EP1488111B1 - Linienförmiger, hydraulischer schwenkantrieb - Google Patents

Linienförmiger, hydraulischer schwenkantrieb Download PDF

Info

Publication number
EP1488111B1
EP1488111B1 EP03718601A EP03718601A EP1488111B1 EP 1488111 B1 EP1488111 B1 EP 1488111B1 EP 03718601 A EP03718601 A EP 03718601A EP 03718601 A EP03718601 A EP 03718601A EP 1488111 B1 EP1488111 B1 EP 1488111B1
Authority
EP
European Patent Office
Prior art keywords
piston
linear
pivot drive
drive according
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03718601A
Other languages
English (en)
French (fr)
Other versions
EP1488111A1 (de
Inventor
Ulf Breuer
Peter JÄNKER
Thomas Lorkowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH, EADS Deutschland GmbH filed Critical Airbus Operations GmbH
Publication of EP1488111A1 publication Critical patent/EP1488111A1/de
Application granted granted Critical
Publication of EP1488111B1 publication Critical patent/EP1488111B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/02Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member
    • F15B15/06Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement
    • F15B15/068Mechanical layout characterised by the means for converting the movement of the fluid-actuated element into movement of the finally-operated member for mechanically converting rectilinear movement into non- rectilinear movement the motor being of the helical type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18056Rotary to or from reciprocating or oscillating

Definitions

  • the present invention relates to a linear, hydraulic pivot drive according to the preamble of claim 1.
  • Such linear drives find e.g. for flap control aerodynamic Profile application. It is particularly advantageous that on conventional linkage or control rods that are outside the aerodynamic profile on the control flap are hinged and thus adversely affect the aerodynamic conditions, can be waived.
  • a well-known drive for controlling a rotor blade aileron for example, in GB 2 299 562 A.
  • To implement a hydraulically induced Axial movement of a shaft in a rotary motion is the shaft with a coarse thread Mistake.
  • the coarse thread engages in several bushes, concentric the shaft surrounded so that the bushings undergo a rotation during axial displacement of the shaft.
  • a torque support of the shaft is required to turn their To prevent rotation effectively.
  • This causes, which holds the shaft.
  • the mechanism includes several components, below Other separate holes in which the shaft are inserted, and retaining pins. A Such arrangement not only has relatively large dimensions, but also leads to intensive assembly and maintenance work.
  • mini flaps which differs from conventional flaps with 10 - Distinguish 30% clean wing depth by a depth of only 1-3% have and as in a Sp Rudklappe from a fixed and a consisted part.
  • An aerodynamic profile with such Mini flap is for example in our unpublished patent application DE 101 56th 733 described.
  • a deflection of the mini flap with conventional levers would not only unfavorable flow conditions bring with it, but also a high Weight, as several levers would be required. Likewise, a high montagesowie Maintenance required.
  • the flap actuator should be on a greater integration of the functional tasks of drive and load-bearing structure be aligned. In addition, there is a linear or area force or power distribution desirable to meet the flap specific requirements.
  • the object of the present invention is to provide a linear, To create hydraulic rotary actuator, which has a small size and a simple structure, so that it can be integrated into existing structures and low maintenance required.
  • a linear, hydraulic rotary actuator the a housing with connections for introducing a hydraulic medium comprises, a within the housing arranged piston, which by the action of the hydraulic Medium is axially displaceable, as well as provided with steep threads output shaft, which cooperates with the piston to the axial movement of the piston in a To transmit rotational movement, and according to the invention is characterized in that the output shaft is inserted in the piston, the coarse thread in the same direction are formed and engage in the piston, and that the piston cross section a Has polygon profile to effectively prevent a rotational movement of the piston.
  • the piston cross section in the form of a polygon profile is the Torque support for preventing rotation of the piston by itself guaranteed.
  • the polygon profile is in the engagement region of Output shaft and piston provided, i. in the cross-sectional area of the piston, where Output shaft and piston engage each other.
  • the polygon profile be formed along the entire piston.
  • the polygon profile is a P4C profile according to DIN standard.32712. It is particularly advantageous that the axial Displacement under torque is ensured. In this way are none additional mechanisms and components required to turn the piston to prevent. A simple structure is guaranteed. Furthermore, it is advantageous that by Such an embodiment of the rotary actuator much smaller than known Arrangements is. It is particularly useful in this case that the output shaft on both sides is introduced into the piston.
  • the output shaft has two separate sections has, at their respectively engaging in the piston ends the same direction Steep thread are arranged. In this way it is achieved that the direction of rotation of the Output shaft sections is identical.
  • the output shaft sections are rotationally symmetric via a spacer pin interconnected, wherein the spacer pin in each in the Output shaft sections provided holes is introduced. This is especially true With regard to assembly and maintenance advantageous.
  • the piston is provided on both sides with threaded bushes into which the Steep thread of the output shaft sections engage.
  • threaded bushes into which the Steep thread of the output shaft sections engage.
  • the piston has a central bore through which the Distance pin is performed.
  • the spacer pin is stored in a simple manner.
  • a bearing can be arranged in the central bore.
  • axial-radial bearings preferably rolling bearings, for storing the Output shaft provided.
  • Alternative can be the axial and radial components as well be formed separately. These bearings allow a good reception of both axial as well as radial forces.
  • the hydraulic medium can be introduced bidirectionally into the housing is what pivoting a hinged to the housing flap in allows different directions.
  • the pivoting drive according to the invention finds particular to Klappenauslenkung Rotor blades or aircraft wings use. It is particularly advantageous the drive in a hinge connection of a hinged to an aerodynamic profile Integrate flap, with a plurality of such drives linear in the Articulated connection is integrated.
  • the drive comprises a housing 2, the two terminals 3, 4 for a hydraulic medium (e.g., a fluid). Inside the housing 2 is a piston 5 and arranged with the piston 5 in connection with the output shaft 6. to better illustration, the housing 2 and the piston 5 in Figure 1 partially in shown sectional view.
  • the output shaft 6 is inserted on both sides.
  • the output shaft 6 is preferably at least two separate sections 6a, 6b. Each engaging in the piston 5 ends of the Output shaft sections 6a, 6b are with co-rotating coarse threads 8a, 8b Mistake. By the co-trained coarse thread 8a, 8b ensures that the direction of rotation of the two output shaft sections 6a, 6b is identical, as follows will be described in more detail.
  • the piston 5 is correspondingly threaded on both sides 5a, 5b provided to the engagement of the drive shaft sections 6a, 6b in the piston 5 to guarantee.
  • the threads 5a, 5b are in the form of threaded bushings designed.
  • the two output shaft sections 6a, 6b over a spacer pin 7 rotationally symmetrical with each other (Fig. 2).
  • the Piston 5 is provided with a central bore 10 in which the spacer pin 7, preferably using a sealing ring 11, stores.
  • the spacer pin 7 is in corresponding, introduced in the output shaft sections 6a, 6b holes 9a, 9b introduced.
  • a bias of the spacer pin 7 can by suitable elastic Elements 16 (e.g., rubbers or the like) can be achieved as well as into the bores 9a, 9b are introduced.
  • suitable elastic Elements 16 e.g., rubbers or the like
  • the storage of the axle package within the housing 2 must be part of the axially through catch the force generated by the piston 5.
  • the output shaft 6 must be in radial Be led direction. This is done by axial-radial bearings, which are shown in Figs. 1 and 2 with Reference numerals 12 and 13 are designated.
  • the axial or radial Components of the bearings to be formed separately.
  • rolling bearings used.
  • the bearings 12, 13 are typically integrated into the housing covers 14, 15, which close the housing 2 in each case on both sides tight. The dimensions of the individual components coordinated so that the axle pack through the Housing cover 14, 15 axially biased in conjunction with the elastic member 16 is.
  • Cross-section of the piston 5 has for this purpose a polygonal profile, preferably a P4C profile according to DIN standard 32712.
  • the polygon profile extends substantially over the cross-sectional area provided with the threads 5a, 5b; i.e. the polygon profile is arranged substantially where the coarse thread 8a, 8b of the output shaft. 6 engage in the piston 5.
  • this is also the term "intervention area” used.
  • the polygon profile can also over the entire length of the piston 5 extend.
  • a sectional view of the piston 5 along that shown in Fig. 2 Line D, D ' is shown in FIG.
  • Such a polygon profile allows that on the one hand enough power is transmitted to the output shaft. On the other hand is by ensures a so-called "slippage" of the output shaft 6, which in turn a Turning the piston 5 prevented.
  • Fig. 4 shows an application of the pivoting drive according to the invention for deflection a so-called mini flap.
  • the rear end of an aerodynamic profile 20 shown schematically.
  • a flap 22 At the bottom 21 of the profile 20 is a flap 22 via a hinged joint 23 hinged.
  • the pivot axis 24 of the hinge connection 23 runs parallel to the trailing edge 25 of the profile.
  • inventive Part-turn actuators 1 arranged linear or rod-shaped.
  • the connections 3, 4 of the individual Part-turn actuators 1 are preferably supplied in parallel.
  • the inlet of the hydraulic Medium is again bidirectional, depending on the desired pivoting direction. By Such an arrangement, the operating forces are introduced surface and not how until now selectively.
  • the in Fig. 4 shown "broom handle assembly" are integrated into the hinge joint 23.
  • Integrated, rotationally symmetric actuator systems are already smaller with diameters 28 mm.
  • the diameter of the pivot drive not more than 20 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Actuator (AREA)
  • Hydraulic Motors (AREA)

Description

Die vorliegende Erfindung betrifft einen linienförmigen, hydraulischen Schwenkantrieb gemäß dem Oberbegriff des Anspruchs 1.
Derartige linienförmige Antriebe finden z.B. zur Klappensteuerung aerodynamischer Profile Anwendung. Hierbei ist es insbesondere von Vorteil, dass auf übliche Gestänge bzw. Steuerstangen, die ausserhalb des aerodynamischen Profils an der Steuerklappe angelenkt sind und somit die aerodynamischen Verhältnisse negativ beeinflussen, verzichtet werden kann.
Ein bekannter Antrieb zur Steuerung eines Rotorblatt-Querruders ist beispielsweise in GB 2 299 562 A beschrieben. Zur Umsetzung einer hydraulisch hervorgerufenen Axialbewegung einer Welle in eine Drehbewegung, ist die Welle mit einem Steilgewinde versehen. Das Steilgewinde greift in mehrere Buchsen ein, die die Welle konzentrisch umgeben, so dass beim axialen Verschieben der Welle die Buchsen eine Drehung erfahren. Dabei ist eine Drehmomentabstützung der Welle erforderlich, um wiederum deren Drehung wirksam zu verhindern. Dies wird durch einen zusätzlichen Mechanismus bewirkt, der die Welle festhält. Der Mechanismus umfasst mehrere Komponenten, unter anderem separate Bohrungen, in die die Welle eingeführt sind, sowie Festhaltestifte. Eine derartige Anordnung weist nicht nur relativ große Abmessungen auf, sondern führt auch zu intensiver Montage- und Wartungsarbeit.
Weiterhin ist ein linienförmiger, hydraulischer Schwenkantrieb aus dem Dokument DD-A-26 813 bekannt, wobei ein axial in einem Gehäuse verschiebbarer kolben über ein Steilgewinde auf eine durchgehende welle wirkt.
Ferner sind sogenannte Steilgewinde-Schwenkmotoren bekannt, die eine axiale Verschiebung eines hydraulischen Arbeitskolbens über Steilgewinde in eine Drehbewegung einer Abtriebswelle umsetzen. Die Drehmomentabstützung des Arbeitskolben erfolgt z.B. durch zwei gegensinnig verlaufende Gewinde, die beidseitig in den Kolben eingreifen. Dies führt jedoch zu einer gegensinnigen Drehrichtung der Abtriebswelle, was für manche Anwendungen unerwünscht ist. Die Gewinde können ausser axial hintereinander auch radial geschachtelt angeordnet sein. Hierbei ist insbesondere aufgrund der nicht beliebig reduzierbaren Steighöhe der Steilgewinde eine beliebige Verkleinerung der Anordnung nicht möglich. Kommerzielle Antriebe sind somit in der Regel relativ groß. Ferner ist es von Nachteil, dass bei derartigen konventionellen hydraulischen Schwenkantrieben eine Konzentration auf punktuelle Lastverteilungen erfolgt.
In jüngster Zeit sind aerodynamische Strukturen mit kleineren Klappenanordnungen entwickelt worden (sogenannte Miniklappen), die sich von herkömmlichen Klappen mit 10 - 30 % Cleanflügeltiefe dadurch unterscheiden, dass sie eine Tiefe von lediglich 1- 3 % aufweisen und wie bei einer Spreizklappe aus einem feststehenden und einem ausgeschlagenen Teil bestehen. Ein aerodynamisches Profil mit einer derartigen Miniklappe ist beispielsweise in unserer unveröffentlichten Patentanmeldung DE 101 56 733 beschrieben. Ein Auslenken der Miniklappe mit herkömmlichen Stellhebeln würde nicht nur ungünstige Strömungsverhältnisse mit sich bringen, sondern auch ein hohes Gewicht, da mehrere Stellhebel erforderlich wären. Ebenso wäre ein hoher Montagesowie Wartungsaufwand erforderlich.
Folglich sind neue Aktuatorsysteme notwendig, die insbesondere den Anforderungen einer hohen Miniaturisierung gerecht werden. Aufgrund der strukturellen Anforderungen steht lediglich sehr begrenzter Bauraum zur Verfügung. Die Klappen-Aktuatorik sollte auf eine stärkere Integration der funktionellen Aufgaben von Antrieb und tragender Struktur ausgerichtet sein. Daneben ist eine linienförmige bzw. flächige Kraft- bzw. Leistungsverteilung wünschenswert, um den klappenspezifischen Erfordernissen gerecht zu werden.
Somit liegt der vorliegenden Erfindung die Aufgabe zu Grunde, einen linienförmigen, hydraulischen Schwenkantrieb zu schaffen, der eine geringe Baugröße sowie einen einfachen Aufbau aufweist, so dass er in bestehende Strukturen integriert werden kann und geringen Wartungsaufwand erfordert.
Die Aufgabe wird durch einen linienförmigen, hydraulischen Schwenkantrieb gelöst, der ein Gehäuse mit Anschlüssen zum Einführen eines hydraulischen Mediums umfasst, einen innerhalb des Gehäuses angeordneten Kolben, der durch Einwirken des hydraulischen Mediums axial verschiebbar ist, sowie eine mit Steilgewinden versehene Abtriebswelle, die mit dem Kolben zusammenwirkt, um die axiale Bewegung des Kolbens in eine Rotationsbewegung zu übertragen, und sich erfindungsgemäß dadurch auszeichnet, dass die Abtriebswelle in den Kolben eingebracht ist, wobei die Steilgewinde gleichsinnig ausgebildet sind und in den Kolben eingreifen, und dass der Kolbenquerschnitt ein Polygon-Profil aufweist, um eine Drehbewegung des Kolbens wirksam zu verhindern.
Durch das Ausbilden des Kolbenquerschnittes in Form eines Polygon-Profils wird die Drehmomentabstützung zum Verhindern einer Drehung des Kolbens durch diesen selbst gewährleistet. Zweckmäßigerweise ist das Polygon-Profil im Eingriffsbereich von Abtriebswelle und Kolben vorgesehen, d.h. in dem Querschnittsbereich des Kolbens, wo Abtriebswelle und Kolben ineinander eingreifen. Alternativ kann das Polygonprofil entlang des gesamten Kolbens ausgebildet sein. Vorzugsweise ist das Polygonprofil ein P4C-Profil nach DIN Norm.32712. Besonders vorteilhaft ist hierbei, dass die axiale Verschiebbarkeit unter Momentenkraft gewährleistet ist. Auf diese Weise sind keine zusätzlichen Mechanismen und Komponenten erforderlich, um eine Drehung des Kolbens zu unterbinden. Ein einfacher Aufbau ist gewährleistet. Ferner ist es vorteilhaft, dass durch eine derartige Ausgestaltung der Schwenkantrieb wesentlich kleiner als bekannte Anordnungen ist. Besonders zweckmäßig ist es hierbei, dass die Abtriebswelle beidseitig in den Kolben eingebracht ist.
Dabei ist es insbesondere von Vorteil, dass die Abtriebswelle zwei separate Abschnitte aufweist, an deren jeweils in den Kolben eingreifenden Enden die gleichsinnigen Steilgewinde angeordnet sind. Auf diese Weise wird erreicht, dass die Drehrichtung der Abtriebswellenabschnitte identisch ist.
Vorzugsweise sind die Abtriebswellenabschnitte über einen Distanzstift rotationssymmetrisch miteinander verbunden, wobei der Distanzstift in jeweilige in den Abtriebswellenabschnitten vorgesehene Bohrungen eingeführt ist. Dies ist insbesondere im Hinblick auf Montage sowie Wartung vorteilhaft.
Zweckmäßigerweise ist der Kolben beidseitig mit Gewindebuchsen versehen, in die die Steilgewinde der Abtriebswellenabschnitte eingreifen. Auf diese Weise wird, wie bereits erwähnt, eine einheitliche Drehrichtung der Abtriebswellenabschnitte bewirkt. Zudem gewährleistet dies eine möglichst große Kraftübertragung.
Ferner ist es vorteilhaft, dass der Kolben eine zentrale Bohrung aufweist, durch den der Distanzstift durchgeführt ist. Dadurch wird der Distanzstift auf einfache Weise gelagert. Zu diesem Zweck kann ein Lager in der zentralen Bohrung angeordnet sein.
Zweckmäßigerweise sind Axial-Radial-Lager, vorzugsweise Wälzlager, zum Lagern der Abtriebswelle vorgesehen. Alternative können die axialen und radialen Komponenten auch separat ausgebildet sein. Diese Lager ermöglichen eine gut Aufnahme sowohl von axialen als auch radialen Kräften.
Besonders vorteilhaft ist es, die Axial-Radial-Lager in Gehäusedeckel zu integrieren, die wiederum das Gehäuse dicht abschließen. Dies bringt vorteilhafterweise eine kompakte Bauweise mit sich.
Ferner ist es zweckmäßig, dass das hydraulische Medium bidirektional in das Gehäuse einführbar ist, was ein Schwenken einer an dem Gehäuse angelenkten Klappe in unterschiedliche Richtungen ermöglicht.
Der erfindungsgemäße Schwenkantrieb findet insbesondere zur Klappenauslenkung an Rotorblättern oder Flugzeugtragflächen Verwendung. Dabei ist es insbesondere vorteilhaft, den Antrieb in eine Gelenkverbindung einer an ein aerodynamisches Profil angelenkten Klappe zu integrieren, wobei eine Mehrzahl derartiger Antriebe linienförmig in die Gelenkverbindung integriert ist.
Im Folgenden wird die Erfindung an Hand der beigefügten Abbildungen in näheren Einzelheiten erläutert. In denen zeigt:
Fig.1
eine schematische dreidimensionale Darstellung des erfindungsgemäßen Schwenkantriebs;
Fig. 2
eine Schnittansicht des erfindungsgemäßen Schwenkantriebs;
Fig. 3
eine Querschnittsansicht des in dem erfindungsgemäßen Schwenkantriebs verwendeten Kolben; und
Fig. 4
mehrere, linienförmig angeordnete Schwenkantriebe, die in eine Gelenkverbindung einer an einem aerodynamischen Profil angelenkten Klappe integriert sind.
Fig. 1 zeigt in dreidimensionaler Ansicht einen erfindungsgemäßen linienförmigen, hydraulischen Schwenkantrieb 1 zum Umsetzen einer Axialbewegung in eine Drehbewegung. Der Antrieb umfasst ein Gehäuse 2, das zwei Anschlüsse 3, 4 für ein hydraulisches Medium (z.B. ein Fluid) aufweist. Im Inneren des Gehäuses 2 ist ein Kolben 5 sowie eine mit dem Kolben 5 in Verbindung stehende Abtriebswelle 6 angeordnet. Zur besseren Darstellung ist das Gehäuse 2 sowie der Kolben 5 in Fig 1. teilweise in geschnittener Ansicht gezeigt. In den symmetrisch ausgebildeten Kolben 5 ist die Abtriebswelle 6 beidseitig eingebracht. Um das Einführen sowie die Wartung des Schwenkantriebes zu erleichtern, besteht die Abtriebswelle 6 vorzugsweise zumindest aus zwei separaten Abschnitten 6a, 6b. Die jeweils in den Kolben 5 eingreifenden Enden der Abtriebswellenabschnitte 6a, 6b sind mit gleichsinnig verlaufenden Steilgewinden 8a, 8b versehen. Durch die gleichsinnig ausgebildeten Steilgewinde 8a, 8b ist sichergestellt, dass die Drehrichtung der beiden Abtriebswellenabschnitte 6a, 6b identisch ist, was nachstehend noch genauer beschrieben wird.
Wie Fig. 2 besser zu entnehmen ist, ist der Kolben 5 entsprechend beidseitig mit Gewinden 5a, 5b versehen, um den Eingriff der Antriebswellenabschnitte 6a, 6b in den Kolben 5 zu gewährleisten. Geeigneterweise sind die Gewinde 5a, 5b in Form von Gewindebuchsen ausgestaltet. Innerhalb des Kolbens 5 sind die beiden Abtriebswellenabschnitte 6a, 6b über einen Distanzstift 7 rotationssymmetrisch miteinander verbunden (Fig. 2). Hierzu ist der Kolben 5 mit einer zentralen Bohrung 10 versehen, in dem der Distanzstift 7, vorzugsweise unter Verwendung eines Dichtringes 11, lagert. Gleichzeitig ist der Distanzstift 7 in entsprechende, in den Abtriebswellenabschnitten 6a, 6b eingebrachte Bohrungen 9a, 9b eingeführt. Eine Vorspannung des Distanzstiftes 7 kann durch geeignete elastische Elemente 16 (z.B. Gummis oder dergleichen) erzielt werden, die ebenso in die Bohrungen 9a, 9b eingeführt sind. Auf diese Weise entsteht ein rotationssymmetrisches Achspaket, das im wesentlichen aus Abtriebswellenabschnitten 6a, 6b und Distanzstift 7 besteht.
Die Lagerung des Achspaketes innerhalb des Gehäuses 2 muss einen Teil der axial durch den Kolben 5 erzeugten Kraft auffangen. Zusätzlich muss die Abtriebswelle 6 in radialer Richtung geführt werden. Dies erfolgt durch Axial-Radial-Lager, die in Figs. 1 und 2 mit Bezugsziffern 12 und 13 bezeichnet sind. Alternativ können die axialen bzw. radialen Komponenten der Lager getrennt ausgebildet sein. Vorzugsweise werden jedoch Wälzlager verwendet. Die Lager 12, 13 sind typischerweise in die Gehäusedeckel 14, 15 integriert, die das Gehäuse 2 jeweils beidseitig dicht abschließen. Dabei sind die Abmessungen der einzelnen Bauteile so aufeinander abgestimmt, dass das Achspaket durch die Gehäusedeckel 14, 15 in Verbindung mit dem elastischen Element 16 axial vorgespannt ist.
Im folgenden wird die Funktionsweise des erfindungsgemäßen Schwenkantriebs an Hand von Figs. 1 und 2 beschrieben. Über den Anschluss 3 wird das hydraulische Medium in Pfeilrichtung in das Gehäuse 2 eingeführt. Aufgrund des dadurch auf den Kolben 5 einwirkenden Druckes wird dieser axial nach links (s. Pfeilrichtung) verschoben. Um die axiale Bewegung des Kolbens 5 in eine Drehbewegung der Abtriebswelle 6 zu übertragen, die, wie geschildert, mit dem Kolben 5 über die Steilgewinde 8a, 8b zusammenwirkt, ist eine Drehmomentabstützung erforderlich. Mit anderen Worten, die Drehbewegung des Kolbens 5 muss wirksam verhindert werden, ansonsten ist eine Umsetztung der Axialbewegung in eine Drehbewegung nicht möglich. Die Drehmomentabstützung wird erfindungsgemäß durch die Querschnittsform des Kolbens 5 selbst gewährleistet. Der Querschnitt des Kolbens 5 weist hierzu ein Polygon-Profil auf, das vorzugsweise ein P4C-Profil nach DIN-Norm 32712 ist. Das Polygon-Profil erstreckt sich dabei im wesentlichen über den Querschnittsbereich, der mit den Gewinden 5a, 5b versehen ist; d.h. das Polygon-Profil ist im wesentlichen dort angeordnet, wo die Steilgewinde 8a, 8b der Abtriebswelle 6 in den Kolben 5 eingreifen. Im Folgenden wird hierfür auch der Begriff "Eingriffsbereich" verwendet. Selbstverständlich kann sich das Polygonprofil auch über die gesamte Länge des Kolbens 5 erstrecken. Eine Schnittansicht des Kolbens 5 entlang der in Fig. 2 gezeigten Linie D, D' ist in Fig. 3 dargestellt. Ein derartiges Polygon-Profil ermöglicht, dass einerseits genügend Kraft auf die Abtriebswelle übertragen wird. Andererseits ist dadurch ein sogenanntes "Durchrutschen" der Abtriebswelle 6 gewährleistet, was wiederum ein Drehen des Kolbens 5 verhindert.
Zum Umkehren der Drehrichtung der Abtriebswelle 6 bzw. der Schwenkrichtung des Antriebs 1 wird lediglich die Einlassrichtung des hydraulischen Mediums geändert. Der Anschluss 4 wird zum Einlass und der Anschluss 3 wird zum Auslass für das hydraulische Medium. Das Einführen des Mediums erfolgt also je nach gewünschter Schwenkrichtung bidirektional. Ferner sei angemerkt, dass Kolbenhub, der in Fig. 2 mit Bezugsziffer 17 bezeichnet ist, und Gewindesteigung aufeinander abgestimmt sind, um einen vordefininierten Auslenkwinkel zu erhalten. Ausserdem muss die Steigung des Gewindes so groß sein, dass keine Selbsthemmung des Antriebs auftritt. Dabei ist der Antrieb um so effizienter, je steiler das Gewinde ausfällt. Mit der Steilheit des Gewindes steigt auch die axiale notwendige Bewegung des Kolbens (Hub 17), um einen bestimmten Schwenkwinkel zu erreichen. Gleichzeitig wird damit das hydraulische Arbeitsvolumen und somit eine Feinpositionierung bzw. Regelbarkeit des Schwenkwinkels einfacher.
Fig. 4 zeigt eine Anwendung des erfindungsgemäßen Schwenkantriebes zur Auslenkung einer sogenannten Miniklappe. In Fig. 4 ist das hintere Ende eines aerodynamischen Profils 20 schematisch dargestellt. An der Unterseite 21 des Profils 20 ist eine Klappe 22 über eine gelenkförmige Verbindung 23 angelenkt. Die Schwenkachse 24 der Gelenkverbindung 23 verläuft parallel zur Hinterkante 25 des Profils. Um eine gleichmäßige Kraftübertragung entlang der Schwenkachse 24 zu erzieien, sind mehrere erfindungsgemäße Schwenkantriebe 1 linien- bzw. stabförmig angeordnet. Die Anschlüsse 3, 4 der einzelnen Schwenkantriebe 1 sind vorzugsweise parallel versorgt. Der Einlass des hydraulischen Mediums erfolgt wiederum bidirektional, je nach gewünschter Schwenkrichtung. Durch eine derartige Anordnung werden die Betätigungskräfte flächig eingebracht und nicht wie bisher punktuell. Aufgrund der geringen Baugröße des Schwenkantriebs 1 kann die in Fig. 4 gezeigte "Besenstielanordnung" in die Gelenkverbindung 23 integriert werden. Derartige integrierte, rotationssymmetrische Aktuatorsysteme sind bereits mit Durchmessern kleiner 28 mm hergestellt worden. Vorzugsweise beträgt der Durchmesser des Schwenkantriebes nicht mehr als 20 mm.

Claims (15)

  1. Linienförmiger, hydraulischer Schwenkantrieb (1), umfassend
    ein Gehäuse (2) mit Anschlüssen (3, 4) zum Einführen eines hydraulischen Mediums;
    einen innerhalb des Gehäuses (2) angeordneten Kolben (5), der durch Einwirken des hydraulischen Mediums axial verschiebbar ist;
    eine mit Steilgewinden (8a, 8b) versehene Abtriebswelle (6), die mit dem Kolben (5) zusammenwirkf, um die axiale Bewegung des Kolbens (5) in eine Rotationsbewegung zu übertragen,
    dadurch gekennzeichnet, dass
    die Abtriebswelle (6) zwei separate Teilabschnitte (6a, 6b) aufweist, die beidseitig in den Kolben (5) eingebracht sind und über gleichsinnig ausgebildete Steilgewinde (8a, 8b) in den Kolben (5) eingreifen, so dass an beiden Teilabschnitten (6a, 6b) ein Drehmoment mit identischer Drehrichtung abgreifbar ist, wobei zum Verhindern einer Drehbewegung des Kolbens (5) der Kolbenquerschnitt ein Polygon-Profil aufweist.
  2. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 1 , dadurch gekennzeichnet, dass das Polygon-Profil im Wesentlichen im Eingriffsbereich von Abtriebswelle (6) und Kolben (5) vorgesehen ist.
  3. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 1, dadurch gekennzeichnet, dass das Polygon-Profil ein P4C-Profil ist.
  4. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 1, dadurch gekennzeichnet, dass die Abtriebswelle (6) zwei separate Abschnitte (6a, 6b) aufweist, an deren jeweils in den Kolben (5) eingreifenden Enden die gleichsinnigen Steilgewinde (8a, 8b) angeordnet sind.
  5. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 4, dadurch gekennzeichnet, dass die Abtriebswellenabschnitte (6a, 6b) über einen Distanzstift (7) rotationssymmetrisch miteinander verbunden sind, wobei der Distanzstift (7) in jeweilige Bohrungen (9a, 9b) der Abtriebswellenabschnitte (6a, 6b) eingeführt ist.
  6. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 1, dadurch gekennzeichnet, dass der Kolben (5) beidseitig mit Gewindebuchsen (5a, 5b) versehen ist, in die die Steilgewinde (8a, 8b) der Abtnebswellenabschnitte (6a, 6b) eingreifen.
  7. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 5, dadurch gekennzeichnet, dass der Kolben (5) eine zentrale Bohrung (10) zum Führen des Distanzstiftes (7) aufweist.
  8. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 1, dadurch gekennzeichnet, dass Axial-Radial-Lager (12, 13) zur Lagerung der Abtriebswelle (6) vorgesehen sind.
  9. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 8, dadurch gekennzeichnet, dass die Axial-Radial-Lager (12, 13) Wälzlager sind.
  10. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 8, dadurch gekennzeichnet, dass die Axial-Radial-Lager (12, 13) in Gehäusedeckel (14, 15) integriert sind, wobei die Gehäusedeckel (14, 15) das Gehäuse (2) beidseitig abschließen.
  11. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 1, dadurch gekennzeichnet, dass das hydraulische Medium bidirektional in das Gehäuse (2) einführbar ist.
  12. Linienförmiger, hydraulischer Schwenkantrieb, dadurch gekennzeichnet, dass mehrere Antriebe (1) gemäß den Ansprüchen 1 bis 12 linien- bzw. stabförrnig angeordnete sind, um eine gleichmäßige Kraftübertragung entlang der linienförmigen Erstreckung zu erhalten.
  13. Linienförmiger, hydraulischer Schwenkantrieb nach Anspruch 12, dadurch gekennzeichnet, dass die hydraulischen Anschlüsse (3, 4) der einzelnen Antriebe (1) parallel verschaltet sind.
  14. Verwendung des Antriebs nach einem der Ansprüche 1 bis 12 zur Auslenkung von Klappen aerodynamischer Profile, insbesondere Rotorblätter und Flugzeugtragflächen.
  15. Verwendung des Antriebs nach einem der Ansprüche 1 bis 12 zur Auslenkung einer über eine Gelenkverbindung (23) an ein aerodynamisches Profil (20) angelenkte Klappe (22), wobei eine Mehrzahl derartiger Antriebe (1) linienförmig in die Gelenkverbindung (23) integriert ist.
EP03718601A 2002-02-25 2003-02-21 Linienförmiger, hydraulischer schwenkantrieb Expired - Lifetime EP1488111B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10207830A DE10207830B4 (de) 2002-02-25 2002-02-25 Linienförmiger, hydraulischer Schwenkantrieb
DE10207830 2002-02-25
PCT/DE2003/000541 WO2003072955A1 (de) 2002-02-25 2003-02-21 Linienförmiger, hydraulischer schwenkantrieb

Publications (2)

Publication Number Publication Date
EP1488111A1 EP1488111A1 (de) 2004-12-22
EP1488111B1 true EP1488111B1 (de) 2005-12-07

Family

ID=27740373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03718601A Expired - Lifetime EP1488111B1 (de) 2002-02-25 2003-02-21 Linienförmiger, hydraulischer schwenkantrieb

Country Status (7)

Country Link
US (1) US7028602B2 (de)
EP (1) EP1488111B1 (de)
JP (1) JP4227527B2 (de)
CA (1) CA2476903C (de)
DE (2) DE10207830B4 (de)
ES (1) ES2251683T3 (de)
WO (1) WO2003072955A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005033697A1 (de) * 2005-07-19 2007-03-22 Airbus Deutschland Gmbh Ruderantrieb
DE202006016354U1 (de) 2006-10-23 2008-02-28 Asturia Automotive Systems Ag Einrichtung zum Ausgleich und/oder zur Übertragung von Kräften/Momenten und Drehbewegungen zwischen zwei Bauteilen
FI120917B (fi) * 2008-02-08 2010-04-30 Kinshofer Gmbh Hydraulisesti toimiva kääntölaite
EP2703288B1 (de) 2012-08-31 2018-03-14 Claverham Limited Elektromechanischer linearer Aktuator für Rotorsteuerung im Blatt
KR101637037B1 (ko) * 2014-12-22 2016-07-07 김선규 유압 실린더
CN106151152A (zh) * 2015-03-12 2016-11-23 盐城工业职业技术学院 四工位双作用液压缸
JP6780819B2 (ja) * 2017-10-03 2020-11-04 Smc株式会社 回転ユニット及び該回転ユニットを備えたシリンダ装置
KR102124335B1 (ko) * 2018-09-06 2020-06-19 주식회사 포스코 분리장치 및 분리방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE26813C (de) * C. WETTER in London Neuerung an Elektromagneten und Magnetkernen für dynamo-elektrische Maschinen und ähnliche Apparate
DE1024804B (de) * 1956-09-18 1958-02-20 Ernst Heinkel Fahrzeugbau G M Hydraulischer Klappenantrieb, insbesondere fuer Flugzeuge
DD26813A1 (de) * 1962-04-16 1964-01-27 Hydraulischer Drehwinkelmotor
US4603616A (en) * 1983-05-25 1986-08-05 Zaytran Inc. Rotary actuator
GB2299562A (en) 1995-04-01 1996-10-09 Nigel Howard Mckrill Actuator for helicopter rotor blade aileron
DE19628117C2 (de) * 1996-07-12 1998-05-14 Walter Voss Gmbh Armaturenfabr Drehantrieb, insbesondere Schwenkmotor
DE10156733B4 (de) * 2001-11-19 2006-04-20 Eads Deutschland Gmbh Aerodynamisches Profil mit verstellbarer Klappe

Also Published As

Publication number Publication date
CA2476903A1 (en) 2003-09-04
US20050178927A1 (en) 2005-08-18
DE50301861D1 (de) 2006-01-12
CA2476903C (en) 2010-11-23
JP4227527B2 (ja) 2009-02-18
US7028602B2 (en) 2006-04-18
JP2005525516A (ja) 2005-08-25
DE10207830A1 (de) 2003-09-11
ES2251683T3 (es) 2006-05-01
EP1488111A1 (de) 2004-12-22
WO2003072955A1 (de) 2003-09-04
DE10207830B4 (de) 2004-07-01

Similar Documents

Publication Publication Date Title
DE2649520C2 (de)
DE10219753B4 (de) Hydrodynamische Bremse
DE19909712B4 (de) Steuerventileinrichtung für einen hydraulischen Verbraucher
DE4019221A1 (de) Stossdaempfer mit variabler daempfungskraft
DE102007055669A1 (de) Landeklappenkinematik angetrieben über Ritzelantrieb
DE3515989A1 (de) Ventil mit axialem durchfluss
EP2003002A1 (de) Federbein für ein Kraftfahrzeug mit einem axial verstellbaren Federteller
EP1488111B1 (de) Linienförmiger, hydraulischer schwenkantrieb
EP1111227B1 (de) Abgasrückführventil
EP1910707B1 (de) Stellantrieb für armaturen mit einem planetengetriebe
DE2253026C2 (de) Vorrichtung zum Verschwenken eines Rotorblattes eines Hubschraubers relativ zur Rotornabe
DE602004000462T2 (de) Stellantrieb mit zwei Betriebsarten
DE202018104555U1 (de) Spindelantrieb, Spindelmutter und Lamellenfenster oder Lamellenklappe mit einem Spindelantrieb
EP1637783B1 (de) Schnellschluss-Stellventilkombination für eine Dampfturbine
EP0807049B1 (de) Lenkventil mit geschlossener mitte
DE102014203879B4 (de) Kolben-Zylinder-Einheit und Türscharnier
DE4437168C1 (de) Lenkventil mit geschlossener Mitte
EP2640623B1 (de) Rollengelagerte zahnstangenführung
DE69103417T2 (de) Drehmomentwelle aus verbundwerkstoff für einen mit flüssigkeitbetriebenen bohrlochmotor.
DE102023101994A1 (de) Stellvorrichtung
EP4153891B1 (de) Verwendung eines kugelgewindetriebs und stellantriebsanordnung
EP4314459B1 (de) Antrieb für eine tür oder ein fenster
DE19823884A1 (de) Verstellbarer Schiffspropeller
EP3372869B1 (de) Stellantrieb
DE2944125A1 (de) Antrieb fuer ventile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JAENKER, PETER

Inventor name: BREUER, ULF

Inventor name: LORKOWSKI, THOMAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50301861

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060315

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2251683

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060908

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: AIRBUS OPERATIONS GMBH

Effective date: 20110928

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120227

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120221

Year of fee payment: 10

Ref country code: IT

Payment date: 20120223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120224

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130221

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50301861

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130221

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130222