EP1498654B1 - Dispositif servant à traiter des pièces - Google Patents

Dispositif servant à traiter des pièces Download PDF

Info

Publication number
EP1498654B1
EP1498654B1 EP04012003A EP04012003A EP1498654B1 EP 1498654 B1 EP1498654 B1 EP 1498654B1 EP 04012003 A EP04012003 A EP 04012003A EP 04012003 A EP04012003 A EP 04012003A EP 1498654 B1 EP1498654 B1 EP 1498654B1
Authority
EP
European Patent Office
Prior art keywords
fluid
duct
spigot
rotor
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04012003A
Other languages
German (de)
English (en)
Other versions
EP1498654A1 (fr
Inventor
Gregor Arnold
Andreas LÜTTRINGHAUS-HENKEL
Jürgen Dr. Klein
Stephan Dr. Behle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of EP1498654A1 publication Critical patent/EP1498654A1/fr
Application granted granted Critical
Publication of EP1498654B1 publication Critical patent/EP1498654B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/04Joints or fittings for double-walled or multi-channel pipes or pipe assemblies allowing adjustment or movement
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Definitions

  • the invention relates to a device for the treatment of workpieces with fluids in general and for the coating of hollow bodies in particular.
  • Plastics in particular transparent plastics, are becoming increasingly important and are replacing glass as the preferred material in many areas.
  • plastic bottles can also have some disadvantages over glass bottles, e.g. the plastics used such as PET are not sufficiently gas impermeable, so that in particular in carbonated drinks, the shelf life is lower than in glass bottles, unless special efforts are made.
  • the plastic bottles are provided with a barrier layer from the inside and / or outside by means of PICVD methods, which leads to an increase in the shelf life.
  • Typical required sample throughputs are in the range of 10,000 bottles per hour.
  • the invention defined in the above-mentioned document assumes that the weight and volume of the pumps prevents them from being taken along on the carousel. Therefore, the pumps are stationary and a rotating port or manifold is used to connect the pumps to the stations.
  • the 20 stations are divided into two groups, each group being associated with an independent and equivalent pressure source and the groups being differentiated according to which pumps they are connected to.
  • the rotating distributor it is determined at which times of the rotational movement of the conveyor carousel a certain pump is in communication with a particular treatment station, the distributor for this purpose includes a rotating ring with 20 openings and a fixed ring with 3 slots for the two groups ,
  • the stationary arrangement of the pumps is disadvantageous, since the paths from the stations to the pump are relatively long and therefore the pumping power is reduced.
  • dusts or chipped coating fragments can contaminate the evacuation lines and the manifold, which affects the tightness and leads to increased maintenance.
  • EP-A-1 070 900 a connecting device for connecting at least one stationary fluid line with at least one relatively movable fluid line, which can perform a circulation movement about a rotation axis.
  • the connecting device is used in particular for lamp production.
  • At least one annular channel is provided between a stationary part and a rotary part coaxial with the axis of rotation, in which a stationary channel provided in the stationary part Connecting lead and a rotating part provided in the circumferential connection lead.
  • the invention therefore has the task of providing a device for the treatment of workpieces, which avoids the disadvantages of known devices or at least reduces.
  • Another object of the invention is to provide a device for the treatment of workpieces, which operates reliably and low maintenance.
  • Yet another object of the invention is to provide a device for the treatment of workpieces, which is flexibly adaptable to the needs of the user or the desired process sequence.
  • Yet another object of the invention is to provide an apparatus for treating workpieces which permits efficient evacuation.
  • an apparatus for the treatment of workpieces in particular for the plasma coating of hollow bodies under fluid loading, which comprises at least one treatment device, preferably a plurality of treatment devices for receiving at least one workpiece.
  • the workpieces are internally and / or externally coated by means of a PICVD (Plasma Impulse Chemical Vapor Deposition) process.
  • the treatment devices are mounted on a rotor or conveyor carousel and rotate in operation about the rotor axis, wherein preferably a treatment cycle with a rotor rotation of 360 ° is correlated.
  • the device further comprises a fluid rotary feedthrough for supplying at least one fluid to the rotor and / or for discharging at least one fluid from the rotor.
  • the treatment devices are evacuated successively in several stages by means of vacuum pumps, wherein in particular at least a part of the vacuum pumps are stationary, i. is arranged outside the rotor. Therefore, e.g. Vacuum channels or lines led to the rotor, which is accomplished via the fluid rotary feedthrough.
  • the treatment devices are supplied with fluids or process gases, e.g. to carry out a plasma coating of the workpieces, in particular plastic beverage bottles.
  • These fluids are also preferably used e.g. led by a stationary fluid supply device via the fluid rotary feedthrough onto the rotor.
  • the pin and the sleeve have one or more fluid channels, through which or which the fluid or fluids are supplied to the treatment device on the rotor, or are removed from the treatment device on the rotor.
  • the fluid rotary union preferably defines one or more fluid channels through which the fluid (s) are directed from ports on the sleeve to ports connected thereto at the journal and / or vice versa.
  • the fluid rotary feedthrough according to the invention has a preferably substantially cylindrical pin or journal and a preferably substantially hollow cylindrical sleeve or annular sleeve.
  • the pin is rotatably disposed in the sleeve and at least partially sealed on its lateral surface against the sleeve.
  • the pin is further preferably arranged concentrically in the sleeve and the fluid rotary leadthrough extends along the rotor axis.
  • the inventive radial or concentric construction of the fluid rotary feedthrough has a number of advantages.
  • the fluid rotary feedthrough is structurally simple and reliable. Furthermore, inexpensive standard seals can be used. Further, a continuous fluid connection over the entire rotation angle of 360 ° between the stationary and the rotating part is possible.
  • the fluid rotary feedthrough according to the invention is suitable for the passage of a plurality of fluids, since the diameter is, within certain limits, independent of the number of fluid channels implemented.
  • the fluid rotary feedthrough is characterized by a compact design and can therefore be arranged easily accessible. This results in a reduced effort when changing the seals. Finding and eliminating leaks is also made easier by improved accessibility.
  • a rotary apparatus having a continuously rotating rotor with radially arranged identical high-performance coating stations for the industrial coating process.
  • the fluid rotary feedthrough is particularly preferably attached to the device in such a way that the sleeve is fastened in a rotationally fixed manner to the rotor and co-rotates therewith and the pin is stationary.
  • the arrangement of the connections is particularly easy adaptable to the coating device. But also a reverse design with a rotating pin in operation and a stationary sleeve is possible.
  • the spigot for each fluid has a generally L- or U-shaped channel with at least one axial and one radial channel portion, the radial channel portion terminating in the lateral surface of the spigot to communicate with channel portions in the sleeve.
  • the sleeve and / or the pin preferably have at least one annular channel which revolves around the pin, wherein the annular channel is at least temporarily, preferably continuously connected to the radial channel portion of the pin, wherein the axial channel portion, the radial channel portion and the annular channel a Form fluid channel in the fluid rotary feedthrough or are part of such.
  • a respective radially arranged seal in particular ring seal. That is, the seals seal against an axial inflow or outflow of fluid between the pin and the sleeve.
  • the ring seals are realized, for example, as metal or rubber seals and are preferably lubricated with a sealant, such as a vacuum suitable oil.
  • an advantage of the fluid rotary feedthrough according to the invention is due to the fact that it is easily possible to provide sealant lines, via which a possibly continuous or permanent sealing agent supply or lubrication of the seals can be accomplished even during operation of the device. As a result, the fluid rotary feedthrough has a longer service life and less maintenance.
  • the sleeve has a plurality of radially arranged and in an axial plane star-like distributed line connections, each treatment device is assigned a separate line connection.
  • each treatment device is assigned a separate line connection.
  • only one line connection to the fluid rotary feedthrough may be provided on the rotor side and the fluid lines may branch between the fluid rotary feedthrough and the treatment devices in order to achieve a distribution of the fluid or vacuum to the treatment devices.
  • the fluid rotary feedthrough preferably has a plurality of fluid channels.
  • the pin has a plurality of channels each having an axial and a radial channel section, wherein the radial channel sections diverge in a star shape and open in the lateral surface of the pin and the sleeve has respective respective channel sections and line connections.
  • the axial channel sections are preferably arranged in an annular manner about the axis of rotation.
  • the treatment device particularly preferably passes through at least one evacuation phase in which the normal pressure treatment devices are evacuated by a few orders of magnitude and at least one coating phase in which the plasma inner coating of the hollow workpieces is carried out under the action of a process fluid or gas.
  • the coating is carried out in flow mode, so that the treatment device is connected in the evacuation phase via a first fluid channel in the fluid rotary feedthrough with a first vacuum pump or conveyor and in the coating phase via a second separate fluid channel in the fluid rotary feedthrough or rotary coupling with a second vacuum pump.
  • the sleeve and / or the pin on a plurality of annular channels which are each connected to one of the radial channel sections, each with a radial channel portion and an associated annular channel lie on a plane and form a transition channel pair and the different transition channel pairs are axially offset from one another ,
  • at least one annular seal is provided between the annular channels, in order to seal the channels against each other.
  • the annular channels are preferably formed completely encircling and the line connections of the pin and the sleeve are continuously connected to each other during the rotation of the rotor over 360 °, which is not possible, for example, with a disc assembly readily.
  • the continuous connection may seem disadvantageous because the treatment facilities are subjected to different process phases which require different process parameters.
  • the supply and / or discharge of the fluid by means of one or more valve arrangements, which are preferably arranged on the rotor controlled.
  • the process control is timed by the valves independent of the fluid rotary feedthrough.
  • the fluid rotary feedthrough particularly preferably has at least one or more gas supply channels and one or more evacuation channels, wherein fluid is supplied to the treatment device via the gas supply channels on the rotor and the treatment devices are supplied via the evacuation channel during the evacuation phase (s) and / or by means of one or more vacuum pumps the coating phase (s) be evacuated, preferably for each phase, a separate pressure regulator is provided.
  • both the process gas supply and the evacuation is realized via the same fluid rotary feedthrough.
  • the gas supply channels and evacuation channels also differ functionally in terms of their diameter.
  • the evacuation channels preferably have an inner diameter of at least 25 mm, preferably between 50 mm and 250 mm and particularly preferably between 100 mm and 160 mm.
  • the gas supply channels preferably have an inner diameter of 5 mm to 50 mm, more preferably between 10 mm and 30 mm, in particular about 25 mm.
  • the treatment devices are evacuated during the treatment of the workpieces at least temporarily by means of vacuum pumps, wherein the evacuation is carried out in several stages and at least one of the vacuum pumps is arranged on the rotor.
  • a vacuum pump is provided upstream and a vacuum pump is provided downstream of the fluid rotary feedthrough.
  • the fluid rotary feedthrough can thereby be designed for a vacuum range> 1 mbar and be designed with smaller line cross sections. There are thus advantageously relatively low requirements with respect to the leakage rates in the pressure range> 1 mbar.
  • the fluid rotary feedthrough therefore has a leak rate of ⁇ 10 -2 mbar * l / sec.
  • the fluid rotary leadthrough can also be provided with a plurality of fluid channels, i. Produce 2, 3, 4, 5, 6 or more economically and in a compact design.
  • Fig. 1 shows a device 1 for plasma coating of plastic hollow bodies, which are coated in a plurality of treatment devices 101 by means of the PICVD method.
  • the device 1 comprises a plasma wheel or rotor 32 on which the treatment devices 101 or plasma stations are mounted.
  • the rotor 32 rotates in operation with respect to a stationary floor 30.
  • a fluid rotary feedthrough or gas rotary feedthrough 82 In the center of the device 1 is a fluid rotary feedthrough or gas rotary feedthrough 82, via which a resource or process gas is supplied to the circulating treatment facilities 101 and the treatment facilities 101 evacuated by means of on the rotor and fixedly arranged pumps to become.
  • Fig. 2 shows a first embodiment of the fluid rotary duct or rotary feedthrough 82nd
  • the rotary feedthrough 82 comprises a pin or axle journal 2 connected rotationally fixed to the floor 30 and a sleeve or annular sleeve 4 rotatably connected to the rotor 32.
  • the annular sleeve 4 is rotatably mounted on the journal 2 by means of rotary bearings 6.
  • the sleeve 4 has four annular channels 41, 42, 43, 44, which are arranged axially offset from one another. With each annular channel a plurality of connection holes is connected, wherein in each case a connection bore of a treatment device 101 is assigned. In Fig. 2 are each annular channel in each case two opposite connection bores 511, 512, 521, 522, 531, 532, 541, 542 to see.
  • the pin 2 has two fluid or evacuation channels 21, 22 with an inner diameter D of 102 mm.
  • the evacuation channels 21, 22 are continuously connected to the annular channels 41 and 42, since the latter are formed completely circumferentially. Consequently, the rotary feeder establishes a continuous connection over the entire rotation angle of 360 °.
  • the evacuation channels 21, 22 each have an axial channel section 23 or 24 and a radial channel section 25 or 26 connected thereto, which open into the lateral surface 28 of the journal 2 and into the associated annular channel 41 or 42.
  • the pin 102 has six fluid channels, of which two differently dimensioned fluid channels 121, 122 are shown. Each Fluid channel is assigned to one of six ring channels 141 to 146.
  • the treatment devices are evacuated via the fluid channel 121 and process gas is supplied to the treatment devices via the fluid channel 122.
  • the fluid channels are designed substantially U-shaped and each comprise an axial portion which extends along the axis of rotation 7.
  • the treatment facilities are connected via pipes optionally with the interposition of a vacuum pump to a connection flange 134.
  • stationary pumps are connected to a lower connection flange 136.
  • a gas supply device is connected to the treatment devices via a connection flange 138, the gas supply channel 122 and a connection flange 140 on the gas supply side.
  • seals 30 are continuously lubricated with vacuum oil via sealant lines. For clarity, only a sealant line 31 is shown on the top seal.
  • the rotary feedthrough 182 has three evacuation channels 121, 123 and 125.
  • the evacuation channels are distributed around the axis at an angular distance of about 120 °. Between the evacuation channels there are three gas supply channels 122, 124 and 126.
  • FIG. 5 the circumferential annular channel 141 is shown. If the sleeve 104 rotates about the pin 102, a permanent fluid connection exists between the evacuation channel 121 and the connecting flange 134 via the annular channel 141.
  • a coating cycle will be referred to Fig. 6 carried out as follows.
  • the treatment device is evacuated to a pre-vacuum between about 100 mbar and 1 mbar by means of a first pump arrangement comprising two parallel-connected rotary vane pre-vacuum pumps 202, 204.
  • the supply lines are guided via the evacuation channel 121 in the rotary feedthrough 182 onto the rotor 32.
  • the rotary vane pumps 202 and 204 have a pumping capacity of 1200 standard m 3 / h.
  • a second evacuation phase is provided to pump off in stages.
  • the treatment devices are evacuated via a serial second pump arrangement comprising a first Roots pump 206, a second Roots pump 208 and a rotary vane pump 210.
  • the Roots pump 206 has a pump power of 4000 standard m 3 / h, the second Roots pump 208 of 1000 standard m 3 / h and the rotary vane pump of 100 standard m 3 / h.
  • the treatment devices are evacuated in the second evacuation phase from the pre-vacuum to a base pressure of about 0.05 to 0.8 mbar, which represents the pressure before the start of the coating.
  • the workpieces are provided with a first coating, with flow through a first process gas, which is supplied via the channel 124.
  • a second coating phase follows, in which the workpieces are coated with a barrier layer via the channel 126 while a second process gas flows through.
  • the processing means are connected to a serial third pump assembly including a first Roots pump 212, a second Roots pump 214, and two rotary vane forepumps 216 and 218 connected in parallel.
  • the Roots pump 212 has a pumping capacity of 5550 standard m 3 / h
  • the Roots pump 214 has a pumping capacity of 2000 standard m 3 / h
  • the rotary valve overflow pumps 216 and 218 of 100 standard m 3 / h.
  • separate pumping arrangements are used for the evacuation and coating phases. This is advantageous because dusts generate deposits in the pipes and pumps during the coating process. In the embodiment, this is limited to the pumps 212, 214, 216 and 218, and contamination in the pump assemblies for the evacuation phases is avoided. Thus, the penetration of dusts from the coating phases on the seals 30 of the evacuation channels 121 and 123 is prevented. Corresponding there reduces the wear on the seals, which leaks are avoided.
  • the pumps 202, 204, 208, 210, 214, 216 and 218 are fixedly located outside the rotor, whereas the pumps 206 and 212 are disposed on the rotor and co-rotate.
  • the fluid rotary feedthrough is arranged between at least two vacuum pumps connected in series.
  • the coating process is performed. At least during the second coating phase, a plurality of treatment devices are simultaneously connected to the pump assembly 212, 214, 216, 218.
  • the treatment devices are vented to ambient pressure, opened, and the workpiece is conveyed out of the device.
  • the pressure or, more precisely, the negative pressure in the vacuum lines 222, 224 and 226 is set via a respective separate pressure regulator 223, 225, 227 and distributed via a respective annular distributor 232, 234 and 236 to the treatment facilities.
  • the timing is accomplished via two valve assemblies or valve blocks comprising valves 240, each valve being associated with a valve for each pump assembly. This allows the process control to be variably programmed, adapted to the coating requirements.
  • the gas supply to the treatment facilities is constructed analogously.
  • the process gas for the first and second coating phases is provided by first and second fluid sources 242 and 244, respectively.
  • the process gas is conveyed via the channels 122 and 124 in the rotary feedthrough 182 onto the rotor, where it is continuously available for further distribution and control.
  • a purge gas is conveyed from a source 246 for purging the processing means to the rotor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Threshing Machine Elements (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Treatment Of Fiber Materials (AREA)

Claims (23)

  1. Dispositif (1) pour le traitement de pièces, en particulier pour le revêtement par plasma de corps creux avec alimentation en fluide, comprenant
    au moins un dispositif de traitement (101) pour le logement d'au moins une pièce,
    un rotor (32), sur lequel le dispositif de traitement (101) est disposé,
    un passage rotatif de fluide (82, 182) pour l'arrivée d'au moins un fluide au rotor (32) et/ou pour l'évacuation d'au moins un fluide du rotor (32), le passage rotatif de fluide (82, 182) présentant un pivot (2, 102) et une douille (4, 104) lesquels sont étanchés au moins en partie l'un par rapport à l'autre, et le pivot (2, 102) étant disposé de façon rotative dans la douille (4, 104), caractérisé
    en ce qu'au moins une pompe à vide (206, 212) est disposée sur le rotor (32).
  2. Dispositif (1) selon la revendication 1
    caractérisé en ce que
    le pivot (2, 102) présente un canal à fluide (121 - 126), par lequel du fluide est amené au dispositif de traitement (101) sur le rotor (32), et du fluide provenant du dispositif de traitement (101) est évacué sur le rotor (32).
  3. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le pivot (2, 102) et la douille (4, 104) présentent respectivement un branchement de conduite (134, 136), lesquels sont reliés entre eux par le canal à fluide (121 - 136), ce qui permet un écoulement de fluide.
  4. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le pivot (2, 102) est réalisé sensiblement en forme de cylindre et la douille (4, 104) sensiblement en forme de cylindre creux, et le pivot est disposé de façon concentrique dans la douille et le passage rotatif de fluide (82, 182) s'étend le long de l'axe du rotor (7).
  5. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    la douille (4, 104) est fixée de façon solidaire en rotation sur le rotor (32) et tourne avec celui-ci.
  6. Dispositif selon l'une des revendications 1 à 4,
    caractérisé en ce que
    le pivot (2, 102) est fixé de façon solidaire en rotation sur le rotor (32) et tourne avec celui-ci.
  7. Dispositif selon l'une des revendications précédentes,
    caractérisé en ce que
    le pivot (2, 102) présente au moins un canal (21) avec une partie de canal axiale et une partie de canal radiale (23, 25), la partie de canal (25) radiale débouchant dans la surface d'enveloppe (28) du pivot (2, 102).
  8. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    la douille (4, 104) ou le pivot (2, 102) présente au moins un canal annulaire (41 - 44) autour du pivot,
    la partie de canal (23) axiale, la partie de canal (25) radiale et le canal annulaire (21) formant un canal à fluide.
  9. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé par
    des conduites de produit d'étanchéité dans le passage rotatif de fluide (82, 182).
  10. Dispositif (1) selon la revendication 8 ou 9,
    caractérisé par
    au moins un premier et un second joint (30), lesquels sont disposés avec un décalage axial sur un premier ou un second côté du canal annulaire (41 - 44), le premier et le second joint (30) étant conçus comme des joints annulaires.
  11. Dispositif (1) selon la revendication 9 ou 10,
    caractérisé en ce que
    les joints (30) sont lubrifiés avec de l'huile.
  12. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le canal annulaire (141 - 146) est conçu périphérique et des branchements de conduite (124, 126, 128, 130) du pivot et de la douille sont reliés de façon continue l'un à l'autre pendant la rotation du rotor (32).
  13. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    la douille (4, 104) présente une pluralité de branchements de conduite (511, 512) disposés radialement et répartis en forme d'étoile, un branchement de conduite étant attribué à chaque dispositif de traitement (101).
  14. Dispositif (1) selon l'une quelconque des revendications précédentes,
    caractérisé par
    une pluralité de canaux à fluide (21 - 24), le pivot (2, 102) présentant une pluralité de canaux comprenant une partie de canal axiale et une partie de canal radiale (23, 24 ; 25, 26), les parties de canal (25, 26) radiales débouchant dans la surface d'enveloppe (28) du pivot (2, 102) et les parties de canal (23, 24) axiales étant décalées à la façon d'un anneau.
  15. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif de traitement (101) présente en fonctionnement pendant la phase d'obtention du vide au moins une pompe à vide (202, 204), qui est reliée à un premier canal à fluide (121) et pendant la phase de revêtement au moins une seconde pompe à vide (212, 214), qui est reliée à un second canal d'obtention de vide (125).
  16. Dispositif (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la douille (4, 104) ou le pivot (2, 102) présente une pluralité de canaux annulaires (41 - 44), qui sont reliés chacun à l'une des parties de canal (25, 26) radiales, à chaque fois une partie de canal (25, 26) radiale et un canal annulaire attribué étant situés sur un plan et les différents canaux annulaires (41 - 44) étant décalés axialement les uns par rapport aux autres.
  17. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    à chaque fois au moins un joint annulaire (30) est prévu entre les canaux annulaires (41 - 44).
  18. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif comprend un agencement de soupape (260) pour l'arrivée ou l'évacuation contrôlable dans le temps du fluide.
  19. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le passage rotatif de fluide (82, 182) présente au moins un canal de guidage de gaz (122) pour l'arrivée ou l'évacuation d'un fluide et un canal d'obtention de vide (121) pour l'évacuation d'un fluide respectivement pour la mise sous vide du dispositif de traitement (101) sur le rotor au moyen d'une pompe à vide (206 - 218).
  20. Dispositif (1) selon la revendication 19,
    caractérisé en ce que
    le canal d'obtention de vide (121) présente un diamètre intérieur de 25 mm à 250 mm et le canal d'arrivée de gaz (122) un diamètre intérieur de 5 mm à 50 mm.
  21. Dispositif (1) selon l'une des revendications précédentes,
    caractérisé en ce que
    le passage rotatif de fluide (82, 182) présente une pluralité de canaux d'arrivée de gaz (122, 124, 126) et une pluralité de canaux d'obtention de vide (121, 123, 125).
  22. Dispositif (1) selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    le dispositif de traitement (101) comprend des pompes à vide (206 - 218) pour la mise sous vide en plusieurs étapes de la pièce pendant le traitement, au moins l'une des pompes à vide étant disposée sur le rotor.
  23. Passage rotatif de fluide (82, 182), préparé pour un dispositif pour le traitement de pièces avec au moins un dispositif de traitement (101) pour le logement d'au moins une pièce et un rotor (32), sur lequel le dispositif de traitement (101) est disposé, en particulier préparé pour un dispositif (1) pour le revêtement par plasma de corps creux avec alimentation en fluide selon l'une des revendications précédentes,
    le passage rotatif de fluide (82, 182) comportant un pivot (2, 102) et une douille (4, 104), lesquels sont étanchés au moins en partie l'un par rapport à l'autre,
    le pivot et la douille présentant chacun un branchement de conduite (134, 136), lesquels sont reliés au moins temporairement l'un à l'autre par un canal à fluide (121) dans le passage rotatif de fluide (82, 182), de sorte qu'un écoulement de fluide est rendu possible par le passage rotatif de fluide (82, 182), et
    le pivot (2, 102) étant disposé de façon rotative dans la douille (4, 104), caractérisé en ce que
    au moins une pompe à vide (206, 212) est disposée sur le rotor (32).
EP04012003A 2003-07-15 2004-05-21 Dispositif servant à traiter des pièces Expired - Lifetime EP1498654B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10331946A DE10331946B4 (de) 2003-07-15 2003-07-15 Vorrichtung zur Behandlung von Werkstücken
DE10331946 2003-07-15

Publications (2)

Publication Number Publication Date
EP1498654A1 EP1498654A1 (fr) 2005-01-19
EP1498654B1 true EP1498654B1 (fr) 2008-09-17

Family

ID=33461928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04012003A Expired - Lifetime EP1498654B1 (fr) 2003-07-15 2004-05-21 Dispositif servant à traiter des pièces

Country Status (6)

Country Link
US (2) US7074275B2 (fr)
EP (1) EP1498654B1 (fr)
JP (1) JP4485868B2 (fr)
CN (1) CN1607266B (fr)
AT (1) ATE408782T1 (fr)
DE (2) DE10331946B4 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043026A1 (de) * 2007-09-11 2009-03-12 GAT Gesellschaft für Antriebstechnik mbH Radiale Drehdurchführung
DE102007045141A1 (de) * 2007-09-20 2009-04-02 Krones Ag Plasmabehandlungsanlage
KR20130079489A (ko) * 2010-07-28 2013-07-10 시너스 테크놀리지, 인코포레이티드 기판상에 막을 증착하기 위한 회전 반응기 조립체
CN103649424A (zh) * 2011-07-19 2014-03-19 沃尔沃建造设备有限公司 用于施工机械的回转接头
DE102016008398A1 (de) * 2016-07-09 2018-01-11 Eisele Pneumatics Gmbh & Co. Kg Kupplungsvorrichtung

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512744A (en) * 1938-01-10 1939-09-25 John Elov Englesson Means for transferring a pressure fluid from a stationary conduit to a rotary conduit, or vice versa
US3175849A (en) * 1959-11-18 1965-03-30 White Sales Corp Graham Rotary fluid coupling
US3321043A (en) * 1964-03-24 1967-05-23 Ingersoll Rand Co Oil bath lubrication for mechanism
US3950017A (en) * 1974-04-29 1976-04-13 United Technologies Corporation Leakproof connection for polyethylene tubing
DE7527890U (de) 1975-09-03 1976-01-02 Siemens Ag, 1000 Berlin Und 8000 Muenchen Drehdurchfuehrung fuer vakuumrezipienten
US3999766A (en) * 1975-11-28 1976-12-28 General Electric Company Dynamoelectric machine shaft seal
NL168770C (nl) * 1976-04-13 1982-05-17 Ihc Holland Nv Draaibare koppeling voor twee of meer leidingen voor een overslagboei.
DE7722908U1 (de) * 1977-07-22 1977-11-24 Castolin Gmbh, 6000 Frankfurt Vorrichtung zur automatischen Auftragsschweißung
NL8303278A (nl) * 1983-09-23 1985-04-16 Single Buoy Moorings Draaibare leidingkoppeling voor meerdere ingaande en meerdere uitgaande leidingen.
US4662657A (en) * 1985-08-30 1987-05-05 Foster-Miller, Inc. Flow system
US4912296A (en) * 1988-11-14 1990-03-27 Schlienger Max P Rotatable plasma torch
CH685348A5 (de) * 1992-05-08 1995-06-15 Balzers Hochvakuum Vakuumbeschichtungsanlage mit drehgetriebenem Substratträger.
US5308649A (en) * 1992-06-26 1994-05-03 Polar Materials, Inc. Methods for externally treating a container with application of internal bias gas
DE4240991A1 (de) * 1992-12-05 1994-06-09 Plasma Technik Ag Plasmaspritzgerät
NO177780C (no) * 1993-07-06 1995-11-22 Statoil As Svivelinnretning for fluidumoverföring
DE4329948A1 (de) * 1993-09-04 1995-03-09 Basf Lacke & Farben Vorrichtung zum Einbringen von Dichtungsmasse in Nockendrehverschlüsse, Verfahren zum Einbringen von Dichtungsmasse in Nockendrehverschlüsse sowie die Verwendung der Vorrichtung zum Einspritzen von Dichtungsmasse in Nockendrehverschlüsse
US5362939A (en) * 1993-12-01 1994-11-08 Fluidyne Engineering Corporation Convertible plasma arc torch and method of use
US5750822A (en) * 1995-11-13 1998-05-12 Institute Of Chemical Technology (Plastech) Processing of solid mixed waste containing radioactive and hazardous materials
EP0981000B1 (fr) * 1998-02-18 2004-07-28 Nippon Pillar Packing Co., Ltd. Joint rotatif
US6215090B1 (en) * 1998-03-06 2001-04-10 The Esab Group, Inc. Plasma arc torch
NO306416B1 (no) * 1998-03-26 1999-11-01 Norske Stats Oljeselskap Roterende koplingsanordning med kompenseringsenhet
JP2975923B1 (ja) * 1998-05-22 1999-11-10 日本ピラー工業株式会社 回転継手装置
FR2791598B1 (fr) * 1999-03-30 2001-06-22 Sidel Sa Machine a carrousel pour le traitement de corps creux comportant un circuit de distribution de pression perfectionne et distributeur pour une telle machine
FR2792854B1 (fr) * 1999-04-29 2001-08-03 Sidel Sa Dispositif pour le depot par plasma micro-ondes d'un revetement sur un recipient en materiau thermoplastique
DE19934032A1 (de) * 1999-07-21 2001-02-01 Promatec Gmbh Berlin Verbindungsvorrichtung
US6286546B1 (en) * 1999-10-26 2001-09-11 Lucent Technologies, Inc. Disposable seal system with integral buffer
DE10017184A1 (de) * 2000-04-07 2001-10-11 Georg Springmann Ind Und Bergb Zweiteilige Drehdurchführung
JP3555936B2 (ja) * 2000-07-03 2004-08-18 日本ピラー工業株式会社 多流路形ロータリジョイント
US7810448B2 (en) 2002-05-24 2010-10-12 Schott Ag Apparatus and method for the treating of workpieces
DE10253513B4 (de) * 2002-11-16 2005-12-15 Schott Ag Mehrplatz-Beschichtungsvorrichtung und Verfahren zur Plasmabeschichtung
DE10329191A1 (de) * 2003-06-28 2005-01-13 Ina-Schaeffler Kg Drehdurchführung

Also Published As

Publication number Publication date
US20090071399A2 (en) 2009-03-19
JP2005036317A (ja) 2005-02-10
ATE408782T1 (de) 2008-10-15
CN1607266B (zh) 2010-05-12
EP1498654A1 (fr) 2005-01-19
DE502004008076D1 (de) 2008-10-30
US20060201420A1 (en) 2006-09-14
US7074275B2 (en) 2006-07-11
CN1607266A (zh) 2005-04-20
US20050051088A1 (en) 2005-03-10
DE10331946A1 (de) 2005-02-17
DE10331946B4 (de) 2008-06-26
JP4485868B2 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
DE60015149T2 (de) Drehtischmaschine zum behandeln von hohlkörpern die ein verbessertes druckverteilungsnetz aufweisst
DE102004028369B4 (de) Verfahren und Vorrichtung zum Behandeln von Substraten in einer Rundläuferanlage
DE102005055252A1 (de) CVD-Reaktor mit gleitgelagerten Suszeptorhalter
EP1507895B1 (fr) Machine tournante pour application de revetements par depot chimique en phase vapeur
EP3044001B1 (fr) Système et dispositif d'impression de bouteilles ou de récipients comportant un réservoir d'alimentation en plusieurs parties et procédé
EP1537253A1 (fr) Dispositif et procede de traitement de pieces
EP2960201A1 (fr) Distributeur rotatif destiné à distribuer des milieux pouvant s'écouler
EP0837154B1 (fr) Appareillage de revêtement sous vide
DE19626861B4 (de) Vakuumbehandlungsanlage zum Aufbringen dünner Schichten auf Substrate, beispielsweise auf Scheinwerferreflektoren
EP3737486A1 (fr) Dispositif et procédé de dégazage et de gazage de récipients
EP1498654B1 (fr) Dispositif servant à traiter des pièces
EP3368468A2 (fr) Dispositif permettant de remplir des contenants avec avec un produit de remplissage
WO2011153993A1 (fr) Dispositif de traitement de pièces au plasma
EP2047912B1 (fr) Barillet d'outils pour dispositif haute pression
DE10236683B4 (de) Vorrichtung zur Plasmabehandlung von Hohlkörpern, insbesondere Flaschen
EP0799652B1 (fr) Appareil pour le traitement col en bas de bouteilles
DE19624609B4 (de) Vakuumbehandlungsanlage zum Aufbringen dünner Schichten auf Substrate, beispielsweise auf Scheinwerferreflektoren
DE10253512A1 (de) Rundläufermaschine für CVD-Beschichtungen
WO2019137868A1 (fr) Dispositif de dégazage et de gazage de récipients
EP2958849A1 (fr) Système de remplissage ainsi que machine de remplissage
EP3408425B1 (fr) Procédé de revêtement de la surface d'une pièce sous vide
DE10031800C2 (de) Vorrichtung zum Einbringen und/oder Ausbringen von Gegenständen, insbesondere Behältern, in bzw. aus einem Behandlungsraum
DE102008012836A1 (de) Schleusenvorrichtung zum Ein- und Ausbringen von Gegenstände in und aus einer Vakuumbehandlungskammer
DE102020113602A1 (de) Leistungsvariable Produktzufuhr in einer Vorrichtung zum Befüllen von Behältern
EP0981705A1 (fr) Couche metallique intermediaire pour garnitures plates fortement sollicitees et procede de production d'une garniture plate avec une telle couche intermediaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004008076

Country of ref document: DE

Date of ref document: 20081030

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090217

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

26N No opposition filed

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

BERE Be: lapsed

Owner name: SCHOTT A.G.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081217

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230525

Year of fee payment: 20

Ref country code: DE

Payment date: 20230519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004008076

Country of ref document: DE