EP3270397B1 - Ensemble de circuits et procédé de classification de défauts - Google Patents

Ensemble de circuits et procédé de classification de défauts Download PDF

Info

Publication number
EP3270397B1
EP3270397B1 EP17176306.3A EP17176306A EP3270397B1 EP 3270397 B1 EP3270397 B1 EP 3270397B1 EP 17176306 A EP17176306 A EP 17176306A EP 3270397 B1 EP3270397 B1 EP 3270397B1
Authority
EP
European Patent Office
Prior art keywords
switching
voltage
switching element
voltage line
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17176306.3A
Other languages
German (de)
English (en)
Other versions
EP3270397A1 (fr
Inventor
David DÖRING
Klaus WÜRFLINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59070524&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3270397(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3270397A1 publication Critical patent/EP3270397A1/fr
Application granted granted Critical
Publication of EP3270397B1 publication Critical patent/EP3270397B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/543Contacts shunted by static switch means third parallel branch comprising an energy absorber, e.g. MOV, PTC, Zener
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means
    • H01H2009/546Contacts shunted by static switch means the static switching means being triggered by the voltage over the mechanical switch contacts

Definitions

  • the invention relates to a switching arrangement for connecting two DC voltage networks.
  • High-voltage direct current (HVDC) transmission is a well-known technology that is suitable for transmitting electrical energy over long distances.
  • the current flow takes place via DC voltage lines, which can be in the form of cable lines or overhead lines.
  • DC voltage lines for example in the form of point-to-point connections, can be combined to form a DC voltage network.
  • Such direct voltage networks can be in the form of so-called multi-terminal, radial or meshed direct voltage networks.
  • the DC voltage networks are essentially formed from DC voltage lines that extend between converter stations, nodes or a node and a converter station.
  • the DC voltage lines can be implemented as bipolar or monopole connections (symmetrical and asymmetrical) known to those skilled in the art.
  • a symmetrical monopole connection is characterized by a two-pole design of the DC voltage line, for example with a positive and a negative pole, which does not have a rigid connection to earth potential.
  • DC voltage switches are usually used to decouple the two DC voltage networks.
  • a similar problem can also occur when two power converters are connected on the DC voltage side.
  • Such a DC voltage switch is, for example, from WO 2015/078525 A1 .
  • the known DC voltage switch is bidirectional, which means that it can switch the current independently of the current direction in the DC voltage line.
  • the DC voltage switch is also arranged in one of the two poles of the DC voltage line, which is sufficient for disconnecting a grounded DC voltage line.
  • WO 2014/117807 A1 a device with a bi-directional DC voltage switch is disclosed.
  • the one from the WO 2014/117807 A1 known DC voltage switch comprises two series-connected mechanical isolating switches, each of which has a discharge diode connected in parallel.
  • Another bidirectional circuit breaker is from the WO 2014/053554 A1 known.
  • the object of the present invention is to provide a switching arrangement of the above type which is simple and reliable.
  • a switching arrangement for connecting two DC voltage networks comprising a DC voltage line that connects a first DC voltage network to a second DC voltage network, a first unidirectional switching element in a first pole of the DC voltage line, a second unidirectional switching element in the first pole of the DC voltage line, which is arranged at a distance from the first switching element and whose switching direction is opposite to a switching direction of the first switching element, a third unidirectional switching element in a second pole of the DC voltage line, and a fourth unidirectional switching element in the second pole of the DC voltage line, which is connected by the third switching element is arranged spaced and its switching direction of a switching direction of the third switching element is directed in the opposite direction, the switching elements each having a dielectric strength which is below a nominal voltage (nominal transmission voltage) of the DC voltage line (but it is usually above the terminal voltage).
  • the switching arrangement according to the invention is suitable for connecting two DC voltage networks, with the DC voltage line of the switching arrangement extending between network nodes, converters and/or similar elements of the DC voltage networks to be connected. In any case, it is also particularly suitable for a converter to a DC voltage network or its node or to connect two converters to each other on the DC voltage side.
  • An advantage of the switching arrangement according to the invention is the possibility of clarifying asymmetrical ground faults at only one pole in DC voltage lines without a rigid ground connection by using unidirectional switching elements.
  • the dielectric strength of the switching elements can be selected to be lower than in the case of a DC voltage switch, which is only arranged in one pole of the DC voltage line and must therefore be designed for the full nominal voltage. This can make the switching device simpler and possibly also cheaper.
  • the nominal voltage in the DC voltage line can be more than 100 kV, in many cases more than 600 kV.
  • the DC voltage line can be connected to a DC voltage node at least at one end, for example.
  • Several DC voltage lines of the corresponding DC voltage network come together in a DC voltage node.
  • the DC voltage line can also be connected at least at one end to a converter of the corresponding DC voltage network.
  • the poles of the DC voltage line are present, for example, as cable or overhead lines.
  • the switching direction of the switching element is that current direction in which the switching element can block the current. In this context, it can also be referred to as the tripping current direction.
  • the switching elements of the switching arrangement according to the invention are unidirectional. This means that the switching elements generally have an excellent switching direction. If the current flows against the switching direction of a Switching element, this switching element can not block the current.
  • the DC voltage line is in the form of a monopole connection, expediently a symmetrical monopole connection.
  • a first, positive pole of the DC voltage line is in this case at a positive electrical potential.
  • a second, negative pole is at a negative electrical potential. Due to the lack of a fixed connection to the ground potential, a ground fault in one of the two poles may lead to a potential shift in the DC voltage line. For example, the earth fault can lead to a charge reversal of the positive pole, so that the positive pole is brought to zero potential.
  • the nominal voltage i.e. the pole-to-pole voltage, i.e.
  • the potential difference between the positive and the negative pole may be retained, so that the negative pole is lowered to twice the potential in this case.
  • This is the case, for example, when the DC voltage line is connected to an inverter that maintains a constant voltage at one end of the DC voltage line.
  • the switching arrangement according to the invention can be used to prevent such a potential shift from affecting both DC voltage networks.
  • the two DC voltage networks can be decoupled from one another by means of the switching arrangement according to the invention. In this way, at least one of the DC voltage networks is not affected by the fault or ground fault. If the fault location is between the switching elements, both DC voltage networks can even be kept harmless. Furthermore, in the event of a switch-internal error, network coupling and error localization can be implemented.
  • the dielectric strength of the switching elements preferably corresponds to a maximum voltage value of one of the poles of the DC voltage line. In the case of a symmetrical monopole connection, the switching elements are designed for approximately half the nominal voltage. The design can include an additional tolerance range of the dielectric strength of about 10% to 70%. Advantageously, the switching elements therefore do not have to be designed for the full rated voltage.
  • the first and the third switching element are arranged close to the first DC voltage network and the second and the fourth switching element are arranged close to the second DC voltage network.
  • the switching direction of the third switching element is preferably directed in the opposite direction to the switching direction of the first switching element.
  • the term local refers to a distance of less than 10 km.
  • the switching directions of the first and third switching elements preferably point towards one another. It is also advantageous if the switching directions of the second and fourth switching elements are also directed in opposite directions.
  • a preferred configuration is given when the switching direction of the first switching element, which is arranged close to the first DC voltage network, points in the direction of the second switching element, the switching direction of the second switching element, which is arranged close to the second DC voltage network, points in the direction of the first switching element, which The switching direction of the third switching element, which is located close to the first DC voltage network, points towards the first DC voltage network and the switching direction of the fourth switching element, which is located close to the second DC voltage network, points towards the second DC voltage network.
  • the first direct voltage network is referred to as network1
  • the second direct voltage network as network2
  • the ith (first to fourth) switching element as SEi accordingly.
  • the normal operating status is referred to as OK and the error status as Fail.
  • the suffix p or n indicates whether the fault occurs in the positive (p) or negative (n) pole.
  • the DC voltage line is marked as GL between the switching elements. error location Opening switching elements state net2 Network1 status net2p SE2, SE3 failure OK net2n SE1, SE4 failure OK net1p SE1, SE4 OK failure net1n SE2, SE3 OK failure GLp SE1, SE2 OK OK GLn SE3, SE4 OK OK SE1 SE2, SE3 failure OK SE3 SE1, SE4 failure OK SE2 SE1, SE4 OK failure SE4 SE2, SE3 OK failure
  • the switching elements each comprise at least one controllable switching device, wherein the controllable switching devices of Switching elements can be controlled independently of one another.
  • the switching device can include, for example, a controllable power semiconductor switch or a series connection of such.
  • the configuration of the switching device is fundamentally arbitrary and can be implemented using one of the known concepts of DC voltage switches.
  • the switching element can suitably comprise a choke for current limitation.
  • the choke can be arranged in a parallel connection or series connection to the switching device.
  • a surge arrester is preferably arranged in parallel with each switching device.
  • the voltage across the switching element can be limited by means of the surge arrester.
  • a parallel circuit comprising a plurality of surge arresters connected in parallel is arranged in parallel with at least one of the switching devices. Due to the parallel connection, a response voltage of the surge arresters can be controlled or set to a value suitable for the respective application.
  • a measuring device for detecting a potential shift in the DC voltage line.
  • the measuring device accordingly detects a possible shift in at least one of the potentials in the first or second pole of the DC voltage line during operation of the switching arrangement. It is also conceivable to record a sum of the two potentials or their shift.
  • a potential shift can be interpreted as an indication of a ground fault. If the displacement exceeds a predetermined value, for example, then the measuring device preferably generates a corresponding trigger signal, which is sent, for example, to a monitoring device or to a control unit. The control unit can correspondingly activate the switching elements to open them.
  • a potential shift also allows the switching elements to be opened for fault clearance when a fault current in the event of a fault does not significantly exceed a rated current during normal operation. It can also be advantageous if the switching arrangement comprises at least one current measuring device for measuring the current in the DC voltage line and at least one voltage measuring device for measuring the voltage in the poles of the DC voltage line. A detection of an overcurrent and/or a current increase is also conceivable.
  • the invention also relates to a method for fault clearance using the switching arrangement.
  • a short circuit can be a ground fault, for example, i.e. an electrical contact between one pole of the DC voltage line and ground.
  • the object of the invention is to propose such a method that is as simple and reliable as possible.
  • the object is achieved by a method of this type in which two unidirectional switching elements are opened in the event of a short circuit in a DC voltage line or in a DC voltage network connected to the DC voltage line, with a first unidirectional switching element being arranged in a first pole of the DC voltage line, a second unidirectional switching element in the first pole of the DC voltage line is arranged at a distance from the first switching element, the switching direction of which is opposite to a switching direction of the first switching element, a third unidirectional switching element is arranged in a second pole of the DC voltage line, and a fourth unidirectional switching element is arranged in the second pole of the DC voltage line, spaced apart from the third switching element, the switching direction of which is in the opposite direction to a switching direction of the third switching element, the switching elements each having a dielectric strength that is below a nominal voltage of the DC voltage line.
  • Which of the switching elements are opened depends in particular on the location of the error to be clarified and its type. An example of a possible procedure is shown in the table above.
  • the switching elements can be opened simultaneously or with a suitable time delay.
  • a switch is said to be open if it blocks the flow of current in the given current direction.
  • figure 1 shows a first embodiment of the switching arrangement according to the invention in a schematic representation
  • figure 2 shows a second embodiment of the switching arrangement according to the invention in a schematic representation
  • figure 3 shows a potential curve over distance in the switching arrangement according to the embodiment of FIG figure 2 .
  • the switching arrangement 1 includes a DC voltage line 2 with a first pole 3 and a second pole 4.
  • the DC voltage line 2 is a balanced monopole connection in which the first pole 3 is a positive pole and the second pole 4 is a negative pole. Both poles 3 and 4 are implemented as cable connections.
  • the DC voltage line 2 extends between a first DC voltage network 5 of any configuration and a second DC voltage network 6 of any configuration figure 1 it is indicated that the first DC voltage network is connected to two converter stations 7 and 8, respectively.
  • the second DC voltage network is connected to two further converter stations 9 and 10, respectively.
  • the converter stations 7-10 can in turn be connected to in figure 1 be connected to AC voltage networks that are not explicitly shown.
  • a nominal voltage between the two poles 3, 4 is 2*320 kV in the exemplary embodiment shown.
  • the switching arrangement 1 also includes a first switching element SE1, which is arranged close to the first DC voltage network 5 in the first pole 3 of the DC voltage line 2.
  • the first switching element SE1 has a parallel circuit made up of a controllable switching device 12, a diode 13 and a surge arrester 14.
  • the switching device 12 is a turn-off power semiconductor switch. Instead of the diode 13, a series connection of several diodes can be provided. Instead of the switching device 12, a series connection of a plurality of switching devices or a plurality of power semiconductor switches can also be provided.
  • each switching unit having a power semiconductor switch (such as, for example, an IGBT) and a freewheeling diode antiparallel thereto.
  • the first switching element SE1 has a switching direction pointing towards the second DC voltage network 6 .
  • a second switching element SE2 is arranged locally on the second DC voltage network 6 in the first pole 3 .
  • the structure of the second switching element SE2 corresponds to that of the first switching element SE1 with the difference that a switching direction of the second switching element SE2 is opposite to that of the first switching element SE1.
  • a third switching element SE3 is arranged locally on the first DC voltage network 5 in the second pole 4 .
  • the structure of the third switching element SE3 corresponds to that of the first switching element SE1.
  • a switching direction of the third switching element SE3 points in the direction of the first DC voltage network 5.
  • a fourth switching element SE4 is arranged locally on the second DC voltage network 6 in the second pole 4 .
  • the structure of the fourth switching element SE4 also corresponds to that of the first switching element SE1.
  • a switching direction of the fourth switching element SE4 is opposite to that of the third switching element SE3.
  • the switching arrangement 1 includes a control unit 15, which is suitable for driving the power semiconductors of the switching elements SE1-SE4, so that they block, for example.
  • a first measuring device 16 and a second measuring device 17 detect current, voltage and/or potential shifts in the poles 3, 4 of the DC voltage line 2.
  • the measuring devices 16, 17 are connected to the control unit 15 on the output side.
  • a short circuit is detected in the DC voltage line 2
  • a corresponding signal is sent to the control unit 15, so that the switching elements can be actuated in a way that is suitable for explaining the error.
  • the third and fourth switching elements SE3 and SE4 are driven to block.
  • the ground fault can be localized so that it has no effect on the two DC networks 5 and 6 respectively.
  • the second and the third switching element SE2 and SE3 are controlled to block. In this way, the error has no effect on the second DC voltage network 6.
  • figure 2 shows a second embodiment of the switching arrangement 1.
  • FIG. 1 shows a second embodiment of the switching arrangement 1.
  • FIG. 1 shows a second embodiment of the switching arrangement 1.
  • figure 2 shows the direct voltage line 2 of the switching arrangement 1, which extends between a network node 18, 19 of the first direct voltage network 5 and a converter 20, which belongs to the second direct voltage network 6. Otherwise corresponds to the structure of the switching arrangement 1 of figure 2 the one who figure 1 .
  • FIG 2 an example of a ground fault in the second DC voltage network 6 between the positive pole 3 and ground 22 is shown.
  • the ground fault is indicated figuratively in the form of a lightning bolt 21 .
  • the ground fault causes a ground fault current or a potential shift with a compensating current, which is shown as arrow 23 and flows between the positive pole 3 and ground 22 .
  • the ground fault causes a current to flow in the DC voltage line, which is indicated by the arrows 24 and 25 in the two poles 3, 4.
  • the potential in the positive pole 3 drops to zero due to the ground fault. Since the converter 20 maintains its DC-side voltage difference, the potential in the second pole 4 shifts by an amount dependent on the configuration of the converter 20 .
  • control unit 15 controls the first switching element SE1 and the fourth switching element SE4 to open. This causes the circuit to break. The potential shift therefore does not affect the network nodes 18, 19.
  • diagram axis labeled Z represents the location along the DC voltage line 2.
  • the electrical potentials at the given location are shown on the diagram axis labeled U.
  • the location of the two switching elements SE1 and SE3 is provided with the reference number 31.
  • the location of the switching elements SE2 and SE4 is provided with the reference number 32 .
  • the potential curves shown represent the situation after the first and fourth switching elements SE1 and SE4 have been blocked, ie after the error has been cleared.
  • the course of the potential in the negative pole 4 is provided with the reference number 34 .
  • the location of the ground fault is marked with reference number 35 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Emergency Protection Circuit Devices (AREA)

Claims (11)

  1. Montage (1) de liaison de deux réseaux (5, 6) à tension continue, comprenant
    - une ligne (2) à tension continue, qui relie un premier réseau (5) à tension continue à un deuxième réseau (6) à tension continue,
    - un premier élément (SE1) unidirectionnel de coupure dans un premier pôle (3) de la ligne (2) à tension continue,
    - un deuxième élément (SE2) unidirectionnel de coupure dans le premier pôle (3) de la ligne (2) à tension continue, qui est à distance du premier élément (SE1) de coupure et dont le sens de coupure est contraire à un sens de coupure du premier élément (SE1) de coupure,
    - un troisième élément (SE3) unidirectionnel de coupure dans un deuxième pôle (4) de la ligne (2) à tension continue,
    - un quatrième élément (SE4) unidirectionnel de coupure dans le deuxième pôle (4) de la ligne (2) à tension continue, qui est à distance du troisième élément (SE3) de coupure et dont le sens de coupure est contraire à un sens de coupure du troisième élément (SE3) de coupure, les éléments (SE1-4) de coupure ayant chacun une rigidité diélectrique, qui est en-dessous d'une tension (Un) nominale de la ligne (2) à tension continue.
  2. Montage (1) suivant la revendication 1, dans lequel la ligne (2) à tension continue est constituée sous la forme d'une liaison symétrique monopolaire.
  3. Montage (1) suivant l'une des revendications 1 ou 2, dans lequel la rigidité diélectrique des éléments (SE1-4) de coupure correspond à une valeur maximum de tension de l'un des pôles (3, 4) de la ligne (2) à tension continue.
  4. Montage (1) suivant l'une des revendications précédentes, dans lequel le sens de coupure du troisième élément (SE3) de coupure est contraire au sens de coupure du premier élément (SE1) de coupure.
  5. Montage (1) suivant la revendication 4, dans lequel les sens de coupure des deux éléments (SE1, 2) de coupure, dans un pôle (3) positif de la ligne (2) à tension continue, sont tournés l'un vers l'autre.
  6. Montage (1) suivant l'une des revendications précédentes, dans lequel le premier et le deuxième élément (SE1, 2) de coupure sont montés à une distance l'un de l'autre de plus de 1 km.
  7. Montage (1) suivant l'une des revendications précédentes, dans lequel les éléments (SE1-4) de coupure comprennent chacun au moins un dispositif (12) de coupure pouvant être commandé, les dispositifs (12) de coupure pouvant être commandés des éléments (SE1, 4) de coupure pouvant être commandés indépendamment les uns des autres.
  8. Montage (1) suivant la revendication 7, dans lequel un parafoudre (14) est monté en parallèle à chaque dispositif (12) de coupure.
  9. Montage (1) suivant la revendication 8, dans lequel un circuit parallèle composé de plusieurs parafoudres (14) montés en parallèle est monté en parallèle à chacun des dispositifs (12) de coupure.
  10. Montage (1) suivant l'une des revendications précédentes, dans lequel il est prévu un dispositif (16, 17) de mesure pour la détection d'un déplacement de potentiel dans la ligne (2) à tension continue.
  11. Procédé d'élucidation de défauts au moyen d'un montage (1), dans lequel
    lors d'un court circuit dans une ligne (2) à tension continue ou d'un réseau (5, 6) à tension continue relié à la ligne (2) à tension continue, on ouvre deux éléments (SE1-4) unidirectionnels de coupure, dans lequel
    - un premier élément (SE1) unidirectionnel de coupure est monté dans un premier pôle (3) de la ligne (2) à tension continue,
    - un deuxième élément (SE2) unidirectionnel de coupure est monté dans le premier pôle (3) de la ligne (2) à tension continue à distance du premier élément (SE1) de coupure, son sens de coupure étant contraire à un sens de coupure du premier élément (SE1) de coupure,
    - un troisième élément (SE3) unidirectionnel de coupure est monté dans un deuxième pôle (4) de la ligne (2) à tension continue, et
    - un quatrième élément (SE4) unidirectionnel de coupure est monté dans le deuxième pôle (4) de la ligne (2) à tension continue, en étant à distance du troisième élément (SE3) de coupure, son sens de coupure étant contraire à un sens de coupure du troisième élément (SE3) de coupure,
    dans lequel les éléments (SE1-4) de coupure ont chacun une rigidité diélectrique, qui est en-dessous d'une tension (Un) nominale de la ligne (2) à tension continue.
EP17176306.3A 2016-07-14 2017-06-16 Ensemble de circuits et procédé de classification de défauts Active EP3270397B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016212915.5A DE102016212915A1 (de) 2016-07-14 2016-07-14 Schaltanordnung sowie Verfahren zur Fehlerklärung

Publications (2)

Publication Number Publication Date
EP3270397A1 EP3270397A1 (fr) 2018-01-17
EP3270397B1 true EP3270397B1 (fr) 2022-10-26

Family

ID=59070524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17176306.3A Active EP3270397B1 (fr) 2016-07-14 2017-06-16 Ensemble de circuits et procédé de classification de défauts

Country Status (2)

Country Link
EP (1) EP3270397B1 (fr)
DE (1) DE102016212915A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018219376A1 (de) 2018-11-13 2020-05-14 Robert Bosch Gmbh Verfahren zum Auswählen und beschleunigten Ausführen von Handlungsreaktionen
EP3879548B1 (fr) 2020-03-10 2022-12-21 ABB Schweiz AG Disjoncteur de limiteur de courant de défaut

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057675A1 (fr) 2009-11-16 2011-05-19 Abb Technology Ag Dispositif et procédé d'interruption du courant d'une ligne de transport ou de distribution d'électricité et dispositif de limitation de courant
DE102010052136A1 (de) 2010-11-22 2012-05-24 Siemens Aktiengesellschaft Schaltungsanordnungen für elektronisch gesteuerte DC-Netze
WO2013115915A1 (fr) 2012-01-31 2013-08-08 Atlantic Grid Operations A., Llc Commande et protection d'un réseau d'alimentation c.c.
WO2013174726A1 (fr) 2012-05-24 2013-11-28 Alstom Technology Ltd Procédé d'élimination de panne
WO2014053554A1 (fr) 2012-10-05 2014-04-10 Abb Technology Ag Disjoncteur comportant des modules de disjoncteur empilés
WO2014117807A1 (fr) 2013-01-29 2014-08-07 Siemens Aktiengesellschaft Interrupteur pour tension continue pour produire une courte interruption
WO2015078525A1 (fr) 2013-11-29 2015-06-04 Siemens Aktiengesellschaft Dispositif et procédé de commutation d'un courant continu
DE102013114259A1 (de) 2013-12-17 2015-06-18 Eaton Electrical Ip Gmbh & Co. Kg Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen
US20160105014A1 (en) 2014-10-10 2016-04-14 Lsis Co., Ltd Direct current circuit breaker and method using the same
DE202016102119U1 (de) 2016-04-21 2016-05-09 Abb Technology Ltd. Hochgeschwindigkeitsschalter, der einen Einschaltwiderstand umfasst
WO2016083138A1 (fr) 2014-11-25 2016-06-02 Alstom Technology Ltd Démarrage de convertisseurs à courant continu à haute tension
WO2016092038A1 (fr) 2014-12-12 2016-06-16 General Electric Technology Gmbh Réseau électrique en courant continu
DE102015211339A1 (de) 2015-06-19 2016-12-22 Siemens Aktiengesellschaft Gleichstromleistungsschalter

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011057675A1 (fr) 2009-11-16 2011-05-19 Abb Technology Ag Dispositif et procédé d'interruption du courant d'une ligne de transport ou de distribution d'électricité et dispositif de limitation de courant
DE102010052136A1 (de) 2010-11-22 2012-05-24 Siemens Aktiengesellschaft Schaltungsanordnungen für elektronisch gesteuerte DC-Netze
WO2013115915A1 (fr) 2012-01-31 2013-08-08 Atlantic Grid Operations A., Llc Commande et protection d'un réseau d'alimentation c.c.
WO2013174726A1 (fr) 2012-05-24 2013-11-28 Alstom Technology Ltd Procédé d'élimination de panne
WO2014053554A1 (fr) 2012-10-05 2014-04-10 Abb Technology Ag Disjoncteur comportant des modules de disjoncteur empilés
WO2014117807A1 (fr) 2013-01-29 2014-08-07 Siemens Aktiengesellschaft Interrupteur pour tension continue pour produire une courte interruption
WO2015078525A1 (fr) 2013-11-29 2015-06-04 Siemens Aktiengesellschaft Dispositif et procédé de commutation d'un courant continu
DE102013114259A1 (de) 2013-12-17 2015-06-18 Eaton Electrical Ip Gmbh & Co. Kg Schaltvorrichtung zum Führen und Trennen von elektrischen Strömen
US20160105014A1 (en) 2014-10-10 2016-04-14 Lsis Co., Ltd Direct current circuit breaker and method using the same
WO2016083138A1 (fr) 2014-11-25 2016-06-02 Alstom Technology Ltd Démarrage de convertisseurs à courant continu à haute tension
WO2016092038A1 (fr) 2014-12-12 2016-06-16 General Electric Technology Gmbh Réseau électrique en courant continu
DE102015211339A1 (de) 2015-06-19 2016-12-22 Siemens Aktiengesellschaft Gleichstromleistungsschalter
DE202016102119U1 (de) 2016-04-21 2016-05-09 Abb Technology Ltd. Hochgeschwindigkeitsschalter, der einen Einschaltwiderstand umfasst

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "D5.1 HVDC Network Fault Analysis", PROMOTION – PROGRESS ON MESHED HVDC OFFSHORE TRANSMISSION NETWORKS, 10 June 2016 (2016-06-10), pages 1 - 63, XP093094974
DERAKHSHANFAR R, JONSSON T U, STEIGER U, HABERT M: "Hybrid HVDC breaker -Technology and applications in point-to-point connections and DC grids", CIGRE 2014, 1 January 2014 (2014-01-01), pages 1 - 11, XP093094959
IKHIDE M.A., TENNAKOON S.B., GRIFFITHS A., SUBRAMANIAN S., HA H., ADAMCZYK A.: "Limitations of di/dt technique in DC line protection", 13TH INTERNATIONAL CONFERENCE ON DEVELOPMENT IN POWER SYSTEM PROTECTION 2016 (DPSP), 1 January 2016 (2016-01-01), pages 1 - 6, XP093094962, ISBN: 978-1-78561-138-4, DOI: 10.1049/cp.2016.0049
JARDINI JOSE: "Overvoltage Assessment of Point-to-Point VSC-Based HVDC Systems", PRZEGLAD ELEKTROTECHNICZNY, 1 January 2015 (2015-01-01), pages 105 - 112, XP093094972, ISSN: 0033-2097, DOI: 10.15199/48.2015.08.26
MOKHBERDORAN ATAOLLAH; SILVA NUNO; LEITE HELDER; CARVALHO ADRIANO: "A directional protection strategy for multi-terminal VSC-HVDC grids", 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING (EEEIC), 7 June 2016 (2016-06-07), pages 1 - 6, XP032954991, DOI: 10.1109/EEEIC.2016.7555819
SALIMI M, CHEN X, WOODFORD D, GOLE A: "Fast Reduction of DC Voltage for Half-Bridge MMC HVDC Systems with Symmetrical Monopole during the Non-permanent Pole to Earth DC Fault", CIGRE, 1 January 2015 (2015-01-01), pages 1 - 8, XP093094966
TORRES E., EGUIA P., ITURREGI A., ABARRATEGUI O., ETXEGARAI A.: "Busbar Configurations for HVDC Grids", RENEWABLE ENERGY AND POWER QUALITY JOURNAL, no. 14, 1 May 2016 (2016-05-01), pages 512 - 516, XP093094963, ISSN: 2172-038X, DOI: 10.24084/repqj14.377
WOODFORD DENNIS: "Symmetrical Monopole VSC Transmission", ELECTRANIX CORPORATION, 25 March 2014 (2014-03-25), pages 1 - 23, XP093094967

Also Published As

Publication number Publication date
DE102016212915A1 (de) 2018-01-18
EP3270397A1 (fr) 2018-01-17

Similar Documents

Publication Publication Date Title
EP3257147B1 (fr) Ensemble convertisseur et procédé de protection contre les court-circuits dudit ensemble convertisseur
EP2338214B1 (fr) Dispositif présentant un inverseur
EP2507884B1 (fr) Onduleur pour hautes tensions
DE102012109012B4 (de) Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung
EP3639353B1 (fr) Impédance pour controler des courants de défaut dans un convertisseur c.c.h.t.
EP3593434B1 (fr) Procédé et agencement pour produire un signal de déclenchement pour un interrupteur ccht
DE102019203977A1 (de) Schutzschalteinrichtung für Gleichspannung
EP3501100B1 (fr) Dispositif de séparation pour une chaîne photovoltaïque
EP3797460A1 (fr) Procédé et dispositif pour détecter un défaut dans une ligne de transport d'énergie électrique en courant continu haute tension et pour générer un signal de déclenchement destiné à un disjoncteur à courant continu
EP3270397B1 (fr) Ensemble de circuits et procédé de classification de défauts
EP3635851B1 (fr) Unité de convertisseur de courant
DE102018128121A1 (de) AC/DC-Umwandlungs-Anordnung
EP2845214B1 (fr) Dispositif destiné à la commutation dans un réseau de tension continue
EP2789068A1 (fr) Circuiterie pour la réduction de l'intensité du courant dans une ligne de transmission de courant continu à haute tension, installation de transmission de courant continu à haute tension et procédé pour la réduction de l'intensité d'un courant électrique
EP3639360B1 (fr) Ensemble convertisseur à parafoudre à module de phase ainsi que procédé pour protéger ledit ensemble convertisseur contre des court-circuits
WO2016128162A1 (fr) Système d'alimentation en courant de traction et procédé permettant de faire fonctionner ledit système
EP2907209A1 (fr) Dispositif de commutation d'un réseau de tension continue
EP1480241B1 (fr) Disjoncteur hybride pour courant continu et procédé de disjonction
WO2020193168A1 (fr) Dispositif de commutation pour un circuit de tension continue
DE102015203843A1 (de) Anordnung und Verfahren für eine Gleichspannungs-Bahnstromversorgung
DE102012106505A1 (de) Freischalteinrichtung für einen eine Gleichspannung erzeugenden Photovoltaik-Strang
DE102018109107B3 (de) Überwachungsvorrichtung und Verfahren zum Überwachen eines Solargenerators auf Erdfehler
EP3417468B1 (fr) Circuit de commutation, convertisseur comportant une installation de commutation ainsi qu'un procédé de protection du circuit convertisseur
EP3609030A1 (fr) Dispositif et procédé de coupure de court-circuit
DE2142058A1 (de) Uebertragungsanlage fuer hochgespannten gleichstrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180705

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210215

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220607

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017013997

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1527657

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017013997

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 7

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: GENERAL ELECTRIC TECHNOLOGY GMBH

Effective date: 20230727

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221026

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630