EP1492678B1 - Sicherheitselement mit makrostrukturen - Google Patents

Sicherheitselement mit makrostrukturen Download PDF

Info

Publication number
EP1492678B1
EP1492678B1 EP03720418A EP03720418A EP1492678B1 EP 1492678 B1 EP1492678 B1 EP 1492678B1 EP 03720418 A EP03720418 A EP 03720418A EP 03720418 A EP03720418 A EP 03720418A EP 1492678 B1 EP1492678 B1 EP 1492678B1
Authority
EP
European Patent Office
Prior art keywords
macrostructure
layer
security element
pattern
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03720418A
Other languages
English (en)
French (fr)
Other versions
EP1492678A2 (de
Inventor
René Staub
Andreas Schilling
Wayne Robert Tompkin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OVD Kinegram AG
Original Assignee
OVD Kinegram AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OVD Kinegram AG filed Critical OVD Kinegram AG
Priority to SI200331579T priority Critical patent/SI1492678T1/sl
Publication of EP1492678A2 publication Critical patent/EP1492678A2/de
Application granted granted Critical
Publication of EP1492678B1 publication Critical patent/EP1492678B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0033Owner certificates, insurance policies, guarantees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0053Forms specially designed for commercial use, e.g. bills, receipts, offer or order sheets, coupons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D15/00Printed matter of special format or style not otherwise provided for
    • B42D15/0073Printed matter of special format or style not otherwise provided for characterised by shape or material of the sheets

Definitions

  • the invention relates to a security element with macrostructures according to the preamble of claim 1.
  • Such security elements consist of a thin composite layer of plastic, wherein at least light-modifying relief structures and planar mirror surfaces are embedded in the layer composite.
  • the cut from the thin layer composite security elements are glued to objects to authenticate the authenticity of the objects.
  • the structure of the thin layer composite and the materials used for this purpose are, for example, in US 4,856,857 described. From the GB 2 129 739 A It is also known to apply the thin layer composite with the aid of a carrier film on an object.
  • An arrangement of the type mentioned is from the EP 0 429 782 B1 known.
  • the glued on a document security element has, for example, from the EP 0 105 099 A1 or EP 0 375 833 A1 known, optically variable surface pattern of mosaic-like arranged surface parts with known diffraction structures and other light-modifying relief structures. So that a forged document can not be provided with a counterfeit document cut out of a genuine document or detached from a genuine document in order to simulate an apparent authenticity, security profiles are embossed in the security element and in adjacent parts of the document. The impressing of the security profiles interferes with the recognition of the optically variable area pattern. In particular, the varies Position of the stamp on the security element from copy to copy of the document.
  • the invention has for its object to provide a cost-effective security element with a novel optical effect, which consists of a thin layer composite and is to be attached to the object to be certified.
  • a security element comprising a layer composite lying in a reference plane defined by coordinate axes (x; y) consisting of a molding layer made of plastic and a protective layer made of plastic with embedded optically active structures forming a pattern which form part of the surface of the part Pattern are formed into the impression layer and form a reflective interface embedded between the transparent impression layer and the protective layer of the layer composite and at least one partial area with dimensions greater than 0.4 mm at the interface as optically active structure at least one molded macrostructure (M) with at least 0.1 Having mm distant from each other extreme values and that the macrostructure (M) an at least piecewise continuous and differentiable function of the coordinates (x; y), curved at least in partial areas and no periodic triangular or Rechteckfun is proceedings.
  • a security element comprising a layer composite lying in a reference plane defined by coordinate axes (x; y) consisting of a molding layer made of plastic and a protective layer made of plastic with embedded optically active structures forming a pattern which form part of
  • the security element 2 has, in the layer composite 1, a macrostructure M which extends in the region of a pattern 4.
  • the security element 2 is arranged in an imaginary reference plane spanned by the coordinate axes x, y.
  • the macrostructure M is a one-to-one, piecewise continuous and differentiable function M (x, y) of the coordinates x, y.
  • the function M (x, y) describes a surface curved at least in partial regions, where ⁇ M (x, y) ⁇ 0 holds in partial regions.
  • the macrostructure M is a three-dimensional surface, where x, y are the coordinates of a point P (x, y) on the surface of the macrostructure M.
  • the distance z (x, y) of the point P (x, y) from the reference plane is measured parallel to the coordinate axis z perpendicular to the plane of the drawing FIG. 1 stands.
  • the pattern 4 is in one embodiment of a surface pattern 38 with those of the aforementioned EP 0 375 833 A1 known, light-modifying structures, such as a flat mirror surface, light-diffractive, microscopically fine grating structures, matt structures, etc., surrounded.
  • the surface of the pattern 4 is grid-like according to FIG.
  • each raster element is divided into at least two field shares.
  • the corresponding portion of the function M (x, y) is formed, in the other example, mosaic elements of the surface pattern 38.
  • narrow line elements and / or other arbitrarily shaped mosaic elements of the surface pattern 38 are arranged on the pattern 4 ,
  • the line and mosaic elements in one direction have a dimension in the range 0.05 mm to 1 mm.
  • the security element 2 is transparent in a further embodiment in an edge zone outside the pattern 4.
  • the FIG. 2 shows a cross section through the bonded to the document 3 layer composite 1.
  • the composite layer 1 consists of several layers of different, successively applied to a carrier film not shown here plastic layers and comprises in the order listed typically a cover layer 5, an impression layer 6, a protective layer 7 and an adhesive layer 8. At least the cover layer 5 and the impression layer 6 are transparent to incident light 9. Through the cover layer 5 and the impression layer 6 through the pattern 4 is visible.
  • the protective layer 7 and the adhesive layer 8 are also transparent, indicia not shown here, which are applied to the surface of the substrate 3, can be recognized by transparent locations 10.
  • the transparent areas 10 can be found, for example, within the pattern 4 and / or in the border zone of the security element 2 surrounding the pattern 4.
  • the border zone is completely transparent in one embodiment, and only at predetermined transparent locations 10 in another embodiment
  • the carrier film is used to apply the thin layer composite 1 to the substrate 3 and is then removed from the layer composite 1, as in the aforementioned GB 2 129 739 A is described.
  • the joint contact area between the impression layer 6 and the protective layer 7 is the interface 11.
  • the interface 11 In the impression layer 6 are the optically active structures 12 of the macrostructure M of the pattern 4 (FIG. Fig. 1 ) molded with a structural height H St. Since the protective layer 7 fills the valleys of the optically active structures 12, that of the function M (x, y) describes the interface 11.
  • the interface 11 may be formed by a metal coating, preferably from the elements of Table 5 of the above-mentioned US 4,856,857 , in particular aluminum, silver, gold, copper, chromium, tantalum, etc., which separates the impression layer 6 and the protective layer 7 as a reflection layer.
  • the electrical conductivity of the metal coating causes a high reflectivity for visible incident light 9 at the interface 11.
  • one or more layers of one of the known, transparent, inorganic dielectrics for example, in Tables 1 and 4 of the aforementioned US 4,856,857 or the reflective layer has a multi-layered interference layer, such as a two-layer metal-dielectric combination, a metal-dielectric-metal combination, etc.
  • Die Reflection layer is structured in one embodiment, ie it covers the interface 11 only partially and leaves at the predetermined transparent locations 10, the interface 11 free.
  • the composite layer 1 is produced as a plastic laminate in the form of a long film web with a multiplicity of juxtaposed copies of the sample 4.
  • the security elements 2 are cut out of the film web and joined to the document 3 by means of the adhesive layer 8.
  • Documents 3 include banknotes, bank cards, identity cards or other valuable items.
  • the macrostructure M (x, y) is periodically composed of a predetermined segment of another mathematical function and has one or more periods in the partial surface 13.
  • the spatial frequencies F have a value of at most 20 lines / mm and are preferably below a value of 5 lines / mm.
  • the dimensions of the surface part 13 are greater than 0.4 mm at least in one direction, so that details in the pattern 4 can be seen with the naked eye.
  • one or more of the partial surfaces 13 form a relief image as a pattern 4, wherein the interface 11 instead of the simple mathematical functions of the macrostructure M follows the surface of the relief image.
  • Patterns for the pattern 4 can be found on gems or embossed images, such as seals, coins, medals, etc.
  • the macrostructure M of the surface of the relief image is piecewise continuous and differentiable and is curved in the subareas.
  • the macrostructure M replicates other visible three-dimensional surface textures, for example textures
  • the listing of the usable macrostructures M is incomplete since a plurality of the macrostructures M is piecewise continuous, differentiable and at least in partial areas .DELTA.M (x, y) ⁇ 0 applies.
  • the layer composite 1 must not be applied too much on the document 3. On the one hand, the documents 3 would otherwise be poorly stackable and, on the other hand, a thick layer composite 1 would offer an attack surface for detaching the layer composite 1 from the document 3.
  • the thickness of the layer composite varies according to the predetermined application and is typically in the range from 3 .mu.m to about 100 .mu.m.
  • the impression layer 6 is only a part of the layer composite 1, so that a structure height H ST permissible for the structure macrostructure 1 molded into the impression layer 6 is limited to values below 40 ⁇ m.
  • the technical difficulties in molding the macrostructure M increase with increasing structural height, so that preferred values of the structural height H ST are smaller than 5 ⁇ m.
  • the boundary surface 11 is shown as an impression structure A molded into the impression layer 6 with the optically active structures 12 and a relief height h R.
  • the impression structure A is a function A (x; y) of the coordinates x and y.
  • the height of the layer composite 1 expands along the coordinate axis z. Since the macrostructure M to be mapped may exceed the predetermined value of the feature height H ST , in each P (x, y) of the pattern 4, the profile height h of the macrostructure M must be limited to the predetermined stroke H of the impression structure A.
  • the macrostructures M with high values of the profile height h are also to be formed in the layer composite 1, which is a few micrometers thick, wherein in the Abform Modell A for technical reasons generated discontinuities 14 occur.
  • the function C (x; y) is limited in terms of amount to a range of values, for example to half the value of the structure height H ST .
  • the values for the stroke H may differ locally.
  • the locally varying stroke H is determined by the distance between two consecutive points of discontinuity P n not exceeding a predetermined value in the range from 40 ⁇ m to 300 ⁇ m.
  • the impression structure A is identical to the macrostructure M between two adjacent points of discontinuity 14 up to a constant value. Therefore, with the exception of the shadow cast, the impression structure A produces to a good approximation the same optical effect as the original macrostructure M.
  • the illuminated pattern 4 therefore behaves like the relief image when viewed under tilting and / or rotation of the layer composite 1 in the reference plane a three-dimensional surface described by the macrostructure M, although the laminate is only a few microns thick.
  • a incident light 9 ( Fig. 2 ) is reflected by the optically active structure 12 and deflected in a predetermined manner.
  • a reflection layer for example, an approximately 30 nm thick layer of aluminum is used.
  • the refraction of the incident light 9 and the reflected light at the boundaries of the layer composite 1 is for simplicity in the drawing of FIG. 3 not shown and not included in the following calculations.
  • the incident light 9 is incident on the optically active structure 12 in the layer composite 1 in an incident plane 15 which contains a normal 16 to the reference plane or to the surface of the layer composite 1.
  • Parallel illumination beams 17, 18, 19 of the incident light 9 strike surface elements of the impression structure A, for example at the points indicated by a, b, c.
  • Each of the surface elements has a local inclination ⁇ and a surface normal 20, 21, 22 in the plane of incidence 15, which are determined by the component of degrees M (x, y).
  • the normal 16 and the second surface normal 21 enter the angle ⁇ > 0 °.
  • the observer 26 sees the surface elements of the macrostructure M with a high surface brightness, which have the same local inclination ⁇ in the plane of incidence 15 or in planes parallel to the plane of incidence 15.
  • the interface 11 is inherently smooth, the other surface elements of the macrostructure M may also scatter some light parallel to the viewing direction 27 and appear to be differently shaded to the observer 26 in accordance with the local inclination.
  • the observer 26 receives a plastic image impression, although the Abform Quilt A at most a few microns is high.
  • this scattering effect can be intensified and used in a controlled manner for the design of the security feature 2.
  • FIGS. 4a and 4b show the different scattering behavior of the partial surface 13 of the security element 2 for the incident light 9.
  • the matt structures have a microscopically fine, stochastic structure in the interface 11 and are described by a relief profile R, a function of the coordinates x and y.
  • the matt structures scatter, as in the FIG. 4a shown, the parallel incident light 9 in a scattering cone 29 with a predetermined by the scattering power of the matte structure opening angle and the direction of the reflected light 23 as a cone axis.
  • the intensity of the scattered light is greatest, for example, on the cone axis and decreases with increasing distance to the cone axis, wherein the deflected in the direction of the generatrices of the scattering cone light is barely visible to an observer.
  • the cross section of the scattering cone 29 perpendicular to the cone axis is rotationally symmetrical in the case of normal incidence of light in the case of a matt structure referred to here as "isotropic". Is, like in the FIG. 4b
  • the cross section of the scattering cone 29 in a preferred direction 30 compressed, ie deformed elliptical, with the short major axis of the ellipse is aligned parallel to the preferred direction 30, the matte structure is referred to here as "anisotropic".
  • the relief structure elements are parallel aligned to the preferred direction 30.
  • the "isotropic" matt structures have direction-independent statistical parameters and therefore have no preferred direction 30.
  • the reflective layer consists of a colored metal or the cover layer 5 (FIG. Fig. 2 ) is colored and transparent. Particularly effective is the use of one of the multilayer interference layers on the interface 11, since the bulge of the macrostructure M, the interference layer in the direction of view 27 different thickness and therefore appears in locally different, dependent on the tilt angle 28 colors.
  • An example of the interference layer comprises a 100 nm to 150 nm TiO 2 layer between a transparent metal layer of 5 nm Al and an opaque metal layer of about 50 nm Al, the transparent metal layer facing the molding layer 6.
  • the FIG. 5 shows in cross section through the layer composite 1, a further embodiment of the macrostructure M.
  • the macrostructure M is at least in a partial surface 13 ( Fig. 4a ) a submicroscopic diffraction grating 31 is additively superimposed.
  • the diffraction grating 31 has the relief profile R of a periodic function of the coordinates x ( Fig. 2 ) and y ( Fig. 2 ) and has a constant profile.
  • the submicroscopic diffraction grating 31 diffracts the incident light 9 (FIG. Fig. 4a ) only in the zeroth diffraction order, ie in the direction of the beam 23 (FIG. Fig. 3 ) of the reflected light, in a dependent of the spatial frequency f section of the visible spectrum.
  • the profile depth t of the diffraction grating 31 is sufficiently small ( ⁇ 50 nm), then a smooth, incident light 9 is achromatically reflecting mirror surface as an interface 11 (FIG. Fig. 2 ) in front. Outside the points of discontinuity 14, the macrostructure M - changes slowly in comparison to the submicroscopic diffraction grating 31, which extends in the partial surface 13 with the constant relief height over the macrostructure M.
  • FIG. 6 shows the cross section through the layer composite 1 with a further embodiment of the security element 2 (FIG. Fig. 2 ).
  • the security element 2 comprises at least two partial surfaces 13 (FIG. Fig. 4a ), which in the drawing of the FIG. 6 arranged one behind the other.
  • the constant K is the magnitude of the curvature of the macrostructure M.
  • the gradients of the macrostructure M, grad (M) in the surface portions 31, 32, 33 are oriented substantially parallel to the y / z plane.
  • FIG. 7b shows the security element 2 after a rotation about the tilting axis 28 at a predetermined tilt angle, below which the strips 34 in the pattern 4 (FIG. Fig. 1 ) lie on the second and third surface parts 32, 33 and on the first surface part 31 on a line parallel to the tilting axis 28.
  • This predetermined tilt angle is determined by the choice and positioning of the macrostructures M.
  • a predetermined character can only be seen on the surface pattern surrounding the pattern 4 if the strips 34 have a predetermined position, for example that shown in the drawing FIG. 7b shown position, ie when the observer 26 ( Fig. 3 ) considers the security element 2 under the viewing conditions determined by the predetermined tilt angle.
  • the embodiments of the pattern 4 described above are to be combined with one another, and the correspondingly shaped macrostructures M are to be additively overlaid with the curved mirror surfaces and the matt structures, as well as all the aforementioned embodiments of the interface 11 (FIG. Fig. 6 ).

Landscapes

  • Credit Cards Or The Like (AREA)
  • Burglar Alarm Systems (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Road Signs Or Road Markings (AREA)
  • Laminated Bodies (AREA)
  • Materials For Medical Uses (AREA)
  • Silicon Compounds (AREA)

Description

  • Die Erfindung bezieht sich auf ein Sicherheitselement mit Makrostrukturen gemäss dem Oberbegriff des Anspruchs 1.
  • Solche Sicherheitselemente bestehen aus einem dünnen Schichtverbund aus Kunststoff, wobei in den Schichtverbund wenigstens Licht modifizierende Reliefstrukturen und ebene Spiegelflächen eingebettet sind. Die aus dem dünnen Schichtverbund geschnittenen Sicherheitselemente werden auf Gegenstände geklebt zum Beglaubigen der Echtheit der Gegenstände.
  • Der Aufbau des dünnen Schichtverbunds und die dazu verwendbaren Materialien sind beispielsweise in der US 4,856,857 beschrieben. Aus der GB 2 129 739 A ist es zudem bekannt, den dünnen Schichtverbund mit Hilfe einer Trägerfolie auf einen Gegenstand aufzubringen.
  • Eine Anordnung der eingangs genannten Art ist aus der EP 0 429 782 B1 bekannt. Das auf ein Dokument aufgeklebte Sicherheitselement weist dabei ein z.B. aus der EP 0 105 099 A1 oder EP 0 375 833 A1 bekanntes, optisch variables Flächenmuster aus mosaikartig angeordneten Flächenteilen mit bekannten Beugungsstrukturen und anderen Licht modifizierenden Reliefstrukturen auf. Damit ein gefälschtes Dokument zum Vortäuschen einer scheinbaren Echtheit nicht ohne deutliche Spuren mit einem nachgemachten, aus einem echten Dokument ausgeschnittenen oder von einem echten Dokument abgelösten Sicherheitselement versehen werden kann, werden in das Sicherheitselement und in angrenzende Teile des Dokuments Sicherheitsprofile eingeprägt. Das Einprägen der Sicherheitsprofile stört das Erkennen des optisch variablen Flächenmusters. Insbesondere variiert die Position des Prägestempels auf dem Sicherheitselement von Exemplar zu Exemplar des Dokuments.
  • Es ist auch bekannt, dass in früheren Zeiten bei besonders wichtigen Dokumenten mit einem Siegelabdruck die Echtheit des Dokuments beglaubigt wurde. Der Siegelabdruck weist ein aufwendig gestaltetes Reliefbild auf.
  • Der Erfindung liegt die Aufgabe zugrunde, ein kostengünstiges Sicherheitselement mit einer neuartigen optischen Wirkung zu schaffen, das aus einem dünnen Schichtverbund besteht und am zu beglaubigenden Gegenstand zu befestigen ist.
  • Die genannte Aufgabe wird erfindungsgemäss durch ein Sicherheitselement aus einem in einer von Koordinatenachsen (x; y) aufgespannten Referenzebene liegenden Schichtverbund bestehend aus einer Abformschicht aus Kunststoff und einer Schutzschicht aus Kunststoff mit eingebetteten, ein Muster bildenden, optisch wirksamen Strukturen gelöst, die in Flächenteilen des Musters in die Abformschicht abgeformt sind und eine zwischen der transparenten Abformschicht und der Schutzschicht des Schichtverbunds eingebettete reflektierende Grenzfläche formen und wenigstens eine Teilfläche mit Abmessungen grösser als 0,4 mm an der Grenzfläche als optisch wirksame Struktur wenigstens eine abgeformte Makrostruktur (M) mit wenigstens 0.1 mm voneinander entfernten benachbarten Extremwerten aufweist und dass die Makrostruktur (M) eine wenigstens stückweise stetige und differenzierbare Funktion der Koordinaten (x; y), wenigstens in Teilbereichen gekrümmt und keine periodische Dreieck- oder Rechteckfunktion ist.
  • Vorteilhafte. Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben.
  • Es zeigen:
  • Figur 1
    ein Sicherheitselement auf einem Dokument,
    Figur 2
    einen Querschnitt durch einen Schichtverbund
    Figur 3
    Reflexion an einer Makrostruktur,
    Figuren 4
    Streuung an Mattstrukturen,
    Figur 5
    die additive Überlagerung der Makrostruktur mit einem Beugungsgitter,
    Figur 6
    zwei Makrostrukturen eines Sicherheitselements im Querschnitt und
    Figuren 7
    ein Sicherheitselement unter verschiedenen Kippwinkein.
  • In der Figur 1 bedeutet 1 einen Schichtverbund, 2 ein Sicherheitselement und 3 ein Dokument. Das Sicherheitselement 2 weist im Schichtverbund 1 eine Makrostruktur M auf, die sich im Bereich eines Musters 4 erstreckt. Das Sicherheitselement 2 ist in einer von den Koordinatenachsen x, y aufgespannten, gedachten Referenzebene angeordnet. Die Makrostruktur M ist eine eineindeutige, stückweise stetige und differenzierbare Funktion M(x, y) der Koordinaten x, y. Die Funktion M(x, y) beschreibt eine wenigstens in Teilbereichen gekrümmte Fläche, wobei in Teilbereichen ΔM(x, y) ≠ 0 gilt. Die Makrostruktur M ist eine dreidimensionale Fläche, wobei x, y die Koordinaten eines Punktes P(x, y) auf der Fläche der Makrostruktur M sind. Der Abstand z(x, y) des Punktes P(x, y) von der Referenzebene ist parallel zur Koordinatenachse z gemessen, die senkrecht auf der Zeichnungsebene der Figur 1 steht. Das Muster 4 ist in einer Ausführung von einem Flächenmuster 38 mit den aus der eingangs erwähnten EP 0 375 833 A1 bekannten, Licht modifizierenden Strukturen, wie z.B. eine ebene Spiegelfläche, lichtbeugenden, mikroskopisch feinen Gitterstrukturen, Mattstrukturen usw., umgeben. Insbesondere ist in einer Ausführung die Fläche des Musters 4 rasterartig gemäss der Figur 1 der eingangs erwähnten EP 0 375 833 A1 unterteilt, wobei jedes Rasterelement wenigstens in zwei Feldanteile unterteilt ist. In einem der Feldanteile ist der entsprechende Anteil der Funktion M(x, y) abgeformt, in den anderem beispielsweise Mosaikelemente des Flächenmusters 38. In einer anderen Ausführung sind schmale Linienelemente und/oder andere, beliebig geformte Mosaikelemente des Flächenmusters 38 auf dem Muster 4 angeordnet. Mit Vorteil weisen die Linien- und Mosaikelemente in einer Richtung eine Abmessung im Bereich 0,05 mm bis 1 mm auf. Das Sicherheitselement 2 ist in einer weiteren Ausführung in einer Randzone ausserhalb des Musters 4 transparent.
  • Die Figur 2 zeigt einen Querschnitt durch den auf das Dokument 3 geklebten Schichtverbund 1. Der Schichtverbund 1 besteht aus mehreren Lagen von verschiedenen, nacheinander auf eine hier nicht gezeigte Trägerfolie aufgebrachten Kunststoffschichten und umfasst in der angegebenen Reihenfolge typisch eine Deckschicht 5, eine Abformschicht 6, eine Schutzschicht 7 und eine Kleberschicht 8. Wenigstens die Deckschicht 5 und die Abformschicht 6 sind für einfallendes Licht 9 transparent. Durch die Deckschicht 5 und die Abformschicht 6 hindurch ist das Muster 4 sichtbar.
  • Falls auch die Schutzschicht 7 und die Kleberschicht 8 transparent sind, werden hier nicht gezeigte, auf der Oberfläche des Substrats 3 angebrachte Indicia durch transparente Stellen 10 erkennbar. Die transparenten Stellen 10 finden sich beispielsweise innerhalb des Musters 4 und/oder in der das Muster 4 umgebenden Randzone des Sicherheitselements 2. Die Randzone ist in einer Ausführung völlig transparent, in einer anderen Ausführung nur an vorbestimmten transparenten Stellen 10. Die Trägerfolie kann in einer Ausführung die Deckschicht 5 selbst sein, in einer anderen Ausführung dient die Trägerfolie zum Applizieren des dünnen Schichtverbunds 1 auf das Substrat 3 und wird danach vom Schichtverbund 1 entfernt, wie dies in der eingangs erwähnten GB 2 129 739 A beschrieben ist.
  • Die gemeinsame Berührungsfläche zwischen der Abformschicht 6 und der Schutzschicht 7 ist die Grenzfläche 11. In die Abformschicht 6 sind die optisch wirksamen Strukturen 12 der Makrostruktur M des Musters 4 (Fig. 1) mit einer Strukturhöhe HSt abgeformt. Da die Schutzschicht 7 die Täler der optisch wirksamen Strukturen 12 verfüllt, beschreibt die der Funktion M(x, y) die Grenzfläche 11. Um eine hohe Wirksamkeit der optisch wirksamen Strukturen 12 zu erhalten, kann die Grenzfläche 11 durch einen Metallbelag gebildet sein, vorzugsweise aus den Elementen der Tabelle 5 der eingangs erwähnten US 4,856,857 , insbesondere Aluminium, Silber, Gold, Kupfer, Chrom, Tantal usw., die als Reflexionsschicht die Abformschicht 6 und die Schutzschicht 7 trennt. Die elektrische Leitfähigkeit des Metallbelags bewirkt ein hohes Reflektionsvermögen für sichtbares einfallendes Licht 9 an der Grenzfläche 11. Jedoch eignen sich anstelle des Metallbelags auch eine oder mehrere Schichten eines der bekannten, transparenten, anorganischen Dielektrika, die z.B. in der Tabellen 1 und 4 der eingangs erwähnten US 4,856,857 aufgeführt sind, oder die Reflexionsschicht weist eine mehrschichtige Interferenzschicht auf, wie z.B. eine zweischichtige Metall- Dielektrikum-Kombination, eine Metall- Dielektrikum- Metall- Kombination usw. Die Reflexionsschicht ist in einer Ausführung strukturiert, d.h. sie bedeckt die Grenzfläche 11 nur teilweise und lässt an den vorbestimmten transparenten Stellen 10 die Grenzfläche 11 frei.
  • Der Schichtverbund 1 wird als Kunststofflaminat in Form einer langen Folienbahn mit einer Vielzahl von nebeneinander angeordneten Kopien des Musters 4 hergestellt. Aus der Folienbahn werden die Sicherheitselemente 2 beispielsweise ausgeschnitten und mittels der Kleberschicht 8 mit dem Dokument 3 verbunden. Unter Dokumente 3 fallen, Banknoten, Bankkarten, Ausweise oder andere wichtige bzw. wertvolle Gegenstände.
  • Die Makrostruktur M(x, y) ist für einfache Muster 4 aus einer oder mehreren Teilflächen 13 (Fig. 1) zusammengesetzt, wobei die Makrostrukturen M(x, y) in den Teilflächen 13 durch mathematische Funktionen beschrieben sind, wie beispielsweise M(x, y) = 0,5•(x2+y2)•K, M(x, y) = a•{1 + sin(2πFx•x)•sin(2πFy•y)}, M(x, y) = a•x1,5 + b•x, M(x, y) = a•{1 + sin(2πFy•y)}, wobei Fx bzw. Fy eine Raumfrequenz F der periodischen Makrostruktur M(x, y) in Richtung der Koordinatenachse x bzw. y ist. In einer anderen Ausführung des Musters 4 ist die Makrostruktur M(x, y) aus einem vorbestimmten Ausschnitt einer anderen mathematischen Funktion periodisch zusammengesetzt und weist eine oder mehrere Perioden in der Teilfläche 13 auf. Die Raumfrequenzen F weisen einen Wert von höchstens 20 Linien/mm auf und liegen vorzugsweise unter einem Wert von 5 Linien/mm. Die Abmessungen des Flächenteils 13 sind wenigstens in einer Richtung grösser als 0.4 mm, damit Details im Muster 4 mit dem blossen Auge erkennbar sind.
  • In einer anderen Ausführung bilden eine oder mehrere der Teilflächen 13 ein Reliefbild als Muster 4, wobei die Grenzfläche 11 anstelle der einfachen mathematischen Funktionen der Makrostruktur M der Oberfläche des Reliefbildes folgt. Vorbilder für das Muster 4 finden sich auf Gemmen oder Prägebildern, wie Siegeln, Münzen, Medaillen usw. Die Makrostruktur M der Oberfläche des Reliefbilds ist stückweise stetig und differenzierbar und ist in den Teilbereichen gekrümmt.
  • In weiteren Ausführungen bildet die Makrostruktur M andere sichtbare dreidimensionale Oberflächenbeschaffenheiten nach, beispielsweise von Texturen von fast periodischen Geflechten oder Geweben, einer Vielzahl von relativ einfach strukturierten Körpern in einer regelmässigen oder unregelmässigen Anordnung usw. Die Aufzählung der verwendbaren Makrostrukturen M ist unvollständig, da eine Vielzahl der Makrostrukturen M stückweise stetig, differenzierbar ist und wenigstens in Teilbereichen ΔM(x, y) ≠ 0 gilt.
  • Der Schichtverbund 1 darf auf dem Dokument 3 nicht zu stark auftragen. Einerseits wären die Dokumente 3 sonst schlecht stapelbar und andererseits böte ein dicker Schichtverbund 1 eine Angriffsfläche zum Ablösen des Schichtverbunds 1 vom Dokument 3. Die Dicke des Schichtverbunds variiert nach der vorbestimmten Anwendung und liegt typisch im Bereich von 3 µm bis etwa 100 µm. Die Abformschicht 6 ist nur ein Teil des Schichtverbunds 1, so dass eine von der Struktur des Schichtverbunds 1 her zulässige Strukturhöhe HST für die in die Abformschicht 6 abgeformte Makrostruktur M auf Werte unter 40 µm beschränkt ist. Ausserdem wachsen die technischen Schwierigkeiten beim Abformen der Makrostruktur M mit zunehmender Strukturhöhe an, so dass bevorzugte Werte der Strukturhöhe HST kleiner als 5 µm sind. Die Profilhöhe h der Makrostruktur M ist die Differenz zwischen einem Wert z = M(x, y) im Punkt P(x, y) zur Referenzebene und dem Wert z0 = M(x0, y0), am Ort P(x0, y0) des minimalen Abstands z0 zur Referenzebene, also Profilhöhe h = z(x, y) - z0.
  • In der nicht massstäblichen Zeichnung der Figur 2 ist beispielhaft die Grenzfläche 11 als eine in die Abformschicht 6 abgeformte Abformstruktur A mit den optisch wirksamen Strukturen 12 und einer Reliefhöhe hR dargestellt. Die Abformstruktur A ist eine Funktion A(x; y) der Koordinaten x und y. Die Höhe des Schichtverbunds 1 dehnt sich längs der Koordinatenachse z aus. Da die abzuformende Makrostruktur M den vorbestimmten Wert der Strukturhöhe HST überschreiten kann, ist in jedem P(x, y) des Musters 4 die Profilhöhe h der Makrostruktur M auf den vorbestimmten Hub H der Abformstruktur A zu begrenzen. Sobald die Profilhöhe h der Makrostruktur M den Wert H überschreitet, wird mit Vorteil von der Profilhöhe h solange der Hub H subtrahiert bis die Reliefhöhe hR der Abformstruktur A kleiner als der Hub H ist, d.h. hR = Profilhöhe h modulo Hub H. Damit sind die Makrostrukturen M mit hohen Werten der Profilhöhe h auch in den wenige Mikrometer dicken Schichtverbund 1 abzuformen, wobei in der Abformstruktur A aus technischen Gründen erzeugte Unstetigkeitsstellen 14 auftreten.
  • Die Unstetigkeitsstellen 14 der Abformstruktur A x ; y = M x ; y + C x ; y modulo Hub H - C x ; y
    Figure imgb0001
    sind daher keine Extremwerte der Überlagerungsfunktion M(x; y). Die Funktion C(x; y) ist dabei betragsmässig auf einen Wertebereich beschränkt, beispielsweise auf den halben Wert der Strukturhöhe HST. Ebenso können sich in bestimmten Ausführungen des Musters 4 aus technischen Gründen die Werte für den Hub H lokal unterscheiden. Der Hub H der Abformstruktur A beschränkt sich auf weniger als 30 µm und liegt vorzugsweise im Bereich H = 0.5 µm bis H = 4 µm. In einer Ausführung der Beugungsstruktur S(x; y) ist der lokal variierende Hub H dadurch bestimmt, dass der Abstand zwischen zwei aufeinanderfolgenden Unstetigkeitsstellen Pn einen vorbestimmten Wert aus dem Bereich von 40 µm bis 300 µm nicht überschreitet.
  • Die Abformstruktur A ist zwischen zwei benachbarten Unstetigkeitsstellen 14 bis auf einen konstanten Wert mit der Makrostruktur M identisch. Daher erzeugt die Abformstruktur A mit Ausnahme des Schattenwurfs in guter Näherung den gleichen optischen Effekt wie die originale Makrostruktur M. Das beleuchtete Muster 4 verhält sich also bei der Betrachtung unter Kippen und/oder Drehen des Schichtverbunds 1 in der Referenzebene wie das Reliefbild bzw. wie eine von der Makrostruktur M beschriebene, dreidimensionale Oberfläche, obwohl der Schichtverbund nur wenige Mikrometer dick ist.
  • Anhand der Figur 3 ist beschrieben, wie das parallel gerichtete, auf die Grenzfläche 11 (Fig. 1) mit der Abformstruktur A einfallende Licht 9 (Fig. 2) durch die optisch wirksame Struktur 12 reflektiert und vorbestimmt abgelenkt wird. Als Reflexionsschicht ist z.B. eine etwa 30 nm starke Schicht aus Aluminium eingesetzt. Die Brechung des einfallenden Lichts 9 und des reflektierten Lichts an den Grenzen des Schichtverbunds 1 ist der Einfachheit halber in der Zeichnung der Figur 3 nicht dargestellt und in den nachfolgenden Rechnungen nicht berücksichtigt. Das einfallende Licht 9 fällt in einer Einfallsebene 15, die eine Normale 16 zur Referenzebene bzw. zur Oberfläche des Schichtverbunds 1. enthält, auf die optisch wirksame Struktur 12 im Schichtverbund 1 ein. Parallele Beleuchtungsstrahlen 17, 18, 19 des einfallenden Lichts 9 treffen auf Flächenelemente der Abformstruktur A, beispielsweise an den mit a, b, c bezeichneten Stellen. Jedes der Flächenelemente weist eine lokale Neigung γ und eine Flächennormale 20, 21, 22 in der Einfallsebene 15 auf, die durch die Komponente von grad M(x, y) bestimmt sind. Im ersten Flächenelement bei der Stelle a, das eine lokale Neigung γ = 0° aufweist, schliesst der erste Beleuchtungsstrahl 17 mit der ersten Flächennormalen 20 den Einfallswinkel α ein und das beim Auftreffen auf das erste Flächenelement reflektierte Licht 9 wird als erster Strahl 23 symmetrisch zur Flächennormale 20 unter dem Ausfallwinkel α = ϑ reflektiert. Beim zweiten Flächenelement bei der Stelle b ist die lokale Neigung γ ≠ 0°. Die Normale 16 und die zweite Flächennormale 21 schiessen den Winkel γ > 0° ein. Der Einfallswinkel des zweiten Beleuchtungsstrahls 18 beim zweiten Flächenelement beträgt α' = α - γ und dementsprechend schliesst der reflektierte zweite Strahl 24 mit der Normalen 16 den Winkel ϑ1 = α - 2γ ein. Desgleichen wird der reflektierte dritte Strahl 25 entsprechend der lokalen Neigung γ < 0° der Stelle c unter dem Winkel ϑ2 = α - 2γ = α + 2lγl abgelenkt, da der Einfallswinkel α" des dritten Beleuchtungsstrahls 19 zur dritten Flächennormalen 22 um den lokalen Neigungswinkel γ grösser ist als der Einfallswinkel zur Normalen 16. Ein Beobachter 26 der in der Blickrichtung 27 schaut, die z.B. in der Einfallsebene 15 liegt, empfängt mit seinem unbewaffneten Auge das reflektierte Licht der Strahlen 23, 24, 25 nur, wenn er infolge Kippens des Sicherheitselements 2 (Fig. 1) bzw. des Schichtverbunds 1 um eine in der Referenzebene liegende und senkrecht zur Einfallsebene 15 ausgerichtete Achse 28 die unter den verschiedenen Winkeln ϑ, ϑ1, ϑ2 zur Normalen 16 reflektierten Strahlen 23, 24, 25 mit seiner Blickrichtung 27 zusammenfallen. Unter einem bestimmten Kippwinkel erblickt der Beobachter 26 die Flächenelemente der Makrostruktur M mit einer hohen Flächenhelligkeit, die in der Einfallsebene 15 bzw. in zur Einfallsebene 15 parallelen Ebenen dieselbe lokale Neigung γ aufweisen. Obwohl die Grenzfläche 11 an sich glatt ist, können auch die anderen Flächenelemente der Makrostruktur M etwas Licht parallel zur Blickrichtung 27 streuen und dem Beobachter 26 entsprechend der lokalen Neigung verschieden stark abgeschattet erscheinen. Der Beobachter 26 erhält einen plastischen Bildeindruck, obwohl die Abformstruktur A höchstens einige wenige Mikrometer hoch ist. Durch die Überlagerung der Makrostruktur M mit einer Mattstruktur kann diese Streuwirkung verstärkt und für die Gestaltung des Sicherheitsmerkmals 2 kontrolliert eingesetzt werden.
  • Die Figuren 4a und 4b zeigen das unterschiedliche Streuverhalten der Teilfläche 13 des Sicherheitselements 2 für das einfallende Licht 9. Die Mattstrukturen weisen eine mikroskopisch feine, stochastische Struktur in der Grenzfläche 11 auf und sind durch ein Reliefprofil R, einer Funktion der Koordinaten x und y, beschieben. Die Mattstrukturen streuen, wie in der Figur 4a gezeigt, das parallel einfallende Licht 9 in einen Streukegel 29 mit einem durch das Streuvermögen der Mattstruktur vorbestimmten Öffnungswinkel und mit der Richtung des reflektierten Lichts 23 als Kegelachse. Die Intensität des Streulichts ist z.B. auf der Kegelachse am grössten und nimmt mit zunehmendem Abstand zur Kegelachse ab, wobei das in Richtung der Mantellinien des Streukegels abgelenkte Licht für einen Beobachter gerade noch erkennbar ist. Der Querschnitt des Streukegels 29 senkrecht zur Kegelachse ist bei senkrechtem Lichteinfall rotationssymmetrisch bei einer hier "isotrop" genannten Mattstruktur. Ist, wie in der Figur 4b gezeigt, der Querschnitt des Streukegels 29 in einer Vorzugsrichtung 30 hingegen gestaucht d.h. elliptisch verformt, wobei die kurze Hauptachse der Ellipse parallel zur Vorzugsrichtung 30 ausgerichtet ist, wird die Mattstruktur hier mit "anisotrop" bezeichnet. Der Querschnitt des Streukegels 29 sowohl bei der "isotropen" als auch bei der "anisotropen" Mattstruktur, die parallel zur Referenzebene angeordnet ist, wird in einer Richtung parallel zur Einfallsebene 15 (Fig. 3) merklich verzerrt, wenn der Einfallswinkel α zur Normalen 16 grösser als 30° ist.
  • Die Mattstrukturen besitzen im mikroskopischen Massstab feine hier nicht gezeigte Reliefstrukturelemente, die das Streuvermögen bestimmen und nur mit statistischen Kenngrössen beschrieben werden können, wie z.B. Mittenrauhwert Ra, Korrelationslänge Ic usw., wobei die Werte für den Mittenrauhwert Ra im Bereich 200 nm bis 5 µm liegen mit Vorzugswerten von Ra = 150 nm bis Ra = 1,5 µm. Die Korrelationslängen Ic weisen zumindest in einer Richtung Werte im Bereich von Ic = 300 nm bis Ic = 300 µm, vorzugsweise zwischen Ic = 500 nm bis Ic = 100 µm, auf. Bei den "anisotropen" Mattstrukturen sind die Reliefstrukturelemente parallel zur Vorzugsrichtung 30 ausgerichtet. Die "isotropen" Mattstrukturen weisen richtungsunabhängige, statistische Kenngrössen auf und haben daher keine Vorzugsrichtung 30 .
  • In einer anderen Ausführung besteht die Reflexionsschicht aus einem farbigen Metall oder die Deckschicht 5 (Fig. 2) ist eingefärbt und transparent. Besonders wirkungsvoll ist der Einsatz einer der mehrschichtigen Interferenzschichten auf der Grenzfläche 11, da durch die Wölbungen der Makrostruktur M die Interferenzschicht in Richtung der Blickrichtung 27 verschieden dick ist und deshalb in lokal verschiedenen, vom Kippwinkel 28 abhängigen Farben erscheint. Ein Beispiel der Interferenzschicht umfasst eine 100 nm bis 150 nm TiO2 Schicht zwischen einer transparenten Metallschicht von 5 nm Al und einer opaken Metallschicht von etwa 50 nm Al, wobei die transparente Metallschicht der Abformschicht 6 zugewandt ist.
  • Die Figur 5 zeigt im Querschnitt durch den Schichtverbund 1 eine weitere Ausführung der Makrostruktur M. Der Makrostruktur M ist wenigstens in einer Teilfläche 13 (Fig. 4a) ein submikroskopisches Beugungsgitter 31 additiv überlagert. Das Beugungsgitter 31 weist das Reliefprofil R einer periodischen Funktion der Koordinaten x (Fig. 2) und y (Fig. 2) auf und hat ein konstantes Profil. Die Profiltiefe t des Beugungsgitters 31 weist einen Wert aus dem Bereich t = 0,05 µm bis t = 5 µm auf, wobei die Vorzugswerte im engeren Bereich von t = 0,6 ± 0,5 µm liegen. Die Spatialfrequenz f des Beugungsgitters 31 liegt im Bereich über f = 2400 Linien/mm, daher die Bezeichnung submikröskopisch. Das submikroskopische Beugungsgitter 31 beugt das einfallende Licht 9 (Fig. 4a) nur in die nullte Beugungsordnung, d.h. in Richtung des Strahls 23 (Fig. 3) des reflektierten Lichts, in einem von der Spatialfrequenz f abhängigen Ausschnitt aus dem sichtbaren Spektrum. Die Abformstruktur A = (Makrostruktur M modulo Hub H) + Reliefprofil R erzeugt somit die Wirkung eines farbigen, gewölbten Spiegels. Ist die Profiltiefe t des Beugungsgitters 31 hinreichend klein (< 50 nm), so liegt eine glatte, das einfallende Licht 9 achromatisch reflektierende Spiegelfläche als Grenzfläche 11 (Fig. 2) vor. Ausserhalb der Unstetigkeitsstellen 14 ändert sich die Makrostruktur M-langsam im Vergleich zum submikroskopischen Beugungsgitter 31, das sich in der Teilfläche 13 mit der konstanten Reliefhöhe über die Makrostruktur M erstreckt.
  • Die Figur 6 zeigt den Querschnitt durch den Schichtverbund 1 mit einer weiteren Ausführung des Sicherheitselements 2 (Fig. 2). Das Sicherheitselement 2 umfasst wenigstens zwei Teilflächen 13 (Fig. 4a), die in der Zeichnung der Figur 6 hintereinander angeordnet sind. Die Makrostruktur M in der vorderen Teilfläche 13 folgt beispielsweise der mathematischen Funktion M(y) = 0.5•y2•K und die Makrostruktur M in der hinteren Teilfläche 13 ist durch die Funktion M(y) =-0.5•y2•K bestimmt. In der hinteren Teilfläche 13 sind Teile der Makrostruktur M(y) = - 0.5•y2•K durch die Makrostruktur M(y) = 0.5•y2•K in der vorderen Teilfläche 13 verdeckt und daher in der Zeichnung der Figur 6 gestrichelt gezeichnet.
  • In der Ansicht weist das Muster 4 (Fig. 1) im Sicherheitselement 2 gemäss der Figuren 7a bis 7c ein ovales erstes Flächenteil 31 mit derin der Figur 6 gezeigte Makrostruktur M(y) = 0.5•y2•K auf, während in an das erste Flächenteil 31 angrenzende zweite und dritte Flächenteile 32 und 33 die der hinteren Teilfläche 13 (Fig. 4a) zugeordnete Makrostruktur M(y) = - 0.5•y2•K abgeformt ist. Die Konstante K ist der Betrag der Krümmung der Makrostruktur M. Die Gradienten der Makrostruktur M, grad(M), in den Flächenteilen 31, 32, 33 sind im wesentlichen parallel zur y/z - Ebene ausgerichtet. Vorzugsweise schliessen die Gradienten mit der y/z - Ebene einen Winkel (ϕ = 0° bzw. 180° ein. Die Koordinatenachse z steht senkrecht zur Zeichnungsebene der Figur 7a. Dabei sind Abweichungen im Winkel (ϕ von δϕ = ±30° auf den Vorzugswert zulässig, um in diesem Bereich den Gradienten als im wesentlichen parallel zur y/z - Ebene zu betrachten.
  • Bei der Beleuchtung des Sicherheitselements 2 mit parallelem einfallenden Licht 9 (Fig. 4a) werfen eng begrenzte Streifen 34 der Flächenteile 31, 32, 33 im Muster 4 das reflektierte Licht mit hoher Flächenhelligkeit in die Blickrichtung 27 (Fig. 3) des Beobachters 26 (Fig. 3). Die Streifen 34 sind senkrecht zu den Gradienten ausgerichtet. Der Einfachheit halber sind die Gradienten und daher die Streifen 34 parallel. Je kleiner die Krümmung K ist, desto höher ist die Geschwindigkeit der Bewegung der Streifen 34 pro Winkeleinheit in Richtung der auf die Referenzebene projizierten Komponenten 35, 36 der Gradienten bei der Drehung um die Kippachse 28. Die Breite der Streifen 34 hängt von der lokalen Krümmung K und der Beschaffenheit der Grenzfläche 11 (Fig. 2) der eingesetzten Abformstruktur A ab. Bei gleichem Betrag der Krümmung sind die Streifen 34 für die spiegelnden Grenzflächen 11 eher schmal im Vergleich zur den Streifen 34 der Grenzflächen 11 mit der mikroskopisch feinen Mattstruktur. Ausserhalb der Streifen 34 sind die Flächenteile 31, 32, 33 in einem Grauton sichtbar. Ein Schnitt längs einer Spur 37 ist der in der Figur 6 gezeigte Querschnitt.
  • Die Figur 7b zeigt das Sicherheitselement 2 nach einer Drehung um die Kippachse 28 in einen vorbestimmten Kippwinkel, unter dem die Streifen 34 im Muster 4 (Fig. 1) auf den zweiten und dritten Flächenteilen 32, 33 und auf dem ersten Flächenteil 31 auf einer Linie parallel zur Kippachse 28 liegen. Dieser vorbestimmte Kippwinkel ist durch die Wahl und die Positionierung der Makrostrukturen M bestimmt. In einer Ausführung des Sicherheitselements 2 ist auf dem das Muster 4 umgebende Flächenmuster ein vorbestimmtes Zeichen nur zu sehen, wenn die Streifen 34 eine vorbestimmte Lage, z.B. die in der Zeichnung Figur 7b gezeigte Lage, einnehmen, d.h. wenn der Beobachter 26 (Fig. 3) das Sicherheitselement 2 unter den durch den vorbestimmten Kippwinkel bestimmten Betrachtungsbedingungen betrachtet.
  • In der Figur 7c sind nach einer weiteren Drehung um die Kippachse 28 die Streifen 34 auf dem Muster 4 (Fig. 1) wieder auseinandergewandert, wie dies die nicht bezeichneten Pfeile in der Figur 7c andeuten.
  • Selbstverständlich reichen für das Muster 4 zum Ausrichten der Sicherheitselements 2 in einer anderen Ausführung eine benachbarte Anordnung aus dem ersten Flächenteil 31 und einem der beiden anderen Flächenteile 32, 33 aus.
  • Ohne von der Idee der Erfindung abzuweichen, sind die oben beschriebenen Ausführungen des Musters 4 mit einander zu kombinieren, die entsprechend geformten Makrostrukturen M mit den gewölbten Spiegelflächen und den Mattstrukturen additiv zu überlagern, sowie alle genannten Ausführungen der Grenzfläche 11 (Fig. 6) einzusetzen.

Claims (12)

  1. Sicherheitselement (2) zum Beglaubigen eines Dokuments (3), welches aus einem in einer von Koordinatenachsen (x; y) aufgespannten Referenzebene liegenden Schichtverbund (1) aus Kunststoffschichten mit eingebetteten, ein reflektierendes Muster (4) bildenden, optisch wirksamen Strukturen (12) besteht, die in Flächenteilen (13; 31; 32; 33) des Musters (4) in eine Abformschicht (6) des Schichtverbunds (1) abgeformt sind und eine zwischen der transparenten Abformschicht (6) und der Schutzschicht (7) des Schichtverbunds (1) eingebettete, reflektierende Grenzfläche (11) formen,
    dadurch gekennzeichnet,
    dass bei wenigstens einem Flächenteil (13; 31; 32; 33) mit Abmessungen in wenigstens einer Richtung grösser als 0,4 mm als optisch wirksame Struktur (12) eine dreidimensionale Fläche wenigstens einer Makrostruktur (M) in die Grenzfläche (11) abgeformt ist, welche wenigstens 0.1 mm voneinander entfernte, benachbarte Extremwerte aufweist, dass die Strukturhöhe (HST) auf Werte unter 40 µm beschränkt ist, und dass die Makrostruktur (M) der wenigstens in Teilbereichen gekrümmten Grenzfläche (11) eine wenigstens stückweise stetige und differenzierbare Funktion der Koordinaten (x; y) und keine periodische Dreieck- oder Rechteckfunktion ist
  2. Sicherheitselement (2) nach Anspruch 1, dadurch gekennzeichnet, dass-das Muster (4) wenigstens zwei benachbarte Flächenteile (31; 32; 33) aufweist, dass im ersten Flächenteil (31) die eine Makrostruktur (M) und im andern Flächenteil (32; 33) die andere Makrostruktur (- M) abgeformt sind, wobei die Gradienten der beiden Makrostrukturen (M, - M) in im wesentlichen parallelen Ebenen, die eine Normale (16) auf die Referenzebene enthalten, ausgerichtet sind.
  3. Sicherheitselement (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Makrostruktur (M) eine stückweise stetige, differenzierbare Funktion mit der Raumfrequenz (F) von höchstens 20 Linien/mm ist.
  4. Sicherheitselement (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Makrostruktur (M) eine stückweise stetige, differenzierbare Funktion einer Oberflächenstruktur eines Reliefbilds ist.
  5. Sicherheitselement (2) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Makrostruktur (M) mit einer die Strukturhöhe (HST) überschreitender Profilhöhe (h) in Form einer Abformstruktur (A) in die Abformschicht (6) abgeformt ist, dass die Abformstruktur (A) auf einen vorbestimmten Hub (H) beschränkt und gleich dem um eine Funktion (C) verminderten Ergebnis aus einer modulo Hub (H) reduzierten Summe aus der Makrostruktur (M) und der Funktion (C) ist, wobei der Hub (H) kleiner als die Strukturhöhe (HST) ist, und dass die von den Koordinaten abhängige Funktion (C) betragsmässig auf die halbe Strukturhöhe (HST) beschränkt ist.
  6. Sicherheitselement (2) nach Anspruch 5, dadurch gekennzeichnet, dass die Strukturhöhe (HST) auf Werte unter 5 Mikrometer beschränkt ist und der Hub (H) im Bereich 0,5 Mikrometer bis 4 Mikrometer liegt.
  7. Sicherheitselement (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Makrostruktur (M) ein submikroskopisches Beugungsgitter (31) mit einem Reliefprofil (R), einer Funktion der Koordinaten (x; y), additiv.überlagert ist, wobei das Reliefprofil (R) eine Spatialfrequenz (f) höher als 2400 Linien/mm und eine konstante Profiltiefe (t) aus dem Wertebereich 0.05 bis 5 Mikrometer aufweist, und dass das Beugungsgitter (31) der Makrostruktur (M) folgend das vorbestimmte Reliefprofil (R) beibehält.
  8. Sicherheitselement (2) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Makrostruktur (M) eine lichtstreuende Mattstruktur mit einem Reliefprofil (R), einer Funktion der Koordinaten (x; y), additiv überlagert ist, wobei die Mattstruktur einen Mittenrauhwert Ra im Bereich 200 nm bis 5 µm aufweist, und dass die Mattstruktur der Makrostruktur (M) folgend das vorbestimmte Reliefprofil (R) beibehält.
  9. Sicherheitselement (2) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Grenzfläche (11) durch eine mehrschichtige Interferenzschicht gebildet ist.
  10. Sicherheitselement (2) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Grenzfläche (11) durch eine vollflächige und/oder strukturierte, metallische Reflexionsschicht gebildet ist.
  11. Sicherheitselement (2) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass eine Deckschicht (5) des Schichtverbunds (1) transparent und eingefärbt ist.
  12. Sicherheitselement (2) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass Linien- und/oder andere Mosaikelemente eines Flächenmusters (38) mit Licht modifizierenden Strukturen aus der Gruppe ebene Spiegelfläche, mikroskopische Gitterstrukturen und Mattstrukturen das Muster (4) umgeben.
EP03720418A 2002-04-05 2003-04-03 Sicherheitselement mit makrostrukturen Expired - Lifetime EP1492678B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI200331579T SI1492678T1 (sl) 2002-04-05 2003-04-03 Varnostni element z makrostrukturami

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10216561 2002-04-05
DE10216561A DE10216561B4 (de) 2002-04-05 2002-04-05 Sicherheitselement mit Makrostrukturen
PCT/EP2003/003483 WO2003084766A2 (de) 2002-04-05 2003-04-03 Sicherheitselement mit makrostrukturen

Publications (2)

Publication Number Publication Date
EP1492678A2 EP1492678A2 (de) 2005-01-05
EP1492678B1 true EP1492678B1 (de) 2009-01-28

Family

ID=28458824

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03720418A Expired - Lifetime EP1492678B1 (de) 2002-04-05 2003-04-03 Sicherheitselement mit makrostrukturen

Country Status (15)

Country Link
US (1) US7002746B2 (de)
EP (1) EP1492678B1 (de)
JP (1) JP2005528634A (de)
KR (1) KR20040106311A (de)
CN (1) CN1646328B (de)
AT (1) ATE421926T1 (de)
AU (1) AU2003224034A1 (de)
DE (2) DE10216561B4 (de)
DK (1) DK1492678T3 (de)
ES (1) ES2321079T3 (de)
PL (1) PL204059B1 (de)
PT (1) PT1492678E (de)
RU (1) RU2314931C2 (de)
SI (1) SI1492678T1 (de)
WO (1) WO2003084766A2 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216562C1 (de) 2002-04-05 2003-12-11 Ovd Kinegram Ag Zug Sicherheitselement mit Mikro- und Makrostrukturen
DE102004017094A1 (de) * 2004-04-07 2005-11-03 Leonhard Kurz Gmbh & Co. Kg Verfahren zur Herstellung eines Kraftfahrzeug-Nummernschildes sowie ein Kraftfahrzeug-Nummernschild
DE102005006074B4 (de) 2005-02-10 2009-12-10 Leonhard Kurz Gmbh & Co. Kg Dekorierter Spritzgussartikel und Verfahren zur Herstellung des dekorierten Spritzgussartikels
DE102005017169B4 (de) 2005-04-13 2023-06-22 Ovd Kinegram Ag Transferfolie
DE102005017170B4 (de) 2005-04-13 2010-07-01 Ovd Kinegram Ag Transferfolie, Verfahren zu deren Herstellung sowie Mehrschichtkörper und dessen Verwendung
DE102005061749A1 (de) * 2005-12-21 2007-07-05 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement und Verfahren zu seiner Herstellung
JP4961944B2 (ja) * 2006-10-24 2012-06-27 凸版印刷株式会社 表示体及び印刷物
DE102007063275A1 (de) * 2007-12-27 2009-07-02 Giesecke & Devrient Gmbh Sicherheitsmerkmal für hohe Kippwinkel
US20100206953A1 (en) * 2009-02-19 2010-08-19 O'boyle Lily Durable washable label having a visible diffraction grating pattern
JP2011002491A (ja) * 2009-06-16 2011-01-06 Toppan Printing Co Ltd 表示体及びラベル付き物品
FR2959830B1 (fr) 2010-05-07 2013-05-17 Hologram Ind Composant optique d'authentification et procede de fabrication dudit composant
WO2012143426A1 (en) * 2011-04-20 2012-10-26 Rolic Ag Asymmetric optically effective surface relief microstructures and method of making them
DE102012010908A1 (de) * 2012-06-01 2013-12-05 Giesecke & Devrient Gmbh Verifikation von Wertdokumenten mit einem Fenster mit diffraktiven Strukturen
CN102760379B (zh) * 2012-07-10 2014-12-10 深圳职业技术学院 防伪标识及其制造方法
FR3019496A1 (fr) 2014-04-07 2015-10-09 Hologram Ind Composant optique de securite a effet reflectif, fabrication d'un tel composant et document securise equipe d'un tel composant
CN104385800B (zh) 2014-10-16 2017-10-24 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
DE102015005911A1 (de) 2015-05-07 2016-11-10 Giesecke & Devrient Gmbh Optisch variables Sicherheitselement
CN109891272B (zh) * 2016-08-31 2021-12-10 唯亚威通讯技术有限公司 具有成角度的反射段的物品
RU174679U1 (ru) * 2017-02-13 2017-10-25 Общество С Ограниченной Ответственностью "Центр Компьютерной Голографии" Микрооптическая система формирования визуальных изображений с кинематическими эффектами
FR3066954B1 (fr) * 2017-06-06 2019-11-01 Surys Composant optique de securite visible en reflexion, fabrication d'un tel composant et document securise equipe d'un tel composant
DE102018004088A1 (de) * 2018-05-18 2019-11-21 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit Mikroreflektoren
DE102019008250A1 (de) * 2019-11-27 2021-05-27 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit kippungsabhängiger Motivdarstellung
CN111842287B (zh) * 2020-07-07 2021-07-16 山东大学 一种用于射流清洗的无接触式定位装置、清洗系统及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH604146A5 (de) * 1976-12-21 1978-08-31 Landis & Gyr Ag
JPS58200275A (ja) * 1982-05-18 1983-11-21 Dainippon Printing Co Ltd パタ−ン状フレネルホログラムの製造方法
US4469725A (en) * 1982-09-14 1984-09-04 Fis Organisation Ag Identification card
CH659433A5 (de) 1982-10-04 1987-01-30 Landis & Gyr Ag Dokument mit einem beugungsoptischen sicherheitselement.
JPS5988780A (ja) 1982-11-08 1984-05-22 アメリカン・バンク・ノ−ト・カムパニ− 光回折記録体及び光回折パタ−ンを作る方法
DE3650027T2 (de) 1985-05-07 1995-01-26 Dainippon Printing Co Ltd Artikel mit transparentem Hologramm.
WO1988005387A1 (en) * 1987-01-13 1988-07-28 Mancuso Robert J Variable color print and method of making same
US4874213A (en) * 1987-08-10 1989-10-17 Polaroid Corporation Method of forming volume phase reflection holograms
DE3866230D1 (de) * 1988-03-03 1991-12-19 Landis & Gyr Betriebs Ag Dokument.
GB8807820D0 (en) * 1988-03-31 1988-05-05 Pizzanelli D J Light modifying & light filtering optical security device
EP0375833B1 (de) 1988-12-12 1993-02-10 Landis &amp; Gyr Technology Innovation AG Optisch variables Flächenmuster
DE3932505C2 (de) * 1989-09-28 2001-03-15 Gao Ges Automation Org Datenträger mit einem optisch variablen Element
ATE105784T1 (de) 1989-12-01 1994-06-15 Landis & Gyr Business Support Anordnung zur verbesserung der fälschungssicherheit eines wertdokumentes.
US5174213A (en) * 1991-01-22 1992-12-29 Belanger, Inc. Floor mounted automobile conveyor
EP0537439B2 (de) * 1991-10-14 2003-07-09 OVD Kinegram AG Sicherheitselement
CH690232A5 (de) 1996-01-19 2000-06-15 Ovd Kinegram Ag Flächenmuster.
DE10028426A1 (de) * 1999-06-10 2001-04-12 Fraunhofer Ges Forschung Verfahren zur Herstellung einer dreidimensionalen Struktur
DE10157534C1 (de) * 2001-11-23 2003-05-15 Ovd Kinegram Ag Zug Sicherheitselement mit Beugungsstrukturen
DE10226114A1 (de) * 2001-12-21 2003-07-03 Giesecke & Devrient Gmbh Sicherheitselement für Sicherheitspapiere und Wertdokumente
US6882452B2 (en) * 2002-07-01 2005-04-19 Toray Plastics (America), Inc. Patterned deposition of refractive layers for high security holograms

Also Published As

Publication number Publication date
RU2314931C2 (ru) 2008-01-20
RU2004132232A (ru) 2005-04-20
DE10216561A1 (de) 2003-10-23
KR20040106311A (ko) 2004-12-17
WO2003084766A3 (de) 2004-02-05
AU2003224034A1 (en) 2003-10-20
PL371280A1 (en) 2005-06-13
US7002746B2 (en) 2006-02-21
CN1646328B (zh) 2011-03-30
AU2003224034A8 (en) 2003-10-20
ES2321079T3 (es) 2009-06-02
DK1492678T3 (da) 2009-05-04
PT1492678E (pt) 2009-04-03
ATE421926T1 (de) 2009-02-15
JP2005528634A (ja) 2005-09-22
SI1492678T1 (sl) 2009-08-31
EP1492678A2 (de) 2005-01-05
WO2003084766A2 (de) 2003-10-16
DE10216561B4 (de) 2010-01-07
CN1646328A (zh) 2005-07-27
US20050163922A1 (en) 2005-07-28
DE50311142D1 (de) 2009-03-19
PL204059B1 (pl) 2009-12-31

Similar Documents

Publication Publication Date Title
EP1492678B1 (de) Sicherheitselement mit makrostrukturen
EP1893416B1 (de) Sicherheitsdokument
EP1492679B2 (de) Sicherheitselement mit mikro- und makrostrukturen
EP1434695B1 (de) Sicherheitselement
EP3339048B1 (de) Sicherheitselement mit reflektivem flächenbereich
DE102004042136B4 (de) Metallisiertes Sicherheitselement
EP1937471B1 (de) Mehrschichtkörper sowie verfahren zu dessen herstellung
WO2003055691A1 (de) Diffraktives sicherheitselement
DE102018005474A1 (de) Optisch variables Sicherheitselement mit reflektivem Flächenbereich
EP3475096B1 (de) Optisch variables sicherheitselement
WO2013156149A1 (de) Optisch variables sicherheitselement
DE102008046128A1 (de) Optisch variables Sicherheitselement mit Mattbereich
EP3302995B1 (de) Optisch variables sicherheitselement
DE102010055688A1 (de) Optisch variables Element
EP3242801A1 (de) Verfahren zur herstellung von sicherheitselementen sowie sicherheitselemente
DE10216563B4 (de) Sicherheitselement als Photokopierschutz
DE102017106433A1 (de) Sicherheitselement und Verfahren zur Herstellung eines Sicherheitselements
EP1547807A2 (de) Sicherheitselement mit Beugungsstruktur und Verfahren zur Herstellung dieses Elements
EP3406458A1 (de) Sicherheitselement mit reflektivem flächenbereich
DE102017006421A1 (de) Optisch variable Sicherheitsanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040904

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHILLING, ANDREAS

Inventor name: TOMPKIN, WAYNE, ROBERT

Inventor name: STAUB, RENE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI

REF Corresponds to:

Ref document number: 50311142

Country of ref document: DE

Date of ref document: 20090319

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20090324

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090400825

Country of ref document: GR

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2321079

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E005750

Country of ref document: HU

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20180326

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20180326

Year of fee payment: 16

Ref country code: PT

Payment date: 20180322

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20180419

Year of fee payment: 16

Ref country code: DK

Payment date: 20180424

Year of fee payment: 16

Ref country code: IE

Payment date: 20180418

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20180323

Year of fee payment: 16

Ref country code: BE

Payment date: 20180423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20180424

Year of fee payment: 16

Ref country code: HU

Payment date: 20180320

Year of fee payment: 16

REG Reference to a national code

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E003088

Country of ref document: EE

Effective date: 20190430

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190430

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190430

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 5251

Country of ref document: SK

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190404

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191003

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190403

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190403

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190404

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200420

Year of fee payment: 18

Ref country code: ES

Payment date: 20200516

Year of fee payment: 18

Ref country code: FI

Payment date: 20200417

Year of fee payment: 18

Ref country code: CH

Payment date: 20200423

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210324

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20210325

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210430

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210422

Year of fee payment: 19

Ref country code: BG

Payment date: 20210505

Year of fee payment: 19

Ref country code: AT

Payment date: 20210420

Year of fee payment: 19

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210403

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220420

Year of fee payment: 20

Ref country code: DE

Payment date: 20220331

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220403

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 421926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220403

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220403

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50311142

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220403