EP1504525A2 - Procede pour generer un signal d'emission - Google Patents

Procede pour generer un signal d'emission

Info

Publication number
EP1504525A2
EP1504525A2 EP03737892A EP03737892A EP1504525A2 EP 1504525 A2 EP1504525 A2 EP 1504525A2 EP 03737892 A EP03737892 A EP 03737892A EP 03737892 A EP03737892 A EP 03737892A EP 1504525 A2 EP1504525 A2 EP 1504525A2
Authority
EP
European Patent Office
Prior art keywords
signal
power amplifier
input signal
crest factor
predistortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03737892A
Other languages
German (de)
English (en)
Inventor
Otmar Irscheid
Andreas Langer
Michael Menge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Palm Inc
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1504525A2 publication Critical patent/EP1504525A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/62Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for providing a predistortion of the signal in the transmitter and corresponding correction in the receiver, e.g. for improving the signal/noise ratio
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion

Definitions

  • Linear signal amplification with high power efficiency is required in many areas.
  • a corresponding approach is the linearization of the nonlinear characteristic of a power amplifier (PA: Power Amplifier) by predistortion of the signal in the digital baseband.
  • PA Power Amplifier
  • the non-linearity changes permanently, e.g. due to aging and temperature-dependent components.
  • HW hardware
  • HW hardware
  • -expensive since a complete reception branch is necessary
  • high demands are placed on the linearity in the feedback branch and on the determination of the delay of the measured signal.
  • This object is achieved by a method for generating a transmission signal according to claim 1, by a circuit for generating a transmission signal according to claim 7 and by a mobile radio arrangement according to claim 11.
  • a method for generating a transmission signal in which an input signal to be amplified is fed to a power amplifier and outputs it as an amplified output signal comprises the following steps.
  • An image is provided which assigns a certain value of the predistortion for the input signal to a certain value or a certain amplitude of an input signal.
  • Such mapping or assignment of corresponding values of the predistortion is used in particular to counteract non-linear amplification properties of the power amplifier and thus to achieve the desired linearity of the amplification of the input signal or the input power.
  • a corresponding value of the predistortion for the input signal is determined on the basis of the figure. This just determined value of the predistortion is then applied to the input signal or multiplied by it in order to obtain a predistorted input signal which is finally fed to the power amplifier for amplification. Now a crest factor is determined from the output signal of the power amplifier. If the determined crest factor is not in a predetermined value range, the mapping or the value is adapted.
  • the mapping or its values or entries are adapted in such a way that the values in the figure are recalculated, furthermore the new values, more precisely a new value corresponding to an input signal with a certain value or certain amplitude, are applied or multiplied to the predistortion on the input signal and finally this predistorted input signal is fed to the power amplifier, to determine the crest factor again from the output signal of the power amplifier.
  • This recalculation and the re-application and determination of the crest factor from the output signal of the power amplifier are repeated until the determined crest factor is again in the predetermined value range.
  • the crest factor can be determined using a digital signal processing device. It is particularly advantageous, as will be explained in more detail below, if the output signal of the power amplifier is demodulated incoherently. Furthermore, after incoherent demodulation, the output signal of the power amplifier can then be digitized and fed to the digital signal processing device. The incoherent demodulation of the output signal can be carried out by means of an envelope detector.
  • a circuit for generating a transmission signal with the following components has a power amplifier with an input for receiving an input signal to be amplified, which is output at an output of the power amplifier as an amplified output signal or as the transmission signal. Furthermore, the circuit has a device for providing or storing an image which, for a certain value of an input signal, has a certain value for the preliminary processing. distortion for the input signal. Means are also provided for determining a corresponding value of the predistortion for the input signal and for applying or multiplying the corresponding value of the predistortion to the input signal. A determining device determines a crest factor from the output signal of the power amplifier, to which the previously predistorted input signal has been fed. The mapping or its values or entries are then adapted by an adaptation device if the determined crest factor lies outside a predetermined value range.
  • the determining device can comprise a digital signal processing device for determining the crest factor.
  • the circuit may further comprise an envelope detector for incoherent demodulation of the output signal of the power amplifier.
  • the circuit can have an analog-digital converter for digitizing the demodulated output signal of the power amplifier in order to feed it to the digital signal processing device.
  • a mobile radio arrangement which has a circuit shown above for generating a transmission signal.
  • the mobile radio arrangement can comprise, for example, a mobile radio device or mobile telephone.
  • the AM / AM conversion of a power amplifier (which relates to the relationship between input and output amplitude or input and output power) changes the statistical properties of the modulated signal.
  • An important parameter in terms of signal statistics in the case of processes with a non-constant envelope, the crest factor is CF. This describes the relationship between the maximum and RMS (RMS: root mean square ⁇ quadratic mean) value of the modulating process.
  • the AM / AM conversion reduces the crest factor in the saturation range of the PA (signal is compressed).
  • the change in the crest factor is a measure of how strongly the power amplifier PA is operated in saturation.
  • the current crest factor is therefore also a measure of the adjacent channel transmission, which is essentially determined by AM / AM conversion.
  • the correction of the AM / PM conversion (which relates to the function of the phase of the output signal of the power amplifier to the amplitude of the input signal) can often be dispensed with, since it influences the adjacent-channel transmission less strongly than the AM / AM conversion mentioned.
  • the crest factor can be determined very simply by means of DSP (digital signal processing) or digital signal processing after the output signal of the power amplifier PA has been demodulated coherently or incoherently.
  • DSP digital signal processing
  • the incoherent demodulation offers enormous cost potential and is easy to implement at the same time. All you need is an envelope detector with sufficient bandwidth, the output signal of which is digitized using an ADC.
  • the crest factor is then calculated using a digital signal processing device.
  • the characteristic curve of the power amplifier, or PA characteristic curve for short can be stored in the form of a parametric model (in a look-up table or reference table), the parameters being adapted or adapted using the measured crest factor.
  • the simulation of the PA characteristic curve by the parametric model allows predistortion of an input Power amplifier signals, e.g. B. parametric predistortion or "complex gain predistortion".
  • the delay in the feedback branch plays no role, which is one of the most difficult problems to solve in classic predistortion.
  • the PA output signal is often recorded and digitized with a diode detector for power control anyway, ie in this case the crest factor-based predistortion is possible without additional hardware. Only the bandwidth of the detector has to be adjusted (eg by filtering in the baseband).
  • Adaptive predistortion based on the determination of the crest factor, is ideally suited for the mobile radio sector, in particular for mobile radio devices or mobile telephones, since its determination is very simple and in particular does not depend on the delay time in the feedback branch.
  • the crest factor CF describes the relationship between the maximum and RMS value of the modulating process.
  • the AM / AM conversion of the power amplifier PA improves the statistical properties of the modulating th signal changed.
  • the crest factor is reduced in the saturation range of the PA (signal is compressed).
  • the change in the crest factor is a measure of how strongly the PA is operated in saturation.
  • the current crest factor is therefore also a measure of the adjacent channel transmission, which is essentially determined by AM / AM conversion.
  • data such as call data or video data are first fed to a modem MODEM in which the data are digitized or modulated.
  • the modem After processing the data, the modem outputs a corresponding signal v m (t), in particular in the form of a digital baseband signal, which is finally to be converted into the HF (radio frequency) band and to be amplified in terms of performance.
  • the signal v m (t) is fed as an (undistorted) input signal to a "complex gain multiplier” or a complex gain multiplier CGM.
  • the (undistorted) input signal v ra (t) is multiplied depending on its instantaneous amplitude with the associated complex value from a look-up table or reference table LUT.
  • a mapping is provided in the reference table, which maps a specific value or a specific amplitude of the input signal (v m (t)) to a specific value of the predistortion for the input signal (v m (t)).
  • the multiplied or predistorted input signal v d (t) is then after passing through a DA (digital-analog) converter
  • DAC is fed to a quadrature modulator or direct modulator QM, which is designed to transform or convert the signal directly into the HF band.
  • the quadrature motor dulator QM connected to a voltage controlled oscillator ("voltage-controlled oscillator") VCO.
  • VCO voltage controlled oscillator
  • the transformed input signal is then fed to an input of the power amplifier PA, which amplifies this signal in terms of power and outputs a corresponding output signal v a (t).
  • This output signal v a (t) at the output of the power amplifier PA is sent as a transmission signal to a coupling device KOP, such as a directional coupler, which feeds the signal to an antenna ANT and decouples a (small) portion in order to feed it to a feedback path.
  • KOP such as a directional coupler
  • the decoupled signal is first fed to an envelope detector HKD (with sufficient bandwidth) for measuring the instantaneous power or average power (RMS power).
  • the envelope curve detector HKD has two functions, namely the reconstruction of the envelope curve (larger bandwidth) and the determination of the average output power (smaller bandwidth).
  • the different bandwidths of the envelope detector HKD are implemented (by appropriate baseband filtering) in the signal processing device SV, which will be explained later.
  • the signal then passes through a "level shifter” or level converter LS (which adjusts the level of the signal to the following AD (analog-digital) converter ADC) to a digital signal processing unit SE, which is framed by a dashed line is illustrated.
  • the digital signal processing unit SE the signal from the level converter LS is digitized by the AD converter ADC in order to be processed by the following components.
  • the digitized signal is then fed to the signal processing device SV, from which, as mentioned above, the crest factor is recursively determined. If the determined crest factor is not in a predetermined value range, a corresponding signal is sent to an adaptation device ADAP, which then calculates new values or entries or parameters for the mapping contained in the reference table. This means that new values or parameters for the predistortion are calculated which are to be applied to an input signal with a certain amplitude.
  • adaptive predistortion can take place, as will be explained in the following:
  • FIG. 1 shows an implementation with a "complex gain multiplier" CGM already explained above.
  • the (undistorted) input signal v m (t) of the modem MODEM is multiplied by the associated complex value from the reference table LUT.
  • the entries or parameters in the reference table LUT are now adapted or adapted using the crest factor CF determined by the signal processing device SV. If the determined crest factor CF does not lie in a predetermined range or if the crest factor (CF) falls below a predetermined threshold value CFth, then the relationship between ACLR (ACLR: Adjacent Channel Leakage Power Ratio: adjacent channel power dissipation ratio) and crest factor CF announced that the requirements regarding ACLR are no longer met. With the help of an adapter algorithm (in the adaptation device ADAP) new entries or parameters for the mapping in the reference table LUT are calculated and after applying these new parameters to the input signal the resulting crest factor CF is measured again. The adaptation process or control process lasts until the (currently) determined crest factor is again in the predetermined value range or greater than the predetermined threshold value (ie until CF> CFth applies).
  • ACLR Adjacent Channel Leakage Power Ratio: adjacent channel power dissipation ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

L'invention concerne un procédé pour générer un signal d'émission, selon lequel un signal d'entrée à amplifier (vd(t)) est transmis à un amplificateur de puissance (PA) qui l'émet sous forme de signal de sortie amplifié (va(t)). A cet effet, une projection affecte à une valeur spécifique d'un signal d'entrée (vd(t)) une valeur spécifique de la prédistorsion pour le signal d'entrée (vd(t)). Une valeur correspondante de la prédistorsion pour le signal d'entrée (vd(t)) est alors définie et la valeur correspondante de la prédistorsion est appliquée au signal d'entrée (vd(t)) afin de transmettre ce signal d'entrée avec prédistorsion à l'amplificateur de puissance (PA). Le facteur de crête (CF) est ensuite calculé à partir du signal de sortie (va(t)) de l'amplificateur de puissance (PA) et la projection ou ses valeurs sont adaptées si le facteur de crête calculé quitte une plage de valeurs prédéfinie.
EP03737892A 2002-05-14 2003-05-14 Procede pour generer un signal d'emission Withdrawn EP1504525A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10221390 2002-05-14
DE10221390 2002-05-14
PCT/DE2003/001571 WO2003096548A2 (fr) 2002-05-14 2003-05-14 Procede pour generer un signal d'emission

Publications (1)

Publication Number Publication Date
EP1504525A2 true EP1504525A2 (fr) 2005-02-09

Family

ID=29413795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03737892A Withdrawn EP1504525A2 (fr) 2002-05-14 2003-05-14 Procede pour generer un signal d'emission

Country Status (7)

Country Link
US (1) US7672397B2 (fr)
EP (1) EP1504525A2 (fr)
JP (1) JP4478563B2 (fr)
KR (1) KR101069781B1 (fr)
CN (1) CN100471047C (fr)
AU (1) AU2003245832A1 (fr)
WO (1) WO2003096548A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005001496B4 (de) * 2005-01-12 2008-08-28 Siemens Ag Verfahren und Vorrichtung zur Verstärkung eines amplituden- und phasenmodulierten elektrischen Signals
KR100849760B1 (ko) 2006-12-13 2008-07-31 엘지노텔 주식회사 신호 전송 장치 및 신호 전송 방법
US7929927B2 (en) * 2007-10-29 2011-04-19 Freescale Semiconductor, Inc. Adaptive pre-distortion with interference detection and mitigation
CN101247153B (zh) * 2008-03-13 2011-11-30 中兴通讯股份有限公司 一种提升功放效率的方法及其数字预失真宽带发信机
US8412132B2 (en) * 2008-08-21 2013-04-02 Freescale Semiconductor, Inc. Techniques for adaptive predistortion direct current offset correction in a transmitter
US9054940B2 (en) * 2013-10-25 2015-06-09 Mitsubishi Electric Research Laboratories, Inc. System and method for linearizing power amplifiers

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674836A (en) * 1968-05-21 1972-07-04 Parke Davis & Co 2,2-dimethyl-{11 -aryloxy-alkanoic acids and salts and esters thereof
US4027009A (en) * 1973-06-11 1977-05-31 Merck & Co., Inc. Compositions and methods for depressing blood serum cholesterol
JPS5612114B2 (fr) * 1974-06-07 1981-03-18
US4231938A (en) * 1979-06-15 1980-11-04 Merck & Co., Inc. Hypocholesteremic fermentation products and process of preparation
DK149080C (da) * 1980-06-06 1986-07-28 Sankyo Co Fremgangsmaade til fremstilling af derivater af ml-236b-carboxylsyre
US4450171A (en) * 1980-08-05 1984-05-22 Merck & Co., Inc. Antihypercholesterolemic compounds
US4448784A (en) * 1982-04-12 1984-05-15 Hoechst-Roussel Pharmaceuticals, Inc. 1-(Aminoalkylphenyl and aminoalkylbenzyl)-indoles and indolines and analgesic method of use thereof
JPS6051189A (ja) * 1983-08-30 1985-03-22 Sankyo Co Ltd チアゾリジン誘導体およびその製造法
US5614492A (en) * 1986-05-05 1997-03-25 The General Hospital Corporation Insulinotropic hormone GLP-1 (7-36) and uses thereof
US4681893A (en) * 1986-05-30 1987-07-21 Warner-Lambert Company Trans-6-[2-(3- or 4-carboxamido-substituted pyrrol-1-yl)alkyl]-4-hydroxypyran-2-one inhibitors of cholesterol synthesis
US4759923A (en) * 1987-06-25 1988-07-26 Hercules Incorporated Process for lowering serum cholesterol using poly(diallylmethylamine) derivatives
JP2569746B2 (ja) * 1987-08-20 1997-01-08 日産化学工業株式会社 キノリン系メバロノラクトン類
US4924024A (en) * 1988-01-11 1990-05-08 E. R. Squibb & Sons, Inc. Phosphorus-containing squalene synthetase inhibitors, new intermediates and method
US4871721A (en) * 1988-01-11 1989-10-03 E. R. Squibb & Sons, Inc. Phosphorus-containing squalene synthetase inhibitors
NO177005C (no) * 1988-01-20 1995-07-05 Bayer Ag Analogifremgangsmåte for fremstilling av substituerte pyridiner, samt mellomprodukter til bruk ved fremstillingen
FI94339C (fi) * 1989-07-21 1995-08-25 Warner Lambert Co Menetelmä farmaseuttisesti käyttökelpoisen /R-(R*,R*)/-2-(4-fluorifenyyli)- , -dihydroksi-5-(1-metyylietyyli)-3-fenyyli-4-/(fenyyliamino)karbonyyli/-1H-pyrroli-1-heptaanihapon ja sen farmaseuttisesti hyväksyttävien suolojen valmistamiseksi
US5177080A (en) * 1990-12-14 1993-01-05 Bayer Aktiengesellschaft Substituted pyridyl-dihydroxy-heptenoic acid and its salts
JP2648897B2 (ja) * 1991-07-01 1997-09-03 塩野義製薬株式会社 ピリミジン誘導体
US5595872A (en) * 1992-03-06 1997-01-21 Bristol-Myers Squibb Company Nucleic acids encoding microsomal trigyceride transfer protein
DK36392D0 (da) * 1992-03-19 1992-03-19 Novo Nordisk As Anvendelse af kemisk forbindelse
GB9209628D0 (en) * 1992-05-05 1992-06-17 Smithkline Beecham Plc Compounds
US5470845A (en) * 1992-10-28 1995-11-28 Bristol-Myers Squibb Company Methods of using α-phosphonosulfonate squalene synthetase inhibitors including the treatment of atherosclerosis and hypercholesterolemia
US5594016A (en) * 1992-12-28 1997-01-14 Mitsubishi Chemical Corporation Naphthalene derivatives
WO1994016693A1 (fr) * 1993-01-19 1994-08-04 Warner-Lambert Company Formulation ci-981, orale, stable et son procede de preparation
US5346701A (en) * 1993-02-22 1994-09-13 Theratech, Inc. Transmucosal delivery of macromolecular drugs
DE4311972A1 (de) * 1993-04-10 1994-10-13 Bosch Gmbh Robert Verfahren zur Detektion von Änderungen in Bewegtbildern
US5739135A (en) * 1993-09-03 1998-04-14 Bristol-Myers Squibb Company Inhibitors of microsomal triglyceride transfer protein and method
US5776983A (en) * 1993-12-21 1998-07-07 Bristol-Myers Squibb Company Catecholamine surrogates useful as β3 agonists
US5488064A (en) * 1994-05-02 1996-01-30 Bristol-Myers Squibb Company Benzo 1,3 dioxole derivatives
US5385929A (en) * 1994-05-04 1995-01-31 Warner-Lambert Company [(Hydroxyphenylamino) carbonyl] pyrroles
US5491134A (en) * 1994-09-16 1996-02-13 Bristol-Myers Squibb Company Sulfonic, phosphonic or phosphiniic acid β3 agonist derivatives
US5541204A (en) * 1994-12-02 1996-07-30 Bristol-Myers Squibb Company Aryloxypropanolamine β 3 adrenergic agonists
US5770615A (en) * 1996-04-04 1998-06-23 Bristol-Myers Squibb Company Catecholamine surrogates useful as β3 agonists
US5962440A (en) * 1996-05-09 1999-10-05 Bristol-Myers Squibb Company Cyclic phosphonate ester inhibitors of microsomal triglyceride transfer protein and method
US5885983A (en) * 1996-05-10 1999-03-23 Bristol-Myers Squibb Company Inhibitors of microsomal triglyceride transfer protein and method
US5827875A (en) * 1996-05-10 1998-10-27 Bristol-Myers Squibb Company Inhibitors of microsomal triglyceride transfer protein and method
US6011155A (en) * 1996-11-07 2000-01-04 Novartis Ag N-(substituted glycyl)-2-cyanopyrrolidines, pharmaceutical compositions containing them and their use in inhibiting dipeptidyl peptidase-IV
US5952322A (en) * 1996-12-05 1999-09-14 Pfizer Inc. Method of reducing tissue damage associated with non-cardiac ischemia using glycogen phosphorylase inhibitors
US5760246A (en) * 1996-12-17 1998-06-02 Biller; Scott A. Conformationally restricted aromatic inhibitors of microsomal triglyceride transfer protein and method
US5998463A (en) * 1998-02-27 1999-12-07 Pfizer Inc Glycogen phosphorylase inhibitors
US6054896A (en) * 1998-12-17 2000-04-25 Datum Telegraphic Inc. Controller and associated methods for a linc linear power amplifier
US6438360B1 (en) * 1999-07-22 2002-08-20 Motorola, Inc. Amplifier system with load control to produce an amplitude envelope
EP1258080B1 (fr) * 2000-02-24 2003-07-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Systeme de reduction d'interference de canal adjacent par prelinearisation et predistortion
JP4356201B2 (ja) * 2000-06-28 2009-11-04 ソニー株式会社 適応歪み補償装置
US20020168016A1 (en) * 2001-03-14 2002-11-14 Xianbin Wang Method and apparatus for reducing peak to average power ratio in a multi-carrier modulation communication system
US6741661B2 (en) * 2001-05-22 2004-05-25 Qualcomm Incorporated Method and apparatus for peak-to-average power reduction
US6794936B2 (en) * 2001-07-03 2004-09-21 Lucent Technologies Inc. Equalizer system and method for predistortion
US6985704B2 (en) * 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03096548A2 *

Also Published As

Publication number Publication date
US7672397B2 (en) 2010-03-02
CN100471047C (zh) 2009-03-18
US20050152472A1 (en) 2005-07-14
CN1653682A (zh) 2005-08-10
AU2003245832A8 (en) 2003-11-11
WO2003096548A3 (fr) 2004-07-01
JP2005525738A (ja) 2005-08-25
KR101069781B1 (ko) 2011-10-05
KR20040106545A (ko) 2004-12-17
WO2003096548A2 (fr) 2003-11-20
AU2003245832A1 (en) 2003-11-11
JP4478563B2 (ja) 2010-06-09

Similar Documents

Publication Publication Date Title
EP0885482B1 (fr) Predistorsion pour un chemin de transmission non lineaire en haute frequence
DE102005006162B3 (de) Sende-/Empfangseinrichtung mit einem eine einstellbare Vorverzerrung aufweisenden Polar-Modulator
DE60012209T2 (de) Adaptive linearisierung von leistungsverstärkern
DE69911339T2 (de) Vorverzerrer
DE69530778T2 (de) Lineare leistungsverstarkung mit hohem wirkungsrad
DE102005013880B3 (de) Verfahren zur Vorverzerrung eines Signals und Sendeeinrichtung mit digitaler Vorverzerrung, insbesondere für Mobilfunk
DE60003954T2 (de) Vorrichtung zur reduzierung von nachbarkanalstörungen durch vorlinearisierung und vorverzerrung
DE102004047684B4 (de) Sendeeinrichtung mit digitaler Vorverzerrung und Verfahren zur Regelung einer Vorverzerrung in einer Sendeeinrichtung
DE102004005130B3 (de) Sende-/Empfangsanordnung und Verfahren zur Reduktion von Nichtlinearitäten in Ausgangssignalen einer Sende-/Empfangsanordnung
DE602004001616T2 (de) Hocheffizienter, linearer Leistungsverstärker
DE60206795T2 (de) Adaptive Vorverzerrung eines phasen- oder frequenzmodulierten und amplitudenmodulierten Funkfrequenzsingalgenerators
DE102009043444B4 (de) Modulation und Übertragung von Signalen hoher Bandbreite
DE69929938T2 (de) Ein Sender
DE60222761T2 (de) Schwundkontrol für satellitenaufwärtsrichtung
WO2013037793A1 (fr) Dispositif de modification de trajectoires
DE102004047724A1 (de) Sendeeinrichtung mit adaptiver digitaler Vorverzerrung, Transceiver mit Sendeeinrichtung und Verfahren zum Betreiben einer Sendeeinrichtung
DE102007026022A1 (de) Systeme, Verfahren und Vorrichtungen für lineare EER-(Envelope Elimination and Restoration) Sender
EP1260017B1 (fr) Procede et circuit d'emission destines a produire un signal d'emission
DE102008046832A1 (de) Vorrichtungen und Verfahren zur Polarmodulation ohne analoge Filterung
DE102009022321A1 (de) Strategie zur Verwendung der Hüllkurveninformationen innerhalb eines Leistungssteuersystems mit geschlossener Schleife
EP2035840A1 (fr) Dispositif destiné à déterminer les paramètres caractéristiques de fonctionnement d'un amplificateur de puissance haute fréquence
DE102008061373A1 (de) Verbesserte Leistungssteuerschleife, Sender mit der Leistungssteuerschleife und Verfahren zum Steuern einer Ausgangsleistung einer Sendervorrichtung
DE112022000229T5 (de) Digital unterstützter Radiofrequenz-Sender
DE102004019984B4 (de) Einrichtung zur Verarbeitung von Funk-Sendedaten mit einer digitalen Vorverzerrung
EP1504525A2 (fr) Procede pour generer un signal d'emission

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041102

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MENGE, MICHAEL

Inventor name: LANGER, ANDREAS

Inventor name: IRSCHEID, OTMAR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FI FR GB IT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BENQ MOBILE GMBH & CO. OHG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: BENQ MOBILE GMBH & CO. OHG

19U Interruption of proceedings before grant

Effective date: 20070101

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20070702

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20091201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: PALM, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100601