EP1480596A1 - Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple - Google Patents

Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple

Info

Publication number
EP1480596A1
EP1480596A1 EP02714272A EP02714272A EP1480596A1 EP 1480596 A1 EP1480596 A1 EP 1480596A1 EP 02714272 A EP02714272 A EP 02714272A EP 02714272 A EP02714272 A EP 02714272A EP 1480596 A1 EP1480596 A1 EP 1480596A1
Authority
EP
European Patent Office
Prior art keywords
aqueous phase
weight
phase
external
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02714272A
Other languages
German (de)
English (en)
Inventor
Hélène LANNIBOIS-DREAN
Jean-Marc Ricca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1480596A1 publication Critical patent/EP1480596A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/066Multiple emulsions, e.g. water-in-oil-in-water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to cosmetic and / or dermatological formulations comprising at least two active materials in a multiple emulsion of water in oil in water type, optionally mixed with a simple emulsion of oil in water type.
  • the present invention which therefore consists of a cosmetic and / or dermatological formulation comprising at least two active materials in a multiple emulsion consisting of an internal aqueous phase dispersed in an internal oily phase, all being dispersed in an external aqueous phase; the multiple emulsion being optionally mixed with a simple emulsion consisting of an external oily phase dispersed in an external aqueous phase: ⁇ the internal oily phase comprising at least one nonionic surfactant and / or at least one amphiphilic polymer and optionally at least one hydrophobic active ingredient; ⁇ the external aqueous phase comprising at least one nonionic surfactant and / or at least one nonionic amphiphilic polymer optionally associated with at least one anionic amphiphilic polymer or comprising at least one anionic amphiphilic polymer optionally associated with at least one anionic surfactant; ⁇ at least one hydrophilic active material found in the internal aqueous phase; and Q
  • the term mixed emulsion will denote either the multiple emulsion or the multiple emulsion mixed with the single emulsion.
  • the mixed emulsion used in the composition of cosmetic and / or dermatological formulations has the advantage of being easy to prepare and to implement, without requiring significant investment.
  • the mixed emulsion is very particularly suitable when using two active materials, advantageously incompatible, one hydrophilic, the other hydrophobic; the first being introduced into the internal aqueous phase and the second into the external oily phase. In this way, the two active materials are isolated from one another in the mixed emulsion.
  • a delay effect can be observed, during the application of the formulation, of the least available active material, for example that present in the internal aqueous phase of the mixed emulsion.
  • polymer designates both homopolymers and copolymers.
  • inverse emulsion of the multiple emulsion and its method of preparation will first be detailed.
  • the reverse emulsion therefore consists of a water-in-oil emulsion, consisting of an internal aqueous phase and an internal oily phase.
  • the internal oily phase comprises at least one organic oil, of animal or vegetable, or mineral origin, as well as waxes from the same origins, or their mixtures.
  • an oily phase is used which is fluid under the conditions for preparing the reverse emulsion.
  • the compound used as the oily phase is preferably chosen from the compounds whose solubility in water does not exceed 10% by weight at 25 ° C.
  • organic oils of animal origin mention may be made, among others, of sperm whale oil, whale oil, seal oil, sardine oil, herring oil, shark oil, Cod liver oil ; pork and mutton fats (tallow).
  • organic oils of vegetable origin there may be mentioned, among others, rapeseed oil, sunflower oil, peanut oil, olive oil, oil nuts, corn oil, soybean oil, linseed oil, hemp oil, grape seed oil, coconut oil, palm oil, oil cottonseed, babassu oil, jojoba oil, sesame oil, castor oil.
  • waxes of vegetable origin mention may be made of carnauba wax.
  • paraffinic waxes can likewise be suitable for the preparation of the emulsion.
  • said acids, esters or alcohols comprise at least one hydrocarbon radical having from 10 to 40 carbon atoms, more particularly 18 to 40 carbon atoms, and can comprise one or more carbon-carbon double bonds, conjugated or not.
  • the acids, esters or alcohols can comprise one or more hydroxyl groups.
  • saturated fatty acids mention may be made of palmitic, stearic and behenic acids.
  • unsaturated fatty acids there may be mentioned myristoleic, palmitoleic, oleic, erucic, linoleic, linolenic, arachidonic, ricinoleic acids, as well as their mixtures.
  • fatty acid esters there may be mentioned the esters of the acids previously listed, for which the part deriving from the alcohol comprises 1 to 6 carbon atoms, such as the methyl, ethyl, propyl and isopropyl esters. , etc.
  • esters of the abovementioned acids and of polyols such as for example glycerol, polyglycerol (such as for example polyricinoleate of polyglycerol), glycol, propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, neopentylglycol (such as neopentylglycol hydroxypivalate), pentaerythritol, dipentaerythritol, trimethylolpropane, sorbitol, mannitol, xylitol, mesoerythritol.
  • polyols such as for example glycerol, polyglycerol (such as for example polyricinoleate of polyglycerol), glycol, propylene glycol, ethylene glycol, polyethylene glycol, polypropylene glycol, neopentylglycol (such as neopentylglycol hydroxypivalate
  • the internal oily phase can likewise be chosen from essential oils, mono-, di- and tri-glycerides, as well as silicone oils. It can comprise at least one hydrophobic active material, as soon as it is compatible with the hydrophilic active material present in the internal aqueous phase and, if it is present, in the external aqueous phase; phases which will be described later.
  • Said hydrophobic active materials are in liquid form, dissolved in an organic solvent, or also in the form of a divided solid dispersed in said phase.
  • the active ingredients are such that their solubility in water does not exceed 10% by weight, at 25 ° C.
  • Active materials whose melting point is less than or equal to 100 ° C., more particularly less than or equal to 80 ° C., can likewise be used.
  • silicone oils belonging for example to the family of dimethicones
  • lipophilic vitamins such as vitamin A and its derivatives, in particular its esters such as acetate, palmitate, propionate, vitamin B2, pantothenic acid, vitamin D and vitamin E
  • mono-, di- and triglycerides bactericides
  • UV absorbing agents such as aminobenzoate derivatives of the PABA and PARA type, salicylates, cinnamates, anthranilates, dibenzoylmethanes, camphor derivatives and their mixtures.
  • Anti-aging agents can also be used.
  • retinoids fat-soluble vitamins, derivatives of vitamin C such as esters, in particular acetate, propionate, palmitate; ceramides, pseudoceramides, phospholipids, fatty acids, fatty alcohols, cholesterol, sterols and their mixtures.
  • ceramides pseudoceramides
  • phospholipids fatty acids, fatty alcohols, cholesterol, sterols and their mixtures.
  • fatty acids and alcohols mention may more particularly be made of those having linear or branched alkyl chains containing from 12 to 20 carbon atoms. It can in particular be linoleic acid.
  • anti-cellulite agents such as in particular isobutylmethylxanthine and theophyline
  • anti-acne agents such as, for example, resorcinol, resorcinol acetate, benzoyl peroxide and many natural compounds.
  • Aromas, perfumes, essential oils, essences can also be used as a hydrophobic active material.
  • compounds such as benzal
  • the antimicrobial agents can be chosen from thymol, menthol, triclosan, 4-hexylresorcinol, phenol, eucalyptol, benzoic acid, benzoic peroxide, butyl paraben, and their mixtures.
  • oily phase itself is considered as a hydrophobic active material.
  • the internal oily phase comprises one or more hydrophobic active materials different from the oily phase
  • their content represents more particularly 10 to 50% by weight of said internal oily phase.
  • the reverse emulsion further comprises at least one nonionic surfactant and / or at least one amphiphilic polymer, preferably with blocks.
  • the Bancroft rule can be applied to the nonionic surfactant and to the amphiphilic polymer, preferably to blocks, used (2 nd World Congress of Emulsion, 1997, Bordeaux, France).
  • the fraction soluble in the continuous phase is greater than the fraction soluble in the dispersed phase.
  • the surfactant and the polymer are preferably chosen from those which satisfy both of the two conditions below:
  • the nonionic surfactant is chosen from compounds having an HLB (hydrophilic / lipophilic balance) value less than or equal to 8.
  • surfactants capable of entering into the composition of the reverse emulsion, mention may be made of surfactants, alone or as a mixture, chosen from:
  • alkoxylated alkyl phenols the number of alkoxylated units (ethoxylated, propoxylated, butoxylated) is such that the value of HLB is less than or equal to 8.
  • the alkoxylated fatty alcohols generally comprise from 6 to 22 carbon atoms, the alkoxylated units being excluded of these numbers.
  • the alkoxylated triglycerides can be triglycerides of plant or animal origin.
  • the optionally alkoxylated sorbitan esters are cyclized fatty acid sorbitol esters comprising from 10 to 20 carbon atoms such as lauric acid, stearic acid or oleic acid.
  • Alkoxylated fatty amines generally have from 10 to 22 carbon atoms, the alkoxylated units being excluded from these numbers.
  • Alkoxylated alkylphenols generally have one or two alkyl groups, linear or branched, having 4 to 12 carbon atoms. By way of example, mention may in particular be made of octyl, nonyl or dodecyl groups.
  • amphiphilic polymer this advantageously comprises at least two blocks.
  • amphiphilic polymers verifying the Bancroft rule and the two conditions stated above, more particularly comprise at least one hydrophobic block and at least one neutral or anionic hydrophilic block.
  • amphiphilic polymer comprises at least three blocks, and more particularly three blocks
  • the polymer is preferably linear.
  • the hydrophobic blocks are more particularly at the ends. If the polymers comprise more than three blocks, the latter are preferably in the form of grafted or combed polymers.
  • amphiphilic block polymer will be used interchangeably for linear block polymers and grafted or combed polymers.
  • Said amphiphilic polymers can advantageously be obtained by so-called living or controlled radical polymerization.
  • living or controlled polymerization processes reference may in particular be made to applications WO 98/58974 (xanthate), WO 98/01478 (dithioesters), WO 99/03894 (nitroxides); WO 99/31144 (dithiocarbamates).
  • Amphiphilic polymers can also be obtained by anionic polymerization. They can likewise be prepared by bringing into play polymerizations by ring opening (in particular anionic or cationic), or by chemical modification of the polymer.
  • the grafted or combed polymers can also be obtained by methods known as direct grafting and copolymerization.
  • Direct grafting consists in polymerizing the monomer (s) chosen by radical, in the presence of the selected polymer to form the backbone of the final product. If the monomer / skeleton couple as well as the operating conditions are judiciously chosen, then there may be a transfer reaction between the growing macroradical and the skeleton. This reaction generates a radical on the skeleton and it is from this radical that the graft grows. The primary radical originating from the initiator can also contribute to the transfer reactions.
  • the copolymerization it first implements the grafting at the end of the future pendant segment, of a function which can be polymerized by the radical route. This grafting can be carried out by usual methods of organic chemistry. Then, in a second step, the macromonomer thus obtained is polymerized with the monomer chosen to form the skeleton and a so-called "comb" polymer is obtained.
  • hydrophobic monomers from which the hydrophobic block (s) of the amphiphilic polymer can be prepared there may be mentioned in particular: - the esters of mono- or polycarboxylic acids, linear, branched, cyclic or aromatic, comprising at least one ethylenic unsaturation , esters of saturated carboxylic acids preferably comprising 8 to 30 carbon atoms, optionally carrying a hydroxyl group; - ⁇ -ethylenically unsaturated nitriles, vinyl ethers, vinyl esters, vinyl aromatic monomers, vinyl or vinylidene halides, hydrocarbon monomers, linear or branched, aromatic or not, comprising at least one ethylenic unsaturation, monomers of cyclic or non-cyclic siloxane type, chlorosilanes; propylene oxide, butylene oxide; alone or in mixtures, as well as the macromonomers derived from such monomers.
  • hydrophobic monomers capable of entering into the preparation of the hydrophobic block (s) of the amphiphilic block polymer
  • vinyl nitriles more particularly include those having 3 to 12 carbon atoms, such as in particular acrylonitrile and methacrylonitrile; - styrene, ⁇ -methylstyrene, vinyltoluene, butadiene, isoprene, chloroprene; alone or in mixtures, as well as the macromonomers derived from such monomers.
  • the preferred monomers are the esters of acrylic acid with linear or branched C1-C4 alcohols such as methyl, ethyl, propyl and butyl acrylate, vinyl esters such as vinyl acetate, styrene, ⁇ -methylstyrene.
  • nonionic hydrophilic monomers from which the amphiphilic block polymers can be obtained there may be mentioned, without intending to be limited thereto, ethylene oxide, the amides of mono- or polycarboxylic acids , linear, branched, cyclic or aromatic, comprising at least one ethylenic unsaturation or derivatives, such as (meth) acrylamide, N-methyloI (meth) acrylamide; hydrophilic esters derived from (meth) acrylic acid such as for example 2-hydroxyethyl (meth) acrylate; vinyl esters making it possible to obtain polyvinyl alcohol blocks after hydrolysis, such as vinyl acetate, vinyl Versatate®, vinyl propionate, alone, in combination, as well as the macromonomers derived from such monomers. It is recalled that the term macromonomer designates a macromolecule carrying one or more polymerizable functions.
  • the preferred hydrophilic monomers are acrylamide and methacrylamide, alone or as a mixture, or in the form of macromonomers.
  • the anionic hydrophilic monomers from which the amphiphilic block polymers can be obtained mention may be made, for example, of the monomers comprising at least one carboxylic, sulfonic, sulfuric, phosphonic, phosphoric, sulfosuccinic function, or the corresponding salts.
  • the functions of the anionic block or blocks of the polymer are in an at least partially ionized (dissociated) form. More particularly, at least 10 mol% of the functions of the block or blocks are in ionized form.
  • the determination of this value poses no problem to those skilled in the art; it is in particular a function of the pKa of the ionizable functions of the units of the polymer and of the number of these functions (ie the number of moles of monomer carrying ionizable functions used during the preparation of the polymer).
  • the monomers are chosen from: - linear, branched, cyclic or aromatic mono- or polycarboxylic acids, N-substituted derivatives of such acids; monoesters of polycarboxylic acids, comprising at least one ethylenic unsaturation;
  • anionic monomers there may be mentioned without intending to be limited thereto:
  • vinyl sulfonic acid vinylbenzene sulfonic acid, vinyl phosphonic acid, vinylidene phosphoric acid, vinyl benzoic acid, as well as alkali metal salts, such as sodium, potassium, or ammonium ;
  • monomers which are precursors of those which have just been mentioned.
  • these monomers have units which, once incorporated in the polymer chain, can be transformed, in particular by a chemical treatment such as hydrolysis, to restore the aforementioned anionic species.
  • the fully or partially esterified monomers of the aforementioned monomers can be used to be, subsequently, completely or partially hydrolyzed.
  • the amphiphilic block polymers have a molar mass by weight less than or equal to 100,000 g / mol, more particularly between 1,000 and 50,000 g / mol, preferably between 1,000 and 20,000 g / mol. It is specified that the molar masses by weight indicated above are theoretical molar masses, evaluated as a function of the respective amounts of the monomers introduced during the preparation of said polymers.
  • an amphiphilic polymer with nonionic type blocks is used.
  • an amphiphilic block polymer suitable for implementing the invention mention may be made of polyhydroxystearate - polyethylene glycol - polyhydroxystearate triblock polymers (the products of the Arlacel range from ICI are an example), polymers with polydimethylsiloxane blocks grafted polyalkyl polyether (like the products of the brand Tegopren marketed by Goldschmidt).
  • At least one surfactant at least one nonionic amphiphilic polymer, or mixtures thereof, is used.
  • the reverse emulsion comprises an amphiphilic polymer, preferably block and nonionic, or a mixture of several of them.
  • the total amount of surfactant and / or amphiphilic polymer preferably represents from 2 to 10% by weight of the internal oily phase.
  • the internal aqueous phase comprises at least one hydrophilic active material, which is in a form soluble in the internal aqueous phase; in a form dissolved in a water-miscible solvent such as methanol, ethanol, propylene glycol, glycerol; in the form of a divided solid dispersed in said phase.
  • a water-miscible solvent such as methanol, ethanol, propylene glycol, glycerol
  • the content of hydrophilic active material is more particularly between 0.1 and 50% by weight of the internal aqueous phase, and preferably between 0.1 and 20% by weight of the internal aqueous phase.
  • active materials which can be used in the field of cosmetics mention may be made of substances which have a cosmetic effect, a therapeutic effect or any other substance which can be used for the treatment of skin and hair.
  • skin and hair conditioning agents such as in particular polymers comprising quaternary ammoniums which can optionally be used in heterocycles (compounds of the quaternium, polyquaternium type, etc.).
  • humectants which are more particularly chosen from polymers (homo-, co- or ter-polymers, for example acrylamide, acrylamide / sodium acrylate, polystyrene sulfonate, etc.), cationic polymers, polyvinylpyrrolidone, polyvinyl acetate, etc.
  • coloring agents which can be used in deodorants and which are more particularly aluminum, zirconium salts; antibacterial agents; anti-inflammatory agents, anesthetic agents, sunscreens, etc.
  • - and ⁇ -hydroxy acids such as citric, lactic, glycolic and salicylic acids
  • dicarboxylic acids preferably unsaturated and comprising 9 to 16 carbon atoms such as azelaic acid
  • vitamin C and its derivatives in particular glycosylated and phosphate derivatives
  • biocides in particular cationic biocides, as suitable active materials in cosmetic and / or dermatological formulations.
  • the internal aqueous phase may comprise at least one additive chosen from salts such as the halides of alkali or alkaline earth metals (such as sodium chloride, calcium chloride) , or alkali or alkaline earth metal sulfates (such as magnesium sulfate), or mixtures thereof.
  • the internal aqueous phase can also comprise, as an additive, at least one sugar, such as glucose for example, or also at least one polysaccharide, such as in particular dextran, or mixtures thereof. We can obviously have a combination of these various types of additives.
  • the salt concentration in the internal aqueous phase when the latter is present, is more particularly between 0.05 and 1 mol / l, preferably 0.1 to 0.4 mol / l.
  • the sugar and / or polysaccharide concentration is such that the osmotic pressure of the internal aqueous phase comprising the sugar and / or polysaccharide corresponds to the osmotic pressure of a internal aqueous phase comprising 0.05 to 1 mol / l of salt.
  • the inverse emulsion of the multiple emulsion more particularly has a weight proportion aqueous phase / oily phase of between 10/90 and 90/10.
  • the weight proportion of aqueous phase / oily phase is between 30/70 and 80/20.
  • the reverse emulsion is prepared by implementing the conventional methods.
  • a first mixture is prepared, comprising water, the hydrophilic active material and optionally the additive (salt, sugar, polysaccharide), and on the other hand, a second mixture comprising the oil, optionally the hydrophobic active material and the surfactant and / or the amphiphilic polymer.
  • the first mixture is then added to the second, with stirring.
  • the stirring is preferably strong and can be, advantageously, provided by the use of an apparatus of the Ultra-Turrax® type, Microfluidizer, or any high pressure homogenizer.
  • the stirring can advantageously be carried out by means of a frame blade.
  • the preparation of the reverse emulsion is generally carried out at a temperature above the melting temperature of the oily phase. Usually, the temperature for preparing the reverse emulsion is between 20 and 80 ° C.
  • the duration of the agitation can be determined without difficulty by a person skilled in the art and depends on the type of apparatus used. It is preferably sufficient to obtain an average droplet size of between 0.1 and 10 ⁇ m, preferably between 0.1 and 5 ⁇ m (measured using a Horiba granulometer)
  • the external aqueous phase can comprise at least one active material which is dissolved in the external aqueous phase, either in a form dissolved in a solvent miscible with the external aqueous phase, such as methanol, ethanol , propylene glycol, glycerol, either in the form of a divided solid dispersed in said external aqueous phase.
  • active material such as methanol, ethanol , propylene glycol, glycerol
  • the content of active material is more particularly between 0.1 and 50% by weight of the external aqueous phase, and preferably between 0.1 and 20% by weight of the external aqueous phase.
  • the external aqueous phase additionally comprises at least nonionic surfactant and / or at least one nonionic amphiphilic polymer optionally associated with at least one anionic amphiphilic polymer.
  • the external aqueous phase comprises at least one anionic amphiphilic polymer optionally combined with at least one anionic surfactant.
  • the Bancroft rule can be applied to the surfactants and polymers used (fraction soluble in the continuous phase is greater than the fraction soluble in the dispersed phase).
  • the surfactant and the polymer are preferably chosen from those which satisfy both of the two conditions below:
  • the external aqueous phase comprises: - at least one nonionic surfactant and / or at least one nonionic amphiphilic polymer optionally combined with at least one anionic surfactant and / or at least one anionic amphiphilic polymer; the total content of nonionic and anionic amphiphilic surfactant (s) / polymer (s) is between 0.5 and 10% by weight, preferably between 1 and 5% by weight, relative to the oily phase or to the reverse emulsion if it is present; the amount of anionic amphiphilic surfactant and / or polymer represents 0.5 to 5% by weight, preferably 0.5 to 2% by weight, relative to the weight of nonionic amphiphilic surfactant / polymer; or
  • At least one anionic amphiphilic polymer optionally combined with at least one anionic surfactant; the total content of amphiphilic polymer / anionic surfactant is between 0.5 and 10% by weight, preferably between 1 and 5% by weight, relative to the oily phase or to the reverse emulsion if it is present.
  • the surfactants and polymers chosen do not give a liquid crystal phase in the aqueous phase.
  • nonionic surfactants polyalkoxylated nonionic surfactants are preferably used.
  • said nonionic surfactant is chosen from the following surfactants, alone or as a mixture:
  • the alkoxylated alkylphenols the number of alkoxylated units, more particularly ethoxylated and / or propoxylated, is such that the value of HLB is greater than or equal to 10.
  • nonionic amphiphilic polymer a polymer comprising at least two blocks is used, one of them being hydrophilic, the other hydrophobic.
  • the polymer is obtained from hydrophilic monomers chosen from acrylamide and methacrylamide, alone or as a mixture, or in the form of macromonomers; hydrophobic monomers preferred are acrylic acid esters with linear or branched C1-C4 alcohols such as methyl, ethyl, propyl and butyl acrylate, vinyl esters such as vinyl acetate, styrene, the ⁇ -methylstyrene.
  • the polymer comprises at least three blocks, and more particularly three blocks
  • the polymer is advantageously linear.
  • the hydrophilic blocks are more particularly at the ends.
  • the polymers comprise more than three blocks, the latter are preferably in the form of grafted or combed polymers.
  • the amphiphilic polymer comprises polyalkoxy blocks, and preferably only comprises polyalkoxy blocks, at least one of which is hydrophobic, the other hydrophilic.
  • these polymers are obtained by bringing into play ring-opening polymerizations, in particular anionic.
  • said nonionic polyalkoxy amphiphilic polymers are chosen from polymers whose molar mass by weight is less than or equal to 100,000 g / mol (measured by GPC, polyethylene glycol standard), preferably between 1,000 and 50,000 g / mol, preferably between 1000 and 20000 g / mol.
  • polymers of this type that may be mentioned, inter alia, are polyethylene glycol / polypropylene glycol / polyethylene glycol triblock polymers. Such polymers are well known and are in particular marketed under the brands Pluronic (marketed by BASF), Arlatone (marketed by ICI).
  • anionic surfactants there may be mentioned, among others, alone or in mixtures:
  • alkyl esters sulfonates for example of formula R-CH (SO 3 M) -COOR ', where R represents an alkyl radical in C 8 -C 2 o, preferably in C 10 -C 16 , R' an alkyl radical in Ci-Ce, preferably in C Ca and M an alkali cation (sodium, potassium, lithium), substituted or unsubstituted ammonium (methyl-, dimethyl-, trimethyl-, tetramethylammonium, dimethylpiperidinium ...) or derived from an alkanolamine (monoethanolamine, diethanolamine, triethanolamine ). Mention may very particularly be made of methyl ester sulfonates whose radical R is in
  • R represents a C 10 -C 24 , preferably C 12 -C 2 o, alkyl or hydroxyalkyl radical
  • RCONHR'OSO 3 M where R represents a C 2 -C 22 , preferably C 6 -C 20 , alkyl radical, R ′ a C 2 -C 3 alkyl radical, M representing a hydrogen atom or a cation of the same definition as above, as well as their polyalkoxy derivatives (ethoxylates (OE), propoxyls (OP), or their combinations);
  • salts of saturated or unsaturated fatty acids for example such as those in C 8 - C 24 , preferably in C 14 -C 20 , N-acyl N-alkyltaurates, alkylisethionates, alkylsuccinamates and alkylsulfosuccinates, monoesters or sulfosuccinate diesters, N-acyl sarcosinates, polyethoxycarboxylates; and
  • anionic polymers capable of being used, mention may be made most particularly of block polymers, preferably diblocks or triblocks, obtained by polymerization of at least one anionic hydrophilic monomer, optionally of at least one nonionic hydrophilic monomer, and at least one hydrophobic monomer.
  • Non-ionic, anionic hydrophilic monomers, hydrophobic monomers as well as the methods of synthesis mentioned in the context of the description of the amphiphilic polymers entering into the composition of emulsions for which the continuous phase is an oil phase, can be used for obtaining polymers according to this variant. We can therefore refer to it.
  • the external aqueous phase comprises one or more amphiphilic polymers.
  • a cationic amphiphilic polymer in combination with the nonionic surfactant and / or the aforementioned nonionic amphiphilic polymer.
  • the cationic polymers capable of being used in the context of the present invention mention may very particularly be made of cationic derivatives of polysaccharides, such as guar or cellulose derivatives.
  • hydrophobic groups such as C1-C14, preferably C2-C8 alkyl chains, optionally having a hydroxyl group. These hydrophobic groups are attached to the main polymer chain via ether bonds.
  • the cationic group is a quaternary ammonium group carrying three radicals, identical or not, chosen from hydrogen, an alkyl radical comprising 1 to
  • the counter ion is a halogen, preferably chlorine.
  • the cationic group is a quaternary ammonium group carrying three radicals, identical or not, chosen from hydrogen, an alkyl radical comprising 1 to
  • the counter ion is a halogen, preferably chlorine.
  • the weight ratio of inverse emulsion relative to the external aqueous phase in the multiple emulsion is usually between 30/70 and 90/10, preferably between 50/50 and 90/10.
  • the external aqueous phase In order to balance the osmotic pressures of the external aqueous phase and of the internal aqueous phase, it is possible to add to the external aqueous phase at least one additive chosen from salts such as the halides of alkali or alkaline earth metals (such as chloride sodium, calcium chloride), among alkali or alkaline earth metal sulfates (such as magnesium sulfate), among sugars (glucose for example), or among polysaccharides (especially dextran) or their mixtures.
  • salts such as the halides of alkali or alkaline earth metals (such as chloride sodium, calcium chloride), among alkali or alkaline earth metal sulfates (such as magnesium sulfate), among sugars (glucose for example), or among polysaccharides (especially dextran) or their mixtures.
  • the additive (salt, sugar and / or polysaccharide) concentrations are such that the osmotic pressures of the external and internal aqueous phases are balanced.
  • base salt, sugar and / or polysaccharide
  • base sodium, potassium, sodium tartrate, sodium tartrate, sodium tartrate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate
  • the internal oily phase has a relatively high viscosity, for example greater than or equal to 1 Pa.s, more particularly greater or equal to 5 Pa.s, it may be advantageous to add to the external aqueous phase, at least one heat-thickening polymer.
  • this type of polymer has the particularity of giving aqueous solutions whose viscosity increases when the temperature exceeds a certain threshold temperature. More particularly, these polymers are soluble in water at ambient temperature, and beyond the threshold temperature, part of the polymer becomes hydrophobic (thermosensitive part): the polymer thus forms a physical network on a microscopic scale, this which results at the macroscopic scale by an increase in viscosity.
  • the heat-thickening polymer used is chosen from polymers having a viscosity jump between 25 and 80 ° C such that the value of the logio ratio (viscosity at 80 ° C) / logio ( viscosity at 25 ° C) is at least equal to at least 1.
  • the ratio is measured under the following conditions: * The polymer is first dissolved in water (dry extract of 4%).
  • the rheological profile is then measured in flow mode with imposed stress, by performing a temperature sweep between 20 ° C and 80 ° C.
  • the configuration used is the 4cm / 1 degree cone-plane geometry.
  • the constraint introduced in the program is chosen (in manual mode) so that the gradient at 25 ° C is 10 s 1 .
  • thermo-thickening power of the polymer namely the ratio logio (viscosity at 80 ° C) / logio (viscosity at 25 ° C)
  • logio viscosity at 80 ° C
  • logio viscosity at 25 ° C
  • the heat-thickening polymer is chosen so that the variation in viscosity is reversible.
  • hydrophobic modified polysaccharides such as carboxymethyl celluloses, methyl celluloses, hydroxyethyl celluloses, hydroxypropyl celluloses.
  • Synthetic polymers such as polymers based on N-isopropyl acrylamide, polymers based on N, N-dimethyl aminoethyl methacrylate are also suitable.
  • Comb structure polymers consisting of a polymer backbone segment on which are grafted at least two polymer side segments, identical or not, for which either the polymer backbone segment or the side segments polymers have a lower critical solubility temperature, LCST, between 25 and 80 ° C.
  • the polymeric lateral segments are heat-sensitive and are derived from polyoxyalkylenated polymers.
  • polymers of this type mention may be made in particular of polymers prepared from tri-block polymer POE-POP-POE and acrylic acid (respective molar percentages: 2.3%, 97.7% , direct grafting), polymers prepared from macromonomer of POE-POP-POE tri-blocks and acrylic acid (respective molar%: 1.6%, 98.4%, copolymerization), polymers prepared from POE-POP-POE tri-block macromonomer and acrylic acid (respective mol%: 3%, 97%, copolymerization), polymers prepared from POE-POP-POE tri-block macromonomer and acrylic acid (respective molar%: 2%, 98%, copolymerization).
  • the content of heat-thickening polymer more particularly represents, when it is present, 0.2 to 10% by weight of the external aqueous phase.
  • the content of this polymer represents 1 to 5% by weight of the external aqueous phase.
  • the external aqueous phase of the multiple emulsion can comprise at least one thickening polymer.
  • This polymer has the particular effect of avoiding creaming and / or sedimentation of the final emulsion.
  • thickening polymers extracted from plants and optionally modified such as carrageenans, alginates, carboxymethyl celluloses, methylcelluloses, hydroxypropyl celluloses, hydroxyethyl celluloses.
  • thickening polymers of the type of polysaccharides of animal, vegetable or bacterial origin there may be mentioned by way of nonlimiting example, xanthan gum, guar and derivatives (such as hydroxypropyl guar for example) , polydextroses, or combinations thereof.
  • the thickening polymer content is more particularly between 0.1 and 2% by weight relative to the external aqueous phase, preferably between 0.1 and 0.5% by weight relative to the phase external aqueous.
  • the thickening polymer is soluble in the aqueous phase.
  • the external aqueous phase comprises a dispersed external oily phase.
  • said external aqueous phase may also comprise at least one dispersed divided solid.
  • the external oily phase can also comprise at least one hydrophobic active material.
  • the external oily phase comprises one or more hydrophobic active materials different from the oily phase
  • their content represents more particularly less than or equal to 50% by weight of said external oily phase, preferably from 0.5 to 50% by weight , advantageously between 0.5 and 20% by weight.
  • the external aqueous phase does not comprise a soluble active material, solubilized or dispersed in the form of a divided solid
  • the external oily phase then comprises at least one hydrophobic active material. Note that it is not excluded that both the external aqueous and oily phases each comprise at least one active ingredient.
  • the external oily phase represents from 1 to 50% by weight of the external aqueous phase, preferably 5 to 25% by weight of the external aqueous phase.
  • the size of the droplets of the external oily phase is at most of the same order of magnitude as that of the reverse emulsion dispersed in the external aqueous phase.
  • the solids used in the various types of cosmetic and / or dermatological formulations may be suitable.
  • the size of this or these dispersed solids is close to or smaller than that of the droplets of the reverse emulsion.
  • the dispersed solid is present, its content is more 'particularly 1 to 50% by weight of the external aqueous phase, preferably 5 to 25% by weight.
  • the preparation of the multiple emulsion can be carried out according to any known method.
  • the external aqueous phase is prepared by mixing the surfactant and / or the amphiphilic polymer, optionally the active material if the latter is present in a form soluble in the aqueous phase or dissolved in a solvent miscible with this phase, optionally the heat-thickening polymer, and water.
  • the water and the surfactant and / or the amphiphilic polymer are firstly mixed, with stirring, then optionally the active material and the heat-thickening polymer, and optionally the additive (salt / sugar / polysaccharide).
  • the external aqueous phase can optionally be left to stand for 1 to
  • the actual multiple emulsion is prepared by adding the reverse emulsion to the external aqueous phase. It should be noted that advantageously, part of the external aqueous phase is discarded, in order to be used for the preparation of the simple emulsion comprising the external oily phase dispersed in the external aqueous phase, in the event that such an emulsion is present.
  • the preparation of the multiple emulsion preferably takes place with stirring, adding the reverse emulsion slowly at the start.
  • Agitation can be done by means of a paddle frame.
  • the stirring speed is relatively slow, of the order of 400 rpm.
  • said emulsion composed of the external oily phase is advantageously dispersed in the same external aqueous phase as that used for the multiple emulsion. It should however be noted that it is not excluded to use different external aqueous phases, insofar as there is no destabilization of the mixed emulsion. Obviously, the quantities of external aqueous phase introduced with the inverse and simple emulsions are such that the weight proportions of each of the phases satisfy the conditions explained above for the mixed emulsion.
  • the direct emulsion is carried out according to any known method, by mixing with stirring of the two phases: the external oily phase, where appropriate the hydrophobic active material and the external aqueous phase comprising the surfactant and / or the amphiphilic polymer, optionally the soluble or solubilized active material and optionally the heat-thickening polymer.
  • the external aqueous phase comprises a dispersed solid
  • the obtaining of the multiple emulsion can be carried out as indicated in the first case, then said solid dispersed in the external aqueous phase is added.
  • the average size of the droplets of the multiple emulsion advantageously varies between 5 and 15 ⁇ m (Horiba).
  • the multiple emulsion comprises a thickening agent, the latter is very advantageously incorporated once the mixed emulsion has been obtained, that is to say once all the other ingredients have been added.
  • the mixed emulsion which has just been detailed can be used as a constituent element of cosmetic and / or dermatological formulations.
  • the content of mixed emulsion is preferably such that the total content of active material (s) present in the aqueous and oily phases, in the cosmetic and / or dermatological formulation is between 0.01 and 10% by weight of said formulation.
  • the cosmetic and / or dermatological formulations which are the subject of the invention can be formulated in a large number of types of products for the skin, the hair, the eyelashes and / or the nails, the conditioners, the formulations for styling or to facilitate combing of the hair, hand and body lotions, products regulating the hydration of the skin, toilet milks, makeup-removing compositions, depilatory products, sun protection creams or lotions and ultraviolet radiation, skincare creams, anti-acne preparations, make-up formulations such as mascaras, foundations, nail polish, products intended to be applied to the lips, etc.
  • Cosmetic and / or dermatological formulations in addition to mixed emulsions, include conventional additives in the field.
  • bactericidal or fungicidal agents in order to improve the disinfection of the skin, such as for example triclosan; anti-dandruff agents, such as in particular zinc pyrithione or octopyrox; insecticidal agents such as natural or synthetic pyrethroids.
  • Cosmetic and / or dermatological formulations can also contain agents for protecting the skin and / or hair against the aggressions of the sun and UV rays.
  • the compositions may include sunscreens which are chemical compounds which strongly absorb UV radiation, such as the compounds authorized in European directive N ° 76/768 / EEC, its annexes and subsequent modifications to this directive, in particular mineral particles.
  • sunscreens which are chemical compounds which strongly absorb UV radiation, such as the compounds authorized in European directive N ° 76/768 / EEC, its annexes and subsequent modifications to this directive, in particular mineral particles.
  • mineral particles such as zinc oxide, titanium dioxide or cerium oxides in the form of powder or colloidal particles, alone or as a mixture.
  • These powders can optionally be surface-treated to increase the effectiveness of their anti-UV action or to facilitate their incorporation into cosmetic formulations or to inhibit surface photoreactivity.
  • Said formulations may also contain fixative resins.
  • fixative resins when they are present, are generally present at concentrations of between 0.01 and 10%, preferably between 0.5 and 5%.
  • the fixing resins used in the cosmetic compositions are more particularly chosen from the following resins: • methyl acrylate / acrylamide copolymers, polyvinylmethylether / maleic anhydride copolymers, vinyl acetate / crotonic acid copolymers, octylacrylamide / methyl acrylate / butylaminoethylmethacrylate, polyvinylpyrrolidones, polyvinylpyrrolidone copolymers, polyvinyl acrylate, , polyvinyl alcohol / crotonic acid copolymers, polyvinyl alcohol / maleic anhydride copolymers, hydroxypropyl celluloses, hydroxypropyl guars, sodium polystyrene sulfonates, polyvinylpyrrolidone / ethyl methacrylate / methacrylic acid, monomethyl ethers of poly (methylvinyl ether / polyvinyl acid) poly
  • copolyesters derived from acid, anhydride or a terephthalic and / or isophthalic and / or sulfoisophthalic diester and a diol such as:
  • polyester copolymers based on propylene terephthalate and polyoxyethylene terephthalate units and terminated by ethyl, methyl units (US-A-4,711,730) or polyester oligomers terminated by alkylpolyethoxy groups (US-A-4,702,857) or anionic sulfopolyethoxy groups (US-A-4,721,580), sulfoaroyl groups (US-A-4,877,896);
  • polyesters - polyurethanes obtained by reaction of a polyester obtained from adipic acid and / or terephthalic acid and / or sulfoisophthalic acid and a diol, on a prepolymer with terminal isocyanate groups obtained from 'a polyoxyethylene glycol and a diisocyanate (FR-A-2 334 698); • ethoxylated monoamines or polyamines, polymers of ethoxylated amines (US-A-4,597,898, EP-A-11,984).
  • the fixing resins are chosen from polyvinylpyrrolidone (PVP), copolymers of polyvinylpyrrolidone and of methyl methacrylate, copolymer of polyvinylpyrrolidone and vinyl acetate (VA), polyterephthalene ethylene glycol / polyethylene glycol copolymers, polyethylene glycol terephthalate / polyethylene glycol / polyisophthalate sulfonate copolymers, and mixtures thereof.
  • PVP polyvinylpyrrolidone
  • VA vinyl acetate
  • fixative resins are preferably dispersed or dissolved in the chosen vehicle.
  • Cosmetic and / or dermatological formulations can also contain polymeric derivatives exercising a protective function.
  • These polymer derivatives can be present in amounts of the order of 0.01-10% by weight of the cosmetic and / or dermatological formulation, preferably about 0.1-5% by weight, and very particularly of the order of 0.2-3% by weight.
  • agents can in particular be chosen from:. non-ionic cellulose derivatives such as cellulose hydroxyethers, methylcellulose, ethylcellulose, hydroxypropyl methylcellulose, hydroxybutyl methylcellulose;
  • polyvinyl esters grafted on polyalkylenated trunks such as polyvinylacetates grafted on polyoxyethylene trunks (EP-A-219048); . polyvinyl alcohols.
  • Cosmetic and / or dermatological formulations can also include plasticizing agents.
  • Said agents can represent between 0.1 to 20% by weight of the formulation, preferably from 1 to 15% by weight.
  • plasticizers there may be mentioned adipates, phthalates, isophthalates, azelates, stearates, silicone copolyols, glycols, castor oil, or mixtures thereof.
  • humectants which include, among others, glycerol, sorbitol, urea, collagen, gelatin, aloe vera, hyaluronic acid or solvents water-soluble volatiles such as ethanol or propylene glycol, the contents of which can reach up to 60% by weight of the composition.
  • water-soluble or water-dispersible polymers such as collagen or certain non-allergenic derivatives of animal or vegetable proteins (wheat protein hydrolysates for example), natural hydrocolloids ( guar, carob, tara gum, etc.) or derived from fermentation processes, and derivatives of these polycarbohydrates such as non-ionic modified celluloses such as hydroxyethylcellulose, or anionics such as carboxymethylcellulose; guar or carob derivatives such as their nonionic derivatives (for example hydroxypropylguar) or anionic derivatives (carboxymethylguar and carboxymethylhydroxypropylguar).
  • non-ionic modified celluloses such as hydroxyethylcellulose, or anionics
  • carboxymethylcellulose such as hydroxyethylcellulose
  • guar or carob derivatives such as their nonionic derivatives (for example hydroxypropylguar) or anionic derivatives (carboxymethylguar and carboxymethylhydroxypropylguar).
  • powders or mineral particles such as calcium carbonate, sodium bicarbonate, calcium dihydrogen phosphate, mineral oxides in powder form or in colloidal form (particles of smaller size or on the order of a micrometer, sometimes a few tens of nanometers) such as titanium dioxide, silica, aluminum salts generally used as antiperspirants, kaolin, talc, clays and their derivatives, etc.
  • Preservatives such as methyl, ethyl, propyl and butyl esters of p-hydroxybenzoic acid, sodium benzoate, GERMABEN ® or any chemical agent preventing the proliferation of bacteria or molds and traditionally used in cosmetic formulations and / or dermatological, can also be introduced into the present formulations, generally up to 0.01 to 3% by weight of the formulation.
  • the amount of these products is usually adjusted to avoid any proliferation of bacteria, molds or yeasts in cosmetic compositions.
  • perfumes coloring agents among which mention may be made of the products described in Annex IV ("List of coloring agents allowed for use in cosmetic products") of European Directive No. 76/768 / EEC of July 27, 1976, called the Cosmetic Directive, and / or opacifying agents such as pigments.
  • the formulation may also contain viscous or gelling polymers so as to adjust the texture of the formulation, such as crosslinked polyacrylates (Carbopol sold by Goodrich), non-cationic cellulose derivatives such as hydroxypropylcellulose. , carboxymethylcellulose, guars and their nonionic derivatives, xanthan gum and its derivatives, used alone or in combination, or the same compounds, generally in the form of water-soluble polymers modified by hydrophobic groups covalently linked to the polymer backbone such as described in patent WO 92/16187.
  • crosslinked polyacrylates Carbopol sold by Goodrich
  • non-cationic cellulose derivatives such as hydroxypropylcellulose.
  • carboxymethylcellulose, guars and their nonionic derivatives carboxymethylcellulose, guars and their nonionic derivatives
  • xanthan gum and its derivatives used alone or in combination, or the same compounds, generally in the form of water-soluble polymers modified by hydrophobic groups covalently linked to the polymer backbone such as described
  • Cosmetic and / or dermatological formulations can also contain polymeric dispersing agents in an amount of the order of 0.1-7% by weight, to control the hardness of calcium and magnesium, agents such as:
  • the water-soluble salts of polycarboxylic acids with a molecular weight by weight of the order of 2000 to 100,000 g / mol obtained by polymerization or copolymerization of ethylenically unsaturated carboxylic acids such as acrylic acid, acid or maleic anhydride, fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid, and very particularly polyacrylates of molecular weight by weight of the order of 2,000 to 10,000 g / mol (US-A-3,308,067), copolymers of acrylic acid and maleic anhydride with a molecular weight of about 5,000 to 75,000 g / mol (EP-A- 66915);
  • metal sequestering agents more particularly those sequestering calcium such as citrate ions.
  • composition of the reverse emulsion Composition of the reverse emulsion:
  • 100 g of reverse emulsion are prepared, comprising 70 g of internal oily phase and 30 g of internal aqueous phase.
  • soybean oil and Arlacel were placed in an oven at 75 ° C.
  • the internal aqueous phase is then added to the internal oily phase, with stirring with Ultraturrax at 9500 rpm.
  • the mixing is carried out at 75 ° C. 2 / Multiple emulsion
  • composition of the multiple emulsion * 50% reverse emulsion
  • Rhodopol 23 (**) (Rhodia Chimie;% by weight expressed relative to the weight of external aqueous phase).
  • Arlatone F127G HO (CH2CH 2 O) ⁇ (OCH (CH3) CH2 ⁇ ) y (CH2CH 2 O) z H with verification of the following inequality: 82 ⁇ x + z ⁇ 90 and the polymer comprises 7 OP units for 1 mole of product).
  • Rhodopol 23 xanthan gum.
  • 40 g of external aqueous phase are prepared by weighing 20 g of 2% Rhodopol 23 solution and 20 g of 4% Arlatone F F127G solution and 7.2% glucose are added.
  • the whole is mixed with the pale frame at 200 rpm for 5 minutes.
  • the 50 g of the reverse emulsion obtained in point 1 / are introduced, with stirring with a frame paddle at 400 rpm, drop by drop into the external aqueous phase, at ambient temperature. Stirring is continued for another 10 minutes.
  • composition of the direct emulsion is a composition of the direct emulsion
  • Rhodopol 23 % by weight expressed relative to the weight of aqueous phase
  • retinol 10% solution in miglyol.
  • Alkamuls T85 sorbitan ester comprising 20 ethoxylated units.
  • the emulsion is obtained in the following manner:
  • a stable mixed emulsion comprising 0.5% by weight of retinol relative to the total water.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention a pour objet une formulation cosmétique et/ou dermatologique comprenant au moins deux matières actives dans une émulsion multiple constituée d'une phase aqueuse interne dispersée dans une phase huileuse interne, l'ensemble étant dispersé dans une phase aqueuse externe; l'émulsion multiple étant éventuellement mélangée à une émulsion simple constituée d'une phase huileuse externe dispersée dans une phase aqueuse externe: la phase huileuse interne comprenant au moins un tensioactif non ionique et/ou au moins un polymère amphiphile et éventuellement au moins une matière active hydrophobe; la phase aqueuse externe comprenant au moins tensioactif non ionique et/ou au moins un polymère amphiphile non ionique éventuellement associé(s) à au moins un polymère amphiphile anionique ou comprenant au moins un polymère amphiphile anionique éventuellement associé à au moins un tensioactif anionique ;au moins une matière active hydrophile se trouvant dans la phase aqueuse interne; et au moins une matière active se trouvant sous forme soluble, solubilisée ou sous forme d'un solide dispersé dans la phase aqueuse externe, ou se trouvant dans la phase huileuse externe.

Description

FORMULATION COSMETIQUE COMPRENANT AU MOINS DEUX MATIERES
ACTIVES DANS UNE EMULSION MULTIPLE EVENTUELLEMENT
MELANGEE A UNE EMULSION SIMPLE
La présente invention a pour objet des formulations cosmétiques et/ou dermatologiques comprenant au moins deux matières actives dans une émulsion multiple de type eau dans huile dans eau, éventuellement mélangée à une émulsion simple de type huile dans eau.
On propose de plus en plus souvent aux consommateurs, d'avoir avec une même formulation, une pluralité d'effets simultanés et/ou successifs. De telles performances sont obtenues en combinant dans la formulation plusieurs substances actives.
Cela ne pose pas de difficulté majeure si les matières actives sont compatibles entre elles ainsi qu'avec le milieu de la formulation dans laquelle elles sont introduites.
En cas d'incompatibilité, il a été alors envisagé d'encapsuler l'une des matières actives pour l'isoler du milieu et/ou des autres matières actives, ou encore pour retarder l'effet de ladite matière active encapsulée ; la matière encapsulée est ensuite dispersée dans le milieu. A titre d'exemple de solution de ce type, des parfums ont été encapsulés dans des latex polymériques. Cependant, mêmes si ces méthodes apportent des avantages réels, elles sont néanmoins limitées à des matières actives particulières. En effet, ces méthodes sont difficilement applicables à l'encapsulation de matières actives hydrophiles. De plus, si la matière active est solide, il est nécessaire de trouver un diluant qui soit un composé gonflant dudit latex sans le solubiliser. Inutile de préciser qu'avec des applications dans le domaine de la cosmétique, ce choix est rendu d'autant plus difficile que le diluant susceptible d'être retenu doit être agréé dans ce domaine. Ainsi comme on peut le constater, il n'y a pas à l'heure actuelle de moyen satisfaisant, simple et efficace pour mettre en œuvre au moins deux matières actives que l'on souhaite isoler les unes des autres et/ou du milieu dans lequel elles sont introduites.
Ces buts et d'autres sont atteints par la présente invention qui consiste donc en une formulation cosmétique et/ou dermatologique comprenant au moins deux matières actives dans une émulsion multiple constituée d'une phase aqueuse interne dispersée dans une phase huileuse interne, l'ensemble étant dispersé dans une phase aqueuse externe ; l'émulsion multiple étant éventuellement mélangée à une émulsion simple constituée d'une phase huileuse externe dispersée dans une phase aqueuse externe : α la phase huileuse interne comprenant au moins un tensioactif non ionique et/ou au moins un polymère amphiphile et éventuellement au moins une matière active hydrophobe ; π la phase aqueuse externe comprenant au moins tensioactif non ionique et/ou au moins un polymère amphiphile non ionique éventuellement associé(s) à au moins un polymère amphiphile anionique ou comprenant au moins un polymère amphiphile anionique éventuellement associé à au moins un tensioactif anionique ; π au moins une matière active hydrophile se trouvant dans la phase aqueuse interne ; et Q au moins une matière active se trouvant sous forme soluble, solubilisée ou sous forme d'un solide dispersé dans la phase aqueuse externe, ou se trouvant dans la phase huileuse externe.
Il est indiqué que dans la description qui va suivre, le terme émulsion mixte désignera soit l'émulsion multiple, soit l'émulsion multiple mélangée à l'émulsion simple. Ainsi, l'émulsion mixte entrant dans la composition des formulations cosmétiques et/ou dermatologiques présente l'avantage d'être facile à préparer et à mettre en œuvre, sans nécessiter d'investissements importants.
Elle permet en outre d'isoler tout type de matière active, liquide ou solide, hydrophobe ou hydrophile.
L'émulsion mixte est tout particulièrement appropriée lorsque l'on utilise deux matières actives, avantageusement incompatibles, l'une hydrophile, l'autre hydrophobe ; la première étant introduite dans la phase aqueuse interne et la seconde dans la phase huileuse externe. De cette façon, les deux matières actives sont isolées l'une par rapport à l'autre dans l'émulsion mixte.
De plus, on peut constater un effet retard, lors de l'application de la formulation, de la matière active la moins disponible, par exemple celle présente dans la phase aqueuse interne de l'émulsion mixte.
Mais d'autres buts et avantages apparaîtront plus clairement à la lecture de la description et de l'exemple, qui vont suivre.
Dans la description, le terme polymère désigne à la fois des homopolymères et des copolymères. Pour des raisons de commodité dans l'exposé de l'invention, l'émulsion inverse de l'émulsion multiple, et son mode de préparation vont tout d'abord être détaillés.
L'émulsion inverse consiste donc en une émulsion eau dans huile, constituée par une phase aqueuse interne et une phase huileuse interne.
La phase huileuse interne comprend au moins une huile organique, d'origine animale ou végétale, ou minérale, ainsi que des cires provenant des mêmes origines, ou leurs mélanges.
De préférence, on met en œuvre une phase huileuse qui est fluide dans les conditions de préparation de l'émulsion inverse. Le composé utilisé en tant que phase huileuse est de préférence, choisi parmi les composés dont la solubilité dans l'eau ne dépasse pas 10 % en poids à 25°C.
Comme huiles organiques d'origine animale, on peut citer en autres, l'huile de cachalot, l'huile de baleine, l'huile de phoque, l'huile de sardine, l'huile de hareng, l'huile de squale, l'huile de foie de morue ; les graisses de porc, de mouton (suifs).
En tant que cires d'origine animale, on peut citer la cire d'abeilles.
A titres d'exemples d'huiles organiques d'origine végétale, on peut mentionner, entre autres, l'huile de colza, l'huile de tournesol, l'huile d'arachide, l'huile d'olive, l'huile de noix, l'huile de maïs, l'huile de soja, l'huile de lin, l'huile de chanvre, l'huile de pépins de raisin, l'huile de coprah, l'huile de palme, l'huile de graines de coton, l'huile de babassu, l'huile de jojoba, l'huile de sésame, l'huile de ricin.
En tant que cires d'origine végétale, on peut citer la cire de carnauba.
En ce qui concerne les huiles minérales, on peut citer entre autres les huiles naphténiques, paraffiniques (vaseline). Les cires paraffiniques peuvent de même convenir à la préparation de l'émulsion.
Les produits issus de l'alcoolyse des huiles précitées peuvent aussi être utilisés.
On ne sortirait du cadre de la présente invention en mettant en œuvre, en tant que phase huileuse interne, au moins un acide gras, saturé ou non, au moins un ester d'acide gras, saturé ou non, au moins un alcool gras, saturé ou non, ou leurs mélanges. Plus particulièrement, lesdits acides, esters ou alcools comprennent au moins un radical hydrocarboné présentant de 10 à 40 atomes de carbone, plus particulièrement 18 à 40 atomes de carbone, et peuvent comprendre une ou plusieurs doubles liaisons carbone-carbone, conjuguées ou non. Par ailleurs, les acides, esters ou alcools, peuvent comprendre un ou plusieurs groupements hydroxyles. Comme exemples d'acides gras saturés, on peut citer les acides palmitique, stéarique, béhénique.
Comme exemples d'acides gras insaturés, on peut citer les acides myristoléique, palmitoléique, oléique, érucique, linoléique, linolénique, arachidonique, ricinoléique, ainsi que leurs mélanges. Comme esters d'acides gras, on peut citer les esters des acides précédemment listés, pour lesquels la partie dérivant de l'alcool comprend 1 à 6 atomes de carbone, comme les esters de méthyle, d'éthyle, de propyle, d'isopropyle, etc.
Comme exemple d'alcools, on peut citer ceux correspondants aux acides précités.
Il est de même envisageable de mettre en œuvre les esters des acides précités et de polyols, comme par exemple de glycérol, de polyglycerol (comme par exemple le polyricinoleate de polyglycerol), de glycol, de propylene glycol, d'éthylène glycol, de polyéthylène glycol, de polypropylène glycol, de néopentylglycol (comme par exemple le l'hydroxypivalate de néopentylglycol), de pentaérythritol, de dipentaérythritol, de triméthylolpropane, de sorbitol, de mannitol, de xylitol, de mésoérythritol.
La phase huileuse interne peut de même être choisie parmi les huiles essentielles, les mono-, di- et tri- glycérides, ainsi que les huiles silicones. Elle peut comprendre au moins une matière active hydrophobe, dès l'instant qu'elle est compatible avec la matière active hydrophile présente dans la phase aqueuse interne et, si elle est présente, dans la phase aqueuse externe ; phases qui seront décrites par la suite.
Lesdites matières actives hydrophobes se présentent sous forme liquide, solubilisée dans un solvant organique, ou encore sous une forme de solide divisé dispersé dans ladite phase.
Plus particulièrement, les matières actives sont telles que leur solubilité dans l'eau ne dépasse pas 10 % en poids, à 25°C.
Les matières actives dont le point de fusion est inférieur ou égal à 100°C, plus particulièrement inférieur ou égal à 80°C, peuvent de même être utilisées.
A titre d'exemples de matières actives utilisables dans le domaine de la cosmétique on peut citer les huiles silicones appartenant par exemple à la famille des diméthicones ; les vitamines lipophiles, comme la vitamine A et ses dérivés notamment ses esters comme l'acétate, le palmitate, le propionate, la vitamine B2, l'acide pantothenique, la vitamine D et la vitamine E ; les mono-, di- et triglycérides ; les bactéricides ; les agents absorbeurs d'UV, comme les dérivés aminobenzoate de type PABA et PARA, les salicylates, les cinnamates, les anthranilates, les dibenzoylméthanes, les dérivés du camphre et leurs mélanges.
Les agents anti-vieillissement peuvent de même être utilisés. A titre d'exemples de tels agents on peut citer notamment les retinoïdes, les vitamines liposolubles, les dérivés de la vitamine C comme les esters notamment l'acétate, le propionate, le palmitate ; les céramides, les pseudo-céramides, les phospholipides, les acides gras, les alcools gras, le cholestérol, les stérols et leurs mélanges. Comme acides gras et alcools préférés, on peut plus particulièrement citer ceux possédant des chaînes alkyles, linéaires ou ramifiées contenant de 12 à 20 atomes de carbone. Il peut notamment s'agir d'acide linoléique.
On peut de même mettre en œuvre des agents anti-cellulite, tels que notamment l'isobutylméthylxanthine et la théophyline ; ainsi que des agents anti-acné, comme par exemple le résorcinol, l'acétate de résorcinol, le peroxyde benzoyle et de nombreux composés naturels.
Les arômes, parfums, huiles essentielles, essences, peuvent aussi être utilisés en tant que matière active hydrophobe. A titre d'exemple, on peut citer les huiles et/ou essences de menthe, de menthe verte, de menthe poivrée, de menthol, de vanille, de cannelle, de laurier, d'anis, d'eucalyptus, de thym, de sauge, de feuille de cèdre, de noix de muscade, de citrus (citron, citron vert, pamplemousse, orange), de fruits (pomme, poire, pêche, cerise, prune, fraise, framboise, abricot, ananas, raisin, etc.), seules ou en mélanges. On peut aussi mettre en œuvre des composés comme le benzaldéhyde, l'acétate d'isoamyle, le butyrate d'éthyle, etc.
Les agents anti-microbiens peuvent être choisis parmi le thymol, le menthol, le triclosan, le 4-hexylrésorcinol, le phénol, l'eucalyptol, l'acide benzoïque, le peroxyde benzoïque, le parabène de butyle, et leurs mélanges.
Il est à noter qu'il n'est pas impossible que la phase huileuse elle-même soit considérée comme matière active hydrophobe.
Au cas où la phase huileuse interne comprend une ou plusieurs matières actives hydrophobes différentes de la phase huileuse, leur teneur représente plus particulièrement 10 à 50 % en poids de ladite phase huileuse interne.
L'émulsion inverse comprend en outre au moins un tensioactif non ionique et/ou au moins un polymère amphiphile, de préférence à blocs.
Il est à noter que la règle de Bancroft peut être appliquée au tensioactif non ionique et au polymère amphiphile, de préférence à blocs, utilisés (2èmθ Congrès Mondial de l'Emulsion, 1997, Bordeaux, France). En d'autres termes, la fraction soluble dans la phase continue est supérieure à la fraction soluble dans la phase dispersée. Ainsi, le tensioactif et le polymère sont de préférence choisis parmi ceux qui vérifient à la fois les deux conditions ci-dessous :
- lorsqu'ils sont mélangés avec la phase huileuse interne, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase à 25°C, se trouvent sous la forme d'une solution dans tout ou partie de la gamme de concentration indiquée. - lorsqu'ils sont mélangés avec la phase aqueuse interne, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase et à 25°C, se trouvent sous la forme d'une dispersion dans tout ou partie de la gamme de concentration indiquée. Plus particulièrement, le tensioactif non ionique est choisi parmi les composés présentant une valeur de HLB (balance hydrophile/lipophile) inférieure ou égale à 8.
A titre d'exemples de tensioactifs susceptibles d'entrer dans la composition de l'émulsion inverse, on peut citer les tensioactifs, seuls ou en mélange, choisis parmi :
- les alcools gras alcoxylés
- les triglycérides alcoxylés - les acides gras alcoxylés
- les esters de sorbitan éventuellement alcoxylés
- les aminés grasses alcoxylées
- les di(phényl-1 éthyl) phénols alcoxylés - les tri(phényl-1 éthyl) phénols alcoxylés
- les alkyls phénols alcoxylés le nombre de motifs alcoxylés (éthoxylés, propoxylés, butoxylés) est tel que la valeur de HLB soit inférieure ou égale à 8. Les alcools gras alcoxylés comprennent généralement de 6 à 22 atomes de carbone, les motifs alcoxylés étant exclus de ces nombres.
Les triglycérides alcoxylés peuvent être des triglycérides d'origine végétale ou animale.
Les esters de sorbitan éventuellement alcoxylés sont des esters du sorbitol cyclises d'acide gras comprenant de 10 à 20 atomes de carbone comme l'acide laurique, l'acide stéarique ou l'acide oléïque.
Les aminés grasses alcoxylées ont généralement de 10 à 22 atomes de carbone, les motifs alcoxylés étant exclus de ces nombres.
Les alkylphénols alcoxylés ont généralement un ou deux groupes alkyles, linéaires ou ramifiés, ayant 4 à 12 atomes de carbone. A titre d'exemple on peut citer notamment les groupes octyle, nonyle ou dodécyle.
Quant au polymère amphiphile, celui-ci comprend de manière avantageuse au moins deux blocs.
Ces polymères amphiphiles, vérifiant la règle de Bancroft et les deux conditions énoncées auparavant, comprennent plus particulièrement au moins un bloc hydrophobe et au moins un bloc hydrophile neutre ou anionique.
Au cas où le polymère amphiphile comprend au moins trois blocs, et plus particulièrement trois blocs, le polymère est de préférence linéaire. En outre, les blocs hydrophobes se trouvent plus particulièrement aux extrémités. Au cas où les polymères comprennent plus de trois blocs, ces derniers sont de préférence sous la forme de polymères greffés ou peignes.
Dans ce qui suit, même si cela constitue un abus de langage, le terme polymère amphiphile à blocs sera utilisé indifféremment pour les polymères linéaires à blocs et les polymères greffés ou peignes. Lesdits polymères amphiphiles peuvent de manière avantageuse, être obtenus par polymérisation radicalaire dite vivante ou contrôlée. A titre d'exemples non limitatifs de procédés de polymérisation dite vivante ou contrôlée, on peut notamment se référer aux demandes WO 98/58974 (xanthate), WO 98/01478 (dithioesters), WO 99/03894 (nitroxydes) ; WO 99/31144 (dithiocarbamates). Les polymères amphiphiles peuvent aussi être obtenus par polymérisation anionique. Ils peuvent de même être préparés en mettant en jeu des polymérisations par ouverture de cycle (notamment anionique ou cationique), ou par modification chimique du polymère.
Les polymères greffés ou peignes peuvent encore être obtenus par des méthodes dites de greffage direct et copolymérisation.
Le greffage direct consiste à polymériser le(s) monomère(s) choisi(s) par voie radicalaire, en présence du polymère sélectionné pour former le squelette du produit final. Si le couple monomère/squelette ainsi que les conditions opératoires, sont judicieusement choisis, alors il peut y avoir réaction de transfert entre le macroradical en croissance et le squelette. Cette réaction génère un radical sur le squelette et c'est à partir de ce radical que croît le greffon. Le radical primaire issu de l'amorceur peut également contribuer aux réactions de transfert.
Pour ce qui a trait à la copolymérisation, elle met en œuvre dans un premier temps le greffage à l'extrémité du futur segment pendant, d'une fonction polymérisable par voie radicalaire. Ce greffage peut être réalisé par des méthodes usuelles de chimie organique. Puis, dans un second temps, le macromonomère ainsi obtenu est polymérisé avec le monomère choisi pour former le squelette et on obtient un polymère dit "peigne". Parmi les monomères hydrophobes à partir desquels le ou les blocs hydrophobes du polymère amphiphile peuvent être préparés, on peut citer notamment : - les esters des acides mono- ou poly- carboxyliques, linéaires, ramifiés, cycliques ou aromatiques, comprenant au moins une insaturation éthylénique, les esters d'acides carboxyliques saturés comprenant de préférence 8 à 30 atomes de carbone, éventuellement porteurs d'un groupement hydroxyle ; - les nitriles αβ-éthyléniquement insaturés, les éthers vinyliques, les esters vinyliques, les monomères vinylaromatiques, les halogénures de vinyle ou de vinylidène, les monomères hydrocarbonés, linéaires ou ramifiés, aromatiques ou non, comprenant au moins une insaturation éthylénique, les monomères de type siloxane cyclique ou non, les chlorosilanes ; l'oxyde de propylene, l'oxyde de butylène ; seuls ou en mélanges, ainsi que les macromonomères dérivant de tels monomères.
A titre d'exemples particuliers de monomères hydrophobes susceptibles d'entrer dans la préparation du ou des blocs hydrophobes du polymère amphiphile à blocs, on peut citer : les esters d'acide (méth)acrylique avec un alcool comprenant 1 à 12 atomes de carbone comme le (méth)acrylate de méthyle, le (méth)acrylate d'éthyle, le
(méth)acrylate de propyle, le (méth)acrylate de n-butyle, le (méth)acrylate de t- butyle, le (méth)acrylate d'isobutyle, l'acrylate de 2-éthylhexyl ; l'acétate de vinyle, le Versatate® de vinyle, le propionate de vinyle, le chlorure de vinyle, le chlorure de vinylidène, le méthyl vinyléther, l'éthyl vinyléther ; les nitriles vinyliques incluent plus particulièrement ceux ayant de 3 à 12 atomes de carbone, comme en particulier l'acrylonitrile et le méthacrylonitrile ; - le styrène, l'α-méthylstyrène, le vinyltoluène, le butadiène, l'isoprène, le chloroprène ; seuls ou en mélanges, ainsi que les macromonomères dérivant de tels monomères.
Les monomères préférés sont les esters de l'acide acrylique avec les alcools linéaires ou ramifiés en C1-C4 tels que l'acrylate de méthyle, d'éthyle, de propyle et de butyle, les esters vinyliques comme l'acétate de vinyle, le styrène, l'α-méthylstyrène.
En ce qui concerne les monomères hydrophiles non ioniques à partir desquels les polymères amphiphiles à blocs peuvent être obtenus, on peut mentionner, sans intention de s'y limiter, l'oxyde d'éthylène, les amides des acides mono- ou poly- carboxyliques, linéaires, ramifiés, cycliques ou aromatiques, comprenant au moins une insaturation éthylénique ou dérivés, comme le (méth)acrylamide, le N-méthyloI (méth)acrylamide ; les esters hydrophiles dérivant de l'acide (méth)acrylique comme par exemple le (méth)acrylate de 2-hydroxyéthyle ; les esters vinyliques permettant d'obtenir des blocs alcool polyvinylique après hydrolyse, comme l'acétate de vinyle, le Versatate® de vinyle, le propionate de vinyle, seuls, en combinaison, ainsi que les macromonomères dérivant de tels monomères. Il est rappelé que le terme macromonomère désigne une macromolécule portant une ou plusieurs fonctions polymérisables.
Toutefois les monomères hydrophiles préférés sont l'acrylamide et le méthacrylamide, seuls ou en mélange, ou sous la forme de macromonomères. En ce qui concerne les monomères hydrophiles anioniques à partir desquels les polymères amphiphiles à blocs peuvent être obtenus, on peut mentionner, par exemple les monomères comprenant au moins une fonction carboxylique, sulfonique, sulfurique, phosphonique, phosphorique, sulfosuccinique, ou les sels correspondants.
Il est précisé que dans les conditions de pH d'utilisation du polymère amphiphile à blocs, les fonctions du ou des blocs anioniques du polymère se trouvent sous une forme au moins partiellement ionisée (dissociée). Plus particulièrement, au moins 10 % en mole des fonctions du ou des blocs sont sous forme ionisée. La détermination de cette valeur ne pose pas de problème à l'homme de l'art ; elle est notamment fonction du pKa des fonctions ionisables des motifs du polymère et du nombre de ces fonctions (soit du nombre de moles de monomère portant des fonctions ionisables mis en œuvre lors de la préparation du polymère).
Plus particulièrement, les monomères sont choisis parmi : - les acides mono- ou poly- carboxyliques linéaires, ramifiés, cycliques ou aromatiques, les dérivés N-substitués de tels acides ; les monoesters d'acides polycarboxyliques, comprenant au moins une insaturation éthylénique ;
- les acides vinyl carboxyliques linéaires, ramifiés, cycliques ou aromatiques ; - les aminoacides comprenant une ou plusieurs insaturations éthyléniques ; seuls ou en mélanges, leurs précurseurs, leurs homologues sulfoniques ou phosphoniques, ainsi que les macromonomères dérivant de tels monomères ; les monomères ou macromonomères pouvant être sous la forme de sels.
A titre d'exemples de monomères anioniques, on peut citer sans intention de s'y limiter :
- l'acide acrylique, l'acide méthacrylique, l'acide fumarique, l'acide itaconique, l'acide citraconique, l'acide maléique, l'acide acrylamido glycolique, l'acide 2-propène 1- sulfonique, l'acide méthallyl sulfonique, l'acide styrène sulfonique, l'acide α- acrylamido méthylpropane sulfonique, le 2-sulfoéthylène méthacylate, l'acide sulfopropyl acrylique, l'acide bis-sulfopropyl acrylique, l'acide bis-sulfopropyl méthacrylique, l'acide sulfatoéthyl méthacrylique, le monoester phosphate d'acide hydroxyéthyl méthacrylique, ainsi que les sels de métal alcalin, comme le sodium, le potassium, ou d'ammonium ;
- l'acide vinyl sulfonique, l'acide vinylbenzène sulfonique, l'acide vinyl phosphonique, l'acide vinylidène phosphorique, l'acide vinyl benzoïque, ainsi que les sels de métal alcalin, comme le sodium, le potassium, ou d'ammonium ;
- le N-méthacryloyl alanine, le N-acryloyl-hydroxy-glycine ; seuls ou en mélanges, ainsi que les macromonomères dérivant de tels monomères.
On ne sortirait pas du cadre de la présente invention en mettant en œuvre des monomères précurseurs de ceux qui viennent d'être cités. En d'autres termes, ces monomères présentent des motifs qui, une fois incorporés dans la chaîne polymère, peuvent être transformés, notamment par un traitement chimique tel que l'hydrolyse, pour redonner les espèces anioniques précitées. Par exemple, les monomères totalement ou partiellement estérifiés des monomères précités peuvent être mis en œuvre pour être, par la suite, hydrolyses totalement ou en partie.
De préférence, les polymères amphiphiles à blocs présentent une masse molaire en poids inférieure ou égale à 100000 g/mol, plus particulièrement comprise entre 1000 et 50000 g/mol, de préférence entre 1000 et 20000 g/mol. Il est précisé que les masses molaires en poids indiquées ci-dessus sont des masses molaires théoriques, évaluées en fonction des quantités respectives des monomères introduites lors de la préparation desdits polymères.
De préférence, on met en œuvre un polymère amphiphile à blocs de type non ionique. A titre d'exemple de polymère amphiphile à blocs convenant à la mise en œuvre de l'invention, on peut citer les polymères triblocs polyhydroxystéarate - polyéthylène glycol - polyhydroxystéarate (les produits de la gamme Arlacel de ICI en sont un exemple), les polymères à blocs polydiméthylsiloxane greffé polyéther polyalkyle (comme les produits de la marque Tegopren commercialisé par Goldschmidt).
De préférence, on met en œuvre au moins un tensioactif, au moins un polymère amphiphile non ionique, ou leurs mélanges.
Selon un mode de réalisation particulièrement avantageux, l'émulsion inverse comprend un polymère amphiphile, de préférence à blocs et non ionique, ou un mélange de plusieurs d'entre eux.
La quantité totale de tensioactif et/ou de polymère amphiphile représente de préférence, de 2 à 10 % en poids de la phase huileuse interne.
La phase aqueuse interne comprend au moins une matière active hydrophile, se présentant sous une forme soluble dans la phase aqueuse interne ; sous une forme solubilisée dans un solvant miscible à l'eau comme le methanol, l'éthanol, le propylene glycol, le glycérol ; sous la forme d'un solide divisé dispersé dans ladite phase.
La teneur en matière active hydrophile est plus particulièrement comprise entre 0,1 et 50 % en poids de la phase aqueuse interne, et de préférence comprise entre 0,1 et 20 % en poids de la phase aqueuse interne. A titre d'exemples de matières actives utilisables dans le domaine de la cosmétique, on peut citer les substances qui ont un effet cosmétique, un effet thérapeutique ou tout autre substance utilisable pour le traitement de la peau et du cheveu.
Ainsi, on peut utiliser, en tant que matière active des agents conditionneurs de la peau et du cheveu, comme notamment les polymères comprenant des ammonium quaternaires qui peuvent éventuellement être engagés dans des hétérocycles (composés du type des quaternium, polyquaternium, etc.)., des agents humectants ; des agents fixants (styling) qui sont plus particulièrement choisis parmi des polymères (homo-, co- ou ter-polymères par exemple acrylamide, acrylamide/acrylate de sodium, polystyrène sulfonate, etc.), les polymères cationiques, la polyvinylpyrrolidone, l'acétate de polyvinyle.etc.
Il est de même possible d'utiliser des agents colorants ; des agents astringents, utilisables dans les déodorants et qui sont plus particulièrement des sels d'aluminium, de zirconium ; des agents antibactériens ; des agents anti-inflammatoires, des agents anesthésiants, des filtres solaires, etc.
On peut aussi citer les - et β- hydroxyacides, comme les acides citrique, lactique, glycolique, salicylique ; les acides dicarboxyliques de préférence insaturés et comprenant 9 à 16 atomes de carbone comme l'acide azélaique ; la vitamine C et ses dérivés, notamment les dérivés glycosylés et phosphatés ; les biocides notamment cationiques, en tant que matières actives convenables dans les formulations cosmétiques et/ou dermatologiques.
Conformément à un mode de réalisation particulièrement avantageux de la présente invention, la phase aqueuse interne peut comprendre au moins un additif choisi parmi les sels tels que les halogénures de métaux alcalins ou alcalino-terreux (comme le chlorure de sodium, le chlorure de calcium), ou les sulfates de métaux alcalin ou alcalino-terreux (comme le sulfate de magnésium), ou leurs mélanges. La phase aqueuse interne peut aussi comprendre, en tant qu'additif, au moins un sucre, comme le glucose par exemple, ou encore au moins un polysaccharide, comme notamment le dextran, ou leurs mélanges. On peut évidemment avoir une combinaison de ces divers types d'additifs.
La concentration en sel dans la phase aqueuse interne, lorsque ce dernier est présent, est plus particulièrement comprise entre 0,05 et 1 mol/l, de préférence 0,1 à 0,4 mol/l.
La concentration en sucre et/ou polysaccharide, s'il(s) est(sont) employé(s), est telle que la pression osmotique de la phase aqueuse interne comprenant le sucre et/ou polysaccharide correspond à la pression osmotique d'une phase aqueuse interne comprenant 0,05 à 1 mol/l de sel. En outre, l'émulsion inverse de l'émulsion multiple présente plus particulièrement une proportion pondérale phase aqueuse / phase huileuse comprise entre 10/90 et 90/10. De préférence, la proportion pondérale de phase aqueuse / phase huileuse est comprise entre 30/70 et 80/20.
L'émulsion inverse est préparée en mettant en œuvre les méthodes classiques. Ainsi, pour ne citer qu'un exemple, on prépare, d'une part, un premier mélange comprenant l'eau, la matière active hydrophile et éventuellement l'additif (sel, sucre, polysaccharide), et d'autre part, un deuxième mélange comprenant l'huile, éventuellement la matière active hydrophobe et le tensioactif et/ou le polymère amphiphile. On ajoute ensuite le premier mélange au second, sous agitation. Dans le cas où la phase huileuse est peu visqueuse (viscosité inférieure à 1 Pa.s) l'agitation est de préférence forte et peut être, de manière avantageuse, apportée par l'utilisation d'un appareil du type Ultra-Turrax®, Microfluidizer, ou tout homogénéisateur haute pression.
Dans le cas où la phase huileuse est visqueuse (viscosité supérieure ou égale à 1 Pa.s, de préférence supérieure ou égale à 5 Pa.s), l'agitation peut être avantageusement effectuée au moyen d'une pale-cadre. La préparation de l'émulsion inverse est en général réalisée à une température supérieure à la température de fusion de la phase huileuse. Habituellement, la température de préparation de l'émulsion inverse se situe entre 20 et 80°C.
La durée de l'agitation peut être déterminée sans difficulté par l'homme de l'art et dépend du type d'appareillage mis en œuvre. Elle est de préférence suffisante pour obtenir une taille moyenne de gouttelettes comprise entre 0,1 et 10 μm, de préférence entre 0,1 et 5 μm (mesurée au moyen d'un granulomètre Horiba)
La phase aqueuse externe de l'émulsion multiple va maintenant être décrite.
Comme cela a été indiqué auparavant, la phase aqueuse externe peut comprendre au moins une matière active qui se trouve solubilisée dans la phase aqueuse externe, soit sous une forme solubilisée dans un solvant miscible à la phase aqueuse externe, comme le methanol, l'éthanol, le propylene glycol, le glycérol, soit sous la forme d'un solide divisé dispersé dans ladite phase aqueuse externe.
La teneur en matière active, si elle est présente, est plus particulièrement comprise entre 0,1 et 50 % en poids de la phase aqueuse externe, et de préférence comprise entre 0,1 et 20 % en poids de la phase aqueuse externe.
Selon une première possibilité, la phase aqueuse externe comprend de plus au moins tensioactif non ionique et/ou au moins un polymère amphiphile non ionique éventuellement associé(s) à au moins un polymère amphiphile anionique. Selon une deuxième possibilité, la phase aqueuse externe comprend au moins un polymère amphiphile anionique éventuellement associé à au moins un tensioactif anionique. Il est à noter que la règle de Bancroft peut être appliquée aux tensioactifs et polymères utilisés (fraction soluble dans la phase continue est supérieure à la fraction soluble dans la phase dispersée). Ainsi, le tensioactif et le polymère sont de préférence choisis parmi ceux qui vérifient à la fois les deux conditions ci-dessous :
- lorsqu'ils sont mélangés avec la phase aqueuse externe, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase à 25°C, se trouvent sous la forme d'une solution dans tout ou partie de la gamme de concentration indiquée. - lorsqu'ils sont mélangés avec la phase huileuse interne, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase et à 25°C, se trouvent sous la forme d'une dispersion dans tout ou partie de la gamme de concentration indiquée. Plus particulièrement, la phase aqueuse externe comprend : - au moins un tensioactif non ionique et/ou au moins un polymère amphiphile non ionique éventuellement associé(s) à au moins un tensioactif anionique et/ou au moins un polymère amphiphile anionique ; la teneur totale en tensioactif(s) / polymère(s) amphiphile(s) non ioniques et anioniques est comprise entre 0,5 et 10 % en poids, de préférence entre 1 et 5 % en poids, par rapport à la phase huileuse ou à l'émulsion inverse si elle est présente ; la quantité en tensioactif et/ou polymère amphiphile anioniques représente 0,5 à 5 % en poids, de préférence 0,5 à 2 % en poids, par rapport au poids de tensioactif / polymère amphiphile non ioniques ; ou
- au moins un polymère amphiphile anionique éventuellement associé à au moins un tensioactif anionique ; la teneur totale en polymère amphiphile / tensioactif anioniques est comprise entre 0,5 et 10 % en poids, de préférence entre 1 et 5 % en poids, par rapport à la phase huileuse ou à l'émulsion inverse si elle est présente.
De manière avantageuse, les tensioactifs et polymères choisis ne donnent pas de phase cristal liquide dans la phase aqueuse.
En ce qui concerne les tensioactifs non ioniques, on met en œuvre de préférence des tensioactifs non ioniques polyalcoxylés. De manière avantageuse, ledit tensioactif non ionique est choisi parmi les tensioactifs suivants, seuls ou en mélange :
- les alcools gras alcoxylés
- les triglycérides alcoxylés
- les acides gras alcoxylés - les esters de sorbitan alcoxylés
- les aminés grasses alcoxylées
- les di(phényl-1 éthyl) phénols alcoxylés
- les tri(phényl-1 éthyl) phénols alcoxylés
- les alkylphénols alcoxylés le nombre de motifs alcoxylés, plus particulièrement éthoxylés et/ou propoxyles, est tel que la valeur de HLB soit supérieure ou égale à 10.
Pour ce qui a trait au polymère amphiphile non ionique, on met en œuvre un polymère comprenant au moins deux blocs, l'un d'eux étant hydrophile, l'autre hydrophobe. Ce qui a été indiqué auparavant dans le cadre de la description des monomères hydrophiles non ioniques et des monomères hydrophobes utilisables pour la préparation des polymères amphiphiles à blocs entrant dans la composition de l'émulsion inverse, reste valable et ne sera pas repris ici ; La proportion et la nature desdits monomères étant telles que le polymère résultant vérifie les conditions énoncées auparavant (règle de Bancroft - deux conditions).
Selon un mode de réalisation particulier, le polymère est obtenu à partir de monomères hydrophiles choisis parmi l'acrylamide et le méthacrylamide, seuls ou en mélange, ou sous la forme de macromonomères ; les monomères hydrophobes préférés sont les esters de l'acide acryliques avec les alcools linéaires ou ramifiés en C1-C4 tels que l'acrylate de méthyle, d'éthyle, de propyle et de butyle, les esters vinyliques comme l'acétate de vinyle, le styrène, l'α-méthylstyrène.
Au cas où ledit polymère comprend au moins trois blocs, et plus particulièrement trois blocs, le polymère est avantageusement linéaire. En outre, les blocs hydrophiles se trouvent plus particulièrement aux extrémités.
Au cas où les polymères comprennent plus de trois blocs, ces derniers sont de préférence sous la forme de polymères greffés ou peignes.
Selon un autre mode de réalisation avantageux, le polymère amphiphile comprend des blocs polyalcoxyles, et de préférence ne comprend que des blocs polyalcoxyles, dont l'un au moins est hydrophobe, l'autre hydrophile.
A titre purement indicatif, ces polymères sont obtenus en mettant en jeu des polymérisations par ouverture de cycle, notamment anionique.
Plus particulièrement lesdits polymères amphiphiles polyalcoxyles non ioniques sont choisis parmi les polymères dont la masse molaire en poids est inférieure ou égale à 100000 g/mol (mesurée par GPC, étalon polyéthylène glycol), de préférence comprise entre 1000 et 50000 g/mol, de préférence comprise entre 1000 et 20000 g/mol.
A titre d'exemples de polymères de ce type, on peut citer entre autres les polymères triblocs polyéthylène glycol / polypropylène glycol / polyéthylène glycol. De tels polymères sont bien connus et sont notamment commercialisés sous les marques Pluronic (commercialisé par BASF), Arlatone (commercialisé par ICI).
Parmi les tensioactifs anioniques convenables, on peut citer entre autres, seuls ou en mélanges :
- les alkylesters sulfonates, par exemple de formule R-CH(SO3M)-COOR', où R représente un radical alkyle en C8-C2o, de préférence en C10-C16, R' un radical alkyle en Ci-Ce, de préférence en C Ca et M un cation alcalin (sodium, potassium, lithium), ammonium substitué ou non substitué (méthyl-, diméthyl-, triméthyl-, tétraméthylammonium, diméthylpipéridinium ...) ou dérivé d'une alcanolamine (monoéthanolamine, diéthanolamine, triéthanolamine ...). On peut citer tout particulièrement les méthyl ester sulfonates dont le radical R est en
C14-C16 ; les alkylbenzenesulfonar.es, plus particulièrement en C9-C2o, les alkylsulfonates primaires ou secondaires, notamment en Cβ-Ca., les alkylglycérol sulfonates, les acides polycarboxyliques sulfonés, comme par exemple ceux décrits dans GB 1082179, les sulfonates de paraffine ; - les alkylsulfates par exemple de formule ROSO3M, où R représente un radical alkyle ou hydroxyalkyle en C10-C24, de préférence en C12-C2o ; M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés polyalcoxyles (éthoxylés (OE), propoxyles (OP), ou leurs combinaisons), comme par exemple le dodécylsulfate de sodium ;
- les alkyléthersulfates par exemple de formule RO(CH2CH2O)nSO3M où R représente un radical alkyle ou hydroxyalkyle en C10-C24, de préférence en C12- C20 ; M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, n variant généralement de 1 à 4, ainsi que leurs dérivés polyalcoxyles (éthoxylés (OE), propoxyles (OP), ou leurs combinaisons), comme par exemple le laurylethersulfate avec n = 2.
- les alkylamides sulfates, par exemple de formule RCONHR'OSO3M où R représente un radical alkyle en C2-C22, de préférence en C6-C20, R' un radical alkyle en C2-C3, M représentant un atome d'hydrogène ou un cation de même définition que ci-dessus, ainsi que leurs dérivés polyalcoxyles (éthoxylés (OE), propoxyles (OP), ou leurs combinaisons) ;
- les sels d'acides gras saturés ou insaturés, par exemple comme ceux en C8- C24, de préférence en C14-C20, les N-acyl N-alkyltaurates, les alkyliséthionates, les alkylsuccinamates et alkylsulfosuccinates, les monoesters ou diesters de sulfosuccinates, les N-acyl sarcosinates, les polyéthoxycarboxylates ; et
- les phosphates esters d'alkyle et/ou d'alkyléther et/ou d'alkylaryléther.
Parmi les polymères anioniques susceptibles d'être employés, on peut citer tout particulièrement les polymères à blocs, de préférence diblocs ou triblocs, obtenus par polymérisation d'au moins un monomère hydrophile anionique, éventuellement d'au moins un monomère hydrophile non ionique, et d'au moins un monomère hydrophobe.
Là encore, le choix des monomères et leurs proportions respectives sont telles que le polymère résultant vérifie les deux conditions précédemment énoncées (règle de Bancroft).
Les monomères hydrophiles non ioniques, anioniques, les monomères hydrophobes ainsi que les modes de synthèse cités dans le cadre de la description des polymères amphiphiles entrant dans la composition d'emulsions pour lesquelles la phase continue est une phase huile, peuvent être mis en œuvre pour l'obtention des polymères selon cette variante. On pourra donc s'y référer.
Notons que l'on ne sortirait pas du cadre de la présente invention en combinant un ou plusieurs tensioactifs avec un ou plusieurs polymères amphiphiles.
Cependant, selon un mode de réalisation préféré de l'invention, la phase aqueuse externe comprend un ou plusieurs polymères amphiphiles. Par ailleurs, on ne sortirait pas du cadre de la présente invention en utilisant un polymère amphiphile cationique, en association avec le tensioactif non ionique et/ou le polymère amphiphile non ionique précités. Parmi les polymères cationiques susceptibles d'être mis en œuvre dans le cadre de la présente invention, on peut tout particulièrement citer les dérivés cationiques de polysaccharides, comme les dérivés de guar ou de cellulose.
Il est de même possible de mettre en œuvre des polymères cationiques fonctionnalisés par des groupes hydrophobes comme des chaînes alkyles en C1-C14, de préférence en C2-C8, présentant éventuellement un groupement hydroxyle. Ces groupes hydrophobes sont rattachés à la chaîne polymérique principale par l'intermédiaire de liaisons éthers.
Par ailleurs, et dans le cas des guars cationiques modifiés hydrophobes ou non, le groupement cationique est un groupement ammonium quaternaire portant trois radicaux, identiques ou non, choisis parmi l'hydrogène, un radical alkyle comprenant 1 à
22 atomes de carbone, plus particulièrement 1 à 14, de manière avantageuse 1 à 3 atomes de carbone. Le contre ion est un halogène, de préférence le chlore.
Dans le cas des celluloses cationiques modifiées hydrophobes ou non, le groupement cationique est un groupement ammonium quaternaire portant trois radicaux, identiques ou non, choisis parmi l'hydrogène, un radical alkyle comprenant 1 à
10 atomes de carbone, plus particulièrement 1 à 6, de manière avantageuse 1 à 3 atomes de carbone. Le contre ion est un halogène, de préférence le chlore.
De plus, le rapport pondéral d'émulsion inverse par rapport à la phase aqueuse externe dans l'émulsion multiple est habituellement compris entre 30/70 et 90/10, de préférence compris entre 50/50 et 90/10.
Afin d'équilibrer les pressions osmotiques de la phase aqueuse externe et de la phase aqueuse interne, on peut ajouter dans la phase aqueuse externe au moins un additif choisi parmi les sels tels que les halogénures de métaux alcalins ou alcalino- terreux (comme le chlorure de sodium, le chlorure de calcium), parmi les sulfates de métal alcalin ou alcalino-terreux (comme le sulfate de magnésium), parmi les sucres (glucose par exemple), ou encore parmi les polysaccharides (notamment le dextran) ou leurs mélanges.
Les concentrations en additif (sel, en sucre et/ou en polysaccharide) sont telles que les pressions osmotiques des phases aqueuses externe et interne sont équilibrées. De plus, en fonction de l'application à laquelle est destinée l'émulsion selon l'invention, ou en fonction de la nature de la matière active, il peut être avantageux d'ajuster le pH de la phase aqueuse externe par ajout de base (soude, potasse) ou d'acide (chlorhydrique). A titre illustratif, la gamme habituelle de pH de la phase aqueuse externe est comprise entre 3 et 8, de préférence entre 5 et 8.
Il est à noter que si la phase huileuse interne présente une viscosité relativement élevée, par exemple supérieure ou égale à 1 Pa.s, plus particulièrement supérieure ou égale à 5 Pa.s, il peut être avantageux d'ajouter à la phase aqueuse externe, au moins un polymère thermoépaississant.
Il est rappelé que ce type de polymère a la particularité de donner des solutions aqueuses dont la viscosité augmente lorsque la température dépasse une certaine température-seuil. Plus particulièrement, ces polymères sont solubles dans l'eau à température ambiante, et au-delà de la température-seuil, une partie du polymère devient hydrophobe (partie thermosensible) : le polymère forme ainsi un réseau physique à l'échelle microscopique, ce qui se traduit à l'échelle macroscopique par une augmentation de la viscosité. Selon un mode de réalisation avantageux de la présente invention, le polymère thermoépaississant mis en œuvre est choisi parmi les polymères présentant un saut de viscosité entre 25 et 80°C tel que la valeur du rapport logio (viscosité à 80°C) / logio (viscosité à 25°C) est au moins égale à au moins 1. Le rapport est mesuré dans les conditions suivantes : * Le polymère est tout d'abord mis en solution dans l'eau (extrait sec de 4 %).
* Le profil rhéologique est ensuite mesuré en mode écoulement à contrainte imposée, en effectuant un balayage de température entre 20°C et 80°C. La configuration utilisée est la géométrie cône-plan 4cm/1 degré. La contrainte introduite dans le programme est choisie (en mode manuel) de telle sorte que le gradient à 25°C soit de 10 s 1.
* La grandeur qui a été retenue pour caractériser le pouvoir thermoépaississant du polymère, soit le rapport logio (viscosité à 80°C) / logio (viscosité à 25°C), représente le saut de viscosité, exprimé en décades, de 25 à 80°C. Cette grandeur exprime en d'autres termes que la viscosité du milieu à 80°C est supérieure de 10n fois la viscosité du milieu à 25°C ; avec n entier compris entre 0 et 5.
Outre cette caractéristique, le polymère thermoépaississant est choisi de telle sorte que la variation de viscosité est réversible.
Parmi les polymères thermoépaississants utilisables, on peut citer les polysaccharides modifiés hydrophobes comme les carboxyméthyl celluloses, les méthyl celluloses, les hydroxyéthyl celluloses, les hydroxypropyl celluloses.
Dans le cas de ce type de polymères, il peut être avantageux de les mettre en œuvre associés à au moins un tensioactif supplémentaire, choisi parmi les tensioactifs non ioniques ou encore anioniques.
Conviennent aussi les polymères synthétiques comme les polymères à base de N- isopropyl acrylamide, les polymères à base de N,N-diméthyl aminoethyl methacrylate.
Les polymères de structure peigne constitués d'un segment squelette polymérique sur lequel sont greffés au moins deux segments latéraux polymériques, identiques ou non, pour lequel soit le segment squelette polymérique, soit les segments latéraux polymériques possèdent une température critique inférieure de solubilité, LCST, comprise entre 25 et 80°C. De préférence, les segments latéraux polymériques sont thermosensibles et dérivent de polymères polyoxyalkylénés.
A titre d'exemples de polymères de ce type, on peut citer notamment, les polymères préparés à partir de polymère tri-blocs POE-POP-POE et d'acide acrylique (pourcentages molaires respectifs : 2,3 %, 97,7 %, greffage direct), les polymères préparés à partir de macromonomère de tri-blocs POE-POP-POE et d'acide acrylique (% molaires respectifs : 1 ,6 %, 98,4 %, copolymérisation), les polymères préparés à partir de macromonomère de tri-blocs POE-POP-POE et d'acide acrylique (% molaires respectifs : 3 %, 97 %, copolymérisation), les polymères préparés à partir de macromonomère de tri-blocs POE-POP-POE et d'acide acrylique (% molaires respectifs : 2 %, 98 %, copolymérisation).
Ces polymères ont fait l'objet d'une demande de brevet français FR 2 180 422, à laquelle on pourra se référer pour plus d'informations sur les polymères et leur obtention.
La teneur en polymère thermoépaississant représente plus particulièrement, lorsqu'il est présent, 0,2 à 10 % en poids de la phase aqueuse externe. De préférence, la teneur en ce polymère représente 1 à 5 % en poids de la phase aqueuse externe.
Selon une variante avantageuse de la présente invention, la phase aqueuse externe de l'émulsion multiple peut comprendre au moins un polymère épaississant. Ce polymère a notamment pour effet d'éviter le crémage et/ou la sédimentation de l'émulsion finale.
A titre d'illustration, on peut utiliser des polymères épaississants extraits de végétaux et éventuellement modifiés, tels que les carraghénannes, les alginates, les carboxymethyl celluloses, les méthylcelluloses, les hydroxypropyl celluloses, les hydroxyéthyl celluloses.
On peut de même employer des polymères épaississants du type des polysaccharides d'origine animale, végétale, bactérienne, on peut citer à titre d'exemple non limitatif, la gomme xanthane, le guar et dérivés (tels que l'hydroxypropyl guar par exemple), les polydextroses, ou leurs combinaisons.
Lorsqu'il est présent, la teneur en polymère épaississant est plus particulièrement comprise entre 0,1 et 2 % en poids par rapport à la phase aqueuse externe, de préférence entre 0,1 et 0,5 % en poids par rapport à la phase aqueuse externe.
Précisons que dans cette gamme de concentration, le polymère épaississant est soluble dans la phase aqueuse.
Selon une autre variante de l'invention, la phase aqueuse externe comprend une phase huileuse externe dispersée. Eventuellement, ladite phase aqueuse externe peut aussi comprendre au moins un solide divisé dispersé. La phase huileuse externe peut en outre comprendre au moins une matière active hydrophobe.
Au cas où la phase huileuse externe comprend une ou plusieurs matières actives hydrophobes différentes de la phase huileuse, leur teneur représente plus particulièrement inférieure ou égale à 50 % en poids de ladite phase huileuse externe, de préférence de 0,5 à 50 % en poids, avantageusement entre 0,5 et 20 % en poids.
Plus particulièrement, si la phase aqueuse externe ne comprend pas de matière active soluble, solubilisée ou dispersée sous la forme d'un solide divisé, la phase huileuse externe comprend alors au moins une matière active hydrophobe. Précisons qu'il n'est pas exclu qu'à la fois les phases aqueuse et huileuse externes comprennent chacune au moins une matière active.
Tout ce qui a été indiqué précédemment concernant la matière active hydrophobe éventuellement présente dans la phase huileuse interne, reste valable et ne sera pas détaillé à nouveau maintenant. De même, il est rappelé que ladite phase huileuse externe peut en elle-même constituer une matière active.
Notons que ces matières actives peuvent être mises en œuvre en présence d'additifs classiques dans le domaine d'application concerné.
Plus particulièrement, et toujours selon cette variante, la phase huileuse externe représente de 1 à 50 % en poids de la phase aqueuse externe, de préférence 5 à 25 % en poids de la phase aqueuse externe.
En outre, il est préférable que la taille des gouttelettes de la phase huileuse externe soit au plus du même ordre de grandeur que celle de l'émulsion inverse dispersée dans la phase aqueuse externe.
Quant à la possibilité de mettre en œuvre un solide dispersé dans la phase aqueuse externe, tous les solides utilisés dans les divers types de formulations cosmétiques et/ou dermatologiques, peuvent convenir. De préférence, la taille de ce ou ces solides dispersés est voisine ou plus faible que celle des gouttelettes de l'émulsion inverse.
Au cas où le solide dispersé est présent, sa teneur représente plus ' particulièrement 1 à 50 % en poids de la phase aqueuse externe, de préférence 5 à 25 % en poids.
La préparation de l'émulsion multiple peut être réalisée selon toute méthode connue.
A titre d'exemple, on peut procéder de la manière suivante. Dans un premier temps, on prépare la phase aqueuse externe en mélangeant le tensioactif et/ou le polymère amphiphile, éventuellement la matière active si celle-ci se présente sous forme soluble dans la phase aqueuse ou solubilisée dans un solvant miscible à cette phase, éventuellement le polymère thermoépaississant, et l'eau. De préférence, on mélange tout d'abord l'eau et le tensioactif et/ou le polymère amphiphile, sous agitation, puis éventuellement la matière active et le polymère thermoépaississant, et éventuellement l'additif (sel / sucre / polysaccharide).
Cette opération a lieu habituellement entre 20 et 80°C. La phase aqueuse externe peut éventuellement être laissée au repos pendant 1 à
12 heures à température ambiante.
On procède ensuite à la préparation de l'émulsion multiple proprement dite en ajoutant l'émulsion inverse à la phase aqueuse externe. Il est à noter que de manière avantageuse, une partie de la phase aqueuse externe est écartée, afin d'être utilisée pour la préparation de l'émulsion simple comprenant la phase huileuse externe dispersée dans la phase aqueuse externe, au cas où une telle émulsion est présente.
La préparation de l'émulsion multiple a lieu de préférence sous agitation, en ajoutant au départ l'émulsion inverse lentement.
L'agitation peut être faite au moyen d'une pale cadre. Typiquement, la vitesse d'agitation est relativement lente, de l'ordre de 400 tr/minute.
Selon la variante où l'émulsion multiple est mélangée à une émulsion simple huile dans eau, on ajoute ladite émulsion composée de la phase huileuse externe dispersée, de manière avantageuse, dans la même phase aqueuse externe que celle utilisée pour l'émulsion multiple. Il est toutefois à noter qu'il n'est pas exclu de mettre en œuvre des phases aqueuses externes différentes, dans la mesures où il n'y a pas de déstabilisation de l'émulsion mixte. Bien évidemment, les quantités de phase aqueuse externe introduites avec les émulsions inverse et simple sont telles que les proportions pondérales de chacune des phases satisfont aux conditions explicitées ci-dessus pour l'émulsion mixte. L'obtention de l'émulsion directe est réalisée selon toute méthode connue, par mélange sous agitation des deux phases : la phase huileuse externe le cas échéant la matière active hydrophobe et la phase aqueuse externe comprenant le tensioactif et/ou le polymère amphiphile, éventuellement la matière active soluble ou solubilisée et éventuellement le polymère thermoépaississant. Dans le cas où la phase aqueuse externe comprend un solide dispersé, l'obtention de l'émulsion multiple peut être réalisée comme indiqué dans le premier cas, puis on ajoute ledit solide dispersé dans la phase aqueuse externe.
La taille moyenne des gouttelettes de l'émulsion multiple varie avantageusement entre 5 et 15 μm (Horiba). Enfin, si l'émulsion multiple comprend un agent épaississant, ce dernier est de manière très avantageuse incorporé une fois l'émulsion mixte obtenue, c'est-à-dire une fois tous les autres ingrédients ajoutés. L'émulsion mixte qui vient d'être détaillée peut être utilisée comme élément constitutif de formulations cosmétiques et/ou dermatologiques.
La teneur en émulsion mixte est de préférence telle que la teneur totale en matière(s) active(s) présentes dans les phases aqueuses et huileuses, dans la formulation cosmétique et/ou dermatologique est comprise entre 0,01 et 10 % en poids de ladite formulation.
Les formulations cosmétiques et/ou dermatologiques faisant l'objet de l'invention peuvent être formulées en un grand nombre de types de produits pour la peau, le cheveu, les cils et/ou les ongles, les conditionneurs, les formulations pour le coiffage ou pour faciliter le peignage des cheveux, les lotions pour les mains et le corps, les produits régulant l'hydratation de la peau, les laits de toilette, les compositions démaquillantes, les produits dépilatoires, les crèmes ou lotions de protection contre le soleil et les rayonnements ultraviolets, les crèmes de soin, les préparations anti-acné, les formulations maquillage de type mascaras, fonds de teint, vernis à ongles, les produits destinés à être appliqués sur les lèvres, etc.
Les formulations cosmétiques et/ou dermatologiques, en plus des émulsions mixtes, comprennent des additifs classiques dans le domaine.
On peut ainsi incorporer dans la formulation cosmétique et/ou dermatologique, sous forme de dispersions ou de solutions, des agents bactéricides ou fongicides afin d'améliorer la désinfection de la peau, comme par exemple le triclosan ; des agents antipelliculaires, comme notamment le zinc pyrithione ou l'octopyrox ; des agents insecticides comme les pyréthroides naturels ou de synthèse.
Les formulations cosmétiques et/ou dermatologiques peuvent également contenir des agents pour la protection de la peau et/ou des cheveux contre les agressions du soleil et des rayons UV. Ainsi, les compositions peuvent comprendre des filtres solaires qui sont des composés chimiques absorbant fortement le rayonnement UV, comme les composés autorisés dans la directive européenne N° 76/768/CEE, ses annexes et les modifications ultérieures de cette directive, notamment des particules minérales comme l'oxyde de zinc, le dioxyde de titane ou les oxydes de cérium sous forme de poudre ou de particules colloïdales, seuls ou en mélange. Ces poudres peuvent éventuellement être traitées en surface pour augmenter l'efficacité de leur action anti-UV ou pour faciliter leur incorporation dans les formulations cosmétiques ou pour inhiber la photoréactivité de surface.
Lesdites formulations peuvent également contenir des résines fixatives. Ces résines fixatives, lorsqu'elles sont présentes, le sont généralement à des concentrations comprises entre 0,01 et 10%, préférentiellement entre 0,5 et 5%.
Les résines fixatives entrant dans les compositions cosmétiques sont plus particulièrement choisies parmi les résines suivantes : • les copolymeres acrylate de méthyle / acrylamide, copolymeres polyvinylméthyléther / anhydride maléique, copolymeres acétate de vinyle / acide crotonique, copolymeres octylacrylamide / acrylate de méthyle / butylaminoéthylméthacrylate, polyvinylpyrrolidones, copolymeres polyvinylpyrrolidone / methacrylate de méthyle, copolymeres polyvinylpyrrolidone / acétate de vinyle, alcools polyvinyliques, copolymeres alcool polyvinylique / acide crotonique, copolymeres alcool polyvinylique / anhydride maléique, hydroxypropyl celluloses, hydroxypropyl guars, polystyrène sulfonates de sodium, terpolymères polyvinylpyrrolidone / éthyl methacrylate/ acide méthacrylique, monométhyl éthers de poly(méthylvinyl éther / acide maléique), polyvinylacétates greffés sur des troncs polyoxyéthylènes (EP-A-219 048),
• les copolyesters dérivés d'acide, anhydride ou d'un diester téréphtalique et/ou isophtalique et/ou sulfoisophtalique et d'un diol, tels que :
- les copolymeres polyesters à base de motifs ethylène téréphtalate et/ou propylene téréphtalate et polyoxyéthylène téréphtalate, (US-A-3 959 230, US-A-3 893 929, US-A-4 116896, US-A-4 702 857, US-A-4 770 666) ;
- les oligomères polyesters sulfonés obtenus par sulfonation d'un oligomère dérivé de l'alcool allylique éthoxylé, du diméthyltéréphtalate et du 1 ,2 propylene diol (US-A-4 968 451) ;
- les copolymeres polyesters dérivés de diméthyltéréphtalate, d'acide isophtalique, de sulfoisophtalate de diméthyl et d'éthylène glycol (EP-A-540374) les copolymeres comprenant des unités polyesters dérivés de diméthyltéréphtalate, d'acide isophtalique, de sulfoisophtalate de diméthyl et d'éthylène glycol et d'unités polyorganosiloxanes (FR-A-2 728 915).
- les oligomères polyesters sulfonés obtenus par condensation de l'acide isophtalique, du sulfosuccinate de dimethyle et de diéthylène glycol (FR-A-2 236 926)
- les copolymeres polyesters à base de motifs propylene téréphtalate et polyoxyéthylène téréphtalate et terminés par des motifs éthyles, méthyles (US-A-4 711 730) ou des oligomères polyesters terminés par des groupes alkylpolyéthoxy (US-A-4 702 857) ou des groupes anioniques sulfopolyéthoxy (US-A-4 721 580), sulfoaroyles (US-A-4 877 896) ;
- les polyesters - polyuréthannes obtenus par réaction d'un polyester obtenu à partir d'acide adipique et/ou d'acide téréphtalique et/ou d'acide sulfoisophtalique et d'un diol, sur un prépolymère à groupements isocyanates terminaux obtenus à partir d'un polyoxyéthylène glycol et d'un diisocyanate (FR-A-2 334 698) ; • les monoamines ou polyamines éthoxylées, les polymères d'aminés éthoxylées (US-A-4 597 898, EP-A-11 984).
De manière préférentielle, les résines fixatives sont choisies parmi les polyvinylpyrrolidone (PVP), copolymeres de polyvinylpyrrolidone et de méthyl methacrylate, copolymère de polyvinylpyrrolidone et d'acétate de vinyle (VA), copolymeres polytéréphtale d'éthylène glycol / polyéthylène glycol, copolymeres polytéréphtalate d'éthylène glycol / polyéthylène glycol / polyisophtalate sulfonate de sodium, et leurs mélanges. Ces résines fixatives sont préférentiellement dispersées ou solubilisées dans le véhicule choisi.
Les formulations cosmétiques et/ou dermatologiques peuvent également contenir des dérivés polymériques exerçant une fonction protectrice.
Ces dérivés polymériques peuvent être présents en quantités de l'ordre de 0,01- 10% en poids de la formulation cosmétique et/ou dermatologique, de préférence environ 0,1-5% en poids, et tout particulièrement de l'ordre de 0,2-3% en poids.
Ces agents peuvent notamment être choisis parmi : . les dérivés cellulosiques non ioniques tels que les hydroxyéthers de cellulose, la méthylcellulose, Péthylcellulose, l'hydroxypropyl méthylcellulose, l'hydroxybutyl méthylcellulose ;
. les polyvinylesters greffés sur des troncs polyalkylénés tels que les polyvinylacétates greffés sur des troncs polyoxyéthylènes (EP-A-219048) ; . les alcools polyvinyliques.
Les formulations cosmétiques et/ou dermatologiques peuvent aussi comprendre des agents plastifiants.
Lesdits agents, s'ils sont présents, peuvent représenter entre 0,1 à 20% en poids de la formulation de préférence de 1 à 15% en poids.
Parmi les agents plastifiants particulièrement utiles, on peut citer les adipates, les phtalates, les isophtalates, les azélates, les stéarates, les silicones copolyols, les glycols, l'huile de ricin, ou leurs mélanges.
On peut également incorporer auxdites formulations cosmétiques et/ou dermatologiques des agents humectants, parmi lesquels figurent, entre autres, le glycérol, le sorbitol, l'urée, le collagène, la gélatine, l'aloe vera, l'acide hyaluronique ou des solvants volatils hydrosolubles comme l'éthanol ou le propylene glycol dont les teneurs peuvent atteindre jusqu'à 60% en poids de la composition.
Pour diminuer encore l'irritation ou l'agression du cuir chevelu, on peut aussi ajouter des polymères hydrosolubles ou hydrodispersables comme le collagène ou certains dérivés non allergisants de protéines animales ou végétales (hydrolysats de protéines de blé par exemple), des hydrocolloïdes naturels (gomme de guar, de caroube, de tara, ...) ou issus de procédés de fermentation, et les dérivés de ces polycarbohydrates comme les celluloses modifiées non ioniques comme par exemple l'hydroxyéthylcellulose, ou anioniques comme la carboxyméthylcellulose ; les dérivés du guar ou de la caroube comme leurs dérivés non-ioniques (par exemple hydroxypropylguar) ou les dérivés anioniques (carboxyméthylguar et carboxyméthylhydroxypropylguar) .
A ces composés, on peut ajouter en association, des poudres ou des particules minérales comme du carbonate de calcium, du bicarbonate de sodium, du dihydrogénophosphate de calcium, des oxydes minéraux sous forme de poudre ou sous forme colloïdale (particules de taille inférieure ou de l'ordre de un micromètre, parfois de quelque dizaines de nanomètres) comme du dioxyde de titane, de la silice, des sels d'aluminium utilisés généralement comme anti-transpirants, du kaolin, du talc, des argiles et leurs dérivés, etc.. Des agents conservateurs comme les méthyl, éthyl, propyl et butyl esters de l'acide p-hydroxybenzoïque, le benzoate de sodium, le GERMABEN® ou tout agent chimique évitant la prolifération des bactéries ou des moisissures et utilisé traditionnellement dans les formulations cosmétiques et/ou dermatologiques, peuvent aussi être introduits dans les présentes formulations, généralement à hauteur de 0,01 à 3 % en poids de la formulation.
La quantité de ces produits est habituellement ajustée pour éviter toute prolifération de bactéries, moisissures ou levures dans les compositions cosmétiques.
A ces ingrédients on peut ajouter, si nécessaire, et dans le but d'augmenter le confort lors de l'utilisation de la formulation par le consommateur, un ou des parfums, des agents colorants parmi lesquels on peut citer les produits décrits dans l'annexe IV ("List of colouring agents allowed for use in cosmetic products") de la directive européenne n° 76/768/CEE du 27 juillet 1976 dite directive cosmétique, et/ou des agents opacifiants comme des pigments.
Bien que cela ne soit pas obligatoire, la formulation peut aussi contenir des polymères viscosants ou gélifiants de façon à ajuster la texture de la formulation, comme les polyacrylates réticulés (Carbopol commercialisés par Goodrich), les dérivés non cationiques de la cellulose comme l'hydroxypropylcellulose, la carboxyméthylcellulose, les guars et leurs dérivés non ioniques, la gomme xanthane et ses dérivés, utilisés seuls ou en association, ou les mêmes composés, généralement sous la forme de polymères hydrosolubles modifiés par des groupements hydrophobes liés de manière covalente au squelette polymère comme décrit dans le brevet WO 92/16187.
Les formulations cosmétiques et/ou dermatologiques peuvent également contenir des agents dispersants polymériques en quantité de l'ordre de 0,1-7% en poids, pour contrôler la dureté en calcium et magnésium, agents tels que :
. les sels hydrosolubles d'acides polycarboxyliques de masse moléculaire en poids de l'ordre de 2000 à 100000 g/mol, obtenus par polymérisation ou copolymérisation d'acides carboxyliques éthyléniquement insaturés tels que l'acide acrylique, l'acide ou l'anhydride maléique, l'acide fumarique, l'acide itaconique, l'acide aconitique, l'acide mesaconique, l'acide citraconique, l'acide methylenemalonique, et tout particulièrement les polyacrylates de masse moléculaire en poids de l'ordre de 2 000 à 10 000 g/mol (US-A-3 308 067), les copolymeres d'acide acrylique et d'anhydride maléique de masse moléculaire en poids de l'ordre de 5000 à 75000 g/mol (EP-A-66915) ;
. les polyéthylèneglycols de masse moléculaire en poids de l'ordre de 1000 à 50000 g/mol.
On peut aussi avantageusement ajouter à ces formulations des agents séquestrants des métaux, plus particulièrement ceux séquestrant le calcium comme les ions citrates.
Un exemple concret mais non limitatif de l'invention va maintenant être présenté.
EXEMPLE
1/ Emulsion inverse
Composition de l'émulsion inverse :
* 30% de phase aqueuse :
- 14% d'acide lactique (% en poids de solution à 0,1 M exprimé par rapport au poids de phase aqueuse)
- 86% de NaCI (% en poids de solution à 0,1 M exprimé par rapport au poids de phase aqueuse)
* 70% de phase huile (huile de soja et agent tensioactif) comprenant 5% d'agent tensioactif (Arlacel P135 ; ICI - Uniquema (*); % exprimé en poids par rapport au poids de phase aqueuse).
(*) Arlacel P 135 : Polyhydroxystéarate - PEG - Polyhydroxystéarate ; HLB = 5-6 ; Mw≈ 5000 g/mol)
Préparation de l'émulsion inverse :
On prépare 100 g d'émulsion inverse, comprenant 70 g de phase huileuse interne et 30 g de phase aqueuse interne.
D'une part, on mélange 4,2 g de solution d'acide lactique à 0,1 M avec 25,8 g de solution de NaCI à 0,1 M. D'autre part, on mélange 1,5 g d'Arlacel P135 avec 68,5 g d'huile de soja.
Préalablement au mélange, l'huile de soja et l'Arlacel ont été placés à l'étuve à 75°C.
On ajoute ensuite la phase aqueuse interne dans la phase huileuse interne, sous agitation à l'Ultraturrax à 9500 tr/min. Le mélange est effectué à 75 °C. 2/ Emulsion multiple
Composition de l'émulsion multiple : * 50% d'émulsion inverse
* 50% d'extrait sec en phase aqueuse externe contenant :
- 2% d'Arlatone F127G (*) (ICI - Uniquema ; % en poids exprimé par rapport au poids de l'émulsion inverse) ;
- 3,6 % de glucose (% en poids exprimé par rapport au poids de phase aqueuse externe) ;
- 1% de Rhodopol 23 (**) (Rhodia Chimie ; % en poids exprimé par rapport au poids de phase aqueuse externe).
(*) Arlatone F127G : HO(CH2CH2O)χ(OCH(CH3)CH2θ)y(CH2CH2O)zH avec vérification de l'inéquation suivante : 82<x+z<90 et le polymère comprend 7 motifs OP pour 1 mole de produit). (**) Rhodopol 23 : gomme xanthane.
Préparation de l'émulsion multiple : Préparation de la phase aqueuse externe :
On prépare 40 g de phase aqueuse externe en pesant 20 g de solution de Rhodopol 23 à 2 % et l'on ajoute 20 g de solution d'Arlatone F F127G à 4 % et de glucose à 7,2 %.
On mélange l'ensemble à la pâle cadre à 200 tour/minute pendant 5 minutes.
Préparation de l'émulsion multiple :
On introduit les 50 g de l'émulsion inverse obtenue au point 1/, sous agitation à la pale cadre à 400 tr/min, goutte à goutte dans la phase aqueuse externe, à température ambiante. On maintient l'agitation pendant encore 10 minutes.
On ajoute ensuite 0,5 g de formaldéhyde puis on homogénéise pendant 5 minutes à 400 tours/minutes.
3/ Emulsion directe de rétinol
Composition de l'émulsion directe :
* 32,5 % de phase huileuse comprenant 4,8 % en poids de rétinol (*) (BASF ; % en poids exprimé par rapport au poids phase aqueuse) ; * 67,5 % de phase aqueuse externe contenant :
- 2 % d'Arlatone F127G (% en poids exprimé par rapport au poids phase aqueuse) ;
- 5,3 % de glucose (% en poids exprimé par rapport au poids de phase aqueuse) ;
- 1 ,48 % de Rhodopol 23 (% en poids exprimé par rapport au poids de phase aqueuse) ;
- 10 % d'Alkamuls T85 (**) (Rhodia Chimie ; % en poids exprimé par rapport au poids de phase huileuse).
(*) rétinol : solution à 10 % dans le miglyol. (**) Alkamuls T85 : ester de sorbitan comprenant 20 motifs éthoxylés.
Préparation de l'émulsion directe :
On prépare 30 g d'émulsion directe comprenant 9,75 g de solution de rétinol et 20,25 g de phase aqueuse comprenant 1g d'Alkamuls T85, 12 g de solution de Rhodopol à 2,5 %, 3,75 g de solution d'Arlatone à 15,6 %, 3,5 g d'une solution de glucose à 30%.
L'émulsion est obtenue de la manière suivante :
On mélange 9,75 g de solution de rétinol à 1 g d'Alkamuls T85 sous agitation à la pale cadre à 500 tours/minute. On introduit goutte à goutte, sous agitation à la pale cadre à 500 tours/minute,
3,75 g de solution d'Arlatone F127G. En fin d'addition, on maintient l'agitation pendant 10 minutes.
On effectue ensuite une agitation à l'Ultra-turrax à 9500 tours/minute (5 minutes) puis à 20500 tours/minute (2 minutes). Durant cette agitation, l'émulsion est refroidie. On introduit ensuite la solution de glucose dans l'émulsion de rétinol sous agitation à la pale cadre à 500 tours/minute, puis la solution de Rhodopol 23 en une fois en mélangeant à la spatule.
On effectue enfin une homogénéisation à l'Ultra-turrax à 9500 tours/minute.
4/ Emulsion mixte
On introduit 10 g d'émulsion de rétinol en une seule fois dans 90 g d'émulsion multiple.
On mélange délicatement avec une spatule puis on homogénéise à la pale cadre à 200 tr/min pendant 3 minutes.
On obtient une émulsion mixte stable comprenant 0,5 % en poids de rétinol par rapport à l'eau totale.

Claims

REVENDICATIONS
Formulation cosmétique et/ou dermatologique comprenant au moins deux matières actives dans une émulsion multiple constituée d'une phase aqueuse interne dispersée dans une phase huileuse interne, l'ensemble étant dispersé dans une phase aqueuse externe ; l'émulsion multiple étant éventuellement mélangée à une émulsion simple constituée d'une phase huileuse externe dispersée dans une phase aqueuse externe : π la phase huileuse interne comprenant au moins un tensioactif non ionique et/ou au moins un polymère amphiphile et éventuellement au moins une matière active hydrophobe ; π la phase aqueuse externe comprenant au moins tensioactif non ionique et/ou au moins un polymère amphiphile non ionique éventuellement associé(s) à au moins un polymère amphiphile anionique ou comprenant au moins un polymère amphiphile anionique éventuellement associé à au moins un tensioactif anionique ;
° au moins une matière active hydrophile se trouvant dans la phase aqueuse interne ; et π au moins une matière active se trouvant sous forme soluble, solubilisée ou sous forme d'un solide dispersé dans la phase aqueuse externe, ou se trouvant dans la phase huileuse externe.
Formulation selon la revendication 1 , caractérisée en ce que le tensioactif et/ou le polymère présents dans la phase huileuse interne sont choisis parmi ceux qui vérifient à la fois les deux conditions ci-dessous :
- lorsqu'ils sont mélangés avec la phase huileuse interne, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase à 25°C, se trouvent sous la forme d'une solution dans tout ou partie de la gamme de concentration indiquée. - lorsqu'ils sont mélangés avec la phase aqueuse interne, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase et à 25°C, se trouvent sous la forme d'une dispersion dans tout ou partie de la gamme de concentration indiquée.
Formulation selon l'une des revendications précédentes, caractérisée en ce que la quantité de tensioactif non ionique et/ou de polymère amphiphile non ionique représente 2 à 10 % en poids de la phase aqueuse interne.
4. Formulation selon l'une des revendications précédentes, caractérisée en ce que la teneur en matière active hydrophile présente dans la phase aqueuse interne est comprise entre 0,1 et 50 % en poids de la phase aqueuse interne, et de préférence comprise entre 0,1 et 20 % en poids de la phase aqueuse interne.
5. Formulation selon l'une des revendications précédentes, caractérisée en ce que l'émulsion inverse présente une proportion pondérale phase aqueuse / phase huileuse comprise entre 10/90 et 90/10, de préférence, entre 30/70 et 80/20.
6. Formulation selon l'une des revendications précédentes, caractérisée en ce que la phase aqueuse interne comprend au moins un additif choisi parmi les sels tels que les halogénures de métaux alcalins ou alcalino-terreux, ou les sulfates de métal alcalin ou alcalino-terreux, parmi les sucres, ou les polysaccharides, ou leurs mélanges.
7. Formulation selon la revendication précédente, caractérisée en ce que la concentration en sel dans la phase aqueuse interne est comprise entre 0,05 et 1 mol/l, de préférence 0,1 à 0,4 mol/l et/ou la concentration en sucre et/ou polysaccharide est telle que la pression osmotique de la phase aqueuse interne comprenant le sucre et/ou le polysaccharide correspond à la pression osmotique d'une phase aqueuse interne comprenant 0,05 à 1 mol/l de sel.
8. Formulation selon l'une des revendications précédentes, caractérisée en ce que le tensioactif et/ou le polymère présents dans la phase aqueuse externe sont choisis parmi ceux qui vérifient à la fois les deux conditions ci-dessous :
- lorsqu'ils sont mélangés avec la phase aqueuse externe, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase à 25°C, se trouvent sous la forme d'une solution dans tout ou partie de la gamme de concentration indiquée. - lorsqu'ils sont mélangés avec la phase huileuse interne, à une concentration comprise entre 0,1 et 10 % en poids de ladite phase et à 25°C, se trouvent sous la forme d'une dispersion dans tout ou partie de la gamme de concentration indiquée.
9. Formulation selon l'une des revendications précédentes, caractérisée en ce que la phase aqueuse externe comprend au moins un polymère thermoépaississant.
10. Formulation selon l'une des revendications précédentes, caractérisée en ce que le polymère thermoépaississant est choisi parmi les polymères présentant un saut de viscosité entre 25 et 80°C tel que la valeur du rapport logio (viscosité à 80°C) / logio (viscosité à 25°C) est au moins égale à au moins 1.
11. Formulation selon l'une des revendications 9 ou 10, caractérisée en ce que la teneur en polymère thermoépaississant est comprise entre 0,2 et 10 % en poids de la phase aqueuse externe, de préférence, entre 1 et 5 % en poids de la phase aqueuse externe.
12. Formulation selon l'une des revendications précédentes, caractérisée en ce que la phase aqueuse externe comprend au moins un polymère épaississant.
13. Formulation selon la revendication précédente, caractérisée en ce que la teneur en polymère épaississant est comprise entre 0,1 et 2 % en poids par rapport à la phase aqueuse externe, de préférence entre 0,1 et 0,5 % en poids par rapport à la phase aqueuse externe.
14. Formulation selon l'une des revendications précédentes, caractérisée en ce que le rapport pondéral d'émulsion inverse par rapport à la phase aqueuse externe dans l'émulsion multiple est compris entre 30/70 et 90/10, de préférence compris entre 50/50 et 90/10.
15. Formulation selon l'une des revendications précédentes, caractérisée en ce que les pressions osmotiques de la phase aqueuse externe et de la phase aqueuse interne sont équilibrées par ajout dans la phase aqueuse externe, d'au moins un additif choisi parmi les sels tels que les halogénures de métaux alcalins ou alcalino-terreux, les sulfates de métal alcalin ou alcalino-terreux, ou choisi parmi les sucres ou encore parmi les polysaccharides, ou leurs mélanges.
16. Formulation selon la revendication précédente, caractérisée en ce que la phase huileuse externe dispersée représente 1 à 50 % en poids de la phase aqueuse externe, de préférence 5 à 25 % en poids de la phase aqueuse externe.
17. Formulation selon l'une des revendications précédentes, caractérisée en ce que la phase aqueuse externe comprend au moins un solide dispersé. Formulation selon la revendication précédente, caractérisée en ce que le solide dispersé représente 1 à 50 % en poids de la phase aqueuse externe, de préférence 5 à 25 % en poids de la phase aqueuse externe.
EP02714272A 2002-03-04 2002-03-04 Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple Withdrawn EP1480596A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2002/000769 WO2003074010A1 (fr) 2002-03-04 2002-03-04 Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple

Publications (1)

Publication Number Publication Date
EP1480596A1 true EP1480596A1 (fr) 2004-12-01

Family

ID=27772032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02714272A Withdrawn EP1480596A1 (fr) 2002-03-04 2002-03-04 Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple

Country Status (5)

Country Link
US (1) US20050169946A1 (fr)
EP (1) EP1480596A1 (fr)
JP (1) JP2005525359A (fr)
AU (1) AU2002246190A1 (fr)
WO (1) WO2003074010A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703834B2 (en) * 2011-07-28 2014-04-22 Eastman Kodak Company Preparation of crosslinked organic porous particlesrelated applications
WO2015066877A1 (fr) * 2013-11-07 2015-05-14 L'oreal Composition comprenant des tensioactifs et des substances actives hydrophiles
US20180258305A1 (en) * 2017-03-13 2018-09-13 Eastman Kodak Company Method of forming silver nanoparticles using cellulosic polymers
FR3112475B1 (fr) 2020-07-20 2023-11-10 Naos Inst Of Life Science formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9010526D0 (en) * 1990-05-10 1990-07-04 Unilever Plc Cosmetic composition
FR2693466B1 (fr) * 1992-07-09 1994-09-16 Oreal Composition cosmétique sous forme d'émulsion triple eau/huile de silicone/eau gélifiée.
FR2693733B1 (fr) * 1992-07-17 1994-09-16 Oreal Composition cosmétique sous forme d'émulsion triple eau/huile/eau gélifiée.
FR2702391B1 (fr) * 1993-03-11 1995-04-28 Roussel Uclaf Nouvelles émulsions multiples, leur préparation, leur application à la préparation de compositions cosmétiques et ces compositions cosmétiques.
US5656280A (en) * 1994-12-06 1997-08-12 Helene Curtis, Inc. Water-in-oil-in-water compositions
US5589177A (en) * 1994-12-06 1996-12-31 Helene Curtis, Inc. Rinse-off water-in-oil-in-water compositions
DE19712980B4 (de) * 1997-03-27 2008-10-09 Henkel Ag & Co. Kgaa W/O/W-Emulsionen und deren Verwendung
FR2769224B1 (fr) * 1997-10-03 2000-01-28 Oreal Emulsion e/h/e stable et son utilisation comme composition cosmetique et/ou dermatologique
US5948855A (en) * 1999-01-12 1999-09-07 Dow Corning Corporation Water-in-oil-in water emulsion
FR2815550B1 (fr) * 2000-10-20 2003-08-29 Rhodia Chimie Sa Granules obtenus par sechage d'une emulsion multiple

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO03074010A1 *

Also Published As

Publication number Publication date
US20050169946A1 (en) 2005-08-04
JP2005525359A (ja) 2005-08-25
WO2003074010A1 (fr) 2003-09-12
AU2002246190A1 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
EP1397198B1 (fr) Emulsions huile dans huile comprenant une silicone, dispersions de telles emulsions et utilisation
EP1904027B1 (fr) Ingredient concentre pour le traitement et/ou modification de surfaces, et son utilisation dans des compositions cosmetiques
EP1331985B1 (fr) Procede de preparation d&#39;une emulsion dont la phase organique est de forte viscosite
EP2087881A1 (fr) Dispersion de particules de polymère, composition la comprenant et procédé de traitement cosmétique
WO2005100454A1 (fr) Emulsion sechee, son procede de preparation, et ses utilisations
FR2769836A1 (fr) Utilisation de nanofibrilles de cellulose essentiellement amorphes associees a au moins un compose organique polyhydroxyle dans des formulations cosmetiques
WO2008006782A1 (fr) Compositions cosmetiques comprenant une poudre en materiau thermoplastique
FR2820976A1 (fr) Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple
EP1480596A1 (fr) Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple
EP1265585B1 (fr) Emulsion comprenant un systeme huile silicone / co-solvant concentre en matiere(s) active(s) cosmetique(s) liposoluble(s) et formulations cosmetiques correspondantes
FR2964562A1 (fr) Produit cosmetique comprenant un elastomere de silicone
FR2848878A1 (fr) Suspension de particules presentant plusieurs phases
EP0948312B1 (fr) Compositions cosmetiques aqueuses a base de silicones insolubles non volatils, stabilisees par un succinoglycane
WO2002083288A1 (fr) Suspension obtenue a partir d&#39;une emulsion multiple comprenant un compose hydrophobe solide a temperature ambiante et granules obtenus par sechage de la suspension
EP1401922A1 (fr) Procede de stabilisation d&#39; une dispersion aqueuse d&#39;une emulsion huile dans l&#39;huile silicone
FR2957256A1 (fr) Composition cosmetique avec alcanes lineaires volatils et copolymeres d&#39;alcenes
EP1772136A1 (fr) Compositions cosmétiques contenant au moins un tensioactif et au moins une dispersion non aqueuse de polymère
EP1250118B1 (fr) Compositions cosmetiques comprenant un melange polymere cationique/tensioactif anionique et utilisation dudit melange comme agent structurant
WO2003000206A2 (fr) Composition aqueuse comprenant une emulsion directe d&#39;une huile silicone et d&#39;une huile
FR2745175A1 (fr) Composition cosmetique capillaire et procedes de preparation
FR2745176A1 (fr) Composition cosmetique pour la peau et/ou le cheveu et procedes de preparation
FR2745178A1 (fr) Composition cosmetique pour la coloration du cheveu et procedes de preparation
FR2957789A1 (fr) Composition cosmetique comprenant un polymere cationique et un acide polymerique, et procede de traitement cosmetique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICCA, JEAN-MARC

Inventor name: LANNIBOIS-DREAN, HELENE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICCA, JEAN-MARC

Inventor name: LANNIBOIS-DREAN, HELENE

17Q First examination report despatched

Effective date: 20051011

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070307