EP1490216B1 - Procede de fabrication d'elements composites - Google Patents
Procede de fabrication d'elements composites Download PDFInfo
- Publication number
- EP1490216B1 EP1490216B1 EP03720337A EP03720337A EP1490216B1 EP 1490216 B1 EP1490216 B1 EP 1490216B1 EP 03720337 A EP03720337 A EP 03720337A EP 03720337 A EP03720337 A EP 03720337A EP 1490216 B1 EP1490216 B1 EP 1490216B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- iii
- hollow bodies
- space
- filled
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 21
- 239000002184 metal Substances 0.000 claims abstract description 21
- 239000004033 plastic Substances 0.000 claims abstract description 20
- 229920003023 plastic Polymers 0.000 claims abstract description 19
- 239000002023 wood Substances 0.000 claims abstract description 8
- 150000001875 compounds Chemical class 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 21
- 239000012948 isocyanate Substances 0.000 claims description 20
- 150000002513 isocyanates Chemical class 0.000 claims description 19
- 239000011521 glass Substances 0.000 claims description 15
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 claims description 5
- 239000007795 chemical reaction product Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 description 42
- 238000002360 preparation method Methods 0.000 description 25
- 239000005056 polyisocyanate Substances 0.000 description 21
- 229920001228 polyisocyanate Polymers 0.000 description 21
- 239000007858 starting material Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 18
- 239000000047 product Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 16
- -1 polyethylene Polymers 0.000 description 16
- 238000011049 filling Methods 0.000 description 15
- 229920005862 polyol Polymers 0.000 description 15
- 150000003077 polyols Chemical class 0.000 description 15
- 229910000831 Steel Inorganic materials 0.000 description 14
- 239000010959 steel Substances 0.000 description 14
- 239000004604 Blowing Agent Substances 0.000 description 12
- 238000009835 boiling Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 239000004005 microsphere Substances 0.000 description 11
- 239000004814 polyurethane Substances 0.000 description 11
- 239000003570 air Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 229920002635 polyurethane Polymers 0.000 description 10
- 239000000945 filler Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- 239000004721 Polyphenylene oxide Substances 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 229920000570 polyether Polymers 0.000 description 8
- 150000005846 sugar alcohols Polymers 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000004970 Chain extender Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 150000002009 diols Chemical class 0.000 description 4
- 239000004872 foam stabilizing agent Substances 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 4
- 239000003380 propellant Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 3
- 229920001276 ammonium polyphosphate Polymers 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 239000011256 inorganic filler Substances 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 239000012766 organic filler Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920005906 polyester polyol Polymers 0.000 description 3
- 229920006389 polyphenyl polymer Polymers 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000004072 triols Chemical class 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 239000004114 Ammonium polyphosphate Substances 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000010428 baryte Substances 0.000 description 2
- 229910052601 baryte Inorganic materials 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000002666 chemical blowing agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- BSRRYOGYBQJAFP-UHFFFAOYSA-N 1,1,1,2,2,3-hexafluorobutane Chemical compound CC(F)C(F)(F)C(F)(F)F BSRRYOGYBQJAFP-UHFFFAOYSA-N 0.000 description 1
- FRCHKSNAZZFGCA-UHFFFAOYSA-N 1,1-dichloro-1-fluoroethane Chemical compound CC(F)(Cl)Cl FRCHKSNAZZFGCA-UHFFFAOYSA-N 0.000 description 1
- OYWRDHBGMCXGFY-UHFFFAOYSA-N 1,2,3-triazinane Chemical class C1CNNNC1 OYWRDHBGMCXGFY-UHFFFAOYSA-N 0.000 description 1
- ZFDWWDZLRKHULH-UHFFFAOYSA-N 1,2-dimethyl-5,6-dihydro-4h-pyrimidine Chemical compound CN1CCCN=C1C ZFDWWDZLRKHULH-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- FCQPNTOQFPJCMF-UHFFFAOYSA-N 1,3-bis[3-(dimethylamino)propyl]urea Chemical compound CN(C)CCCNC(=O)NCCCN(C)C FCQPNTOQFPJCMF-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- RXYPXQSKLGGKOL-UHFFFAOYSA-N 1,4-dimethylpiperazine Chemical compound CN1CCN(C)CC1 RXYPXQSKLGGKOL-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- GEEGPFGTMRWCID-UHFFFAOYSA-N 1-n,1-n,1-n',1-n'-tetramethylbutane-1,1-diamine Chemical compound CCCC(N(C)C)N(C)C GEEGPFGTMRWCID-UHFFFAOYSA-N 0.000 description 1
- OHMHBGPWCHTMQE-UHFFFAOYSA-N 2,2-dichloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)C(Cl)Cl OHMHBGPWCHTMQE-UHFFFAOYSA-N 0.000 description 1
- DDHUNHGZUHZNKB-UHFFFAOYSA-N 2,2-dimethylpropane-1,3-diamine Chemical compound NCC(C)(C)CN DDHUNHGZUHZNKB-UHFFFAOYSA-N 0.000 description 1
- CVFRFSNPBJUQMG-UHFFFAOYSA-N 2,3-bis(2-hydroxyethyl)benzene-1,4-diol Chemical compound OCCC1=C(O)C=CC(O)=C1CCO CVFRFSNPBJUQMG-UHFFFAOYSA-N 0.000 description 1
- PQXKWPLDPFFDJP-UHFFFAOYSA-N 2,3-dimethyloxirane Chemical compound CC1OC1C PQXKWPLDPFFDJP-UHFFFAOYSA-N 0.000 description 1
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 1
- RZEWIYUUNKCGKA-UHFFFAOYSA-N 2-(2-hydroxyethylamino)ethanol;octadecanoic acid Chemical compound OCCNCCO.CCCCCCCCCCCCCCCCCC(O)=O RZEWIYUUNKCGKA-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- YSAANLSYLSUVHB-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]ethanol Chemical compound CN(C)CCOCCO YSAANLSYLSUVHB-UHFFFAOYSA-N 0.000 description 1
- ATEBGNALLCMSGS-UHFFFAOYSA-N 2-chloro-1,1-difluoroethane Chemical compound FC(F)CCl ATEBGNALLCMSGS-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 1
- RXFCIXRFAJRBSG-UHFFFAOYSA-N 3,2,3-tetramine Chemical compound NCCCNCCNCCCN RXFCIXRFAJRBSG-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- DZIHTWJGPDVSGE-UHFFFAOYSA-N 4-[(4-aminocyclohexyl)methyl]cyclohexan-1-amine Chemical compound C1CC(N)CCC1CC1CCC(N)CC1 DZIHTWJGPDVSGE-UHFFFAOYSA-N 0.000 description 1
- BRKHZWFIIVVNTA-UHFFFAOYSA-N 4-cyclohexylmorpholine Chemical compound C1CCCCC1N1CCOCC1 BRKHZWFIIVVNTA-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- AOFIWCXMXPVSAZ-UHFFFAOYSA-N 4-methyl-2,6-bis(methylsulfanyl)benzene-1,3-diamine Chemical compound CSC1=CC(C)=C(N)C(SC)=C1N AOFIWCXMXPVSAZ-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical group CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- AKNUHUCEWALCOI-UHFFFAOYSA-N N-ethyldiethanolamine Chemical compound OCCN(CC)CCO AKNUHUCEWALCOI-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 1
- PQYJRMFWJJONBO-UHFFFAOYSA-N Tris(2,3-dibromopropyl) phosphate Chemical compound BrCC(Br)COP(=O)(OCC(Br)CBr)OCC(Br)CBr PQYJRMFWJJONBO-UHFFFAOYSA-N 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- IKWTVSLWAPBBKU-UHFFFAOYSA-N a1010_sial Chemical compound O=[As]O[As]=O IKWTVSLWAPBBKU-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229960000250 adipic acid Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 229910052898 antigorite Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 229960002594 arsenic trioxide Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000022 bacteriostatic agent Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- LJZDFZSLLYVEAM-UHFFFAOYSA-N carbamic acid;guanidine Chemical compound NC(N)=N.NC(O)=O LJZDFZSLLYVEAM-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002603 chloroethyl group Chemical group [H]C([*])([H])C([H])([H])Cl 0.000 description 1
- 229910052620 chrysotile Inorganic materials 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- FSDSKERRNURGGO-UHFFFAOYSA-N cyclohexane-1,3,5-triol Chemical compound OC1CC(O)CC(O)C1 FSDSKERRNURGGO-UHFFFAOYSA-N 0.000 description 1
- VKONPUDBRVKQLM-UHFFFAOYSA-N cyclohexane-1,4-diol Chemical compound OC1CCC(O)CC1 VKONPUDBRVKQLM-UHFFFAOYSA-N 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- QVQGTNFYPJQJNM-UHFFFAOYSA-N dicyclohexylmethanamine Chemical compound C1CCCCC1C(N)C1CCCCC1 QVQGTNFYPJQJNM-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 239000012971 dimethylpiperazine Substances 0.000 description 1
- ATLPLEZDTSBZQG-UHFFFAOYSA-L dioxido-oxo-propan-2-yl-$l^{5}-phosphane Chemical compound CC(C)P([O-])([O-])=O ATLPLEZDTSBZQG-UHFFFAOYSA-L 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- SXCBDZAEHILGLM-UHFFFAOYSA-N heptane-1,7-diol Chemical compound OCCCCCCCO SXCBDZAEHILGLM-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052892 hornblende Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- VQPKAMAVKYTPLB-UHFFFAOYSA-N lead;octanoic acid Chemical compound [Pb].CCCCCCCC(O)=O VQPKAMAVKYTPLB-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical group OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- SCZVXVGZMZRGRU-UHFFFAOYSA-N n'-ethylethane-1,2-diamine Chemical compound CCNCCN SCZVXVGZMZRGRU-UHFFFAOYSA-N 0.000 description 1
- QHJABUZHRJTCAR-UHFFFAOYSA-N n'-methylpropane-1,3-diamine Chemical compound CNCCCN QHJABUZHRJTCAR-UHFFFAOYSA-N 0.000 description 1
- OONVMEUUWGEINX-UHFFFAOYSA-N n,n-dimethyl-2-piperidin-1-ylethanamine Chemical compound CN(C)CCN1CCCCC1 OONVMEUUWGEINX-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- AHHWIHXENZJRFG-UHFFFAOYSA-N oxetane Chemical compound C1COC1 AHHWIHXENZJRFG-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- UKODFQOELJFMII-UHFFFAOYSA-N pentamethyldiethylenetriamine Chemical compound CN(C)CCN(C)CCN(C)C UKODFQOELJFMII-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052615 phyllosilicate Inorganic materials 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000582 polyisocyanurate Polymers 0.000 description 1
- 239000011495 polyisocyanurate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006295 polythiol Polymers 0.000 description 1
- WQKGAJDYBZOFSR-UHFFFAOYSA-N potassium;propan-2-olate Chemical compound [K+].CC(C)[O-] WQKGAJDYBZOFSR-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- GGHDAUPFEBTORZ-UHFFFAOYSA-N propane-1,1-diamine Chemical compound CCC(N)N GGHDAUPFEBTORZ-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- CWBIFDGMOSWLRQ-UHFFFAOYSA-N trimagnesium;hydroxy(trioxido)silane;hydrate Chemical compound O.[Mg+2].[Mg+2].[Mg+2].O[Si]([O-])([O-])[O-].O[Si]([O-])([O-])[O-] CWBIFDGMOSWLRQ-UHFFFAOYSA-N 0.000 description 1
- DHNUXDYAOVSGII-UHFFFAOYSA-N tris(1,3-dichloropropyl) phosphate Chemical compound ClCCC(Cl)OP(=O)(OC(Cl)CCCl)OC(Cl)CCCl DHNUXDYAOVSGII-UHFFFAOYSA-N 0.000 description 1
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 1
- GTRSAMFYSUBAGN-UHFFFAOYSA-N tris(2-chloropropyl) phosphate Chemical compound CC(Cl)COP(=O)(OCC(C)Cl)OCC(C)Cl GTRSAMFYSUBAGN-UHFFFAOYSA-N 0.000 description 1
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N urethane group Chemical group NC(=O)OCC JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
- E04C2/296—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and non-metallic or unspecified sheet-material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/18—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
- B32B3/20—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
- E04C2/292—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and sheet metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/24—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
- B29C67/246—Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
Definitions
- the invention relates to ships or structures containing the composite elements produced by the process according to the invention.
- the length data shown for the layers (i), (ii) and (iii) relate to the thicknesses of the respective layers.
- hulls of tankers usually consist of an inner and an outer hull, each hull being constructed of 15 mm thick steel plates connected by 2 m long steel struts. Since these steel plates are exposed to considerable forces, both the outer and the inner steel shell are stiffened by welded reinforcing elements. Disadvantages of these classic construction parts are the considerable amounts of steel required as well as the time-consuming and labor-intensive production.
- SPS elements Sandwich Plate System
- PLC elements include a composite of metal and plastic.
- the adhesion of the plastic to the two metal layers produces composite elements with extraordinary advantages over known steel constructions.
- PLC elements are known from the documents US Pat. No. 6,050,208 . US 5,778,813 .
- DE-A 198 25 083 DE-A 198 25 085 .
- DE-A 198 25 084 DE-A 198 25 087 and DE-A 198 35 727 ,
- the hollow bodies preferably have a density of less than 1 g / cm 3 , more preferably 0.1 to 0.6 g / cm 3 .
- the density is the "true particle density", ie the quotient of the weight of the hollow body and the volume of the hollow body when the hollow body is completely surrounded by gas.
- the hollow bodies preferably hollow spheres, preferably have an average wall thickness of 5 to 20% of the hollow body diameter.
- the hollow bodies may be based on generally known materials, for example plastics, for example polyethylene, polypropylene, polyurethane, polystyrene or a mixture thereof, or mineral materials, eg clay, aluminum silicate, glass, but preferably glass, aluminum silicate or ceramic, more preferably glass.
- the hollow body 1 to 60%, more preferably 10 to 40% of the total volume, ie including the hollow body, the layer (ii).
- the hollow body may have in its cavity walls or other structural elements.
- the cavity of the hollow body can be filled, for example, with air, inert gases, for example nitrogen, helium or argon, or reactive gases, for example oxygen or other known gases, preferably with air, and completely or predominantly, preferably completely, from the material of the hollow body described at the beginning be enclosed.
- the shape of the hollow bodies may be spherical or irregular.
- the hollow bodies may have a vacuum or partial vacuum in the cavity. Preference is given to using hollow glass microspheres as the hollow body.
- the hollow glass microspheres have a compressive strength of at least 15 bar.
- the layer (ii) is preferably polyisocyanate polyaddition products obtainable by reacting the starting materials (a) isocyanate and (b) isocyanate-reactive compounds.
- the preparation of the composite elements according to the invention can thus preferably be carried out in such a way that for the preparation of (ii) (a) isocyanates and (b) isocyanate-reactive compounds in Gegenart of hollow bodies having an outer diameter less than 500 microns.
- the hollow bodies may be added to component (b) and / or component (a) and / or liquid reaction products of (a) and (b).
- the addition can take place directly in the mixing head, for example the pump, or else already in the reservoir of the starting components (a) and / or (b).
- the mixing of the hollow body can be done both by hand, for example by means of a hand mixer, or by means of known stirrer.
- High- and low-pressure machines can be used, wherein the mixing head is preferably to be modified so that the hollow bodies do not break during processing when the shearing forces occur.
- a component can be filled simultaneously via 2 or more mixing heads or machines.
- a mixing device for mixing the hollow body according to the invention with (a) and / or (b) and / or reaction products of (a) and (b) is, for example, a preferably continuously operating device constructed from a mixing pot, a feed line for (a), (b) and / or a liquid reaction product of (a) with (b), a feed line for hollow microspheres, a stirrer and a controllable outlet opening suitable.
- This preferred mixing device can be upstream or downstream of the high and / or low-pressure machine with the mixing head (s), preferably upstream or also part of these machines.
- the mixing pot As a mixing pot conventional reaction vessels, such as steel, glass or plastic, such as epoxy resin serve.
- the mixing pot is constructed funnel-shaped, wherein the outlet opening is located at the funnel neck.
- this funnel is arranged vertically.
- the size of the mixing pot depends on the scale in which the process according to the invention is to be carried out; in general, the mixing pot can be of microscale, ie for example comprising a volume of a few cm 3 , up to the macroscale, ie comprising a volume of up to a few m 3 , operate.
- the inlets lead to the mixing pot.
- the amounts of feed are separately controllable.
- the metering of the feedstock to reactive raw materials for the preparation of (ii) can be carried out, for example, by a known PUR metering device, the metering of the feed to hollow microspheres can be effected, for example, by a screw metering device.
- the mixing device is preferably equipped with a stirring element.
- this agitator ensures mixing and, on the other hand, a constant transport of the mixture within the mixing pot from the inlets to the outlet.
- conventional stirrers such as disc stirrers or paddle stirrers, are generally suitable. It is preferred that the stirrer is adjusted so that the stirring is free of dead space. Different stirrer sizes and geometries allow for optimal adaptation to the mixing requirements required for different viscosities and throughputs.
- the stirring member is adjusted and operated at a speed so that as possible no damage to the hollow microspheres occurs.
- the proportion of damaged hollow glass microspheres after incorporation is generally less than 40% by weight, preferably less than 10% by weight, more preferably less than 5% by weight, particularly preferably less than 2% by weight and in particular less than 1% by weight .%, Based on the total weight of the used hollow glass microspheres. The proportion may optionally vary depending on the density of the hollow spheres used.
- the exit of the starting material containing the hollow body according to the invention for the production of (ii) takes place at the outlet opening.
- the outlet opening is preferably adjustable.
- control is effected by a conical closure, which can be moved in the vertical direction to the outlet opening. By completely lowering the cone, the outlet opening can be completely closed, by wide lifting it can be fully opened. In this way a dosage of the leaking product is possible.
- this conical closure is integrated on the stirring element.
- other control devices that provide the desired control effect are also possible.
- the average residence time can be controlled in the mixing device. In general, this is between 0.1 and 10 minutes, preferably between 0.1 and 1 minutes.
- the reaction and the mixing so that the mixture emerging directly at the outlet opening has a viscosity of 1000 to 30,000 mPas, wherein the viscosity at room temperature (25 ° C) determined using a cone-plate rotation viscometer geometry becomes.
- a parameter for an optimal residence time in the mixing pot can also serve the permanent detection of the outlet temperature.
- An outlet temperature of 20 ° C to 100 ° C, preferably 20 ° C to 80 ° C, more preferably 20 ° C to 50 ° C, ensures a sufficient "open time” (until the material is solid) and prevents excessive exothermic Reaction, which would result in a "solidification" of the polyurethane already in the mixing pot and thus would entail the discontinuation of the manufacturing process.
- the control of the process is feasible in this way without considerable technical effort for the skilled person.
- the starting materials for the preparation of (ii) are preferably filled in the liquid state in the space between (i) and (iii), preferably during this filling process, a negative pressure in the space to be filled between (i) and (iii) is generated.
- a negative pressure in the space to be filled is generated.
- the negative pressure in the space to be filled is 0.2 bar to 0.8 bar, ie the pressure in the mold to be filled is 0.8 to 0.2 bar lower than the ambient air pressure.
- the negative pressure that can be generated, for example, by well-known vacuum pumps, is preferably achieved in that (i) and / or (iii) in addition to the orifices (iv) in (i) and / or (iii), via the the starting materials for the preparation of (ii) are introduced, have at least one further opening (v) over which the negative pressure is applied.
- a hose is interposed between a vacuum pump which generates the negative pressure and the opening (v) in (i). This hose can for example be pressed or glued to (i).
- the amounts of starting materials for the preparation of (ii) are difficult to be such that just the space to be filled (R) is filled, but overflow is prevented.
- a larger amount of starting components for the preparation of (ii) is preferably added to the space between (i) and (iii) than it can take up.
- the resulting overflow is preferably removed via openings (v).
- openings (v) As soon as the space between (i) and (iii) is completely filled with the starting components for the preparation of (ii), filling can be stopped by opening the liquid in the tube, which is preferably transparent, and opening (iv) and (v ) are closed.
- the closing of the openings can be carried out, for example, with a plastic or metal plug, preferably with a screw cap which is located either in the overflow vessel or preferably between the overflow vessel and (i) and / or (iii).
- the openings (iv) remain preferably until the end of the curing process of the mixture (a) and (b) closed by the fixed mixing head.
- the space to be filled between (i) and (iii) only the openings (iv) and (v), wherein at (iv) the outflow end, preferably mixing head is and (v) the negative pressure is applied. Since according to this preferred embodiment, no air can get into the space to be filled, it is possible to generate a negative pressure.
- the layers (i) and (iii) have no features that can be used to attach a discharge end to fill the space between (i) and (iii) with liquids.
- the term "outflowing" may be conventional means by which liquids are filled, such as filler neck, hose ends, mixing heads, static mixers or the like.
- the outflow end is a mixing head.
- mixing heads are well known and commercially available, for example, in connection with conventional metering devices for polyurethane systems.
- the attachment of the outflow end, preferably of the mixing head, may preferably take place such that the outflow end of the conveyor or a holder for the outflow end of the conveyor screwed to the layer (i) at at least three locations, preferably three to six locations, more preferably four or five locations becomes.
- the liquid is filled through at least one opening (iv) in (i) and / or (iii) in the space between (i) and (iii).
- a mixing head for example, bolts with a thread, which serve for fastening the mixing head or a holder for the mixing head, can shoot into the layer (i).
- the bolts can preferably taper at the side facing away from the thread in order to make it easier to introduce them into the layer (i).
- the bolts preferably have a diameter of 6 mm to 20 mm and a length of 8 mm to 42 mm.
- the thread that is directed outwards after the fixation of the bolts, i. on the side of (i), which faces away from (iii), preferably has a length of 4 mm to 30 mm.
- the insertion of the bolts is carried out, for example, by firing with a bolt pusher, which is commercially available e.g. available from Hilti.
- (i) has threads with which the outflow end at the opening (iv), through which the liquid is filled, is screwed to (i).
- an O-ring made of an elastic material.
- O-rings are well known and can be matched in their dimensions to the diameter of the opening (iv) and the mixing head.
- the mixing head is thus fixed close to the opening (iv) in (i) or (iii), through which the entry of the starting materials takes place.
- the outflow end is not fastened directly to the layer (i), but rather it fixes the outflow end to a holder which is screwed to (i).
- this bracket made of common materials, such as plastics. Wood or preferably conventional metals may be, it is preferably a construction, which has holes through which the (i) fixed threads are guided and fastened for example by means of appropriate nuts.
- the holder has fastening elements for the outflow end, for example plug connections, screw connections or edges with which the outflow end can be clamped by elastic bands to the holder.
- the outflow end is fastened to the holder at at least three points in order to avoid tilting. It is thus preferable to screw a holder to at least three threads which are fastened to (i) and fix the mixing head to this holder.
- the bolts can be sawed off, for example, on the surface of (i) after completion of the composite elements.
- the filling of the space between (i) and (iii) can be carried out with conventional conveyors, preferably continuously, for example with high and low pressure machines, preferably low pressure machines.
- the filling preferably takes place with a low-pressure machine (for example from Cannon) via one or more, preferably a mixing head, in which the starting components are mixed, in a single working step, preferably an injection process.
- a single injection operation means that the filling of the space between (i) and (iii), for example, with the starting materials for the production of (ii) is not interrupted before the complete filling.
- the starting materials are thus preferably given in a single shot under pressure in the space between (i) and (iii).
- the liquid is a reactive mixture that cures with the reaction.
- the filling of the space between (i) and (iii) can take place both in the vertical orientation of (i) and (iii), as well as in the horizontal orientation of (i) and (iii).
- the layers (i) and (iii) may preferably be used as conventional plastic, wood or preferably metal plates, for example iron, steel, copper and / or aluminum plates, with the thicknesses according to the invention.
- Both (i) and (ii) can be coated, for example primed, primed, painted and / or coated with conventional plastics, used in the production of the composite elements according to the invention. Preference is given to using (i) and (iii) uncoated and particularly preferably purified, for example, by customary sandblasting.
- This offers the advantage that in particular to be filled liquid components which are reactive towards water, for example isocyanates, do not react in undesired side reaction.
- the drying which preferably takes place directly before filling, can be effected, for example, by means of hot air or by means of compressed air.
- the space to be filled between (i) and (iii) can be dried by a blower, the air through openings (iv) and (v) in (i) and / or (iii) through the space to be filled between (i) and (iii) directs.
- the openings (iv) and (v) are preferably bores in (i) and / or (iii) with a diameter of 0.5 to 5.0 cm in (i) and / or (iii).
- the space filled between (i) and (iii) with the starting materials to produce (ii) need not represent the entire space between (i) and (iii). Both (i) and (iii) may survive at the edges over (ii), i. only in a subset of (i) and (iii) does one bind (i) over (ii) to (iii).
- the space between (i) and (iii) may be sealed prior to being filled with the source materials such that the seal is within the space enclosed by (i) and (iii) and edges of (i) and / or (iii ) survive.
- the delivery rate can be varied depending on the volume to be filled.
- the delivery rate and delivery device are preferably selected such that the space to be filled can be filled within 0.5 to 20 minutes with the components for the production of (ii).
- the layers (i) and (iii) are fixed in a suitable arrangement, for example parallel to one another.
- the distance is usually chosen so that the space (R) between (i) and (iii) has a thickness of 10 to 300 mm.
- the fixation of (i) and (iii) can be done, for example, by spacers, for example in a mold or suitable holder.
- the edges of the gap are usually sealed in such a way that the space between (i) and (iii) can be completely filled with the liquid or the starting components for the production of (ii), however, a flow-out of these starting components before complete filling is prevented .
- the sealing can be done with conventional plastic, paper or metal foils and / or plates, which are glued, for example, welded or pressed and which can optionally also serve as spacers. This preferred sealing does not relate to the preferred apertures (iv) and (v), which have been presented initially.
- the check of the tightness of (R) before filling with the starting components is preferably carried out by pressure difference measurement.
- pressure differential measurement is understood to mean that one tries to build a pressure difference between the space (R) and the external environment over a certain period of time, for example by trying to (A) under or over pressure in relation to the external environment to reach. This can be achieved by conventional vacuum pumps or well-known compressors that pump air or gas into the room (R). If a stable overpressure or underpressure can be generated in (R), this indicates a sufficiently dense cavity that can be filled with the starting components to produce (ii).
- the openings (iv) or (v), which are provided for filling (R) with the starting components or as vents or as overflow openings for the discharge of excess output components, also temporarily seals. If appropriate, at least one of these openings can serve to connect the vacuum pump or compressor to (R).
- the mold to be filled preferably consists of the specified layers (i) and (iii) and (vi), which are preferably arranged in parallel, and preferably seals between the layers (i) and (iii), which run out of liquid during filling prevent.
- the layer (ii) is thus preferably adhesively disposed between the layers (i) and (iii).
- the composite elements according to the invention can preferably be produced in such a way that a planar structure (vi) is substantially parallel, preferably parallel, at a distance of 5 mm to 150 mm, preferably 15 mm to 50 mm, particularly preferably 15 mm to 30 mm the layer (i) fixed, the layer (iii) fixed substantially parallel to (i) and (vi), the space to be filled with (ii) except for openings, for example, the openings described in this document (iv) and (v ), which are required for filling, seals and then fills the space to be filled with the starting materials to produce (ii).
- fixation of (vi) with (i) can, for example, be carried out in the case of horizontal alignment of (i) in such a way that spacers, For example, wood, plastic or metal blocks with a suitable height on the layer (i) brings and on these spacers the structure (vi) sets.
- spacers For example, wood, plastic or metal blocks with a suitable height on the layer (i) brings and on these spacers the structure (vi) sets.
- the layer (iii) can be fixed at a suitable distance, ie at a suitable layer thickness of (ii), preferably parallel to (i) and (vi), for example by taking metal plates at the edges of the space to be occupied by (ii) fixed to (i), for example, welds, preferably perpendicular to (i), and on these metal plates, which bound and terminate the lateral edge of (ii), the layer (iii) fixed, for example, welded.
- the starting materials are preferably continuously introduced without interruption in a single step in the space to be filled between (i) and (iii), more preferably one will enter the starting materials by means of a high pressure apparatus via one or more mixing heads, for example, fill.
- the liquid for the preparation of (ii) (a) isocyanates and (b) isocyanate-reactive compounds.
- the layer (ii) thus preferably represents polyisocyanate polyaddition products.
- starting materials or “starting components” are in particular (a) isocyanates and (b) isocyanate-reactive compounds, but if appropriate, as far as they are used (c) gases, (d) catalysts, (e) auxiliaries and / or (f) propellants.
- the starting components for the preparation of the polyisocyanate polyaddition products are usually mixed at a temperature of 0 to 100 ° C, preferably from 20 to 60 ° C, and introduced as already described in the space between (i) and (iii).
- the mixing can be done mechanically by means of a stirrer or a stirring screw.
- the reaction temperature, i. the temperature at which reaction takes place is usually> 20 ° C., preferably 50 to 150 ° C., depending on the material thickness.
- the layer (ii) of the composite elements according to the invention preferably has a modulus of elasticity of> 275 MPa in the temperature range of -45 to +50 ° C (according to DIN 53457), an adhesion to (i) and (iii) of> 4 MPa (according to DIN 53530), an elongation of> 30% in the temperature range from -45 to +50 ° C (according to DIN 53504), a tensile strength of> 20 MPa (according to DIN 53504) and a compressive strength of> 20 MPa (according to DIN 53421).
- the density of the layer (ii), ie including the hollow body according to the invention is preferably 350 kg / m 3 to 1200 kg / m 3 , particularly preferably 650 kg / m 3 to 1000 kg / m 3 .
- the preparation of the composite elements according to the invention can be carried out such that between (i) and (iii) polyisocyanate polyaddition products (ii), usually polyurethanes, which may optionally have urea and / or isocyanurate structures, by reacting (a) isocyanates with ( b) compounds which are reactive towards isocyanates, if appropriate in the presence of blowing agents (f), 1 to 50 % By volume, based on the volume of the polyisocyanate polyaddition products, of at least one gas (c), (d) catalysts and / or (e) auxiliaries, preferably (ii) adhering to (i) and (iii).
- polyisocyanate polyaddition products (ii) has been described many times.
- the surfaces of (i) and (iii) may preferably be blasted with corundum or iron gravel prior to making the composite elements for cleaning and increasing the surface roughness with sand or steel balls.
- This blasting can be carried out by the usual methods in which the blasting material impinges, for example, under high pressure on the surfaces. Suitable apparatus for such treatment are commercially available.
- This treatment of the surfaces of (i) and (iii) which are in contact with (ii) after the reaction of (a) with (b) leads to a significantly improved adhesion of (ii) to (i) and (iii ).
- the blasting is preferably carried out immediately before the introduction of the components for the preparation of (ii) in the space between (i) and (iii).
- the surfaces of (i) and (iii) to which (ii) is to adhere are preferably free of inorganic and / or organic substances which reduce adhesion, for example dust, dirt, oils and fats or substances generally known as mold release agents.
- Suitable isocyanates (a) are the aliphatic, cycloaliphatic, araliphatic and / or aromatic isocyanates known per se, preferably diisocyanates, which may optionally have been biuretized and / or isocyanurated by generally known processes.
- alkylene diisocyanates having 4 to 12 carbon atoms in the alkylene radical such as 1,12-dodecane diisocyanate, 2-ethyl-tetramethylene-1,4-diisocyanate, 2-methylpentamethylene-1,5-diisocyanate, tetramethylene-1,4-diisocyanate, lysine-ester-diisocyanate (LDI) , Hexamethylene diisocyanate-1,6 (HDI), cyclohexane-1,3- and / or 1,4-diisocyanate, 2,4- and 2,6-hexahydrotoluylene diisocyanate and the corresponding isomer mixtures, 4,4'-, 2,2 ' and 2,4'-dicyclohexylmethane diisocyanate and the corresponding isomer mixtures, 1-isocyanato-3,3,5-trimethyl-5-isocyanato
- di- and / or polyisocyanates containing ester, urea, allophanate, carbodiimide, uretdione and / or urethane groups can be used in the process according to the invention.
- isocyanate-reactive compounds there can be used, for example, compounds having as isocyanate-reactive groups hydroxyl, thiol and / or primary and / or secondary amino groups and usually having a molecular weight of 60 to 10,000 g / mol, e.g. Polyols selected from the group of polymer polyols, polyether polyols, polyester polyols, polythioether polyols, hydroxyl-containing polyacetals and hydroxyl-containing aliphatic polycarbonates or mixtures of at least two of said polyols. These compounds usually have a functionality towards isocyanates of from 2 to 6 and a molecular weight of from 400 to 8000 and are generally known to the person skilled in the art.
- suitable polyether polyalcohols which according to known technology by addition of alkylene oxides, for example tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and / or 1,2-propylene oxide of conventional Starter substances are available.
- alkylene oxides for example tetrahydrofuran, 1,3-propylene oxide, 1,2- or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and / or 1,2-propylene oxide of conventional Starter substances.
- starter substances it is possible to use, for example, known aliphatic, araliphatic, cycloaliphatic and / or aromatic compounds which contain at least one, preferably 2 to 4, hydroxyl groups and / or at least one, preferably 2 to 4, amino groups.
- ethanediol diethylene glycol, 1,2- or 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, glycerol, trimethylolpropane, neopentyl glycol, Sugars, for example sucrose, pentaerythritol, sorbitol, ethylenediamine, propanediamine, neopentanediamine, hexamethylenediamine, isophoronediamine, 4,4'-diaminodicyclohexylmethane, 2- (ethylamino) ethylamine, 3- (methylamino) propylamine, diethylenetriamine, dipropylenetriamine and / or N, N ' Bis (3-aminopropyl) ethylenediamine can be used.
- sucrose pentaerythr
- alkylene oxides can be used individually, alternately in succession or as mixtures.
- alkylene oxides are used which lead to primary hydroxyl groups in the polyol.
- Particularly preferred polyols used are those which have been alkoxylated with ethylene oxide to complete the alkoxylation and thus have primary hydroxyl groups.
- polyether polyols As polymer polyols, a special class of polyether polyols, it is possible to use compounds known in general from polyurethane chemistry, preferably styrene-acrylonitrile graft polyols.
- polymer polyols can significantly reduce the shrinkage of the polyisocyanate polyaddition product, for example of the polyurethane and thus lead to improved adhesion of (ii) to (i) and (iii).
- propellant (f) may be preferred. and / or gases (c) are used.
- Suitable polyester polyols can be prepared, for example, from organic dicarboxylic acids having 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having 4 to 6 carbon atoms, and polyhydric alcohols, preferably diols, having 2 to 12 carbon atoms, preferably 2 to 6 carbon atoms.
- the polyester polyols preferably have a functionality of 2 to 4, in particular 2 to 3, and a molecular weight of 480 to 3000, preferably 600 to 2000 and in particular 600 to 1500.
- the composite elements according to the invention are preferably prepared using polyether polyalcohols as component (b) for reaction with the isocyanates, advantageously those having an average functionality towards isocyanates of 1.5 to 8, preferably 2 to 6, and a molecular weight of 400 to 8000.
- polyether polyalcohols offer significant advantages through improved stability of the polyisocyanate polyaddition products to hydrolytic cleavage and lower viscosity, as compared to polyester polyalcohols, respectively.
- the improved stability against hydrolysis is particularly advantageous when used in shipbuilding.
- the lower viscosity of the polyether polyhydric alcohols and the reaction mixture for preparing (ii) containing the polyether polyalcohol allows a faster and easier filling of the space between (i) and (iii) with the reaction mixture for producing the composite elements. Due to the considerable dimensions, in particular of structural parts in shipbuilding, low-viscosity liquids are of considerable advantage.
- isocyanate-reactive compounds in addition to the above-mentioned compounds having a usual molecular weight of 400 to 8,000, diols and / or triols having molecular weights of 60 to ⁇ 400 may be used as a chain extender and / or crosslinking agent in the process of the present invention.
- chain extenders, crosslinking agents or, if appropriate, mixtures thereof can prove to be advantageous for modifying the mechanical properties, for example the hardness.
- the chain extenders and / or crosslinkers preferably have a molecular weight of 60 to 300.
- Suitable examples include aliphatic, cycloaliphatic and / or araliphatic diols having 2 to 14, preferably 4 to 10 carbon atoms, such as ethylene glycol, 1,3-propanediol, decane-1,10, o-, m-, p-dihydroxycyclohexane, diethylene glycol , Dipropylene glycol and preferably 1,4-butanediol, 1,6-hexanediol and bis (2-hydroxyethyl) hydroquinone, triols such as 1,2,4-, 1,3,5-trihydroxycyclohexane, glycerol and Trimethylolpropane, low molecular weight hydroxyl-containing polyalkylene oxides based on ethylene and / or 1,2-propylene oxide and the aforementioned diols and / or triols as starter molecules and / or diamines such as diethyltoluenediamine and / or 3,5-di
- chain extenders, crosslinking agents or mixtures thereof are used for preparing the polyisocyanate polyaddition products, these are expediently used in an amount of from 0 to 30% by weight, preferably from 1 to 30% by weight, based on the weight of the total isocyanate used reactive compounds (b) are used.
- carboxylic acids can be used to optimize the curing process in the preparation of (ii).
- carboxylic acids are formic acid, acetic acid, succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, citric acid, benzoic acid, salicylic acid, phenylacetic acid, phthalic acid, toluenesulfonic acid, derivatives of said acids, isomers of said acids and any mixtures of said acids.
- the proportion by weight of these acids may be from 0 to 5% by weight, preferably from 0.2 to 2% by weight, based on the total weight of (b).
- the use of amine-initiated polyether polyalcohols can improve the curing behavior of the reaction mixture to produce (ii).
- the compounds (b), as well as the other components for the preparation of (ii) are used with the lowest possible content of water in order to avoid the formation of carbon dioxide by reaction of the water with isocyanate groups.
- component (c) for the preparation of (ii) it is possible to use generally known compounds which have a boiling point at a pressure of 1 bar of less (ie lower than) -50 ° C., for example air, carbon dioxide, nitrogen, helium and / or neon. Preferably, air is used.
- the component (c) is preferably inert to the component (a), more preferably to the components (a) and (b), i.e. to be inert. a reactivity of the gas towards (a) and (b) is hardly, preferably not detectable.
- the use of gas (c) is fundamentally different from the use of conventional blowing agents to produce foamed polyurethanes.
- component (c) is preferably already used in gaseous form as an aerosol, for example in the polyol component.
- catalysts (d) it is possible to use generally known compounds which are the reaction of isocyanates with the isocyanate-reactive compounds greatly accelerating, wherein preferably a total catalyst content of 0.001 to 15 wt .-%, in particular 0.05 to 6 wt .-%, based on the weight of the total isocyanate-reactive compounds used.
- the following compounds can be used: triethylamine, tributylamine, dimethylbenzylamine, dicyclohexylmethylamine, dimethylcyclohexylamine, N, N, N ', N'-tetramethyl-diamino-diethyl ether, bis (dimethylaminopropyl) -urea, N-methyl- or N-ethylmorpholine , N-cyclohexylmorpholine, N, N, N ', N'-tetramethylethylenediamine, N, N, N', N'-tetramethylbutanediamine, N, N, N ', N'-tetramethylhexanediamine-1,6, pentamethyldiethylenetriamine, dimethylpiperazine, N Dimethylaminoethylpiperidine, 1,2-dimethylimidazole, 1-azabicyclo- (2,2,0) -octane, 1,4-diazabicyclo
- dimethylaminopropyl) -s-hexahydrotriazine ferrous chloride, zinc chloride, lead octoate and preferably tin salts such as tin dioctoate, tin diethylhexoate, dibutyltin dilaurate and / or dibutyldilaurylzine mercaptide, 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine, tetraalkylammonium hydroxides, such as tetramethylammonium hydroxide, alkali metal hydroxides, such as sodium hydroxide, alkali metal alkoxides, such as sodium methylate and potassium isopropylate, and / or alkali metal salts of long-chain fatty acids having 10 to 20 carbon atoms and optionally pendant OH groups.
- tin salts such as tin dioctoate, tin diethylhexoate, dibutyl
- adjuvants may be included in the reaction mixture for the preparation of the polyisocyanate polyadducts (ii).
- examples which may be mentioned include fillers, surface-active substances, dyes, pigments, flame retardants, hydrolysis protectants, fungistatic, bacteriostatic substances and foam stabilizers.
- Suitable surface-active substances are, for example, compounds which serve to assist the homogenization of the starting materials and, if appropriate, are also suitable for regulating the structure of the plastics. Mention may be made, for example, of emulsifiers, such as the sodium salts of castor oil or of fatty acids and salts of fatty acids with amines, for example diethylamine, diethanolamine stearate, ricinoleic diethanolamine, salts of sulfonic acids, for example alkali metal or ammonium salts of dodecylbenzene- or dinaphthylmethanedisulfonic acid and ricinoleic acid.
- the surface-active substances are usually used in amounts of from 0.01 to 5% by weight, based on 100% by weight, of the total isocyanate-reactive compounds (b) used.
- Suitable flame retardants are, for example, tricresyl phosphate, tris (2-chloroethyl) phosphate, tris (2-chloropropyl) phosphate, tris (1,3-dichloropropyl) phosphate, tris (2,3-dibromopropyl) phosphate, tetrakis (2) chloroethyl) ethylenediphosphate, dimethylmethanephosphonate, Diethanolaminomethylphosphonklarediethylester and commercially available halogen-containing flame retardant.
- Fillers which may optionally be used in addition to the hollow bodies according to the invention are, for example, the customary organic and inorganic fillers, reinforcing agents, weighting agents, agents for improving the abrasion behavior in paints, coating compositions, etc.
- inorganic fillers such as silicate minerals, for example phyllosilicates such as antigorite, serpentine, hornblende, amphiboles, chrysotile and talc, metal oxides such as kaolin, aluminas, titanium oxides and iron oxides, metal salts such as chalk, barite and inorganic pigments such as cadmium sulfide and zinc sulfide, and glass, etc.
- kaolin China Clay
- aluminum silicate and coprecipitates of barium sulfate and aluminum silicate and natural and synthetic fibrous minerals such as wollastonite, metal and glass fibers of short length.
- Suitable organic fillers are, for example: carbon, melamine, rosin, cyclopentadienyl resins and graft polymers and also cellulose fibers, polyamide, polyacrylonitrile, polyurethane, polyester fibers based on aromatic and / or aliphatic dicarboxylic esters and in particular carbon fibers.
- the inorganic and organic fillers may be used singly or as mixtures.
- fillers are used as (e) auxiliaries.
- fillers are preferably used talc, kaolin, calcium carbonate, barite, glass fibers and / or glass microspheres.
- the size of the particles of the fillers is preferably to be chosen so that the introduction of the components for the preparation of (ii) in the space between (i) and (iii) is not hindered.
- the fillers have particle sizes of ⁇ 0.5 mm on.
- the fillers are preferably used in admixture with the polyol component in the reaction for the preparation of the polyisocyanate polyaddition products.
- the fillers can be used to reduce the compared to steel, for example, larger thermal expansion coefficient of the polyisocyanate polyaddition products and thus to adapt to the steel. This is particularly advantageous for a permanently strong bond between the layers (i), (ii) and (iii), as this results in lower stresses between the layers under thermal stress.
- foam stabilizers which are commercially available and generally known to the person skilled in the art, for example generally known polysiloxane-polyoxyalkylene block copolymers, e.g. Tegostab 2219 from Goldschmidt.
- the proportion of these foam stabilizers in the preparation of (ii) is preferably 0.001 to 10 wt .-%, particularly preferably 0.01 to 10 wt .-%, in particular 0.01 to 2 wt .-%, based on the weight of for the preparation of (ii) used components (b), (e) and optionally (d).
- the use of these foam stabilizers causes component (c) in the reaction mixture to be stabilized to produce (ii).
- blowing agent (f) generally known blowing agents can be used from polyurethane chemistry, for example physical and / or chemical blowing agents. Such physical blowing agents generally have a boiling point at a pressure of 1 bar of greater (i.e., at higher temperatures than) -50 ° C. Examples of physical blowing agents are e.g.
- Suitable chemical blowing agents ie blowing agents which form gaseous products due to a reaction, for example with isocyanate groups
- blowing agent (f) Preference is given to using water and / or carbamates as blowing agent (f).
- the blowing agents (f) are used in an amount sufficient to obtain the preferred density of (ii) from 350 to 1200 kg / m 3 .
- the propellants (f) are particularly preferably used in an amount of from 0.05 to 10% by weight, in particular from 0.1 to 5% by weight, based in each case on the total weight of the polyisocyanate polyaddition products.
- the weight of (ii) is by definition the same as the weight of the components (a), (b) used and (c), (d), (e) and / or (f) used to prepare (ii).
- the isocyanates and the isocyanate-reactive compounds are reacted in amounts such that the equivalence ratio of NCO groups of the isocyanates (a) to the sum of the reactive hydrogen atoms of the isocyanate-reactive compounds (b) and optionally (f) 0.85 to 1.25: 1, preferably 0.95 to 1.15: 1 and in particular 1 to 1.05: 1. If (ii) contain at least partially bound isocyanurate groups, a ratio of NCO groups to the sum of the reactive hydrogen atoms of from 1.5 to 60: 1, preferably 1.5 to 8: 1, is usually used.
- the polyisocyanate polyaddition products are usually prepared by the one-shot process or by the prepolymer process, for example by means of the high-pressure or low-pressure technique.
- Component (c) may be supplied to the reaction mixture comprising (a), (b) and optionally (f), (d) and / or (e), and / or the individual components (a), (b) already described. , (A) and / or (B).
- the component that is mixed with (c) is usually liquid.
- the components are preferably mixed into component (b).
- the mixing of the corresponding component with (c) can be carried out by generally known methods.
- (c) can be compressed by generally known loading devices, for example air-charging devices, preferably under pressure, for example from a pressure vessel or by a compressor, eg be supplied through a nozzle of the corresponding component.
- loading devices for example air-charging devices, preferably under pressure, for example from a pressure vessel or by a compressor, eg be supplied through a nozzle of the corresponding component.
- the content of (c) in the reaction mixture for the preparation of (ii) can be determined in the return line of the high-pressure machine with well-known measuring devices on the density of the reaction mixture.
- the content of (c) in the reaction mixture may preferably be regulated automatically on the basis of this density via a control unit.
- the component density can be determined and regulated online during the usual circulation of material in the machine, even at very low circulation rates.
- the composite elements obtainable according to the invention find use, above all, in areas in which construction elements are required which withstand great forces, for example as structural parts in shipbuilding, e.g. in ship hulls, for example, double hulls with an outer and an inner wall, and cargo space covers, cargo space partitions, tailboards or in buildings, such as bridges or as construction elements in the house, especially in high-rise buildings.
- the composite elements according to the invention are not to be confused with classic sandwich elements which contain a polyurethane and / or polyisocyanurate foam as the core and are usually used for thermal insulation. Such known sandwich elements would not be suitable for the aforementioned applications due to their relatively lower mechanical strength.
- the composite elements according to the invention preferably have a width of 0.2 m to 5 m, preferably 0.5 to 3 m, and a length of 0.5 m to 10 m, preferably 1 m to 5 m.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Polyurethanes Or Polyureas (AREA)
- Laminated Bodies (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cephalosporin Compounds (AREA)
Claims (5)
- Procédé de fabrication d'éléments composites présentant la structure en couches suivante :(i) 2 à 20 mm de métal, de matière synthétique ou de bois,(ii) 10 à 300 mm de matière synthétique,(iii) 2 à 20 mm de métal, de matière synthétique ou de bois,des corps creux étant présents dans la couche (ii), qui présentent un diamètre extérieur inférieur à 5 mm, caractérisé en ce que, pour la fabrication de (ii), on fait réagir (a) des isocyanates et (b) des composés réactifs par rapport aux isocyanates en présence de corps creux et on ajoute les corps creux au composant (b) et/ou au composant (a) et/ou aux produits liquides de la réaction de (a) et (b).
- Procédé selon la revendication 1, caractérisé en ce que les corps creux présentent une densité inférieure à 1 g/cm3.
- Procédé selon la revendication 1, caractérisé en ce que les corps creux possèdent une épaisseur de paroi moyenne de 5 à 20 % du diamètre des corps creux.
- Procédé selon la revendication 1, caractérisé en ce que les corps creux sont à base de verre, de silicate d'aluminium ou de céramique.
- Procédé selon la revendication 1, caractérisé en ce que les corps creux prennent de 1 à 60 % du volume total de la couche (ii).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10213753A DE10213753A1 (de) | 2002-03-26 | 2002-03-26 | Verbundelemente |
DE10213753 | 2002-03-26 | ||
PCT/EP2003/002844 WO2003080330A1 (fr) | 2002-03-26 | 2003-03-19 | Elements composites |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1490216A1 EP1490216A1 (fr) | 2004-12-29 |
EP1490216B1 true EP1490216B1 (fr) | 2008-04-02 |
Family
ID=28050912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03720337A Expired - Lifetime EP1490216B1 (fr) | 2002-03-26 | 2003-03-19 | Procede de fabrication d'elements composites |
Country Status (12)
Country | Link |
---|---|
US (1) | US20050161850A1 (fr) |
EP (1) | EP1490216B1 (fr) |
JP (1) | JP4702732B2 (fr) |
KR (1) | KR20040096664A (fr) |
CN (1) | CN100393508C (fr) |
AT (1) | ATE391009T1 (fr) |
AU (1) | AU2003223968A1 (fr) |
CA (1) | CA2480036C (fr) |
DE (2) | DE10213753A1 (fr) |
DK (1) | DK1490216T3 (fr) |
ES (1) | ES2300571T3 (fr) |
WO (1) | WO2003080330A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2399538B (en) * | 2003-03-18 | 2006-02-15 | Intelligent Engineering | Improved structural sandwich plate members |
DE10350238A1 (de) * | 2003-10-27 | 2005-05-19 | Basf Ag | Verbundelemente |
GB2408015A (en) * | 2003-11-14 | 2005-05-18 | Intelligent Engineering | Structural sandwich plate members with forms |
US7827201B1 (en) * | 2007-04-27 | 2010-11-02 | Network Appliance, Inc. | Merging containers in a multi-container system |
DE202009016785U1 (de) | 2009-12-10 | 2010-03-04 | Rothenbücher, Jürgen, Dr. | Wärmedämmendes Bauelement |
US20120139151A1 (en) * | 2010-12-02 | 2012-06-07 | Chen Yu-Ying | Additive type bio-decomposable composite preparation method |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3316139A (en) * | 1964-12-31 | 1967-04-25 | Standard Oil Co | Plastic structure containing fibrous layers and hollow glass spheres |
US3510392A (en) * | 1968-09-16 | 1970-05-05 | Pittsburgh Corning Corp | Glass nodules in cellular polyurethane |
US3660216A (en) * | 1969-08-20 | 1972-05-02 | Minnesota Mining & Mfg | Semi-rigid paneling |
DE1947517C3 (de) * | 1969-09-19 | 1978-10-12 | Karl Dr.-Ing. 5100 Aachen Mienes | Verfahren zum Herstellen von Bauteilen mit verbesserter Feuerwiderstandsfähigkeit |
US3661620A (en) * | 1969-11-26 | 1972-05-09 | Gen Tire & Rubber Co | Method of encapsulating fillers with polymers |
US3696452A (en) * | 1970-03-25 | 1972-10-10 | Dow Chemical Co | Hull construction for vessels and the like |
US3864201A (en) * | 1970-10-06 | 1975-02-04 | Lion Fat Oil Co Ltd | Thermoplastic resins loaded with filler bonded to cover layers |
DK142403B (da) * | 1977-07-06 | 1980-10-27 | Copencraft As | Sandwichlaminat med en kerne af i blokke opdelt skumplastmateriale. |
DE7727940U1 (de) * | 1977-09-09 | 1978-04-13 | Buch + Koelzer Ohg, 4010 Hilden | Verbundwerkstoff in sandwich-bauweise |
GB2066156B (en) * | 1979-12-28 | 1984-12-05 | Unitex Ltd | Foam core sandwich construction |
GB2120167B (en) * | 1982-04-21 | 1986-07-09 | Beldale Investments Ltd | A deformable structure and method of using such a structure |
US4671994A (en) * | 1986-02-10 | 1987-06-09 | Materials Technology Corporation | Method for producing fiber reinforced hollow microspheres |
US5030488A (en) * | 1988-11-23 | 1991-07-09 | Chemical And Polymer Technology, Inc. | Laminates, panels and means for joining them |
US4940632A (en) * | 1989-10-06 | 1990-07-10 | Mobay Corporation | Foam laminates which include ASTM E-84 class 1 rated foams |
US5773121A (en) * | 1994-07-29 | 1998-06-30 | Isorca Inc. | Syntactic foam core incorporating honeycomb structure for composites |
US5587231A (en) * | 1994-07-29 | 1996-12-24 | Isorcd, Inc. | Syntactic foam core material and method of manufacture |
KR19980703761A (ko) * | 1996-02-13 | 1998-12-05 | 캣츠 스티븐 지. | 복합 구조재용 신택틱 포옴 코어 물질 |
US6050208A (en) * | 1996-11-13 | 2000-04-18 | Fern Investments Limited | Composite structural laminate |
US5778813A (en) * | 1996-11-13 | 1998-07-14 | Fern Investments Limited | Composite steel structural plastic sandwich plate systems |
US6096403A (en) * | 1997-07-21 | 2000-08-01 | Henkel Corporation | Reinforced structural members |
DE19825085A1 (de) * | 1998-06-05 | 1999-12-09 | Basf Ag | Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte |
DE19825083A1 (de) * | 1998-06-05 | 1999-12-09 | Basf Ag | Verbundelemente enthaltend kompakte Polyisocyanat-Polyadditionsprodukte |
AR026327A1 (es) * | 1999-11-05 | 2003-02-05 | Intelligent Engineering Ltd Bs | Placa laminada estructural y construccion de un compuesto de placa laminada estructural |
JP2001047542A (ja) * | 2000-01-01 | 2001-02-20 | Nitto Boseki Co Ltd | 複合プラスチックパネル |
US6423755B1 (en) * | 2000-02-25 | 2002-07-23 | Essex Specialty Products, Inc | Rigid polyurethane foams |
US20030069321A1 (en) * | 2001-10-05 | 2003-04-10 | Lin Wendy Wen-Ling | High modulus, impact resistant foams for structural components |
-
2002
- 2002-03-26 DE DE10213753A patent/DE10213753A1/de not_active Withdrawn
-
2003
- 2003-03-19 DE DE50309533T patent/DE50309533D1/de not_active Expired - Lifetime
- 2003-03-19 EP EP03720337A patent/EP1490216B1/fr not_active Expired - Lifetime
- 2003-03-19 DK DK03720337T patent/DK1490216T3/da active
- 2003-03-19 US US10/508,180 patent/US20050161850A1/en not_active Abandoned
- 2003-03-19 AU AU2003223968A patent/AU2003223968A1/en not_active Abandoned
- 2003-03-19 KR KR10-2004-7014974A patent/KR20040096664A/ko not_active Application Discontinuation
- 2003-03-19 CN CNB038069458A patent/CN100393508C/zh not_active Expired - Lifetime
- 2003-03-19 CA CA2480036A patent/CA2480036C/fr not_active Expired - Lifetime
- 2003-03-19 ES ES03720337T patent/ES2300571T3/es not_active Expired - Lifetime
- 2003-03-19 JP JP2003578135A patent/JP4702732B2/ja not_active Expired - Lifetime
- 2003-03-19 WO PCT/EP2003/002844 patent/WO2003080330A1/fr active IP Right Grant
- 2003-03-19 AT AT03720337T patent/ATE391009T1/de not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2005531426A (ja) | 2005-10-20 |
WO2003080330A1 (fr) | 2003-10-02 |
JP4702732B2 (ja) | 2011-06-15 |
DK1490216T3 (da) | 2008-06-30 |
AU2003223968A1 (en) | 2003-10-08 |
KR20040096664A (ko) | 2004-11-16 |
US20050161850A1 (en) | 2005-07-28 |
ES2300571T3 (es) | 2008-06-16 |
CN100393508C (zh) | 2008-06-11 |
CA2480036A1 (fr) | 2003-10-02 |
CA2480036C (fr) | 2011-02-22 |
EP1490216A1 (fr) | 2004-12-29 |
DE50309533D1 (de) | 2008-05-15 |
ATE391009T1 (de) | 2008-04-15 |
CN1642735A (zh) | 2005-07-20 |
DE10213753A1 (de) | 2003-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1165314B1 (fr) | Elements composites contenant des produits de polyaddition de polyisocyanate | |
EP1093410B1 (fr) | Elements composites contenant des produits compacts de polyaddition de polyisocyanate | |
EP1094938B1 (fr) | Elements composites contenant des produits compacts de polyaddition de polyisocyanate | |
EP1513684B1 (fr) | Procede de production d'elements composites | |
EP1490216B1 (fr) | Procede de fabrication d'elements composites | |
DE19825087B4 (de) | Verfahren zur Herstellung von Schiffsrümpfen, Laderaumabdeckungen oder Brücken enthaltend Verbundelemente | |
EP1315768B1 (fr) | Élément composite contenant des produits de polyaddition de polyisocyanate | |
WO2002040876A1 (fr) | Procede de liaison d'elements composites | |
EP1240010B1 (fr) | Elements composites | |
EP1682338A2 (fr) | Elements composites | |
DE10350240B4 (de) | Verfahren zur Einbringung von Flüssigkeiten mittels einer Fördereinrichtung in eine Form | |
WO2002040264A2 (fr) | Procede de fabrication d'elements composites | |
EP1414643A1 (fr) | Procede pour mettre des liquides dans un moule au moyen d'un dispositif d'ecoulement | |
EP1339544B1 (fr) | Procede de fabrication d'elements composites | |
EP1337393B1 (fr) | Procede pour reparer des elements multicouches | |
WO2003009996A1 (fr) | Elements composites | |
WO2003002321A1 (fr) | Procede de fabrication d'elements composites | |
WO2002040253A1 (fr) | Procede de fabrication d'elements composites | |
DE10130649A1 (de) | Verfahren zur Herstellung von Verbundelementen | |
EP1345762A1 (fr) | Elements composites renfermant des produits de polyaddition de polyisocyanate | |
EP1215223A1 (fr) | éléments composites contenant des produits de polyaddition de polyisocyanate | |
DE10310379A1 (de) | Verbundelemente enthaltend Polyisocyanat-Polyadditionsprodukte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20041026 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BOOS, JUERGEN Inventor name: MERTES, JUERGEN Inventor name: LUENNE, STEFANIE Inventor name: DROEGE, THOMAS Inventor name: KNOBLAUCH, GEORG Inventor name: STADLER, EDMUND |
|
17Q | First examination report despatched |
Effective date: 20070611 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR PRODUCING COMPOSITE ELEMENTS |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50309533 Country of ref document: DE Date of ref document: 20080515 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2300571 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080702 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080903 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
26N | No opposition filed |
Effective date: 20090106 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
BERE | Be: lapsed |
Owner name: BASF SE Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080703 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080402 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160319 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160319 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20170710 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20200324 Year of fee payment: 18 Ref country code: SE Payment date: 20200325 Year of fee payment: 18 Ref country code: FI Payment date: 20200319 Year of fee payment: 18 Ref country code: NL Payment date: 20200325 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FI Ref legal event code: MAE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210319 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20210331 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220322 Year of fee payment: 20 Ref country code: DE Payment date: 20220329 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220323 Year of fee payment: 20 Ref country code: FR Payment date: 20220325 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20220418 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50309533 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230318 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230320 |