EP1485987A1 - Moteur a courant continu polyphase sans collecteur - Google Patents

Moteur a courant continu polyphase sans collecteur

Info

Publication number
EP1485987A1
EP1485987A1 EP03735584A EP03735584A EP1485987A1 EP 1485987 A1 EP1485987 A1 EP 1485987A1 EP 03735584 A EP03735584 A EP 03735584A EP 03735584 A EP03735584 A EP 03735584A EP 1485987 A1 EP1485987 A1 EP 1485987A1
Authority
EP
European Patent Office
Prior art keywords
signal
motor
signals
motor according
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03735584A
Other languages
German (de)
English (en)
Inventor
Christian Rudel
Hermann Rappenecker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst St Georgen GmbH and Co KG
Original Assignee
Ebm Papst St Georgen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst St Georgen GmbH and Co KG filed Critical Ebm Papst St Georgen GmbH and Co KG
Publication of EP1485987A1 publication Critical patent/EP1485987A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the invention relates to a multi-phase brushless DC motor.
  • Such motors are often used today for demanding drive tasks, e.g. in medical technology, in telecommunications, in automotive engineering, etc.
  • the motor delivers a largely constant torque.
  • the generation of such a three-phase system with sinusoidal currents of variable frequency is generally very complex.
  • a multi-phase signal system is obtained in a simple manner via the rotor position sensor arrangement, and PWM comparison signals are obtained by comparing the signals of this signal system with the periodic sawtooth signal, the pulse duty factor of the instantaneous value of the assigned Rotor position signal depends.
  • the information contained in these PWM comparison signals can then control the full bridge circuit and thus the currents in the individual phases via corresponding driver stages, so that, for example, in a three-phase stator a system of sinusoidal stator currents and thus, starting from zero speed, a largely constant one Can receive torque over a wide speed range.
  • Fig. 1 shows a circuit according to a preferred embodiment of the
  • Fig. 2 shows the interference intensity as a function of
  • Fig. 3 shows the interference intensity as a function of
  • FIG. 5 is an illustration for explaining FIG. 5
  • Fig. 7 shows the representation of a single triangle of a triangular signal
  • FIG. 8 shows a schematic representation of a triangular signal with a swept frequency, as is preferably used in the present invention.
  • the motor 20 has a permanent magnetic rotor 28, which is exemplified as a four-pole rotor. Its poles are magnetized sinusoidally.
  • An example of such a rotor 28 with sinusoidal magnetization is the rotor according to DE 100 20 946 A1.
  • three analog Hall sensors 30, 32, 34 are arranged at intervals of 120 ° el. (Or 120 ° el. + N * 360 ° el.), Which together form a rotor position sensor arrangement form. (With a four-pole rotor 28, for example, the three sensors can be arranged at intervals of 120 ° mechanically.) These are preferably so-called analog Hall ICs. Each of these sensors 30, 32, 34 generates a sinusoidal signal H1, H2, H3, which is shown schematically in the usual manner on the left side of FIG. 1. As indicated there, the following relationships apply:
  • the three signals H1, H2, H3 are each phase-shifted by 120 ° relative to one another and form a three-phase system.
  • Analog sensors Hall ICs are preferably used for the sensors 30, 32, 34, which deliver an amplified signal with an amplitude of approximately 5 V. A further amplification would therefore not be necessary per se, but amplification is expedient for the following reasons: a) The amplitudes of all three signals H1, H2, H3 can be set to exactly the same value, which is useful for a smooth running of the motor. b) By adjusting the amplification factor, it is possible to control the motor 20, for example, as shown, a current limitation and a speed control.
  • an amplifier 40 is preferably provided for the signal H1, an amplifier 42 for the signal H2, and an amplifier 44 for the signal H3.
  • the amplification factor of all three amplifiers is controlled via a line 46 by a PI controller 48, the input 50 of which is supplied with a desired value SW for the speed of the motor 20, for example 4600 rpm, or alternatively, for example, a corresponding value for the time, which the motor needs for one revolution at 4600 rpm.
  • the amplifiers 40, 42, 44 have outputs 54, 56, 58, and the signals at these three outputs are fed to an actual value detection 60, which calculates a value for the instantaneous speed of the motor 20 from these three signals.
  • This actual value signal IW is fed to an input 62 of the PI controller 48, and if the actual value at the input 62 is lower than the desired value at the input 50, the amplification factor of the three amplifiers 40, 42, 44 is increased via the line 46.
  • a current-dependent signal is fed from a measuring resistor 64, through which the motor current i mot flows, to the PI controller 48 via a line 66. If this motor current, for example when the motor 20 starts, becomes too high, the gain factor of the three amplifiers 40, 42, 44 is reduced accordingly by the controller 48, as a result of which the motor current is limited accordingly.
  • a so-called sawtooth or triangle generator 68 is provided, which delivers at its output 70 a sawtooth signal U70, which is shown by way of example in FIGS. 5 and 6 and which is fed to the inverting inputs of three comparators 72, 74 and 76.
  • the saw teeth of this signal have the shape of isosceles triangles, since this contributes to a smooth, trouble-free running of the motor.
  • the non-inverting input of the comparator 72 is connected to the output 54, so that the amplified signal H1 is fed to it.
  • the non-inverting input of comparator 74 is connected to output 56 (amplified signal H2)
  • the non-inverting input of comparator 76 is connected to output 58 (amplified signal H3).
  • PWM1 for a positive half-wave of the signal H1 is shown in FIG. 1 by way of example and in a highly schematic manner. 5 and 6 show how these PWM signals are generated by the comparator in question.
  • the signal PWM1 is fed to a driver module 86, the upper output 88 of which is connected to the gate of an n-channel MOSFET 90, the one terminal of which is connected to a positive direct current line 92, on which the so-called intermediate circuit voltage UZK is connected.
  • DC link de link
  • the lower output 94 of the driver module 86 is connected to the gate of an n-channel MOSFET 96, the upper connection of which is also connected to the strand 24 and the lower connection is connected to ground 100 via the measuring resistor 64.
  • the intermediate circuit voltage Uz ⁇ > eg 60 V lies between line 92 and ground 100.
  • the battery of a telephone exchange or the battery of a motor vehicle can lie between line 92 and ground 100).
  • the signal PWM2 is fed to a driver module 104, the upper output 106 of which controls an upper n-channel MOSFET 108 and the lower output 110 of which controls a lower n-channel MOSFET 112.
  • the circuit corresponds to that of MOSFETs 90 and 96, but MOSFETs 108, 1 12 control strand 22 as shown.
  • the signal PWM3 is fed to a driver module 116, the upper output 118 of which controls an upper n-channel MOSFET 120 and the lower output 122 of which controls a lower n-channel MOSFET 124.
  • the circuit corresponds to that of MOSFETs 90 and 96, but MOSFETs 120, 124 control strand 26 as shown.
  • the type 2109 from International Rectifier can preferably be used, which generates a so-called dead time when switching between the two MOSFETs connected to it, i.e. a pause of e.g. 50 ⁇ s, in which no current flows. Switching between the lower and upper MOSFET takes place e.g. when the relevant PWM signal exceeds a potential of 5 V. As shown, the driver modules are each connected to a constant voltage with one input, e.g. to +5 V.
  • the sawtooth generator 68 generates e.g. a frequency with an average of 20 kHz. This frequency, if kept constant, results in a strong interference signal I at 20 kHz, as shown in FIG. 2. A frequency of about 20 kHz is preferred because it is outside the audible range, but does not cause excessive electrical losses in the MOSFETs of the full bridge circuit shown.
  • the circuit according to FIG. 1 preferably contains a so-called wobbier 130, which constantly changes the frequency of the sawtooth generator 68, namely e.g. from 18 kHz continuously increasing to 22 kHz and then continuously decreasing again from 22 kHz to 18 kHz. This change takes place e.g. 2000 times per second, and it is symbolically indicated at 131 in FIG. 3 and shown in FIG. 8.
  • the interference signal I is distributed over the entire spectrum between 18 and 22 kHz, as shown in FIG. 3, and this distribution over a larger spectrum makes the intensity I of the interference signals significantly lower, and these are distributed over the entire range of 18 up to 22 kHz so that they generate less strong interference signals.
  • the wobble frequency and the magnitude of the deviation from the mean value of the frequency of the sawtooth signal are best determined empirically, since according to the current state of knowledge no general statements can be made about the optimal values.
  • 4a) shows the signal PWM1 in a highly schematic representation.
  • 4b) shows the current i 24 through the phase 24, which is caused by the signal PWM1. It is a sinusoidal current which is brought about by the large number of switching processes which take place overall when the rotor 28 rotates.
  • FIG. 4c) shows the signal PWM2 at the output 80 of the comparator 74
  • FIG. 4d) shows the current i 22 through the line 22. This current is also sinusoidal and out of phase with the current J 24 by 120 °.
  • FIG. 4e shows the signal PWM3 at the output 82 of the comparator 76
  • FIG. 4f shows the current i 6 through the line 26. This is phase-shifted by 240 ° with respect to the current i 24 and is also sinusoidal.
  • the three sinusoidal currents ⁇ 24 , 1 22 and ⁇ ⁇ together form a so-called three-phase system, that is, they generate a rotating field that drives the permanent-magnet rotor 28 at the rotating frequency of this rotating field. Since the magnetization of the rotor 28 is sinusoidal, the torque of the motor 20 is largely constant overall, and this is achieved with very little effort.
  • a further improvement is possible by increasing the voltage UZK (on line 92) with increasing speed, preferably linearly.
  • the frequency u 7 o is assumed here to be 20 kHz (constant), ie a triangle of the triangular signal U 70 has a period of 50 ⁇ s.
  • the first triangle, designated 138, begins at O ⁇ s, reaches its maximum at 25 ⁇ s, and becomes zero again at 50 ⁇ s. It is therefore symmetrical and preferably has the shape of an isosceles triangle. Its frequency is also high in relation to the frequency of the signal H1.
  • the signal shown in FIG. 5b is PWM1 high. If H1 becomes smaller than u 70 , PWM1 gets the value low (LOW). This results in the typical image shown in FIG. 5b for PWM1, where the duty cycle is high on the left and right, e.g. B. 90%, while in the middle it has approximately the value 10%, with a largely symmetrical course resulting in FIG. 5b.
  • FIG. 5 shows a simplification, because for the duration of a period of the signal H1 over 100 triangles of the signal u 7 o are obtained in reality, but this is difficult to represent in the drawing.
  • the triangle 140 which is the third triangle from the left, the PWM signal PWM1 at a point 142 to zero, the z. B. 5 ⁇ s before the center 144 of the triangle 140, and is high again at a point 146 which is about 5 ⁇ s after the center 144.
  • Fig. 7 shows the course of the triangular signal u 70 at 18, 20 and 22 kHz. 1, this signal u 70 is fed to all three comparators 72, 74, 76 simultaneously. Depending on the frequency of the signal u 7 o, the signals PWM1, PWM2, PWM3 have a different shape.
  • Fig. 8 shows schematically the change in the form of u 7 o by the weaving process.
  • About five triangles are generated within this time, but only three triangles are shown for reasons of clarity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

L'invention concerne un moteur à courant continu (20) polyphasé sans collecteur, qui comprend un rotor à aimant permanent (28), un stator polyphasé (22, 24, 26), ainsi qu'un circuit en pont intégral polyphasé, affecté au stator polyphasé et comprenant une pluralité de branches de pont dont chacune présente un transistor à effet de champ de puissance supérieur (90, 108, 120) relié à une ligne positive (22) et un transistor à effet de champ de puissance inférieur (96, 112, 124) relié à une ligne négative (100). Le moteur (20) selon l'invention comprend également un système de détection (30, 32, 34) de la position du rotor qui génère, lorsque le moteur (20) fonctionne, une pluralité de signaux de capteur (H1, H2, H3) déphasés les uns par rapport aux autres et dont la valeur analogique dépend d'une grandeur physique dépendant de la position du rotor et influant sur le système de détection de la position du rotor. Des signaux (54, 56, 58) dérivés du système de détection (30, 32, 34) de la position du rotor sont comparés à un signal en dent de scie périodique (u70) afin d'obtenir une pluralité de signaux de comparaison de modulation de durée d'impulsion (PWM1, PWM2, PWM3) dont le taux d'impulsions est respectivement une fonction de la valeur momentanée du signal de capteur associé (H1, H2, H3). L'information contenue dans un signal de comparaison de modulation de durée d'impulsion est transmise, par l'intermédiaire d'un étage d'attaque respectif (86, 104, 116), aux deux transistors à effet de champ de puissance (90, 96 ; 108, 112 ; 120, 124) d'une branche de pont correspondante sous forme de signaux en opposition de phase, afin de piloter ces transistors à effet de champ selon le procédé de découpage dur et de permettre un fonctionnement multiquadrant du moteur (20).
EP03735584A 2002-06-26 2003-06-10 Moteur a courant continu polyphase sans collecteur Withdrawn EP1485987A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10228438 2002-06-26
DE10228438 2002-06-26
PCT/EP2003/006023 WO2004004111A1 (fr) 2002-06-26 2003-06-10 Moteur a courant continu polyphase sans collecteur

Publications (1)

Publication Number Publication Date
EP1485987A1 true EP1485987A1 (fr) 2004-12-15

Family

ID=29761410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03735584A Withdrawn EP1485987A1 (fr) 2002-06-26 2003-06-10 Moteur a courant continu polyphase sans collecteur

Country Status (4)

Country Link
EP (1) EP1485987A1 (fr)
AU (1) AU2003236721A1 (fr)
DE (1) DE10326869A1 (fr)
WO (1) WO2004004111A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457610C2 (ru) * 2010-09-21 2012-07-27 Открытое акционерное общество "Научно-производственный центр "Полюс" Способ управления вращающим моментом вентильного двигателя

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7205916B1 (en) 2006-01-27 2007-04-17 Alliant Techsystems Inc. Digital method and apparatus for resolving shaft position
US7248994B1 (en) 2006-01-27 2007-07-24 Alliant Techsystems Inc. Digital method and apparatus for sensing position with a linear variable differential transformer
US10164650B2 (en) * 2017-02-16 2018-12-25 Qualcomm Incorporated Delay-free poly-phase quantizer and quantization method for PWM mismatch shaping

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720389B2 (ja) * 1984-12-14 1995-03-06 株式会社日立製作所 交流信号発生装置
US4667123A (en) * 1985-11-20 1987-05-19 The Garrett Corporation Two pole permanent magnet rotor construction for toothless stator electrical machine
DE69025898T2 (de) * 1989-07-10 1996-11-14 Sanyo Electric Co Verfahren und anordnung zur reglung eines induktionsmotors für verdichter
US6204649B1 (en) * 2000-03-16 2001-03-20 Micrel Incorporated PWM regulator with varying operating frequency for reduced EMI
GB0028733D0 (en) * 2000-11-24 2001-01-10 Switched Reluctance Drives Ltd Current chopping in switched reluctance drive systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004004111A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457610C2 (ru) * 2010-09-21 2012-07-27 Открытое акционерное общество "Научно-производственный центр "Полюс" Способ управления вращающим моментом вентильного двигателя

Also Published As

Publication number Publication date
WO2004004111A1 (fr) 2004-01-08
AU2003236721A1 (en) 2004-01-19
DE10326869A1 (de) 2004-01-22

Similar Documents

Publication Publication Date Title
DE19846831B4 (de) Verfahren und Vorrichtung zur Ermittlung der Rotorstellung von Synchronmotoren
EP1816739B1 (fr) Procédé et dispositif de contrôle d'un moteur polyphasée et à commutation électronique
EP0762625B1 (fr) Entraínement électrique
DE19860446A1 (de) Verfahren zur Regelung eines spannungs-/frequenzumrichtergesteuerten Mehrphasen-Permanentmagnetmotors
CH658348A5 (de) Zweipulsiger kollektorloser gleichstrommotor.
DE3427871A1 (de) Steuerungsvorrichtung fuer buerstenlose synchronmotoren mit drehmomentwinkel-steuerung
DE3838579C2 (fr)
EP2529480A2 (fr) Procédé d'amélioration du rendement d'un moteur polyphasé et moteur permettant la mise en oeuvre dudit procédé
DE10132837A1 (de) Motor mit elektronischer Kommutierung
EP1695437B1 (fr) Commande d'un moteur a courant continu sans balais
DE69934438T2 (de) Vorgezogene-zustands-kommutierungschleifen-regelung für bürstenlosen gleichstrommotor
DE3819062C3 (de) Verfahren zur Steuerung von bürstenlosen Elektromotoren sowie Steuerschaltung hierfür
DE3819064C3 (de) Verfahren zur Steuerung von bürstenlosen Elektromotoren sowie Steuerschaltung hierfür
DE4025350A1 (de) Schaltungsanordnung zum kommutieren eines reluktanzmotors
DE3940569C2 (fr)
EP3100349B1 (fr) Procédé pour faire fonctionner un moteur électrique
EP2899879A2 (fr) Procédé de fonctionnement et dispositif de commande d'une machine à rotation électrique sans brosse
WO2004004111A1 (fr) Moteur a courant continu polyphase sans collecteur
DE69725673T2 (de) Synchronisationsverfahren- und Vorrichtung für den Anlauf einer dreiphasigen Synchronmaschine
DE2314259C2 (fr)
DE102004062580B4 (de) Verfahren und Vorrichtung zur Regelung eines mehrphasigen, elektronisch kommutierten Motors
DE3609678C2 (de) Antriebsanordnung mit kollektorlosem Gleichstrommotor
DE19815896A1 (de) Drehzahl-Steuervorrichtung für einen elektronisch kommutierten mehrphasigen Elektromotor
DE102021206870A1 (de) Verfahren zum Ermitteln einer Drehzahl einer Drehvorrichtung und Vorrichtung zur Durchführung des Verfahrens
EP0685927B1 (fr) Méthode de freinage pour un moteur synchrone tournant inversement actionné par un réseau à cc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAPPENECKER, HERMANN

Inventor name: RUDEL, CHRISTIAN

17Q First examination report despatched

Effective date: 20091123

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120103