EP1480241B1 - Disjoncteur hybride pour courant continu et procédé de disjonction - Google Patents

Disjoncteur hybride pour courant continu et procédé de disjonction Download PDF

Info

Publication number
EP1480241B1
EP1480241B1 EP03090155A EP03090155A EP1480241B1 EP 1480241 B1 EP1480241 B1 EP 1480241B1 EP 03090155 A EP03090155 A EP 03090155A EP 03090155 A EP03090155 A EP 03090155A EP 1480241 B1 EP1480241 B1 EP 1480241B1
Authority
EP
European Patent Office
Prior art keywords
current
quenching
switching
time
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03090155A
Other languages
German (de)
English (en)
Other versions
EP1480241A1 (fr
Inventor
Jürgen Kunhardt von Schmidt
Ulrich Kahnt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elpro BahnstromAnlagen GmbH
Original Assignee
Elpro BahnstromAnlagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpro BahnstromAnlagen GmbH filed Critical Elpro BahnstromAnlagen GmbH
Priority to EP03090155A priority Critical patent/EP1480241B1/fr
Priority to DE50302112T priority patent/DE50302112D1/de
Priority to AT03090155T priority patent/ATE315274T1/de
Publication of EP1480241A1 publication Critical patent/EP1480241A1/fr
Application granted granted Critical
Publication of EP1480241B1 publication Critical patent/EP1480241B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/56Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere for ensuring operation of the switch at a predetermined point in the ac cycle

Definitions

  • the invention relates to a DC rapid switching device for traction power supplies using a vacuum switch and an extinguishing circuit and a method for switching off a direct current in a rectifier substation.
  • a thyristor in the Kommut réelleszweig is ignited at the same time as the opening command for the vacuum switch, so that the current to be switched from the load circuit commutated in the Kommut réelleszweig and is then completely interrupted by deleting the thyristors.
  • the main disadvantages of this device are that only currents can be switched in one direction and that the switching path is formed exclusively by semiconductors.
  • the object is to provide a DC rapid switching device for traction power supplies and a method that ensures a reliable and rapid shutdown of the operating current or short-circuit currents but also reverse currents while galvanic isolation of the distance from the busbar of the rectifier substation, the components are not exposed to high dynamic requirements, so that the device with low-cost components can be realized.
  • the DC rapid switching device for traction power supplies is characterized by the features of claim 1, wherein between the track and the busbar of the rectifier substation, a switching device is arranged. Parallel to this switching device, an erase circuit is arranged, which consists of a Löschkondenstor, which is connected in series with a switching unit consisting of two antiparallel arranged thyristors. To the switching device also a test branch is arranged in parallel. The test branch consists of a series connection of a test thyristor, a current measuring element and a test resistor.
  • the DC rapid switching device also has a freewheeling circuit, each having a branch for each current direction, from the busbar to the return conductor or from the line to the return conductor, in each of which two freewheeling diodes, which are connected in series, are arranged.
  • a freewheeling diode in each branch of the freewheeling circuit is arranged in parallel a fuse with message.
  • the Dimensioning of the freewheeling diode and the fuse is chosen so that only a small portion of the freewheeling current flows through the respective fuse, while most of the freewheeling current flows through the freewheeling diode arranged in parallel to the fuse.
  • a control module which is known per se but is specially programmed in accordance with the method steps is provided.
  • the acquired measured values are processed by a conventional control module which outputs the corresponding control commands to the switching device and the quenching thyristors on this basis.
  • the opening process of the switching device is initiated automatically depending on the set limits and taking into account the dimensioning of the cancellation circuit, in particular the capacity of the quenching capacitor, the time-optimized control of the quenching thyristors.
  • the route test is also carried out by the control module, by calculating the current output voltage of the track resistance and the connection of the track is only possible with sufficiently large line resistance.
  • the fuse monitoring of the fuses of the freewheeling circuit is carried out by the control module, which also monitors other safety-related variables, such as the charging voltage of the quenching capacitor.
  • the quick-switching device has the advantage that it can be realized with inexpensive components, in particular thyristors and capacitors, since no high demands are placed on the switching speed and the dynamic properties. Another advantage is that with this quick-switching device, the galvanic isolation path is not bridged by semiconductor devices which could take over an unintentional power supply as a result of lightning surges. Thus, this arrangement always ensures plant safety. Since an arc is formed at the beginning of the switch-off between the switching contacts of the switching device, the switching resistance of the vacuum interrupter chamber is constantly regenerated. The freewheeling circuit designed according to the invention always ensures that the freewheeling function is maintained even if the freewheeling diode fails due to high voltage load (eg lightning strike) and at the same time the defect is displayed.
  • high voltage load eg lightning strike
  • the shutdown is initiated by a switching command to open the metallic contact of the switching device, which is preferably a vacuum switch. This forms an arc in the vacuum interrupter chamber over the contact gap.
  • An extinguishing capacitor arranged parallel to the switching path is constantly charged between the discharging processes in order to ensure that the quick-switching device is ready for operation.
  • the discharge unit of the quenching capacitor is initiated by the switching unit, whereby the quenching capacitor discharges via the switching path of the switching device.
  • the discharge capacitor is discharged in the form of a "swinging" alternating current / oscillating process, this current being superimposed on the direct current flowing over the switching path.
  • the quenching / Umschwingstrom will have such a profile and a size that by the superimposition of the operating current (from the busbar) and the quenching / Umschwingstromes (from the capacitor), the resulting Current, the switch current flowing through the switching path, reaches the value "zero" at a certain time.
  • the defined time at which the first quenching thyristor is ignited taking into account the mechanical switching times of the switching device and depending on the current to be switched so chosen that the "zero value" of the resulting switch current occurs at a time at which the dielectric strength of the switching path in Switching device is guaranteed. So that the system load is kept as low as possible, the "zero value" of the resulting current but should occur at the earliest possible time, ie immediately or as soon as possible after the switching path has reached the dielectric strength.
  • the quenching capacitor is charged before each discharging so that with ignition of the first quenching thyristor, the quenching current of the quenching capacitor flows against the preferred direction of the operating current over the switching path during the first swing, so that when switching forward currents already at the first Umschwingvorgang a "zero value" of the resulting switch current over the switching path occurs.
  • the ignition pulse for the first quenching thyristor is in each case offset in time, depending on the time course of Umschwingvorganges the extinguishing current before the extinguishing current reaches the value of "zero" at the end of the first charge, the ignition pulse for the second quenching thyristor.
  • the second charge transfer of the quenching capacitor, now reversed current direction, initiated, if at this time not already switching the operating current is switched off.
  • the shutdown is triggered automatically when reaching a set limit of the operating current.
  • Fig. 1 shows the basic circuit arrangement for the quick-switching device, being used as a switching device, a vacuum switch VS.
  • the quick-switching device is connected via a two-pole circuit breaker SBT on the one hand to the busbar SS of the traction power supply and on the other hand to the line ST .
  • the track is galvanically isolated from the busbar by means of the two-pole SBT disconnector.
  • the vacuum switch VS is arranged between the busbar SS of the traction power supply and the line ST and serves, on the one hand, to carry operating currents, load or short-circuit currents in both current directions and, on the other hand, to rapidly produce a galvanic isolating path.
  • the drive of the vacuum switch VS takes place by means of an electromagnetic drive:
  • a current detection element T is arranged, which detects the operating and fault currents.
  • This erase circuit consists of an erase capacitor LK, two with this in series antiparallel arranged quenching thyristors LT1, LT2 and a series-connected inductance L.
  • a test circuit is also arranged in parallel to the vacuum switch VS , which checks before the reconnection of the route this to its current state.
  • the test circuit consists of a series connection of a test thyristor Vp, a current measuring element Tp and a test resistor PW. For testing the test thyristor Vp is ignited and detected with the current measuring element Tp of the current flowing through the test resistor PW current.
  • the quick-switching device is completed by a freewheeling circuit FK, which has two branches, one of which is arranged between the busbar SS of the traction power supply and the return conductor RL and the other between the route ST and the return conductor RL .
  • the freewheeling circuit FK ensures that after the production of the galvanic isolating distance in the vacuum switch VS, the energy present in the inductances of the line is quickly reduced by freewheeling currents I F.
  • This freewheeling circuit FK is constructed in such a way that two freewheeling diodes FD1, FD2 and FD3, FD4 connected in series are arranged for each branch, from the busbar SS to the return conductor RL or from the line ST to the return conductor RL .
  • a fuse Si1, Si2 with a message is arranged.
  • the fuse Si1, Si2 is dimensioned so that the voltage drop across the parallel freewheeling diode FD1, FD4 even at maximum freewheeling current I F does not exceed the voltage drop of the fuse at twice the rated current. This ensures that normally only about 0.1% to 1% of the freewheeling current I F flows via the respective fuse Si1 or Si2 . Most of the freewheeling current I F always flows through the freewheeling diode FD1 or FD4.
  • the control module SG processes the detected measured values and outputs the corresponding control commands to the vacuum switch VS and the quenching thyristors LT1, LT2 .
  • the opening process of the vacuum switch VS is automatically initiated in accordance with the set limit values.
  • the dimensioning of the extinguishing circuit in particular the capacity of the extinguishing capacitor LK. and the inductance L, there is the time-optimized control of the quenching thyristors LT1, LT2.
  • the control module SG also carries out the route check, in which the travel resistance is calculated taking into account the current outgoing voltage.
  • a connection of the route ST is only possible if the track resistance determined during the route test is greater than the specified limit value.
  • the fuse monitoring of the fuses Si1, Si2 of the freewheeling circuit FK is also performed by the control module SG, which also monitors other safety-related variables, such as the charging voltage of the quenching capacitor LK .
  • Fig. 1 will be described closer to three typical / critical operating conditions.
  • the current curves are gem. of Fig. 2 to Fig. 4 used.
  • a first example is selected in which a occurring short-circuit current I K is to be switched off in the preferred direction, ie a short circuit on the line ST is fed by the traction power supply via the busbar SS .
  • the rising short-circuit current I K is detected by the current detection element T in the current path of the vacuum switch VS.
  • the switch-off command for the vacuum switch VS is given at time t 1 and the drive begins to open the contacts of the vacuum switch VS after about 0.3 ms at time t 2 .
  • the contact opening runs evenly over the contact path KW , the maximum contact distance is 2 mm.
  • the short-circuit current I K continues to flow via the switching arc that forms when the contact is lifted within the vacuum chamber.
  • the flowing current has to assume the value "zero", since the vacuum switch used is not able to switch off a flowing short-circuit current.
  • the control command for igniting the quenching thyristor LT1 added. This stored in the turn-off capacitor LK energy is released, it flows erase current I L from the quenching capacitor LK via the switching path of the vacuum switch VS counter to the current direction of the short-circuit current I K.
  • the extinguishing current I L in the form of a swinging alternating current. Due to the selected scale, not the entire course of the extinguishing current I L is shown in FIG. 2, but only the detail which is relevant for extinguishing the arc.
  • the two currents, the short-circuit current I K and the extinguishing current I L are superimposed in the current path of the vacuum switch VS and thus over the switching path to the resulting switch current I S.
  • the two currents, the short-circuit current I K and the extinguishing current I L each have such a value, so that the resulting switch current I S reaches the value "zero".
  • the erasing current I L from the quenching capacitor LK also continues to flow via the switching path of the vacuum switch VS counter to the current direction of the short-circuit current I K. Since the erasing current I L corresponds to a sine half-wave, the resulting switch current I S at time t 5 for the second time the value "zero". At this point, the arc over the contact gap of the vacuum switch VS extinguishes (the contact distance is now approx. 1 mm), since the required dielectric strength now exists, no arc can be re-ignited. Thus, the short-circuit current I K is finally turned off. The energy still present in the route network is reduced by a flowing freewheeling current I F via the corresponding branch of the freewheeling circuit FK, the freewheeling diodes FD3, FD4 in the direction of the return conductor RL .
  • the extinguishing current I L and thus also the resulting switch current I S can be determined as a function of the ignition time t 3 of the extinguishing capacitor LK for each short-circuit current I K to be switched.
  • the defined time t 3 for firing the quenching thyristor LT1 is selected so that the maximum of the oscillating quenching current I L in each case is greater than the current flowing at this time short-circuit current I K. This ensures that the resulting switch current I S has twice the value "zero".
  • the switching path has the required dielectric strength. Since the two "zero values" of the switch current I S at t 4 and t 5 have a time interval of a maximum of 0.6 ms, the system load by switching off the short-circuit current I K is certainly responsible for the second "zero value".
  • a small operating current I B is to be switched off.
  • I B When shutting off small currents, there is the possibility that the arc in the opening contact tears off automatically before the initiation of the deletion process. This could lead to a high voltage load of the system by the inductors located in the circuit, in addition then would be pending with ignition of the quenching thyristor LT1 on the separation line, the capacitor voltage. This would be applied over the distance to the transfer of the quenching capacitor LK over the line ST in the amount of addition of busbar voltage and capacitor voltage corresponding voltage.
  • the ignition pulse for igniting the quenching thyristor LT1 at time t 3 is given before the time t 2 , the beginning of the contact opening, so that no galvanic isolation gap in the vacuum switch VS can arise.
  • a defined transhipment of the quenching capacitor LK on the still closed contact path or the forming arc between the contacts of the vacuum switch VS and the overvoltage is avoided.
  • the switch-off command for the vacuum switch VS is given at time t 1 and the drive begins to open the contacts of the vacuum switch VS at time t 2 , wherein the extinguishing current I L from the quenching capacitor LK already flows.
  • the extinguishing current I L from the quenching capacitor LK also flows in the opposite direction to the operating current I B through the switching path of the vacuum switch VS.
  • the switching path is still conductive. It follows that the arc only at time t 5 , the dielectric strength of the switching path is now guaranteed, extinguished on reaching the second "zero value" of the switch current I S and the operating current I B is turned off. Now the freewheeling current I F starts to flow.
  • a reverse current I R flowing from the route ST to the busbar SS is to be switched off. Since in this case a current is to be switched off, which flows contrary to the "preferred direction", in this case the quenching thyristor LT1 is again ignited at a different time, whereby a "zero value" of the switch current I S at the earliest possible time to pass the dielectric strength of the switching path is achieved.
  • the ignition pulse at the time t 3 for the quenching thyristor LT1 immediately after the time t 1 the switch-off command for the vacuum switch VS is given. This results in a defined transfer of the quenching capacitor LK on the closed contact of the vacuum switch VS.
  • the extinguishing current I L of the quenching capacitor LK and the return current I R have in the vacuum switch VS for the period between the times t 3 and t 7 , the duration of the first Umschwingvorganges, the same direction of current and add up. Characterized the erasing current I L obtained in the first current rise no "zero" value of the resulting switch current I S.
  • the ignition pulse for the second quenching thyristor LT2 is given, whereby at time t 7, the second charge reversal of the quenching capacitor LK is initiated.
  • the two currents, the extinguishing current I L and the return current I R different current directions, whereby the switch current I S at time t 4 reaches the value "zero".
  • the switching distance of the vacuum switch VS has the required dielectric strength, so that the standing between the contacts of the vacuum switch VS arc is extinguished and the return current is turned off.
  • the freewheeling current I F begins to flow.
  • the three examples described above correspond to typical / critical operating currents that are to be turned off by the DC quick-connect device. According to the dimensioning in particular of the cancellation circuit and the vacuum switch VS used , the times t 1 to t 7 can be predefined in the control unit SG .
  • the freewheeling circuit FK ensures that, after the production of the galvanic isolating path, the energy present in the inductances of the line ST is dissipated by the flowing freewheeling currents I F in one or the other direction.
  • This freewheeling circuit FK is constructed such that it has a branch for each current direction, from the busbar SS to the return conductor RL or from the line ST to the return conductor RL . In each branch, two freewheeling diodes FD1, FD2 and FD3, FD4 are connected in series.
  • a freewheeling diode FD1, FD4 a fuse Si1, Si2 is connected in parallel with message, wherein the largest part of the freewheeling current I F always flows through the freewheeling diode FD1 and FD4 .
  • very high voltage loads such as lightning overvoltages
  • Freewheeling diodes FD2, FD3 claimed.
  • they can lose their blocking ability. Since the two other freewheeling diodes FD1, FD4 are virtually short-circuited by the respective fuse Si1, Si2 , they are not stressed by the overvoltage and remain functional.
  • the failure of the freewheeling diode FD2 or FD3 has a short-circuit current through the fuse Si1 or Si2 result, causing it responds and shuts off this short-circuit current.
  • the freewheeling circuit FK is because of the functional residual freewheeling diodes FD1, FD4 voltage resistant again.
  • the respective fuse Si1 , Si2 reports this state to the control module SG .
  • the freewheeling circuit FK always remains functional.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Claims (10)

  1. Dispositif à action instantanée à courant continu en vue de la remise à zéro d'un courant continu dans une sous-station à redresseur pour une alimentation en courant de traction à courant continu, un appareil de distribution (VS) qui est monté en série avec un élément de détection de courant (T) étant disposé entre la ligne (ST) et la barre collectrice (SS) de la sous-station à redresseur, élément de détection de courant auquel est monté en parallèle un circuit de remise à zéro composé d'un condensateur étouffant (LK), d'une inductance (L) et d'une unité de commutation et un circuit à roue libre (FK) étant en outre disposé parallèlement à l'appareil de distribution (VS),
    caractérisé en ce que
    l'unité de commutation se compose de deux thyristors étouffants (LT1, LT2) disposés de manière antiparallèle et un bras de contrôle qui se compose d'un montage en série d'un thyristor de contrôle (Vp), d'un élément de mesure de courant (Tp) et d'une résistance de contrôle (PW) est également disposé parallèlement à l'appareil de distribution (VS) et le circuit à roue libre (FK) se compose en outre de deux bras parmi lesquels l'un est disposé entre la barre collectrice (SS) et le conducteur de retour (RL) et l'autre est disposé entre la ligne (ST) et le conducteur de retour (RL), bras qui présentent à chaque fois deux diodes de roue libre (FD1, FD2 ou FD3, FD4) montées en série et un coupe-circuit à fusible à signalisation (Si1, Si2) est disposé à chaque fois parallèlement à la diode de roue libre (FD1, FD4) respective reliée à la barre collectrice (SS) ou à la ligne (ST).
  2. Dispositif à action instantanée à courant continu selon la revendication 1,
    caractérisé en ce que
    le dimensionnement de la diode de roue libre (FD1, FD4) et du coupe-circuit à fusible (Si1, Si2) disposé parallèlement à celle-ci est choisi de sorte qu'à chaque fois, seule une faible partie du courant de roue libre (IF) s'écoule par l'intermédiaire du coupe-circuit à fusible (Si1, Si2) respectif tandis que la plus grande partie du courant de roue libre (IF) s'écoule par l'intermédiaire de la diode de roue libre (FD1, FD4) disposée parallèlement à ce coupe-circuit à fusible (Si1, Si2).
  3. Procédé en vue de l'interruption de courants continus dans une sous-station à redresseur pour des alimentations en courant de traction avec un dispositif à action instantanée à courant continu selon la revendication 1, le processus d'interruption étant amorcé par une instruction de commutation en vue de l'ouverture du contact métallique de l'appareil de distribution (VS) lors de l'atteinte d'une valeur de courant réglable au moment (t1) et la décharge du condensateur étouffant (LK) étant ensuite amorcée par l'unité de commutation à un moment défini (t3), ce par quoi le condensateur étouffant (LK) se décharge par l'intermédiaire de la ligne de commutation de l'appareil de distribution (VS), le courant de commutateur (IS) prenant la valeur « zéro » au moins une fois par la superposition du courant de service (IB) par la barre collectrice (SS) et du courant de remise à zéro (IL) par le condensateur étouffant (LK) en le courant de commutateur (IS) résultant par l'intermédiaire de la ligne de commutation, avec un dimensionnement correspondant du circuit de remise à zéro,
    caractérisé en ce que
    le moment (t3) auquel le premier thyristor étouffant (LT1) est allumé, est déterminé en fonction du montant et de la direction du courant de service (IB) à commuter et retardé dans le temps en fonction de l'allure dans le temps du courant de remise à zéro (IL) du condensateur étouffant (LK), au moment (t6) auquel le deuxième thyristor (LT2) est allumé, et le moment (t3) défini en vue de l'allumage du thyristor étouffant (LT1) est choisi de sorte qu'une « valeur nulle » du courant de commutateur (IS) est atteinte à un moment (t4, t5) auquel la rigidité diélectrique de la ligne de commutation est garantie dans l'appareil de distribution (VS).
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    en vue de l'interruption d' un courant de service (IB) important s'écoulant dans la direction préférée, notamment d'un courant de court-circuit (IK), lors de l'atteinte d'une valeur limite réglable, l'instruction d'interruption pour l'appareil de distribution (VS) est donnée au moment (t1), et après le début de l'ouverture du contact au moment (t2), l'instruction de contrôle en vue de l'allumage du thyristor étouffant (LT1) est donnée au moment (t3), ce par quoi le courant de remise à zéro (IL) s'écoule par l'intermédiaire de la ligne de commutation de l'appareil de distribution (VS) à l'encontre de la direction du courant de court-circuit (IK) et le courant de commutateur (IS) atteint à chaque fois la valeur « zéro » aux moments (t4, t5), et en cas de présence de la rigidité diélectrique de la ligne de commutation à l' un des deux moments (t4, t5), le courant de service (IS) ou le courant de court-circuit (IK) est interrompu à ce moment.
  5. Procédé selon la revendication 3,
    caractérisé en ce que
    en vue de l'interruption d'un courant de service (IB) faible s'écoulant dans la direction préférée, l'instruction d'interruption pour l'appareil de distribution (VS) est donnée au moment (t1) et l'impulsion d'allumage en vue de l'allumage du thyristor étouffant (LT1) est donnée au moment (t3) avant le moment (t2), le début de l'ouverture du contact, de sorte qu'une inversion de charge définie du condensateur étouffant (LK) a lieu par l'intermédiaire de la ligne de contact encore fermée ou de l'arc électrique se formant entre les contacts de l'appareil de distribution (VS), le courant de remise à zéro (IL) s'écoulant par l'intermédiaire de la ligne de commutation de l'appareil de distribution (VS) du condensateur étouffant (LK) à l'encontre de la direction du courant de service (IB) et le courant de commutateur (IS) atteint pour la première fois la valeur « zéro » au moment (t4) auquel la ligne de commutation est encore conductrice et le courant de commutateur (IS) atteint pour la deuxième fois la valeur « zéro » au moment (t5) et désormais comme la rigidité diélectrique de la ligne de commutation est garantie, le courant de service (IB) est interrompu.
  6. Procédé selon la revendication 3,
    caractérisé en ce que
    en vue de l'interruption d'un courant de retour (IR) s'écoulant à l'encontre de la direction préférée, l'impulsion d'allumage est donnée au moment (t3) pour le thyristor étouffant (LT1) immédiatement après le moment (t1) auquel l'instruction d'interruption pour l'appareil de distribution (VS) est donnée, ce par quoi une inversion de charge définie du condensateur étouffant (LK) a lieu par l'intermédiaire du contact encore fermé de l'appareil de distribution (VS) et le courant de remise à zéro (IL) et le courant de retour (IR) s'ajoutent en valeur car ils ont la même direction de courant et l'impulsion d'allumage pour le deuxième thyristor étouffant (LT2) est donnée au moment (t6), ce par quoi le deuxième processus d'inversion de charge du condensateur étouffant (LK) est amorcé avec une direction de courant inverse et le courant de remise à zéro (IL) s'écoule désormais à l'encontre de la direction du courant de retour (IR) par l'intermédiaire de la ligne de commutation de l'appareil de distribution (VS) et le courant de commutateur (IS) présente ainsi la valeur « zéro » au moment (t4) auquel la ligne de commutation de l'appareil de distribution (VS) présente la rigidité diélectrique nécessaire de sorte que le courant de retour (IR) est interrompu.
  7. Procédé selon la revendication 3,
    caractérisé en ce que
    le condensateur étouffant (LK) est toujours préchargé de sorte que le courant de remise à zéro (IL) du condensateur étouffant (LK) s'écoule avec l'allumage du premier thyristor étouffant (LT1) lors du premier changement d'oscillation à l'encontre de la direction préférée du courant de service (IB).
  8. Procédé selon la revendication 3,
    caractérisé en ce que
    dans chaque cas au moment (t6) qui est déterminé en fonction de l'allure dans le temps du processus de changement d'oscillation du courant de remise à zéro (IL), l'impulsion d'allumage pour le deuxième thyristor étouffant (LT2) est donnée, ce par quoi le deuxième processus d'inversion de charge du condensateur étouffant (LK) est amorcé avec une direction de courant inverse, ce par quoi le courant de remise à zéro (IL) s'écoule désormais dans la direction préférée du courant de service (IB) par l'intermédiaire de la ligne de commutation de l'appareil de distribution (VS) dans la mesure où le courant de service (IB) à commuter n'est pas déjà interrompu à ce moment.
  9. Procédé selon la revendication 3,
    caractérisé en ce que
    lors de l'atteinte de valeurs limites réglées du courant de service (IB) par l'appareil de commande (SG), le processus d'interruption est déclenché automatiquement.
  10. Procédé selon la revendication 3,
    caractérisé en ce que
    en vue de l'interruption d'un courant de service (IB) dans des conditions extrêmes, les thyristors étouffants (LT1, LT2) sont allumés de manière répétée en alternance de sorte que le condensateur étouffant (LK) se décharge plusieurs fois successivement par l'intermédiaire de la ligne de commutation de l'appareil de distribution (VS) jusqu'à ce que la rigidité diélectrique nécessaire de la ligne de commutation soit garantie lors de l'atteinte d'une « valeur nulle » du courant de commutateur (IS) et que le courant de service (IB) soit interrompu définitivement.
EP03090155A 2003-05-23 2003-05-23 Disjoncteur hybride pour courant continu et procédé de disjonction Expired - Lifetime EP1480241B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03090155A EP1480241B1 (fr) 2003-05-23 2003-05-23 Disjoncteur hybride pour courant continu et procédé de disjonction
DE50302112T DE50302112D1 (de) 2003-05-23 2003-05-23 Verfahren zur Abschaltung von Gleichströmen und Gleichstrom-Schnellschalteinrichtung für Bahnstromversorgungen
AT03090155T ATE315274T1 (de) 2003-05-23 2003-05-23 Verfahren zur abschaltung von gleichströmen und gleichstrom-schnellschalteinrichtung für bahnstromversorgungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03090155A EP1480241B1 (fr) 2003-05-23 2003-05-23 Disjoncteur hybride pour courant continu et procédé de disjonction

Publications (2)

Publication Number Publication Date
EP1480241A1 EP1480241A1 (fr) 2004-11-24
EP1480241B1 true EP1480241B1 (fr) 2006-01-04

Family

ID=33041027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03090155A Expired - Lifetime EP1480241B1 (fr) 2003-05-23 2003-05-23 Disjoncteur hybride pour courant continu et procédé de disjonction

Country Status (3)

Country Link
EP (1) EP1480241B1 (fr)
AT (1) ATE315274T1 (fr)
DE (1) DE50302112D1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174801B2 (en) 2009-04-01 2012-05-08 Honeywell International, Inc. Controlling arc energy in a hybrid high voltage DC contactor
US9742185B2 (en) 2015-04-28 2017-08-22 General Electric Company DC circuit breaker and method of use

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011082568A1 (de) 2011-09-13 2013-03-14 Siemens Aktiengesellschaft Gleichspannungs-Leitungsschutzschalter
DE102012008614A1 (de) 2012-04-27 2013-10-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrischer Steckverbinder zum sicheren Trennen von elektrischen Strömen unter elektrischer Gleichspannung in Stromnetzen mit bidirektionalem Stromfluss
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
KR20150078491A (ko) * 2013-12-30 2015-07-08 주식회사 효성 고전압 dc 차단기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174801B2 (en) 2009-04-01 2012-05-08 Honeywell International, Inc. Controlling arc energy in a hybrid high voltage DC contactor
US9742185B2 (en) 2015-04-28 2017-08-22 General Electric Company DC circuit breaker and method of use

Also Published As

Publication number Publication date
EP1480241A1 (fr) 2004-11-24
ATE315274T1 (de) 2006-02-15
DE50302112D1 (de) 2006-03-30

Similar Documents

Publication Publication Date Title
DE102016216331B3 (de) Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung
WO2007022744A1 (fr) Disjoncteur limiteur de courant
DE112008000929T5 (de) Stromunterbrechungsvorrichtung mit automatischer Betätigung beim Auftreten von Funken an einer elektrischen Leitung
DE112008004182T5 (de) Magnetenergie-Rückgewinnungsschalter, eine Schutzschaltung aufweisend
DE102012024728A1 (de) Verfahren und Vorrichtung zur Überwachung einer elektrischen Anlage auf einen Rückstrom
DE3040577C2 (fr)
EP1480241B1 (fr) Disjoncteur hybride pour courant continu et procédé de disjonction
DE2718798C3 (de) Schutzschaltungsanordnung für einen Gleichstrom-Hauptstromkreis
DE4302406C2 (de) Stromversorgungseinheit zur funkenerosiven Bearbeitung
DE102018129909A1 (de) Leistungselektronikeinrichtung
DE19711622C1 (de) Verfahren und Vorrichtung zum Betreiben einer in einen Stromkreis geschalteten, elektrischen Last
EP3516701A1 (fr) Module solaire, installation photovoltaïque et procédé de limitation de tension
DE4403008A1 (de) Stromrichteranlage mit Überspannungsschutzschaltung
EP0226704A1 (fr) Circuit pour la détection d'un courant de défaut respectivement d'un courant différentiel
EP3270397B1 (fr) Ensemble de circuits et procédé de classification de défauts
DE10218806B4 (de) Gleichstrom-Schnellschalteinrichtung für Bahnstromversorgungen und Verfahren zur Abschaltung von Gleichströmen
EP2230753B1 (fr) Protection de composant pour un redresseur à plusieurs niveaux
DE102008011597B4 (de) Trennvorrichtung für einen Leistungshalbleiter und Verfahren zu deren Betreiben, Leistungsmodul und Systemanlage
EP3991195A1 (fr) Commutateur de puissance destiné à des courants continus
DE2922010A1 (de) Elektronische schutzschaltung
EP0054958A2 (fr) Arrangement de circuit pour enregistrer un courant de fuite
DE102011004328A1 (de) Verfahren zum Überbrücken eines Submoduls eines modularen Mehrstufenumrichters
WO2020043273A1 (fr) Agencement présentant un module d'un convertisseur de puissance multiniveau
EP3935705B1 (fr) Procédé pour détecter un courant survenant en raison d'un défaut
EP0066639A1 (fr) Circuit de protection des thyristors d'un onduleur pour véhicules ferroviaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060104

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50302112

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060404

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060404

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060605

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060104

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061005

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060405

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060705

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50302112

Country of ref document: DE

Owner name: ELPRO GMBH, DE

Free format text: FORMER OWNER: ELPRO BAHNSTROMANLAGEN GMBH, 13053 BERLIN, DE

Effective date: 20140124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: ELPRO GMBH, DE

Free format text: FORMER OWNER: ELPRO BAHNSTROMANLAGEN GMBH, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 315274

Country of ref document: AT

Kind code of ref document: T

Owner name: ELPRO GMBH, DE

Effective date: 20150212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170517

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170522

Year of fee payment: 15

Ref country code: AT

Payment date: 20170519

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 315274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180523

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180523

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50302112

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220519

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50302112

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL