EP1499659A1 - Nanopartikul rer organischer uv-absorber - Google Patents

Nanopartikul rer organischer uv-absorber

Info

Publication number
EP1499659A1
EP1499659A1 EP03745798A EP03745798A EP1499659A1 EP 1499659 A1 EP1499659 A1 EP 1499659A1 EP 03745798 A EP03745798 A EP 03745798A EP 03745798 A EP03745798 A EP 03745798A EP 1499659 A1 EP1499659 A1 EP 1499659A1
Authority
EP
European Patent Office
Prior art keywords
formula
acid
absorber according
amino
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03745798A
Other languages
English (en)
French (fr)
Inventor
Martin KÖNEMANN
Alban Glaser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1499659A1 publication Critical patent/EP1499659A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/22Polybenzoxazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm

Definitions

  • the present invention relates to a UV absorber which comprises a finely divided polymer, a process for its production and its use.
  • UV absorbers hereinafter also UV stabilizers.
  • Substances used as UV stabilizers should be distributed as finely as possible in the application media in order to develop an even protective effect. Fine distribution in transparent media is particularly important, as otherwise incident light is scattered.
  • the substance is molecularly soluble in the application medium and thus “distributed” as best as possible, this is often associated with an unfavorable migration behavior and the substance emerges from the material relatively easily. This phenomenon is called "exudation”.
  • Cosmetic formulations use UV absorbers to protect human skin from the harmful effects of natural UV radiation. Soluble UV absorbers can diffuse through the skin to an undesirable degree. Pigmentary UV absorbers such as titanium dioxide or zinc oxide have the disadvantage that they scatter the incident light back white, which can lead to an undesirable, visible white light stabilizer film, especially with dark pigmented skin.
  • No. 3,230,196 describes polybenzoxazoles and a process for their preparation by condensation of aminohydroxybenzoic acids or of bis (o-aminophenols) with aromatic dicarboxylic acids. These polymers should also be usable as UV absorbers. However, the document does not specify how the polybenzoxazoles are to be prepared for use as UV absorbers. The object of the present invention was to provide a UV absorber which does not scatter incident light when used in transparent media or in cosmetic formulations and at the same time has a favorable migration behavior.
  • a UV absorber which comprises a finely divided polymer having a volume-average particle size of 5 to 1000 nm and which contains repeating units of the formula I and / or II
  • X represents NH, O or S, preferably O,
  • a or A 1 and A 2 together with the carbon atoms to which they are attached form an aromatic skeleton with one to three condensed benzene rings or a diaryl skeleton which contains one to three carboxyl, alkyl, alkenyl, aryl, alkylaryl, alkoxy , Halogen or nitro can carry selected substituents or a polymer chain comprising repeating units of the formula I and / or II, and
  • Ar represents a divalent aromatic radical with one to three condensed benzene rings or a diaryl radical which can carry one to three substituents selected from carboxyl, alkyl, alkenyl, aryl, alkylaryl, alkoxy, halogen or nitro.
  • the polymer preferably has a volume-average particle size of 10 to 500 nm, particularly preferably 20 to 100 nm and in particular 20 to 60 nm.
  • aromatic skeleton with one to three condensed benzene rings preferably stands for benzene or naphthalene;
  • Diaryl radical preferably represents diphenyl
  • Carboxyl stands for COOH or salts thereof, especially with alkali metal cations such as sodium or potassium, or ammonium ions;
  • Alkyl (also in word compositions such as “alkylaryl” or alkoxy ”) preferably stands for C 1 -C 6 -alkyl, such as methyl, ethyl, t-butyl;
  • Alkenyl preferably represents C 2 -C 4 alkenyl, such as vinyl or allyi;
  • Aryl preferably represents phenyl
  • Halogen preferably represents fluorine or chlorine.
  • Preferred repetition units I are:
  • n is independently 0, 1 or 2 and R is independently carboxyl, alkyl, alkenyl, aryl, alkylaryl, alkoxy, halogen or nitro or a polymer chain comprising repeating units of the formula I and / or II.
  • Preferred repeating units II are those in which -Ar- under
  • the polymer preferably contains at least 1 mol%, particularly preferably at least 20 mol% and in particular at least 30 mol%, based on the sum of the repeating units of the formula I and twice the repeating units of the formula II, repeating units of the formulas Ia and / or Ib .
  • R ' is carboxyl or a polymer chain comprising repeating units of the formula I and / or II.
  • Polymers in which at least part of the radicals R 'is carboxyl advantageously well dispersible in the application medium.
  • the polymer can be modified at this reactive point, if appropriate only on the surface of the particles, in an application-oriented manner, for. B. by amidation or esterification.
  • the polymer can be linear and / or branched. It preferably does not include cyclic polymers. Ramified . Polymers consist of linear repeating units and branching units, ie those repeating units of the formula I or II in which the aromatic skeleton which is formed by A or A 1 and A 2 together with the carbon atoms to which they are bonded is formed by at least one polymer chain is substituted, which in turn comprises repeating units of the formula I and / or II. Such polymers are also referred to as hyperbranched polymers.
  • the polymer is by polycondensation of compounds of formula IV and / or V and VI
  • Particularly preferred compounds of the formula IV are 3-amino-2-hydroxybenzoic acid, 2-amino-3-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid, 3-amino-4-hydroxybenzoic acid, 3-amino-2-mercaptobenzoic acid, 2-amino -3-mercaptobenzoic acid, 4-amino-3-mercaptobenzoic acid, 3-amino-4-mercaptobenzoic acid, 2,3-diaminobenzoic acid, 3,4-diaminobenzoic acid, 3-amino-2-hydroxy-l-naphthalenecarboxylic acid, 2-amino-3 -hydroxy-l-naphthalenecarboxylic acid, 4-amino-3-hydroxy-l-naphthalenecarboxylic acid, 3-amino-4-hydroxy-l-naphthalenecarboxylic acid, 3-amino-2-mercapto-1-naphthalenecarboxylic acid, 2-amino-3-mer
  • Preferred polymers can be obtained by at least partially using a compound of the formula III as the compound of the formula IV
  • X is preferably 0.
  • the two carboxyl groups are preferably not arranged ortho to one another. They are particularly preferably arranged meta-to one another. In particular, a carboxyl group is arranged ortho to the rest XH.
  • a very particularly preferred compound of formula III is 5-amino-4-hydroxyisophthalic acid.
  • the compound of the formula III is preferably used in an amount of at least 1 mol%, particularly preferably at least 20 mol% and in particular at least
  • Preferred compounds of formula V are 4, 6-diaminoresorcinol, 3, 6-diaminohydroquinone, 4,4'-diamino-3,3 '-dihydroxybiphenyl and 3,4'-diamino-3', 4-dihydroxybiphenyl.
  • Preferred compounds of the formula VI are phthalic acid, isophthalic acid, terephthalic acid, with terephthalic acid being particularly preferred.
  • diamines except those in which the amino groups are arranged ortho-permanently on an aromatic nucleus
  • diols can also be used as a chain extender. These compounds cause the formation of ester or Aid bonds in the polymer structure.
  • Possible diamines are: hydrazine, N, N'-di (-CC 6 -alkyl) hydrazine, 1,6-hexanediamine, 1,5-pentanediamine, 1,4-butanediamine, 1,3-propanediamine, ethylenediamine, m- or p-phenylene diamine, 1,5-naphthyl diamine, 1,8-naphthyl diamine, 2,3-diamino-naphthalene, 3,3 '-dihalogen-4,4' -diaminodiphenyls, such as, for. B.
  • Possible diols are: 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diisopropanolamine, N-methyldiethanolamine, neopentylglycol, 1, 12-dodecanediol, Oligoalkylene glycols with 2 to 30 alkylene oxide units (eg ethylene, propylene and / or butylene oxide units), polytetrahydrofuran with 2 to 20 tetrahydrofuran units.
  • alkylene oxide units eg ethylene, propylene and / or butylene oxide units
  • polytetrahydrofuran with 2 to 20 tetrahydrofuran units.
  • Monovalent aromatic carboxylic acids or o-amino (thio) phenols, o-phenylenediamines or their benzanellated derivatives can also be used as chain terminators.
  • Suitable chain terminators are benzoic acid, 1-aminophenol, 1-aminomercaptobenzene, o-phenylenediamine, 1-amino-2-naphthol, 2-amino-1-naphthol, 2-amino-3-naphthol, 3-amino-2-naphthol, l-amino-2-naphthalenethiol, 2-amino-l-naphthalenethiol, 2-amino-3-naphthalenethiol, 3-amino-2-naphthalenethiol, 1,2-diaminonaphthalene and 2,3-diaminonaphthalene.
  • Monoalcohols and monoamines can be used as further chain terminators, with which the polymer or the surface of the particles can optionally be modified in an application-oriented manner; such as ammonia and primary and secondary alkylamines such as.
  • B methylamine, dimethylamine, ethylamine, diethylamine, propylamine, butylamine, hexylamine, 2-ethylhexoxypropylamine, cyclohexylamine, aminated alkyl-capped polyalkylene oxides of the type
  • H 2 N- (A0) n -O-alkyl (where n is 2 to 30, AO is ethylene, propylene or n-butylene oxide, alkyl is preferably C 1 -C 4 -alkyl), dodecylamine, octadecylamine, laurylamine, Ethanolamine, diethanolamine, aniline, 1-naphthylamine, 2-naphthylamine, morpholine, isopropanolamine and the alcohols n-butylglycol, butanol, pentanol, hexanol, 2-ethylhexanol, octanol, decanol, dodecanol, octa-decanol, alkyl-capped polyalkylene oxides of the type HO- (AO) n -0-Al- kyl (where n is 2 to 30, AO is ethylene oxide, propylene oxide or but
  • chain extenders and chain terminators is preferably at most 50 mol%, based on the sum of the compounds of the formula IV, V, VI and chain extenders and chain terminators.
  • the chain extenders are used in particular in an amount of at most 15 mol%, particularly preferably at most 10 10 mol%.
  • Another object of the present invention is a method for producing a UV absorber by polycondensation of compounds of the formula IV and / or V and / or VI 15
  • a compound of the formula III 35 is preferably at least partially used as the compound of the formula IV
  • the polycondensation is preferably carried out in the presence of dehydrating agents, such as polyphosphoric acid, optionally in the presence of phosphorus pentoxide, phosphoric acid, sulfuric acid, thionyl chloride and carbodiimides.
  • dehydrating agents such as polyphosphoric acid, optionally in the presence of phosphorus pentoxide, phosphoric acid, sulfuric acid, thionyl chloride and carbodiimides.
  • Polyphosphoric acid is particularly preferably used in the presence of phosphorus pentoxide.
  • the polycondensation can take place in solvents or solvent-free. If solvents are used, these are preferably selected from high-boiling solvents such as dimethylformamide (DMF) or N-methylpyrrolid-2-one (NMP). If polyphosphoric acid is used as the dehydrating agent, the procedure is preferably solvent-free.
  • solvents these are preferably selected from high-boiling solvents such as dimethylformamide (DMF) or N-methylpyrrolid-2-one (NMP). If polyphosphoric acid is used as the dehydrating agent, the procedure is preferably solvent-free.
  • the polycondensation is preferably carried out at a temperature in the range from 150 to 250 ° C., particularly preferably from 150 to 220 ° C., in particular from 170 to 200 ° C.
  • the polycondensation is preferably carried out under an inert gas atmosphere, for example under a nitrogen or argon atmosphere.
  • the polycondensation product is obtained in a customary manner, for example by precipitation of the reaction product in an aqueous medium and subsequent drying or by removing the solvent and the dehydrating agent, for example by decanting or by distillation.
  • the polycondensation product which is essentially water- and solvent-free, is usually not meltable without decomposition.
  • the decomposition point is at least 350 ° C, particularly preferably at least 450 ° C and in particular at least 500 ° C.
  • the subsequent division of the polycondensation product is carried out by customary methods known to those skilled in the art, for example by grinding in a bead mill, vibratory mill, planetary mill or in a kneader.
  • the division can also take place at the same time as the dispersion in the application medium.
  • a concentrate or a masterbatch can also be prepared by dispersing the polymer in a small amount of the application medium, one of its components or a medium compatible with it.
  • the present invention furthermore relates to the use of the UV absorber according to the invention for stabilizing inanimate organic materials against the action of
  • Organic materials that can be stabilized in this way are e.g. B. molding compounds such as polyolefins, polyester, Polyamides, polyurethanes, polycarbonates or impact modified polystyrenes such as ABS and their mixtures as well as paint films such as lacquer coatings, especially clear lacquers.
  • the UV absorber according to the invention is finely distributed in the respective application medium, the dispersion method being determined by the respective application medium.
  • the UV stabilizer is incorporated into the paint formulation, which after application, e.g. B. by painting, spraying or printing, and drying and / or curing the paint film provides.
  • the UV absorber is incorporated into the application medium, for example, by shaking, beating, stirring, turbulent mixing, vibrations and cavitation, e.g. B. using ultrasound and other common dispersing techniques.
  • B. shaking units
  • stirred tanks agitator mills
  • roller mills agitator mills
  • rotor-stator systems gear rim dispersing machines
  • ultrasonic homogenizers jet dispersers
  • shear gap mixers and other systems which are known to the person skilled in the art.
  • the stabilizer or a concentrate or masterbatch is usually incorporated into the molding composition in polymeric form by rolling in, preferably at elevated temperatures.
  • the UV absorber according to the invention can be incorporated into molding compositions by distributing them in them before the polymerization of the monomers on which the molding composition is based, in accordance with the above-mentioned dispersion processes, and then polymerizing the mixture.
  • the UV stabilizer according to the invention can be dispersed well in common application media, it advantageously not scattering incident light. In addition, it is not soluble in the application media, which is reflected in positive migration behavior, i.e. H. the stabilizer does not migrate into or out of the application medium. This in turn ensures long-term UV protection of the application media provided with the UV stabilizer according to the invention and their processing products.
  • the invention also relates to the use of the UV absorber according to the invention as a sun protection factor in cosmetic formulations, such as sunscreens, lipsticks, sun blockers and the like.
  • cosmetic formulations contain the UV absorber and optionally cosmetically active ingredients in a cosmetically acceptable carrier.
  • the carrier is e.g. B. selected under water, water-miscible liquids, hydrophobic components and mixtures. These include water, C ⁇ -C 4 alcohols, such as ethanol and isopropanol, fats, waxes, fatty acids, fatty alcohols, oils, oil-in-water and water-in-oil emulsions, creams and pastes, lip protection stick compositions or fat-free gels.
  • emulsions come u. a. also O / W macroemulsions, O / W microemulsions or O / W / O emulsions in question, the emulsions by phase inversion technology, eg. B. are available according to DE-A-197 26 121.
  • the hydrophobic component (lipid phase) can advantageously be selected from the following group of substances:
  • Mineral oils such as triglycerides of capric or caprylic acid, but preferably castor oil;
  • Fats, waxes and other natural and synthetic fat bodies preferably esters of fatty acids with alcohols of low C number, e.g. B. isopropanol, propylene glycol or glycerol, or esters of fatty alcohols with low C number alkanoic acids or with fatty acids; benzoates;
  • Silicone oils such as dimethylpolysiloxanes, diethylpolysiloxanes, diphenylpolysiloxanes and mixed forms thereof.
  • the oil phase is advantageously chosen from the group of esters from saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 3 to 30 carbon atoms from the group of esters from aromatic carboxylic acids and saturated and / or unsaturated, branched and / or unbranched alcohols with a chain length of 3 to 30 carbon atoms.
  • ester oils can advantageously be selected from the group of isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, N-hexyl laurate, N-decycloleate, isooctyl stearate, isononyl stearate, isononylisononanoate, ethyl 2-ethylhexyl, 2-ethylhexyl -Hexyl decyl stearate, 2-0ctyldodecyl palmitate, 2-ethylhexyl laurate, 2-hexyl decyl stearate, 2-0ctyl dodecyl palmitate, oleyl oleate, olerlerucate, erucyl oleate, erucylerucate as well as synthetic, semisynthetic and natural mixture
  • the oil phase can advantageously be selected from the group of branched and unbranched hydrocarbons and waxes, silicone oils, dialkyl ethers, the group of saturated or unsaturated, branched or unbranched alcohols, and also fatty acid triglycerides, especially the triglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkane carboxylic acids with a chain length of 8 to 24, in particular 12 to 18, carbon atoms.
  • the fatty acid triglycerides can for example be advantageously selected from the group of synthetic, semi-synthetic and natural oils, e.g. As olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, palm kernel oil and the like.
  • the aqueous phase of the preparation according to the invention advantageously contains:
  • Alcohols, diols or polyols of low C number, and their ethers preferably ethanol, isopropanol, propylene glycol, glycerin, ethylene glycol, ethylene glycol monoethyl or monobutyl ether, propylene glycol monomethyl, monoethyl or monobutyl ether, diethylene glycol monomethyl or monoethyl ether and analog products.
  • the cosmetic formulations can contain cosmetic auxiliaries.
  • Common cosmetic auxiliaries that can be considered as additives are e.g. B. co-emulsifiers, stabilizers, thickeners, biogenic agents, film formers, fragrances, dyes, pearlescent agents, preservatives, pigments, electrolytes (e.g. magnesium sulfate), insect repellents and pH regulators.
  • Known W / O and, in addition, O / W emulsifiers such as polyglycerol esters, sorbitan esters or partially esterified glycerides are preferably suitable as co-emulsifiers.
  • Metal salts of fatty acids such as. B. magnesium, aluminum and / or zinc stearate can be used.
  • Suitable thickeners are, for example, crosslinked polyacrylic acids and their derivatives, polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, furthermore fatty alcohols, monoglycerides and fatty acids, polyacrylates, polyvinyl alcohol and polyvinyl pyrrolidone.
  • Biogenic active substances are understood to mean, for example, plant extracts, protein hydrolyzates and vitamin complexes.
  • Common film formers are, for example, hydrocolloids such as chitosan, microcrystalline chitosan or quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives and similar compounds.
  • Suitable preservatives are, for example, formaldehyde solution, p-hydroxy benzoate or sorbic acid.
  • Suitable pearlizing agents are, for example, glycol distearic acid esters such as ethylene glycol distearate, but also fatty acids and fatty acid monoglycol esters.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, published by Verlag Chemie, Weinheim, 1984. These dyes are usually used in a concentration of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the cosmetic formulation can additionally contain at least one insect repellent.
  • insect repellents include e.g. B. 2-ethyl-1,3-hexanediol, 2-ethyl-2,3-hexanediol, 4,5-bis (2-butylene) tetrahydro-2-furaldehyde, dimethyl phthalate, di-n- propyl isocine chomeronate and N, N, -diethyl-m-toluolamide.
  • antioxidants are generally preferred. According to the invention, all the antioxidants suitable or customary for cosmetic and / or dermatological applications can be used as favorable antioxidants.
  • the antioxidants are advantageously selected from the group consisting of amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D. -Carnosine, L-carnosine and their derivatives (e.g. anserine), carotenoids, carotenes (e.g. ⁇ -carotene, lycopene) and their derivatives, chlorogenic acid and its derivatives, lipoic acid and its derivatives (e.g.
  • amino acids e.g. glycine, histidine, tyrosine, tryptophan
  • imidazoles e.g. urocanic acid
  • peptides such as D, L-carnosine, D. -Carnosine, L-carnosine and their derivatives (e.g. anserine)
  • carotenoids
  • Aurothioglucose propylthiouracil and other thiols (eg thiorodoxin, glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl, and Lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) and sulfoximine compounds (e.g.
  • buthionine sulfoximines in very low tolerable doses (e.g. B. pmol to ⁇ mol / kg), further
  • (Metal) chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, biliburin, biliverdin, EDTA and their derivatives , unsaturated fatty acids and their derivatives (e.g. ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and their derivatives (e.g.
  • ascorbyl palmitate Mg ascorbyl phosphate, ascorbyl acetate), tocopherol and derivatives (e.g. vitamin E acetate, tocotrienol), vitamin A and derivatives (vitamin A palmitate) as well as coniferyl benzoate of benzoin, rutinic acid and its derivatives, ⁇ glycosyl rutin, ferulic acid, Furfurylidenglucitol, carnosine, butyl hydroxytoluene, butyl hydroxyanisole, Nordihydroguajakharzklare, Nordihydroguajaret- acid, trihydroxybutyrophenone, uric acid and derivatives thereof, mannose and derivatives thereof, zinc and derivatives thereof (eg. as ZnO, ZnS0 4), Selenium and its derivatives (e.g. selenium methionine), stilbenes and their derivatives (e.g. stilbene oxide, trans-stilbene oxide).
  • benzoin rutinic acid
  • UV / VIS transmission spectra of polyurethane lacquer films in the wavelength range from 340 to 500 nm, which contain polycondensation products according to the invention or a commercially available UV absorber based on zinc oxide.
  • 5-Amino-4-hydroxyisophthalic acid can be prepared according to the procedure described by S.E. Hunt, J.I. Jones, A.S. Lindsey, J. Chem. Soc. 1956, 3099-3107 described methods can be produced.
  • a quantity of filter cake from Examples 1.1 to 1.5 corresponding to 100 mg of polycondensation product (solids content of the filter cake see table) was mixed with 5 g of a water-based lacquers in a 40 ml glass bottle with 10 g SAZ balls (silicon oxide-aluminum oxide-zirconium oxide balls) shaken for 16 h in a Skandex shaker.
  • the paste obtained was then dispersed in a further 5 g of the waterborne basecoat by shaking for 5 minutes in a Skandex shaking unit.
  • the waterborne basecoat used had a solids content of 21% by weight and contained a polyurethane dispersion and a melamine crosslinker.
  • the UV stabilizer coating dispersion was applied to an acetate film using a doctor knife. The coated
  • Fig. 1 show that the film coated in this way absorbed UV-A radiation (below 360 nm) to more than 80%, while it was practically transparent to light in the visible spectral range.
  • a TEM section transmission electron microscopy
  • UV absorber based on zinc oxide (BET surface area 16 m 2 / g, primary particle size (TEM) 20 to 100 nm).
  • a dispersion at 80 ° C. was added to this dispersion, which was homogenized by homogenizing 3.00 g of glycerol, 0.05 g of EDTA sodium salt, 0.20 g of allantoin, 0.30 g of xanthan gum (Keltrol, from Kleco ), 1.50 g of magnesium aluminum silicate (Veegum Ultra, Vanderbilt) and an amount of distilled water, which was 50.45 g for the zinc oxide UV absorber and for the polycondensation products according to the invention by the water content of the filter cake (see above) was reduced at 80 oC.
  • the combined dispersions were cooled to 40 ° C. and 0.50 g of citric acid, if desired fragrances and 1.00 g of a mixture of phenoxyethanol and alkyl parabens (Phenonip, from Nipa) were added.
  • the formulation obtained can be used as a sunscreen.
  • the formulations which contain the polycondensation products according to the invention have a similar absorption spectrum with the same layer thickness, but are less white scattering than the formulation containing zinc oxide, which has aesthetic advantages, in particular in the case of dark pigmented skin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nanotechnology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)

Abstract

Die vorliegende Erfindung betrifft einen UV-Absorber, der ein fein zerteiltes Polymerisat mit einer volumenmittleren Teilchengrosse von 5 bis 1000 nm umfasst, ein Verfahren zu dessen Herstellung sowie dessen Verwendung zur Stabilisierung von Formmassen und Anstrichmittelfilmen und als Lichtschutzfaktor in kosmetischen Formulierungen.

Description

Nanopartikulärer organischer UV-Absorber
Beschreibung
Die vorliegende Erfindung betrifft einen UV-Absorber, der ein fein zerteiltes Polymerisat umfasst, ein Verfahren zu dessen Herstellung sowie dessen Verwendung.
Unbelebte organische Materialien, wie Formmassen oder Anstrichmittelfilme, erleiden unter dem Einfluss von UV-Strahlung z. B. im Sonnenlicht eine Verschlechterung, z. B. Versprödung, Farbveränderung oder Spannungsrisskorrosion. Sie werden daher üblicherweise durch Einschluss von UV-Absorbern (im Folgenden auch: UV- Stabilisatoren) geschützt. Stoffe, die als UV-Stabilisatoren eingesetzt werden, sollten in den Anwendungsmedien möglichst fein verteilt sein, um eine gleichmäßige Schutzwirkung zu entfalten. Besonders wichtig ist eine feine Verteilung in transparenten Medien, da ansonsten einfallendes Licht gestreut wird. Ist der Stoff jedoch im Anwendungsmedium molekular löslich und somit bestmöglich "verteilt", ist dies häufig mit einem ungünstigen Migrationsverhalten verbunden und der Stoff tritt relativ leicht aus dem Material aus. Diese Erscheinung wird als "Ausschwitzen" bezeichnet.
In kosmetischen Formulierungen finden UV-Absorber Anwendung, um die menschliche Haut vor dem schädlichen Einfluss der natürlichen UV-Strahlung zu schützen. Lösliche UV-Absorber können allerdings in unerwünschtem Maß durch die Haut diffundieren. Pigmentäre UV- Absorber wie Titandioxid oder Zinkoxid haben den Nachteil, dass sie das einfallende Licht weiß zurückstreuen, was besonders bei dunkel pigmentierter Haut zu einem unerwünschten, sichtbaren weißen Lichtschutzmittelfilm führen kann.
Die US 3,230,196 beschreibt Polybenzoxazole und ein Verfahren zu deren Herstellung durch Kondensation von Aminohydroxybenzoesäuren oder von Bis(o-aminophenolen) mit aromatischen Dicarbonsäuren. Diese Polymere sollen auch als UV-Absorber verwendbar sein. Die Schrift macht jedoch keine näheren Angaben, wie die Polybenzoxa- zole zur Verwendung als UV-Absorber zubereitet werden sollen. Aufgabe der vorliegenden Erfindung war es, einen UV-Absorber bereitzustellen, der beim Einsatz in transparenten Medien oder in kosmetischen Formulierungen einfallendes Licht nicht streut und gleichzeitig ein günstiges Migrationsverhalten aufweist.
Die Aufgabe wird durch einen UV-Absorber gelöst, der ein fein zerteiltes Polymerisat mit einer volumenmittleren Teilchengröße von 5 bis 1000 nm umfasst, das Wiederholungseinheiten der Formel I und/oder II enthält
worin
X für NH, O oder S, vorzugsweise O, steht,
A oder A1 und A2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, ein aromatisches Gerüst mit einem bis drei kondensierten Benzolringen oder ein Diarylgerüst bilden, das einen bis drei unter Carboxyl, Alkyl, Alkenyl, Aryl, Alkyla- ryl, Alkoxy, Halogen oder Nitro ausgewählte Substituenten oder eine Wiederholungseinheiten der Formel I und/oder II umfassende polymere Kette tragen kann, und
Ar für einen zweiwertigen aromatischen Rest mit einem bis drei kondensierten Benzolringen oder einen Diarylrest steht, der einen bis drei unter Carboxyl, Alkyl, Alkenyl, Aryl, Alkyla- ryl, Alkoxy, Halogen oder Nitro ausgewählte Substituenten tragen kann.
Vorzugsweise weist das Polymerisat eine volumenmittlere Teilchengröße von 10 bis 500 nm, besonders bevorzugt von 20 bis 100 nm und insbesondere von 20 bis 60 nm auf. Der Begriff "aromatisches Gerüst mit einem bis drei kondensierten Benzolringen" steht vorzugsweise für Benzol oder Naphthalin;
"Diarylrest" steht vorzugsweise für Diphenyl;
"Carboxyl" steht für COOH oder Salze davon, insbesondere mit Alkalimetallkationen, wie Natrium oder Kalium, oder Ammoniumionen;
"Alkyl" (auch in Wortzusammensetzungen wie "Alkylaryl" oder Al- koxy") steht vorzugsweise für Ci-Cβ-Alkyl, wie Methyl, Ethyl, t-Butyl;
"Alkenyl" steht vorzugsweise für C2-C4-Alkenyl, wie Vinyl oder Al- lyi;
"Aryl" steht vorzugsweise für Phenyl;
"Halogen" steht vorzugsweise für Fluor oder Chlor.
In den Wiederholungseinheiten der Formel II können die beiden
Stickstoffato e eine beliebige Orientierung zueinander einnehmen; d. h. die dargestellte Formel II soll auch das Stellungsisomer Ha
umfassen.
Bevorzugte Wiederholungseinheiten I sind:
worin n unabhängig für 0, 1 oder 2 steht und R unabhängig für Carboxyl, Alkyl, Alkenyl, Aryl, Alkylaryl, Alkoxy, Halogen oder Nitro oder eine Wiederholungseinheiten der Formel I und/oder II umfassende polymere Kette steht.
Bevorzugte Wiederholungseinheiten II sind solche, worin -Ar- unter
und die Einheit
unter
ausgewählt ist, wobei R und n die bereits angegebene Bedeutung haben.
Das Polymerisat enthält vorzugsweise wenigstens 1 Mol%, besonders bevorzugt wenigstens 20 Mol% und insbesondere wenigstens 30 Mol%, bezogen auf die Summe der Wiederholungseinheiten der Formel I und dem Zweifachen der Wiederholungseinheiten der Formel II, Wieder- holungseinheiten der Formeln I.a und/oder I.b,
wobei R' für Carboxyl oder eine Wiederholungseinheiten der Formel I und/oder II umfassende polymere Kette steht. Polymerisate, bei denen wenigstens ein Teil der Reste R' für Carboxyl steht, sind vorteilhafterweise im Anwendungsmedium gut dispergierbar. Außerdem kann an dieser reaktiven Stelle das Polymerisat, gegebenenfalls nur an der Oberfläche der Teilchen, anwendungsorientiert modifiziert werden, z. B. durch Amidierung oder Veresterung.
Das Polymerisat kann linear und/oder verzweigt sein. Es umfasst vorzugsweise keine cyclischen Polymere. Verzweigte. Polymerisate bestehen aus linearen Wiederholungseinheiten und Verzweigungseinheiten, d. h. solchen Wiederholungseinheiten der Formel I oder II, in denen das aromatische Gerüst, das durch A bzw. A1 und A2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, gebildet wird, durch wenigstens eine polymere Kette substituiert ist, die ihrerseits Wiederholungseinheiten der Formel I und/oder II umfasst. Derartige Polymere werden auch als hyperverzweigte Polymere bezeichnet.
Das Polymerisat ist durch Polykondensation von Verbindungen der Formel IV und/oder V und VI
HOOC- Ar COOH VI
worin
X, A, A1, A2 und Ar die bereits angegebene Bedeutung haben,
erhältlich.
Besonders bevorzugte Verbindungen der Formel IV sind 3-Amino-2-hydroxybenzoesäure, 2-Amino-3-hydroxybenzoesäure, 4-Amino-3-hydroxybenzoesäure, 3-Amino-4-hydroxybenzoesäure, 3-Amino-2-mercaptobenzoesäure, 2-Amino-3-mercaptobenzoesäure, 4-Amino-3-mercaptobenzoesäure, 3-Amino-4-mercaptobenzoesäure, 2 , 3-Diaminobenzoesäure, 3 , 4-Diaminobenzoesäure, 3-Amino-2-hydroxy-l-naphthalincarbonsäure, 2-Amino-3-hydroxy-l-naphthalincarbonsäure, 4-Amino-3-hydroxy-l-naphthalincarbonsäure, 3-Amino-4-hydroxy-l-naphthalincarbonsäure, 3-Amino-2-mercapto-1-naphthalincarbonsäure, 2-Amino-3-mercapto-l-naphthalincarbonsäure, 4-Amino-3-mercapto-1-naphthalincarbonsäure, 3-Amino-4-mercapto-1-naphthalinearbonsäure, 2, 3-Diamino-l-naphthalincarbonsäure, 3 , 4-Diamino-l-naphthalincarbonsäure, 3-Amino-4-hydroxy-2-naphthalincarbonsäure, 4-Amino-3-hydroxy-2-naphthalincarbonsäure, 3-Amino-4-mercapto-2-naphthalincarbonsäure, 4-Amino-3-mercapto-2-naphthalincarbonsäure und
3,4-Diamino-2-naphthalincarbonsäure. Ganz besonders bevorzugt sind dabei die Hydroxyverbindungen.
Bevorzugte Polymerisate sind erhältlich, indem man als Verbindung der Formel IV zumindest teilweise eine Verbindung der Formel III
einsetzt.
In der Formel III steht X vorzugsweise für 0. Die beiden Carbo- xylgruppen sind vorzugsweise nicht ortho-ständig zueinander angeordnet. Besonders bevorzugt sind sie meta-ständig zueinander angeordnet. Insbesondere ist dabei eine Carboxylgruppe ortho- ständig zum Rest XH angeordnet. Eine ganz besonders bevorzugte Verbindung der Formel III ist 5-Amino-4-hydroxyisophthalsäure.
In der Polykondensation wird die Verbindung der Formel III vorzugsweise in einer Menge von wenigstens 1 Mol%, besonders bevor- zugt von wenigstens 20 Mol% und insbesondere von wenigstens
30 Mol%, bezogen auf die Gesamtmenge der in der Polykondensation eingesetzten Verbindungen IV, V und VI, eingesetzt.
Bevorzugte Verbindungen der Formel V sind 4, 6-Diaminoresorcin, 3 , 6-Diaminohydrochinon, 4,4'-Diamino-3,3 ' -dihydroxybiphenyl und 3,4'-Diamino-3 ' , 4-dihydroxybiphenyl .
Bevorzugte Verbindungen der Formel VI sind Phthalsäure, Isophthalsäure, Terephthalsäure, wobei Terephthalsaure besonders bevorzugt ist. Fakultativ kann man als Kettenverlängerer Diamine (ausgenommen solche, in denen die Ainogruppen ortho-ständig an einem aromatischen Kern angeordnet sind) und/oder Diole mitverwenden. Diese Verbindungen bewirken die Ausbildung von Ester- oder A idbindun- gen im Polymergerüst. Als Diamine kommen in Betracht: Hydrazin, N,N'-Di(Cι-C6-alkyl)hydrazin, 1,6-Hexandiamin, 1,5-Pentandiamin, 1,4-Butandiamin, 1, 3-Propandiamin, Ethylendiamin, m- oder p-Phe- nylendiamin, 1,5-Naphthyldiamin, 1, 8-Naphthyldiamin, 2,3-Diamino- naphthalin, 3,3 '-Dihalogen-4,4 '-diaminodiphenyle, wie z. B. 3,3 '-Dichlorbenzidin, 4, 4 '-Diaminodiphenyle, die in der 3-, 3'-, 5- und/oder 5 '-Position substituiert sein können, 2,7-Diamino- fluoren, 4,4' -Diaminodiphenylmethan, 4,4' -Diaminodiphenylether, 4,4 '-Diaminodicyclohexylmethan, α,α'-Diaminoxylole, 1,4-Diamino- anthrachinone, 4,4 '-Diaminobibenzyl, 4,4 '-Diaminobenzanilin, Iso- phorondiamin oder l,3-Bis(l-amino-l-methylethyl)benzol.
Als Diole kommen in Betracht: 1,2-Ethandiol, 1,2-Propandiol, 1,3-Propandiol, 1,4-Butandiol, 1, 6-Hexandiol, Diisopropanolamin, N-Methyldiethanolamin, Neopentylglycol, 1, 12-Dodecandiol, Oligo- alkylenglycole mit 2 bis 30 Alkylenoxideinheiten (z. B. Ethylen-, Propylen- und/oder Butylenoxideinheiten) , Polytetrahydrofuran mit 2 bis 20 Tetrahydrofuraneinheiten.
Als Kettenabbruchmittel können einwertige aromatische Carbonsäu- ren oder o-Amino(thio)phenole, o-Phenylendiamine bzw. deren benzanellierte Derivate mitverwendet werden. Als Kettenabbruchmittel eignen sich Benzoesäure, 1-Aminophenol, 1-Aminomercaptobenzol, o-Phenylendiamin, l-Amino-2-naphthol, 2-Amino-l-naphthol, 2-Amino-3-naphthol, 3-Amino-2-naphthol, l-Amino-2-naρhthalin-thiol, 2-Amino-l-naphthalinthiol, 2-Amino-3-naphthalinthiol, 3-Amino-2-naphthalinthiol, 1,2-Diaminonaphthalin und 2,3-Diaminonaphthalin.
Als weitere Kettenabbruchmittel können Monoalkohole und Monoamine verwendet werden, mit denen gegebenenfalls das Polymerisat bzw. die Oberfläche der Partikel anwendungsorientiert modifiziert werden können; wie Ammoniak und primäre und sekundäre Alkylamine wie z. B. Methylamin, Dimethylamin, Ethylamin, Diethylamin, Pro- pylamin, Butylamin, Hexylamin, 2-Ethylhexoxypropylamin, Cyclohe- xylamin, aminierte Alkyl-verkappte Polyalkylenoxide des Typs
H2N-(A0)n-O-Alkyl (wobei n für 2 bis 30, AO für Ethylen-, Propylen- oder n-Butylenoxid, Alkyl vorzugsweise für Cι-C4-Alkyl steht), Dodecylamin, Octadecylamin, Laurylamin, Ethanolamin, Diethanolamin, Anilin, 1-Naphthylamin, 2-Naphthylamin, Morpholin, Isopropanolamin sowie die Alkohole n-Butylglycol, Butanol, Penta- nol, Hexanol, 2-Ethylhexanol, Octanol, Decanol, Dodecanol, Octa- decanol, Alkyl-verkappte Polyalkylenoxide des Typs HO-(AO)n-0-Al- kyl (wobei n für 2 bis 30, AO für Ethylen-, Propylen- oder Buty- lenoxid, Alkyl vorzugsweise für Cι-C4-Alkyl steht), Benzylalkohol, Phenol, substituierte Phenole.
5 Die Summe von Kettenverlangerern und Kettenabbruchmitteln beträgt vorzugsweise höchstens 50 Mol%, bezogen auf die Summe der Verbindungen der Formel IV, V, VI sowie Kettenverlangerern und Kettenabbruchmitteln. Die Kettenverlängerer werden insbesondere in einer Menge von höchstens 15 Mol%, besonders bevorzugt höchstens 10 10 Mol%, verwendet.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines UV-Absorbers durch Polykondensation von Verbindungen der Formel IV und/oder V und/oder VI 15
25
HOOC- Ar- COOH VI
worin
30 X, A, A1, A2 und Ar die bereits angegebene Bedeutung haben, und anschließende Zerteilung des erhaltenen Polymerisats.
Vorzugsweise verwendet man als Verbindungen der Formel IV zumindest teilweise eine Verbindung der Formel III 35
Bezüglich der bevorzugt eingesetzten Verbindungen III, IV, V und VI sowie der Möglichkeit der Mitverwendung von Kettenverlangerern 45 und Kettenabbruchmitteln gilt das zuvor Gesagte. Die Polykondensation erfolgt vorzugsweise in Anwesenheit von wasserentziehenden Mitteln, wie Polyphosphorsäure gegebenenfalls in Gegenwart von Phosphorpentoxid, Phosphorsäure, Schwefelsäure, Thionylchlorid und Carbodiimiden. Besonders bevorzugt verwendet man Polyphosphorsäure in Gegenwart von Phosphorpentoxid.
Die Polykondensation kann in Lösungsmitteln oder lösungsmittelfrei erfolgen. Verwendet man Lösungsmittel, so sind diese vorzugsweise unter hochsiedenden Lösungsmitteln, wie Dimethylforma- mid (DMF) oder N-Methylpyrrolid-2-on (NMP) ausgewählt. Verwendet man Polyphosphorsäure als wasserentziehendes Mittel, so wird vorzugsweise lösungsmittelfrei gearbeitet.
Die Polykondensation wird vorzugsweise bei einer Temperatur im Bereich von 150 bis 250 °C, besonders bevorzugt von 150 bis 220 °C, insbesondere von 170 bis 200 °C, durchgeführt.
Vorzugsweise erfolgt die Polykondensation unter einer Inertgasatmosphäre, beispielsweise unter einer Stickstoff- oder Argon-At- mosphäre.
Die Gewinnung des Polykondensationsprodukts erfolgt in üblicher Weise, beispielsweise durch Ausfällen des Reaktionsprodukts in einem wässrigen Medium und anschließendes Trocknen oder durch Entfernen des Lösungsmittels und des wasserentziehenden Mittels, beispielsweise durch Dekantieren oder durch Destillation.
Das im Wesentlichen wasser- und lösungsmittelfreie Polykondensa- tionsprodukt ist in der Regel nicht unzersetzt schmelzbar. Der Zersetzungspunkt beträgt wenigstens 350 °C, besonders bevorzugt wenigstens 450 °C und insbesondere wenigstens 500 °C.
Die anschließende Zerteilung des Polykondensationsprodukts erfolgt nach üblichen, dem Fachmann bekannten Verfahren, beispiels- weise durch Mahlung in einer Perlmühle, Schwingmühle, Planetenmühle oder in einem Kneter. Die Zerteilung kann auch zugleich mit der Dispergierung im Anwendungsmedium erfolgen. Man kann aber auch ein Konzentrat oder einen Masterbatch herstellen, indem man das Polymerisat in einer geringen Menge des Anwendungsmediums, einer seiner Komponenten oder einem damit kompatiblen Medium dis- pergiert .
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfindungsgemäßen UV-Absorbers zur Stabilisierung von unbelebten organischen Materialien gegen die Einwirkung von
Licht. Organische Materialien, die auf diese Weise stabilisiert werden können, sind z. B. Formmassen, wie Polyolefine, Polyester, Polyamide, Polyurethane, Polycarbonate oder schlagzäh modifizierte Polystyrole wie ABS und deren Gemische sowie Anstrichmittelfilme, wie Lacküberzüge, insbesondere Klarlacke. Der erfindungsgemäße UV-Absorber wird hierzu im jeweiligen Anwendungsme- dium fein verteilt, wobei die Dispergiermethode durch das jeweilige Anwendungsmedium bestimmt wird. Zur Stabilisierung von Anstrichmittelfilmen wird der UV-Stabilisator in die Anstrichmittelformulierung eingearbeitet, die nach dem Auftragen, z. B. durch Streichen, Sprühen oder Druckverfahren, und Trocknen und/ oder Härten den Anstrichmittelfilm liefert.
Das Einarbeiten des UV-Absorbers in das Anwendungsmedium erfolgt beispielsweise durch Schütteln, Schlagen, Rühren, turbulentes Mischen, Schwingungen und Kavitation, z. B. mittels Ultraschall und anderer üblicher Dispergiertechniken. Hierzu verwendet man dynamische oder statische Systeme, z. B. Schüttelaggregate, Rührkessel, Rührwerksmühlen, Walzenstühle, Rotor-Stator-Systeme, Zahn- kranzdispergiermaschinen, Ultraschallhomogenisatoren, Strahldis- pergatoren, Scherspaltmixer und andere Systeme, die dem Fachmann bekannt sind.
Bei der Verwendung des erfindungsgemäßen UV-Stabilisators in Formmassen erfolgt die Einarbeitung des Stabilisators bzw. eines Konzentrates oder Masterbatches in die in polymerer Form vorlie- gende Formmasse üblicherweise durch Einwalzen, vorzugsweise bei erhöhten Temperaturen.
Alternativ kann der erfindungsgemäße UV-Absorber in Formmassen eingearbeitet werden, indem man ihn vor der Polymerisation der der Formmasse zugrunde liegenden Monomeren in diesen gemäß den oben genannten Dispergierverfahren verteilt und das Gemisch anschließend polymerisiert.
Der erfindungsgemäße UV-Stabilisator kann in gängigen Anwendungs- medien gut dispergiert werden, wobei er vorteilhafterweise einfallendes Licht nicht streut. Zudem ist er in den Anwendungsmedien nicht löslich, was sich in einem positiven Migrationsverhalten niederschlägt, d. h. der Stabilisator wandert weder in noch aus dem Anwendungsmedium heraus. Dies sichert wiederum einen lan- ganhaltenden UV-Schutz der mit dem erfindungsgemäßen UV-Stabilisator versehenen Anwendungsmedien und deren Verarbeitungsprodukten.
Die Erfindung betrifft außerdem die Verwendung des erfindungsge- mäßen UV-Absorbers als Lichtschutzfaktor in kosmetischen Formulierungen, wie Sonnenschutzmitteln, Lippenstiften, Sunblockern und dergleichen. Die kosmetischen Formulierungen enthalten den UV-Absorber und gegebenenfalls kosmetisch aktive Wirkstoffe in einem kosmetisch akzeptablen Träger.
Der Träger ist z. B. unter Wasser, wassermischbaren Flüssigkei- ten, hydrophoben Komponenten und Mischungen ausgewählt. Dazu zählen Wasser, Cι-C4-Alkohole, wie Ethanol und Isopropanol, Fette, Wachse, Fettsäuren, Fettalkohole, Öle, Öl-in-Wasser- und Wasserin-Öl-Emulsionen, Cremes und Pasten, Lippenschutzstiftmassen oder fettfreie Gele.
Als Emulsionen kommen u. a. auch O/W-Makroemulsionen, O/W-Mikro- emulsionen oder O/W/O-Emulsionen in Frage, wobei die Emulsionen durch Phaseninversionstechnologie, z. B. gemäß DE-A-197 26 121 erhältlich sind.
Die hydrophobe Komponente (Lipidphase) kann vorteilhaft gewählt werden aus folgender Substanzgruppe:
Mineralöle, Mineralwachse - Öle, wie Triglyceride der Caprin- oder der Caprylsäure, vorzugsweise aber Rizinusöl;
Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z. B. Isopropanol, Propylenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren; Alkylbenzoate;
Silikonöle wie Dimethylpolysiloxane, Diethylpolysiloxane, Di- phenylpolysiloxane sowie Mischformen daraus.
Die Ölphase wird vorteilhaft gewählt aus der Gruppe der Ester aus gesätttigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C-Atomen aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unver- zweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopro- pyloleat, n-Butylstearat, N-Hexyllaurat, N-Decycloleat, Isooctyl- stearat, Isononylstearat, Isononylisononanoal, 2-Ethylhexylpalmi- tat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-0ctyldodecylpal- mitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-0ctyldodecyl- palmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, z. B. Jojobaöl. Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silikonöle, der Dialkylether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole, sowie der Fettsauretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsauretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, z. B. Olivenöl, Sonnenblumenöl, Sojaöl, Erdnussöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Palmkernöl und dergleichen mehr.
Die wässrige Phase der erfindungsgemäßen Zubereitung enthält ge- gebenenfalls vorteilhaft:
Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder -mono- butylether, Propylenglykolmonomethyl, -monoethyl- oder -mono- butylether, Diethylenglykolmonomethyl-, oder -monoethylether und analoge Produkte.
Die kosmetischen Formulierungen können kosmetische Hilfsstoffe enthalten. Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z. B. Co-Emulgatoren, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z. B. Magnesiumsulfat), Insektenrepellentien und pH-Regulatoren. Als Co-Emulgatoren kommen vorzugsweise bekannte W/0- und daneben auch O/W-Emulgatoren wie etwa Polyglyce- rinester, Sorbitanester oder teilveresterte Glyceride in Betracht. Als Stabilisatoren können Metallsalze von Fettsäuren wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt wer- den. Geeignete Verdickungsmittel sind beispielsweise vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxy- methylcellulose und Hydroxyethylcellulose, ferner Fettalkohole, Monoglyceride und Fettsäuren, Polyacrylate, Polyvinylalkohol und Polyvinylpyrrolidon. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydro- colloide wie Chitosan, mikrokristallines Chitosan oder quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinyl- acetat-Copolymerisate, Polymere der Acrylsaurereihe, quaternare Cellulose-Derivate und ähnliche Verbindungen. Als Konservierungsmittel eignen sich beispielsweise Formaldehydlösung, p-Hydroxy- benzoat oder Sorbinsäure. Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuren und Fettsäuremonoglycolester in Betracht. Als Farbstoffe können die für kosmetische Zwecke geeigneten und zuge- lassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Die kosmetische Formulierung kann zusätzlich noch wenigstens ein Insektenrepellent enthalten. Dazu gehören z. B. 2-Ethyl-l,3-he- xandiol, 2-Ethyl-2,3-hexandiol, 4,5-bis-(2-butylen)-tetrahy- dro-2-furaldehyd, Dimethylphthalat, Di-n-propyl-isocin-chomeronat und N,N,-Diethyl-m-toluolamid.
Ein zusätzlicher Gehalt an Antioxidantien ist im Allgemeinen bevorzugt. Erfindungsgemäß können als günstige Antioxidantien alle für kosmetische und/oder dermatologische Anwendungen geeigneten oder gebräuchlichen Antioxidantien verwendet werden.
Vorteilhafterweise werden die Antioxidantien gewählt aus der Gruppe, bestehend aus Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure) , Aurothioglucose, Propylthiouracil und andere Thiole (z. B. Thiorodoxin, Gluta- thion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl-, und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodi- propionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximine, Buthionin- sulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis μmol/kg), ferner
(Metall)-Chelatoren (z. B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin) , α-Hydroxysäuren (z. B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Biliburin, Biliverdin, EDTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z. B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und deren Derivate (z. B. Ascorbyl- palmitat, Mg-Ascorbylphosphat, Ascorbylacetat) , Tocopherol und Derivate (z. B. Vitamin-E-Acetat, Tocotrienol) , Vitamin A und Derivate (Vitamin-A-Palmitat) sowie Koniferylbenzoat des Benzoe- harzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferula- säure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butyl- hydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaret- säure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z. B. ZnO, ZnS04), Selen und dessen Derivate (z. B. Selenmethionin) , Stilbene und deren Derivate (z. B. Stilbenoxid, Trans-Stilbenoxid) .
Die folgenden Beispiele sollen der Erläuterung der Erfindung dienen, ohne sie jedoch dabei einzuschränken.
Fig. 1 zeigt die UV/VIS-Transmissionsspektren von Polyurethan- Lackfilmen im Wellenlängenbereich von 340 bis 500 nm, die erfindungsgemäße Polykondensationsprodukte bzw. einen handelsüblichen UV-Absorber auf der Basis von Zinkoxid enthalten.
1. Herstellungsbeispiele
5-Amino-4-hydroxyisophthalsäure kann nach dem von S.E. Hunt, J.I. Jones, A.S. Lindsey, J. Chem. Soc. 1956, 3099-3107 beschriebenen Verfahren hergestellt werden.
1.1. Polykondensation von 5-Amino-4-hydroxyisophthalsäure
Man erwärmte 550 g Polyphosphorsäure auf 180 °C und fügte langsam 20,0 g 5-Amino-4-hydroxyisophthalsäure hinzu. Das dunkelgrüne Ge- misch wurde 24 h bei dieser Temperatur gerührt. Anschließend wurde das Reaktionsgemisch auf 140 °C abgekühlt und langsam auf 1,5 1 Eiswasser gegeben. Die dabei gebildete schwarze Suspension wurde noch 30 min gerührt und schließlich filtriert. Der Filterkuchen wurde so lange mit Wasser nachgewaschen, bis das farblose ablaufende Waschwasser eine Leitfähigkeit von weniger als 10 μS aufwies .
1.2 Polykondensation von 5-Amino-4-hydroxyisophthalsäure und o-Aminophenol
Man erwärmte 550 g Polyphosphorsäure auf 180 °C und fügte bei dieser Temperatur langsam ein Gemisch aus 10,0 g (0,05 Mol) 5-Amino-4-hydroxyisophthalsäure und 5,5 g (0,05 Mol) o-Aminophenol hinzu und rührte das dunkelgrüne Gemisch 24 h bei dieser Tem- peratur. Anschließend wurde das Reaktionsgemisch auf 140 °C abgekühlt und langsam auf 1,5 1 Eiswasser gegeben. Die dabei gebildete schwarze Suspension wurde noch 30 min gerührt und schließ- lieh filtriert. Der Filterkuchen wurde so lange mit Wasser nachgewaschen, bis das farblose ablaufende Waschwasser eine Leitfähigkeit von weniger als 10 μS aufwies.
1.3 Polykondensation von 4-Amino-3-hydroxybenzoesäure
Die Herstellung erfolgte analog zu Beispiel 1.1.
1.4 Polykondensation von 5-Amino-4-hydroxyisophthalsäure und 3-Amino-4-hydroxybenzoesäure
Die Herstellung erfolgte analog zu Beispiel 1.2.
1.5 Polykondensation von 5-Amino-4-hydroxyisophthalsäure und 4-Amino-3-hydroxybenzoesäure
Die Herstellung erfolgte analog zu Beispiel 1.2.
In der nachstehenden Tabelle sind die eingesetzten Monomere, Aus- beuten, die Festkörpergehalte der Filterkuchen und die Schmelzpunkte der Polykondensationsprodukte (Bestimmung mittels Diffe- rentialthermoanalyse) zusammengefasst.
AHIT = 5-Amino-4-hydroxyisophthalsäure o-AP = ortho-Aminophenol 4A3HBS = 4-Amino-3-hydroxybenzoesäure 3A4HBS = 3-Amino-4-hydroxybenzoesäure n.b. = nicht bestimmt
2. Anwendungsbeispiele
2.1 Stabilisierung von Lacken
Eine 100 mg Polykondensationsprodukt entsprechende Menge Filterkuchen der Beispiel 1.1 bis 1.5 (Festkörpergehalt des Filterkuchens siehe Tabelle) wurde zusammen mit 5 g eines Wasserbasis- lacks in einer 40 ml Glasflasche mit 10 g SAZ-Kugeln (Siliciumo- xid-Aluminiumoxid-Zirconoxid-Kugeln) 16 h in einem Skandex-Schüt- telaggregat geschüttelt. Anschließend wurde die dabei erhaltene Paste in weiteren 5 g des Wasserbasislacks durch 5-minütiges 5 Schütteln in einem Skandex-Schüttelaggregat dispergiert. Der verwendete Wasserbasislack wies einen Feststoffgehalt von 21 Gew.-% auf und enthielt eine Polyurethandispersion und einen Melaminver- netzer. Die UV-Stabilisator-Lack-Dispersion wurde mit einer Rakel auf eine Acetatfolie aufgetragen. Die dabei erhaltene beschich-
10 tete Folie wurde anschließend 30 min abgelüftet und schließlich 30 min bei 130 °C thermisch behandelt. Die Schichtdicke der trockenen Beschichtung betrug etwa 5 μm. Die beschichtete Acetatfolie wies keine mit dem Auge sichtbaren Agglomerate auf. Außerdem wurde einfallendes Licht nicht gestreut. Die UV/VIS-Spektren in
15 Fig. 1 zeigen, dass die derart beschichtete Folie UV-A-Strahlung (unterhalb 360 nm) zu mehr als 80 % absorbierte, während sie für Licht im sichtbaren Spektralbereich praktisch durchlässig war. In einem bei tiefer Temperatur angefertigten TEM-Schnitt (Transmissionselektronenmikroskopie) der so hergestellten Filme sind etwa
20 50 nm große Partikel zu erkennen.
Zum Vergleich wurde das obige Vorgehen unter Verwendung von 0,1 g UV-Absorber auf der Basis von Zinkoxid (BET-Oberfläche 16 m2/g, Primärteilchengröße (TEM) 20 bis 100 nm) wiederholt. Die so er-
25 haltene Folie absorbierte im gleichen Spektralbereich, jedoch wurde einfallendes Licht für das Auge sichtbar stärker gestreut als bei Verwendung der erfindungsgemäßen Polykondensationspro- dukte. Diese Streuung war besonders vor einem schwarzen Hintergrund zu erkennen, welcher bei Verwendung des Zinkoxids weißer
30 erschien.
2.2. Untersuchung des Migrationsverhaltens in Polyethylen
Aus 69,3 g eines LDPE (Fa. Basell, MFI=0,5 d=0,918 g/cm3) und 35 0,07 g (Trockengewicht) des Polykondensationsproduktes aus 1.1 wurde auf einer Kalanderwalze (Collin 1150) bei 160 °C und 200 Umdrehungen 6 min lang ein Walzfell mit einer Dicke von 400 μm hergestellt. Dieses vordispergierte Material wurde anschließend 7 x bei Raumtemperatur auf einem Kalandergerät (Fa. Schwabentherm) 40 dispergiert. Danach wurde es auf der Kalanderwalze (Collin 1150) bei 160 °C und 100 Umdrehungen zu einem Walzfell der Dicke 400 μm verwalzt. Schließlich wurde das Walzfell bei 180 °C mit einer Dampfpresse (Fa. Wickert) zwischen zwei Pressplatten auf 1 mm Stärke gepresst. Die erhaltene Folie wurde 72 h bei 50 °C gelagert 45 und anschließend mit einem Stofftuch abgewischt. Die abgewischte Folie wurde mittels UV/VIS-Spektroskopie untersucht und mit UV/VIS-Spektren von Folien verglichen, die nicht thermisch behan- delt wurden. Der Vergleich zeigt, dass sich die UV/VIS-Spektren der thermisch behandelten und unbehandelten Folien nicht unterschieden, d. h. der UV-Stabilisator migrierte nicht aus der Folie heraus .
Das obige Vorgehen wurde unter Verwendung von 0,07 g des Polykon- densationsproduktes aus 1.2 wiederholt. Auch hier zeigten die UV/VIS-Spektren der thermisch behandelten Folien keinen Unterschied zu den UV/VIS-Spektren von unbehandelten Folien. Auch die- ser UV-Stabilisator migrierte also nicht aus der Polyethylenfo- lie.
2.3 Verwendung der Polykondensationsprodukte in einer kosmetischen Formulierung
8,00 g Dibutyladipat (Cetiol b, Fa. Cognis), 8,00 g Cι25-Alkyl- benzoat, 12,00 g Cocogylcerid (Myritol 331, Fa. CA Erbslöh), 1,00g Natrium-Cetearylsulfat (Lanette E, Fa. Cognis) und 4,00 g Laurylglucosid, (Eumulgin VL75, Fa. Cognis), 2,00 g Cetearylalco- hol (Lanette 0) und 1,00 g Vitamin E-Acetate (BASF) und 3,00 g Ethylhexyltriazon (Uvinul T150 BASF) wurden bei 80 °C homogenisiert. Danach wurden bei dieser Temperatur 50,6 g Filterkuchen aus Beispiel 1.1 (entsprechend 4,0 g Polykondensationsprodukt, 46,6g H20), 42,1 g Filterkuchen aus Beispiel 1.2 (4,0 g Polykon- densationsprodukt, 38,1 g H20), 47,6 g Filterkuchen aus Beispiel 1.3 (4,0 g Polykondensationsprodukt, 43,6 g H20), 44,9 g Filterkuchen aus Beispiel 1.4 (4,0 g Polykondensationsprodukt, 40,9 g H20) 50,0 g Filterkuchen aus Beispiel 1.5 (4,0g Polykondensationsprodukt, 46,0 g H20) bzw. 4,0 g eines UV-Absorbers auf der Basis von Zinkoxid ( BET-Oberflache 16 m2/g, Primärteilchengröße (TEM) 20 bis 100 nm) zugesetzt und mit einem Ultrathurax-Rührstab 3 Minuten dispergiert .
Zu dieser Dispersion wurde eine 80 °C warme Dispersion gegeben, welche durch Homogenisieren von 3,00 g Glycerin, 0,05 g EDTA-Na- triumsalz, 0,20 g Allantoin, 0,30 g Xanthan Gummi (Keltrol, Fa. Kleco), 1,50 g Magnesiumaluminiumsilikat (Veegum Ultra, Fa. Van- derbilt) und einer Menge destilliertem Wasser, die bei dem Zinkoxid-UV-Absorber 50,45 g betrug und bei den erfindungsgemäßen Po- lykondensationsprodukten um den Wassergehalt der Filterkuchen (siehe oben) verringert wurde, bei 80 oC erhalten wurde.
Die vereinigten Dispersionen wurden auf 40 °C abgekühlt und mit 0,50 g Zitronensäure, gewünschtenfalls Duftstoffen und 1,00 g ei- nes Gemisches aus Phenoxyethanol und Alkylparabenen (Phenonip, Fa. Nipa) versetzt. Die erhaltene Formulierung kann als Sonnencreme verwendet werden. Die Formulierungen, welche die erfindungsgemäßen Polykondensati- onsprodukte enthalten, weisen bei gleicher Schichtdicke einen ähnliches Absorptionsspektrum auf, sind jedoch weniger weiß streuend als die Zinkoxidenthaltende Formulierung, was insbesondere bei dunkel pigmentierter Haut ästhetische Vorteile bringt.

Claims

Patentansprüche
UV-Absorber, umfassend ein fein zerteiltes Polymerisat mit einer volumenmittleren Teilchengröße von 5 bis 1000 nm, das Wiederholungseinheiten der Formel I und/oder II enthält
worin
X für NH, 0 oder S steht,
A oder A1 und A2 gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, ein aromatisches Gerüst mit einem bis drei kondensierten Benzolringen oder ein Diarylgerüst bilden, das einen bis drei unter Carboxyl, Alkyl, Alkenyl, Aryl, Alkylaryl, Alkoxy, Halogen oder Nitro ausge- wählte Substituenten oder eine Wiederholungseinheiten der Formel I und/oder II umfassende polymere Kette tragen kann,
Ar für einen zweiwertigen aromatischen Rest mit einem bis drei kondensierten Benzolringen oder einen Diarylrest steht, das einen bis drei unter Carboxyl, Alkyl, Alkenyl, Aryl, Alkylaryl, Alkoxy, Halogen oder Nitro ausgewählte Substituenten tragen kann.
2. UV-Absorber nach Anspruch 1, wobei das Polymerisat durch Polykondensation von Verbindungen der Formel IV und gegebenenfalls V und VI, erhältlich ist,
HOOC Ar COOH VI
worin
X, A, A1, A2 und Ar wie in Anspruch 1 definiert sind, und als Verbindung der Formel IV zumindest teilweise eine Verbindung der Formel III
verwendet wird.
UV-Absorber nach Anspruch 2, wobei es sich bei der Verbindung der Formel III um 5-Amino-4-hydroxy-isophthalsäure handelt.
UV-Absorber nach Anspruch 2 oder 3, wobei die Verbindung der Formel III in einer Menge von wenigstens 1 Mol%, bezogen auf die Gesamtmenge der Verbindungen IV, V und VI, eingesetzt wird.
UV-Absorber nach einem der Ansprüche 2 bis 4, wobei man als Kettenverlängerer Diamine und/oder Diole und/oder als Kettenabbruchmittel einwertige aromatische Carbonsäuren, o-Amino(thio)phenole, o-Phenylendiamine, einwertige Alkohole und/oder Monoamine mitverwendet.
Verfahren zur Herstellung eines UV-Absorbers nach Anspruch 1 durch Polykondensation von Verbindungen der Formel IV und/ oder V und/oder VI
HOOC Ar COOH VI
worin
X, A, A1, A2 und Ar wie in Anspruch 1 definiert sind,
und anschließende Zerteilung des erhaltenen Polymerisats auf eine volumenmittlere Teilchengröße von 5 bis 1000 nm.
7. Verfahren nach Anspruch 6, wobei als Verbindung der Formel IV zumindest teilweise eine Verbindung der Formel III
verwendet wird.
8. Verwendung des UV-Absorbers nach einem der Ansprüche 1 bis 5 zur Stabilisierung von unbelebten organischen Materialien gegen die Einwirkung von Licht.
9. Verwendung nach Anspruch 8, wobei es sich bei dem unbelebten organischen Material um eine Formmasse handelt.
10. Verwendung nach Anspruch 9, wobei es sich bei der Formmasse um Polyolefine, Polyester, Polyamide, Polyurethane, Polycar- bonate, schlagzäh modifizierte Polystyrole oder Gemische davon handelt.
11. Verwendung nach Anspruch 8, wobei es sich bei dem unbelebten organischen Material um einen Anstrichmittelfilm handelt.
12. Verwendung des UV-Absorbers nach einem der Ansprüche 1 bis 5 als Lichtschutzfaktor in kosmetischen Formulierungen.
13. Anstrichmittelzubereitung, enthaltend einen UV-Absorber nach einem der Ansprüche 1 bis 5.
14. Kosmetische Formulierung, enthaltend einen UV-Absorber nach einem der Ansprüche 1 bis 5 und gegebenenfalls kosmetisch aktive Wirkstoffe in einem kosmetisch akzeptablen Träger.
15. Formmasse, enthaltend einen UV-Absorber nach einem der Ansprüche 1 bis 5.
EP03745798A 2002-04-10 2003-04-09 Nanopartikul rer organischer uv-absorber Withdrawn EP1499659A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10215752 2002-04-10
DE10215752A DE10215752A1 (de) 2002-04-10 2002-04-10 Nanopartikulärer organischer UV-Absorber
PCT/EP2003/003692 WO2003085033A1 (de) 2002-04-10 2003-04-09 Nanopartikulärer organischer uv-absorber

Publications (1)

Publication Number Publication Date
EP1499659A1 true EP1499659A1 (de) 2005-01-26

Family

ID=28684901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03745798A Withdrawn EP1499659A1 (de) 2002-04-10 2003-04-09 Nanopartikul rer organischer uv-absorber

Country Status (8)

Country Link
US (1) US20060022177A1 (de)
EP (1) EP1499659A1 (de)
JP (1) JP2005526881A (de)
CN (1) CN1668673A (de)
AU (1) AU2003226795A1 (de)
BR (1) BR0309067A (de)
DE (1) DE10215752A1 (de)
WO (1) WO2003085033A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1910221B (zh) * 2004-01-20 2010-12-08 旭化成电子材料株式会社 树脂和树脂组合物
JP2006176495A (ja) * 2004-11-26 2006-07-06 Sumitomo Bakelite Co Ltd 芳香族ジカルボン酸及びその酸塩化物誘導体
WO2009022736A1 (ja) * 2007-08-16 2009-02-19 Fujifilm Corporation ヘテロ環化合物、紫外線吸収剤及びこれを含む組成物
CN101220164B (zh) * 2007-12-06 2010-06-02 上海交通大学 马来酸酐改性聚苯并咪唑交联膜的制备方法
WO2010072768A1 (de) * 2008-12-23 2010-07-01 Basf Se Uv-absorber agglomerate
TW201533086A (zh) * 2013-10-23 2015-09-01 Ajinomoto Kk 聚酯或聚醯胺之製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2895948A (en) * 1955-10-28 1959-07-21 Du Pont Polybenzimidazoles
US3230196A (en) * 1962-08-06 1966-01-18 Borg Warner Thermally stable polybenzoxazoles
US3681297A (en) * 1970-11-10 1972-08-01 Gaetano Francis D Alelio Synthesis of polybenzothiazolines and polybenzothiazoles by reacting a dialdehyde with an aromatic bis-mercaptoamine
EP1324885A1 (de) * 2000-10-02 2003-07-09 Kimberly-Clark Worldwide, Inc. Nanopartikel enthaltendes aufzeichnungsmedium und verfahren zu dessen herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03085033A1 *

Also Published As

Publication number Publication date
AU2003226795A1 (en) 2003-10-20
WO2003085033A1 (de) 2003-10-16
JP2005526881A (ja) 2005-09-08
BR0309067A (pt) 2005-02-01
US20060022177A1 (en) 2006-02-02
CN1668673A (zh) 2005-09-14
DE10215752A1 (de) 2003-10-30

Similar Documents

Publication Publication Date Title
EP0898955B1 (de) Sonnenschutzmittel mit Ultraspektralschutz
EP1796619B1 (de) O/w-emulsion mit anorganischen uv-lichtschutzfilterpigmenten und alkylsufat
EP0683661B1 (de) Kosmetische und dermatologische lichtschutzformulierungen mit einem gehalt an anorganischen mikropigmenten
DE69907454T2 (de) Sonnenschutzformulierungen
DE3629241A1 (de) Uv-strahlung-filtrierende polyaminoamide, verfahren zu deren herstellung und verwendung derselben als haut- und haarschutz
EP1588693B1 (de) Verbesserte Lösungsvermittler/Lösungsmittel für organische UV-Filter
EP1743002A2 (de) Mit polyasparaginsäure oberflächenmodifizierte metalloxide, verfahren zur herstellung und deren verwendung in kosmetischen zubereitungen
DE19824972A1 (de) Verwendung von cholesterisch-flüssigkristallinen Zusammensetzungen als UV-Filter in kosmetischen und pharmazeutischen Zubereitungen
DE102004020767A1 (de) Oberflächenmodifizierte Metalloxide, Verfahren zur Herstellung und deren Verwendung in kosmetischen Zubereitungen
WO2006094944A1 (de) Kosmetische und dermatologische zubereitungen, enthaltend transparente oberflächenbeschichtete titandioxidpartikel
WO2004111136A1 (de) Nanopartikuläres redispergierbares zinkoxidpulver iii
DE112018004877T5 (de) Anorganische sonnenschutzmittel mit höherem uv-strahlungsschutz
EP1030649B1 (de) Lichtstabile kosmetische formulierung enthaltend butylmethoxydibenzoylmethan
EP1499659A1 (de) Nanopartikul rer organischer uv-absorber
EP2034949B2 (de) Verfahren zur erhöhung des lichtschutzfaktors einer kosmetischen und/ oder dermatologischen zubereitung
WO2005025529A1 (de) Pulverförmige zubereitungen, enthaltend diethylamino-hydroxybenzoyl-hexyl-benzoat
WO2004052327A2 (de) Nanopartikuläres redispergierbares zinkoxidpulver
EP0786246B1 (de) Kosmetische und dermatologische Lichtschutzformulierungen mit einem Gehalt an Triazinderivaten und Polyglyceryl-2-Polyhydroxystearat
DE10027950A1 (de) Wäßrige Dispersionen nanopartikulärer Lichtschutzfilter
WO2005025521A2 (de) Pulverförmiger zubereitungen, enthaltend eine mischung von 2,4,6-trianilino-p-(carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin und diethylamino-hydroxybenzoyl-hexyl-benzoat
DE102018107718A1 (de) Verfahren zur Herstellung einer Ausgangsformulierung für eine dermatologische Lichtschutz-Zubereitung und zur Herstellung einer dermatologischen Lichtschutz-Zubereitung
WO2002038121A1 (de) Kosmetische zusammensetzung zur behandlung, zur pflege oder zum schutz der haut
CH684387A5 (de) Kosmetisches, beziehungsweise pharmazeutisches Präparat zur topischen Anwendung auf der Haut und den Schleimhäuten.
WO1998023253A1 (de) Verwendung von 3-(n-butylacetamino)propionsäureethylester
EP1102576B1 (de) pH-STABILISIERTES ZnO IN SONNENSCHUTZFORMULIERUNGEN

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GLASER, ALBAN

Inventor name: KOENEMANN, MARTIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060328