EP1496341B1 - Débitmètre massique de Coriolis et procédé de commande d'un débitmètre massique de Coriolis - Google Patents

Débitmètre massique de Coriolis et procédé de commande d'un débitmètre massique de Coriolis Download PDF

Info

Publication number
EP1496341B1
EP1496341B1 EP04011845A EP04011845A EP1496341B1 EP 1496341 B1 EP1496341 B1 EP 1496341B1 EP 04011845 A EP04011845 A EP 04011845A EP 04011845 A EP04011845 A EP 04011845A EP 1496341 B1 EP1496341 B1 EP 1496341B1
Authority
EP
European Patent Office
Prior art keywords
signal path
control signal
excitation
excitation signal
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04011845A
Other languages
German (de)
English (en)
Other versions
EP1496341A3 (fr
EP1496341A2 (fr
EP1496341B2 (fr
Inventor
Ralf Storm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne AG
Original Assignee
Krohne AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33441690&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1496341(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Krohne AG filed Critical Krohne AG
Publication of EP1496341A2 publication Critical patent/EP1496341A2/fr
Publication of EP1496341A3 publication Critical patent/EP1496341A3/fr
Publication of EP1496341B1 publication Critical patent/EP1496341B1/fr
Application granted granted Critical
Publication of EP1496341B2 publication Critical patent/EP1496341B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing

Definitions

  • the invention relates to a Coriolis mass flowmeter, comprising at least one measuring tube, at least one vibration generator exciting the measuring tube and at least one vibration of the measuring tube, wherein a driving device is provided for controlling the vibrator, at least one evaluation provided for evaluating the vibrations detected by the vibration sensor is, between the drive means and the oscillator an excitation signal path with excitation signal path means for transmitting an excitation signal is provided and between the vibration sensor and the evaluation a Meßsignalpfad with Meßsignalpfad sexualen for transmitting the measurement signal is provided and a Kontrollsignalpfad device is provided with at least one Kontrollsignalpfad.
  • the invention further relates to a method for operating a Coriolis mass flowmeter, wherein the Coriolis mass flowmeter at least one measuring tube, at least one oscillator generating the measuring tube and at least one vibration of the measuring tube detecting vibration sensor, the control of the vibration generator by means of a control device, the evaluation of detected by the vibration sensor vibrations by an evaluation, an excitation signal from the drive means to the vibrator via an excitation signal path with excitation signal path means is transmitted and the measurement signal is transmitted from the vibration sensor to the evaluation via a Meßsignalpfad with Meßsignalpfad healthyen and provided a Kontrollsignalpfad device with at least one Kontrollsignalpfad is.
  • Coriolis mass flowmeter or by the method described above for operating a Coriolis mass flowmeter such conventional Coriolis Massen pressflußmeßtechnik or methods for operating these Coriolis mass flowmeters are detected in which one or two oscillators are provided to excite the measuring tube and the mass flow rate based on a detected by means of typically two vibration sensors Phase difference of the vibrations of the measuring tube is determined at mutually different locations.
  • an excitation signal via the excitation signal path devices, such as digital / analog converters, and signal conditioners, such as amplifiers, having the excitation signal path is guided by the control device to one or two oscillation generators.
  • the measuring tube is set in vibration, and by means of typically two vibration sensors, the vibrations of the measuring tube are detected, wherein the excitation vibration is superimposed on the originating from the medium flowing through the measuring tube Coriolis oscillation, so that as a result, a mass flow measurement can be performed.
  • the measurement signals detected by the typically two vibration sensors are routed via the measuring signal path devices, such as analog / digital converters and signal conditioners, such as amplifiers, to the evaluation device, which may be physically identical to the control device.
  • the result is thus the following waveform:
  • the excitation signal passes through the excitation signal path, which also includes the vibrator, to the measuring tube. Due to the interaction with the measuring tube, ie by vibration excitation of the measuring tube and detection of the resulting vibration, which is influenced inter alia by the generated Coriolis oscillation, the excitation signal to the measuring signal.
  • the measurement signal detected by the vibration sensors is fed to the evaluation device via the measurement signal path, which, incidentally, also includes the vibration generators.
  • Coriolis mass flowmeters with exactly one vibration generator require at least phase-accurate signal measurement.
  • Sources of error that reduce the accuracy of the phase measurement are due to the non-constant effect of the Meßsignalpfad bootsen on the measurement signal, for example, by the dependence of the effect of Meßsignalpfad adopted on the measurement signal as a function of temperature. That is, a Coriolis mass flowmeter calibrated at a particular temperature exhibits errors in determining the phase difference between two vibration sensors at operating temperatures other than the calibration temperature.
  • Coriolis mass flowmeters are out for example WO 99/17084 and EP 0 980 508 known.
  • the previously derived and indicated object is achieved in that a Kontrollsignalpfad is provided with at least one Kontrollsignalpfad worn, the control signal path connects the excitation signal path directly to the evaluation, so that the at least one excitation signal path means swept excitation signal as a control signal over the control signal path is guided to the evaluation device, and wherein the control signal path means provided in the control signal path corresponds to a measurement signal path device.
  • control signal path connects the excitation signal path directly to the evaluation device and that the excitation signal passed through at least one excitation signal path device is fed as a control signal via the control signal path to the evaluation device.
  • That the control signal path connects the excitation signal path directly to the evaluation device means in particular that the signal which is fed back to the evaluation via the control signal path, has no interaction with the measuring tube, so that due to the fact that the control signal path means provided in the control signal path corresponds to a Meßsignalpfad worn in that the measuring signal can be corrected with the aid of the control signal in order to compensate a non-constant behavior of the excitation signal devices and of the measuring signal devices in dependence on external parameters, such as the temperature.
  • an improved measurement accuracy is achieved, in particular with regard to the amplitude accuracy and the phase accuracy.
  • the control signal path has at least one vibration sensor, an amplifier and / or an analog / digital converter, if a corresponding vibration sensor, amplifier and / or analog / digital converter is provided in Meßsignalpfad.
  • a corresponding control signal path device is provided in each case for a plurality of measuring signal path devices present in the measuring signal path. That a control signal path means corresponds to a Meßsignalpfad dressed, means in the context of the invention that the devices are substantially equal, so it is preferably therefore the same models and types that are interconnected and connected the same.
  • all measuring signal path devices provided in the measuring signal path find themselves correspondingly as control signal path devices in the control signal path.
  • control signal path is connected to the excitation signal path, preferably immediately before, the oscillator and the control signal path preferably has no vibration sensor.
  • the construction of the control signal path is thus simplified, whereby the effects of the vibration generator or of the vibration sensor on the excitation signal can be taken into account either by an assumed constant behavior, but preferably by means of a model dependent on an external parameter such as the temperature.
  • the Coriolis mass flowmeter according to the invention can only have one vibration generator. According to a preferred embodiment of the invention, however, it is provided that the Coriolis mass flowmeter two oscillators, each with a respective oscillator to the drive means connecting excitation signal path and one with the excitation signal paths and the control signal path connected multiplexer, wherein the multiplexer activates the control signal path alternately for one or the other excitation signal path. It is also spoken of that the excitation signal path is designed two channels. Such a procedure will always be preferable if the time constants of the disturbances are large, so that a discontinuous detection of the disturbances by activation of the control signal path for one or the other channel of the excitation signal path is sufficient. An associated with this preferred embodiment of the invention advantage is that despite the presence of two oscillators of the control signal path can be designed single-channel, which reduces the expenditure on equipment.
  • the Coriolis mass flowmeter has two vibration generators, each with an excitation signal path connecting the respective vibration generator to the control device, and two control signal paths permanently connected to one of the excitation signal paths. Due to the control signal paths fixedly connected to a respective excitation signal path, an active control signal path is always available for each excitation signal path, so that a continuous-time detection of the control signals is made possible. In this way, even rapidly changing disturbances can be taken into account sufficiently well.
  • the above-derived and indicated object is achieved in that a Kontrollsignalpfad is provided with at least one Kontrollsignalpfad sexual, the control signal path connects the excitation signal path directly to the evaluation, so that the at least one excitation signal path means passed excitation signal is passed as a control signal via the control signal path to the evaluation device, and wherein the control signal path provided in the control signal path means corresponds to a Meßsignalpfad planted.
  • control signal path means corresponds to a Meßsignalpfad worn that Kontrollsignalpfad worn and Meßsignalpfad worn essentially the same are interconnected as well as connected.
  • a direct coupling of the control signal path to the excitation signal path without interaction with the measuring tube is also provided here.
  • the correction of the measurement signal obtained by the evaluation device via the Meßsignalpfad using the control signal obtained from the evaluation via the Kontrollsignalpfad be sufficient, especially if all existing Meßsignalpfad Meßsignalpfad sexualen find in a corresponding manner as Kontrollsignalpfad Skets, the measurement signal is corrected by means of a model except by means of the control signal obtained by the evaluation device via the control signal path.
  • control signal path in front of the vibration generator is connected to the excitation signal path and also has no vibration sensor, wherein the effects of vibration generator and vibration sensor -.
  • B. depending on the temperature - is taken into account by means of a temperature dependence of the vibration generator or vibration sensor descriptive formula.
  • the method according to the invention for operating a Coriolis mass flowmeter for such Coriolis mass flowmeters can be used, which have only one vibration generator.
  • two oscillators are each provided with an excitation signal path connecting the respective oscillator to the drive means and a multiplexer connected to the excitation signal paths and to the control signal path, wherein the multiplexer activates the control signal path alternately for one or the other excitation signal path.
  • Fig. 1 is a schematic representation of a Coriolis mass flowmeter according to a first preferred embodiment of the invention can be seen.
  • the Coriolis mass flowmeter according to the first preferred embodiment of the invention comprises a measuring tube 1, which is excited to vibrate via a two-channel, in two oscillators 2 ending excitation signal path. The resulting vibrations of the flowed through by a measuring tube 1 are detected by two vibration sensors 3.
  • the two-channel designed excitation signal path has a plurality of excitation signal path devices, namely digital / analog converter 6, current sources 7 and the already mentioned vibrator 2 for exciting the measuring tube 1.
  • the likewise two-channel designed Meßsignalpfad has a plurality of Meßsignalpfad drivenen, namely Analog / digital converter 8, amplifier 9 and the already mentioned vibration sensors.
  • the measuring tube 1 can be excited to oscillate via the excitation signal path, and the oscillations of the measuring tube 1 containing the Coriolis oscillations can be detected via the measuring signal path and finally evaluated in the evaluating device 5.
  • control signal path in addition to the excitation signal path and the Meßsignalpfad a directly connected to the excitation signal path control signal path is provided, which is also designed two-channel, in Fig. 1 shown in dashed lines.
  • the control signal path has as Kontrollsignalpfad recruiteden such devices that just correspond to the Meßsignalpfad recruiteden the Meßsignalpfads, namely the vibration sensors 3 of the Meßsignalpfads corresponding sensors 10, the amplifiers 9 of the Meßsignalpfads corresponding amplifier 11 and the analog / digital converter 8 of Meßsignalpfads corresponding analog / digital Transducer 12.
  • the measuring tube 1 has a transmission behavior that can be described by the function ⁇ (t) .
  • a deflection method in which the excitation F (t) remains constant a compensation method in which the measured vibration behavior V (t) of the measuring tube 1 remains constant, or a mixed form thereof is used.
  • the transmission paths can be divided into nominal constant transmission factors C outN and C inN as well as interference functions f (t) and h (t) .
  • the nominal transmission factors result from the calibration of the Coriolis mass flowmeter.
  • the interference functions f (t) and h (t) can now be determined and eliminated or kept very small by means of the control signal path.
  • control signal path is used to monitor the entire relevant signal path, given by the excitation signal path and the measurement signal path, as explained in detail below:
  • the control signal path begins after the oscillators 2 on the excitation signal path, so that a measurement of the excitation of the measuring tube 1 is measured by the vibration sensors 10 of the control signal path.
  • C i is the real transmission factors of the vibration sensors 10, the amplifier 11 or the analog / digital converter 12 of the control signal path
  • C inKN is a nominal transmission factor
  • g (t) is a fault function.
  • the input signal u inK can now be used to correct the interference functions f (t) and h (t) .
  • the control signal path already starts before the vibration generators 2 on the excitation signal path, and no vibration sensor is provided in the control signal path. Since in the present case the control signal path is designed only one channel, only a single amplifier 9 of the Meßsignalpfads corresponding amplifier 11 and only a single analog / digital converters 8 of the Meßsignalpfads corresponding analog / digital converter 12 are provided.
  • the single-channel control signal path is activated by means of a multiplexer 14 alternately in time for each one channel of the excitation signal path.
  • the transmission behavior of the vibrator 2 can, when using high-quality electromagnetic drivers in the working range used for Coriolis mass flow meters z.
  • C 3 t C 3 ⁇ N ⁇ 1 + ⁇ ⁇ T t - T N describing the temperature behavior of the magnetic properties of a permanent magnet, wherein the temperature T (t) of the magnets is obtained from the measurement of the Meßstofftemperatur present in the Coriolis mass flowmeter and the parameters ⁇ and T N are determined by calibration.
  • the transmission behavior of the two vibration sensors 3 via the equation C 9 t C 9 ⁇ N ⁇ 1 + ⁇ ⁇ T t - T N described.
  • the disturbance function g (t) only contains the changes of the transmission factors C 4 and C 5
  • the disturbance function h (t) only contains the changes of the transmission factors C 7 and C 8 .
  • an optimal state controller (LQR) with state extension by an I-component for the real and the imaginary part of the two manipulated variables is used.
  • LQR optimal state controller
  • a low susceptibility to changes in external parameters, in particular the mass flow and the operating frequency is achieved.
  • a simple PI controller such that between the input u 1 of the first mode of the measuring tube 1 and the output variable y 1 of the first mode of the measuring tube 1, a phase relationship of 0 prevails. This ensures the operation of the Coriolis mass flowmeter in the resonant frequency of the first eigenmod ⁇ 01 .
  • Out Fig. 3 is a block diagram of this control concept visible.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)
  • Flow Control (AREA)

Claims (14)

  1. Débitmètre massique de Coriolis, comprenant au moins un tube de mesure (1), au moins un générateur d'oscillations (2) qui excite le tube de mesure (1) et au moins un détecteur d'oscillations (3) qui détecte les oscillations du tube de mesure (1), un dispositif de commande (4) étant prévu pour commander le générateur d'oscillations (2), au moins un dispositif d'interprétation (5) étant prévu pour interpréter les oscillations détectées par le détecteur d'oscillations (3), un chemin de signal d'excitation comprenant des dispositifs de chemin de signal d'excitation étant prévu entre le dispositif de commande (4) et le générateur d'oscillations (2) pour la transmission d'un signal d'excitation et un chemin de signal de mesure comprenant des dispositifs de chemin de signal de mesure étant prévu entre le détecteur d'oscillations (3) et le dispositif d'interprétation (5) pour la transmission du signal de mesure, et un chemin de signal de contrôle comprenant au moins un dispositif de chemin de signal de contrôle (10, 11) étant prévu, caractérisé en ce que le chemin de signal de contrôle relie le chemin de signal d'excitation directement avec le dispositif d'interprétation (5) de sorte que le signal d'excitation qui traverse au moins un dispositif de chemin de signal d'excitation est acheminé en tant que signal de contrôle par le biais du chemin de signal de contrôle jusqu'au dispositif d'interprétation (5) et le dispositif de chemin de signal de contrôle prévu dans le chemin de signal de contrôle correspond à un dispositif de chemin de signal de mesure.
  2. Débitmètre massique de Coriolis selon la revendication 1, caractérisé en ce que le chemin de signal de contrôle présente au moins un détecteur d'oscillations (10), un amplificateur (11) et/ou un convertisseur analogique/numérique (12).
  3. Débitmètre massique de Coriolis selon la revendication 1 ou 2, caractérisé en ce que le chemin de signal de contrôle est relié avec le chemin de signal d'excitation avant, de préférence directement avant le générateur d'oscillations (2) du chemin de signal d'excitation.
  4. Débitmètre massique de Coriolis selon l'une des revendications 1 à 3, caractérisé en ce que le chemin de signal de contrôle ne présente aucun détecteur d'oscillations.
  5. Débitmètre massique de Coriolis selon l'une des revendications 1 à 4, caractérisé en ce que deux générateurs d'oscillations (2) sont prévus, avec à chaque fois un chemin de signal d'excitation qui relie le générateur d'oscillations (2) correspondant avec le dispositif de commande (4) et un multiplexeur (14) relié avec les chemins de signal d'excitation ainsi qu'avec le chemin de signal de contrôle, le multiplexeur (14) activant le chemin de signal de contrôle en alternance pour l'un ou l'autre chemin de signal d'excitation.
  6. Débitmètre massique de Coriolis selon l'une des revendications 1 à 4, caractérisé en ce que deux générateurs d'oscillations (2) sont prévus, avec à chaque fois un chemin de signal d'excitation qui relie le générateur d'oscillations (2) correspondant avec le dispositif de commande (4) et deux chemins de signal de contrôle reliés en permanence avec à chaque fois l'un des chemins de signal d'excitation.
  7. Procédé de fonctionnement d'un débitmètre massique de Coriolis, le débitmètre massique de Coriolis présentant au moins un tube de mesure (1), au moins un générateur d'oscillations (2) qui excite le tube de mesure (1) et au moins un détecteur d'oscillations (3) qui détecte les oscillations du tube de mesure (1), la commande du générateur d'oscillations (2) s'effectuant au moyen d'un dispositif de commande (4), l'interprétation des oscillations détectées par le détecteur d'oscillations (3) s'effectuant par un dispositif d'interprétation (5), un signal d'excitation étant transmis du dispositif de commande (4) au générateur d'oscillations (2) par le biais d'un chemin de signal d'excitation comprenant des dispositifs de chemin de signal d'excitation et le signal de mesure étant transmis du détecteur d'oscillations (3) au dispositif d'interprétation (5) par le biais d'un chemin de signal de mesure comprenant des dispositifs de chemin de signal de mesure, et un chemin de signal de contrôle comprenant au moins un dispositif de chemin de signal de contrôle (10, 11) étant prévu, caractérisé en ce que le chemin de signal de contrôle relie le chemin de signal d'excitation directement avec le dispositif d'interprétation (5) de sorte que le signal d'excitation qui traverse au moins un dispositif de chemin de signal d'excitation est acheminé en tant que signal de contrôle par le biais du chemin de signal de contrôle jusqu'au dispositif d'interprétation (5) et le dispositif de chemin de signal de contrôle prévu dans le chemin de signal de contrôle correspond à un dispositif de chemin de signal de mesure.
  8. Procédé selon la revendication 7, caractérisé en ce que le signal de mesure reçu par le dispositif d'interprétation (5) par le biais du chemin de signal de mesure est corrigé à l'aide du signal de contrôle reçu par le dispositif d'interprétation (5) par le biais du chemin de signal de contrôle.
  9. Procédé selon la revendication 8, caractérisé en ce que le signal de mesure est en plus corrigé à l'aide d'un modèle.
  10. Procédé selon la revendication 9, caractérisé en ce que le modèle tient compte de l'effet théorique sur le signal de contrôle reçu par le dispositif d'interprétation (5) par le biais du chemin de signal de contrôle d'au moins un dispositif de chemin de signal d'excitation non traversé par le signal d'excitation reçu par le dispositif d'interprétation (5) par le biais du chemin de signal de contrôle et/ou d'au moins un dispositif de chemin de signal de mesure pour lequel il n'est pas prévu de dispositif de chemin de signal de contrôle correspondant.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce que le modèle tient compte de l'effet théorique sur le signal de contrôle en fonction d'au moins un paramètre externe comme la température.
  12. Procédé selon l'une des revendications 9 à 11, caractérisé en ce que l'effet théorique du générateur d'oscillations (2) et/ou du détecteur d'oscillations (3) sur le signal de contrôle est pris en compte à l'aide du modèle.
  13. Procédé selon l'une des revendications 7 à 12, caractérisé en ce que deux générateurs d'oscillations (2) sont prévus, avec à chaque fois un chemin de signal d'excitation qui relie le générateur d'oscillations (2) correspondant avec le dispositif de commande (4) et un multiplexeur (14) relié avec les chemins de signal d'excitation ainsi qu'avec le chemin de signal de contrôle, le multiplexeur (14) activant le chemin de signal de contrôle en alternance pour l'un ou l'autre chemin de signal d'excitation.
  14. Procédé selon l'une des revendications 7 à 12, caractérisé en ce que deux générateurs d'oscillations (2) sont prévus, avec à chaque fois un chemin de signal d'excitation qui relie le générateur d'oscillations (2) correspondant avec le dispositif de commande (4) et deux chemins de signal de contrôle reliés en permanence avec à chaque fois l'un des chemins de signal d'excitation.
EP04011845.7A 2003-07-09 2004-05-19 Débitmètre massique de Coriolis et procédé de commande d'un débitmètre massique de Coriolis Expired - Lifetime EP1496341B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10331126 2003-07-09
DE10331126A DE10331126B4 (de) 2003-07-09 2003-07-09 Coriolis-Massendurchflußmeßgerät und Verfahren zum Betreiben eines Coriolis-Massendurchflußmeßgeräts

Publications (4)

Publication Number Publication Date
EP1496341A2 EP1496341A2 (fr) 2005-01-12
EP1496341A3 EP1496341A3 (fr) 2007-02-28
EP1496341B1 true EP1496341B1 (fr) 2010-12-15
EP1496341B2 EP1496341B2 (fr) 2017-01-25

Family

ID=33441690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04011845.7A Expired - Lifetime EP1496341B2 (fr) 2003-07-09 2004-05-19 Débitmètre massique de Coriolis et procédé de commande d'un débitmètre massique de Coriolis

Country Status (6)

Country Link
US (1) US7136777B2 (fr)
EP (1) EP1496341B2 (fr)
JP (1) JP4331654B2 (fr)
AT (1) ATE491928T1 (fr)
DE (2) DE10331126B4 (fr)
DK (1) DK1496341T3 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689372B2 (en) 2006-12-13 2010-03-30 Abb Patent Gmbh Process for operating a measurement device of the vibration type
DE102006058732A1 (de) 2006-12-13 2008-06-26 Abb Ag Verfahren zum Betrieb einer Coriolis-Massendurchflussmesseinrichtung
DE102012011932B4 (de) * 2012-06-18 2016-09-15 Krohne Messtechnik Gmbh Verfahren zum Betreiben eines Resonanzmesssystems und diesbezügliches Resonanzmesssystem
JP2015077652A (ja) * 2013-10-16 2015-04-23 クオンタムバイオシステムズ株式会社 ナノギャップ電極およびその製造方法
CN104792379B (zh) * 2015-04-08 2018-01-12 浙江大学 一种基于流体状态检测的科氏流量计振幅自适应控制方法
US10598531B2 (en) 2018-04-23 2020-03-24 General Electric Company Coriolis flow meter with multiple actuators arranged on a flow tube and driven in different planes
DE102019122094B3 (de) * 2019-08-16 2021-01-28 Endress+Hauser Flowtec Ag Verfahren zur Berechnung einer Qualität eines Messrohrs eines Coriolis-Messgeräts und ein solches Messgerät
CN113932915B (zh) * 2021-09-23 2024-02-20 北京机电工程研究所 一种振动测量通道方向错误识别方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843890A (en) * 1988-07-08 1989-07-04 Micro Motion, Incorporated Coriolis mass flow rate meter having an absolute frequency output
DE4423168C2 (de) * 1994-07-04 1998-09-24 Krohne Ag Massendurchflußmeßgerät
JP3058074B2 (ja) * 1995-08-29 2000-07-04 富士電機株式会社 振動型測定器
US5687100A (en) * 1996-07-16 1997-11-11 Micro Motion, Inc. Vibrating tube densimeter
DE19719587A1 (de) * 1997-05-09 1998-11-19 Bailey Fischer & Porter Gmbh Verfahren und Einrichtung zur Erkennung und Kompensation von Nullpunkteinflüssen auf Coriolis-Massedurchflußmesser
US6230104B1 (en) * 1997-09-30 2001-05-08 Micro Motion, Inc. Combined pickoff and oscillatory driver for use in coriolis flowmeters and method of operating the same
US6311136B1 (en) 1997-11-26 2001-10-30 Invensys Systems, Inc. Digital flowmeter
DE59904728D1 (de) * 1998-12-11 2003-04-30 Flowtec Ag Coriolis-massedurchfluss-/dichtemesser
US6651513B2 (en) * 2000-04-27 2003-11-25 Endress + Hauser Flowtec Ag Vibration meter and method of measuring a viscosity of a fluid

Also Published As

Publication number Publication date
JP4331654B2 (ja) 2009-09-16
EP1496341A3 (fr) 2007-02-28
ATE491928T1 (de) 2011-01-15
US20050011286A1 (en) 2005-01-20
DK1496341T3 (da) 2011-03-14
JP2005031088A (ja) 2005-02-03
US7136777B2 (en) 2006-11-14
DE502004011987D1 (de) 2011-01-27
EP1496341A2 (fr) 2005-01-12
DE10331126B4 (de) 2005-09-01
DE10331126A1 (de) 2005-02-17
EP1496341B2 (fr) 2017-01-25

Similar Documents

Publication Publication Date Title
EP1208359B1 (fr) Procede pour determiner des parametres caracteristiques d'un dispositif de mesure de debit massique lors de son fonctionnement
EP1281938B1 (fr) Debitmetre massique de coriolis densimetre/debitmetre-masse a force de coriolis
DE69723706T2 (de) Verfahren und vorrichtung zur druckmessung in einem nach dem coriolisprinzip arbeitenden massendurchflussmesser
EP4028731B1 (fr) Procédé pour faire fonctionner un dispositif de mesure avec au moins un oscillateur et dispositif de mesure pour mettre en oeuvre ledit procédé
EP3559609B1 (fr) Capteur de mesure de débit massique fonctionnant suivant le principe de coriolis et procédé permettant de déterminer un débit massique
DE19652002C2 (de) Schwingungs-Meßgerät
EP1669727B1 (fr) Procédé de commande d'un débitmètre massique
DE10392459T5 (de) Antriebstechniken für einen Digitaldurchflussmesser
EP0980508B1 (fr) Procede et dispositif pour la detection et la compensation d'influences au point zero sur des debitmetres massiques a force de coriolis
EP1496341B1 (fr) Débitmètre massique de Coriolis et procédé de commande d'un débitmètre massique de Coriolis
EP1812775A1 (fr) Circuit de mesure et de commande pour un debitmetre a effet coriolis comportant trois canaux de mesure
DE10335665B4 (de) Massendurchflussmessgerät
EP1886099B1 (fr) Debitmetre massique de coriolis et procede pour compenser des erreurs de transmission de son circuit d'entree
EP2884244A1 (fr) Procédé de fonctionnement d'un débitmètre massique Coriolis
EP1985974A2 (fr) Procédé destiné à la détermination d'une caractéristique d'un milieu s'écoulant
DE102010015421A1 (de) Verfahren zum Überprüfen eines Coriolis-Massendurchflussmessgeräts sowie Coriolis-Massendurchflussmessgerät
DE102007028209A1 (de) Verfahren zur Messung und/oder Überwachung eines Strömungsparameters und entsprechende Vorrichtung
EP4022262A1 (fr) Procédé et dispositif de mesure pour déterminer la viscosité d'un milieu
EP3208598B1 (fr) Procédé de fonctionnement d'un appareil de mesure de débit massique coriolis
DE102019117101A1 (de) Verfahren zum Ermitteln eines physikalischen Parameters einer beladenen Flüssigkeit
EP4095492B1 (fr) Procédé de fonctionnement d'un débitmètre massique à effet coriolis et débitmètre massique à effet coriolis correspondant
DE102013021136B3 (de) Verfahren zur Laufzeitermittlung der Signale in den Signalpfaden bei einem Coriolis Durchflussmesser
DE102012215282B3 (de) Coriolis-Massendurchflussmessgerät
EP1628118A2 (fr) Débitmètre massique Coriolis et methode pour fabriquer un débitmètre massique Coriolis
DE102004027546B4 (de) Verfahren und Vorrichtung zur Messung der Fließgeschwindigkeit in Volumina einer akustischen Resonatoranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RTI1 Title (correction)

Free format text: CORIOLIS MASS FLOW METER AND METHOD FOR OPERATING A CORIOLIS MASS FLOW METER

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20070709

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502004011987

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110315

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110326

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ABB AG

Effective date: 20110915

BERE Be: lapsed

Owner name: KROHNE A.G.

Effective date: 20110531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004011987

Country of ref document: DE

Effective date: 20110915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491928

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PLAP Information related to despatch of examination report in opposition + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDORE2

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAH Information related to despatch of examination report in opposition + time limit modified

Free format text: ORIGINAL CODE: EPIDOSCORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160519

Year of fee payment: 13

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20170125

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004011987

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AELC

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200520

Year of fee payment: 17

Ref country code: FR

Payment date: 20200522

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200720

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011987

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210519

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531