltrieb einer Brennkraftmaschine
DE102005050894A1 (de) Vollvariable Hubventilsteuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051130

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50301810

Country of ref document: DE

Date of ref document: 20060105

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060502

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E000324

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060831

BERE Be: lapsed

Owner name: THYSSENKRUPP AUTOMOTIVE A.G.

Effective date: 20060531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIV: WEICHINGER ANDRAS, DANUBIA SZABADALMI ES VEDJEGY IRODA KFT.

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT.

Effective date: 20080325

Ref country code: HU

Ref legal event code: GB9C

Owner name: THYSSENKRUPP PRESTA TECCENTER AG, LI

Free format text: FORMER OWNER: THYSSENKRUPP AUTOMOTIVE AG., DE

Effective date: 20080325

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): WEICHINGER ANDRAS, DANUBIA SZABADALMI ES VEDJEGY IRODA KFT., HU

Representative=s name: DANUBIA SZABADALMI ES JOGI IRODA KFT., HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: THYSSENKRUPP PRESTA TECCENTER AG, LI

Free format text: FORMER OWNER(S): THYSSENKRUPP AUTOMOTIVE AG., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060502

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20090424

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20090428

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20090608

Year of fee payment: 7

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 333

Country of ref document: SK

Effective date: 20100502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100502

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100502

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180522

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180518

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190521

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50301810

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201