EP1476697B1 - Planar infra-red emitter - Google Patents

Planar infra-red emitter Download PDF

Info

Publication number
EP1476697B1
EP1476697B1 EP03709604A EP03709604A EP1476697B1 EP 1476697 B1 EP1476697 B1 EP 1476697B1 EP 03709604 A EP03709604 A EP 03709604A EP 03709604 A EP03709604 A EP 03709604A EP 1476697 B1 EP1476697 B1 EP 1476697B1
Authority
EP
European Patent Office
Prior art keywords
infrared emitter
emitter according
radiant element
strips
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03709604A
Other languages
German (de)
French (fr)
Other versions
EP1476697A1 (en
Inventor
Richard Aust
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10222450A external-priority patent/DE10222450A1/en
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Publication of EP1476697A1 publication Critical patent/EP1476697A1/en
Application granted granted Critical
Publication of EP1476697B1 publication Critical patent/EP1476697B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/148Radiant burners using screens or perforated plates with grids, e.g. strips or rods, as radiation intensifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/145Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/147Radiant burners using screens or perforated plates with perforated plates as radiation intensifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/149Radiant burners using screens or perforated plates with wires, threads or gauzes as radiation intensifying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic

Definitions

  • the invention relates to a designed as a surface radiator infrared radiator with a jet body, which is heated at its rear by a burning fluid-air mixture and emits the front surface of the infrared radiation.
  • Infrared radiators designed as surface radiators are known to be used in drying systems which serve for drying sheet-like materials, for example paper or board webs. Depending on the width of the web to be dried and the desired heating power, the required number of radiators with aligned radiating surfaces is combined to form a drying unit.
  • FIG. 16 The basic structure of a single, generic infrared radiator is in FIG. 16 represented and for example in the DE 199 01 145-A1 described.
  • the invention has for its object to maximize the life of such a construction by using a particularly suitable material for the jet body, as this is usually the wear part of the construction.
  • the jet body is made of a highly heat-resistant material containing more than 50 percent by weight of a metal silicide, preferably molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ).
  • a metal silicide preferably molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ).
  • An infrared radiator according to the invention can be operated for a very high specific heating power with flame temperatures of more than 1200 ° C, if necessary even more than 1700 ° C.
  • the jet body has a high emission factor and a long service life. Another advantage is that the material can be brought into various forms to optimize the radiation behavior and the convective heat transfer.
  • the infrared emitters according to the invention are preferably heated with gas, alternatively heating with a liquid fuel is possible as the heating fluid.
  • each radiator includes a mixing tube 1, in which at one end a mixing nozzle 2 is screwed.
  • a gas supply line 3 is connected, which is connected to a manifold 4, from which a plurality of juxtaposed radiator are supplied with gas 5.
  • the supply of air 6 via a hollow cross-member 7, to which the mixing tube 1 is attached.
  • the connecting line 8 for the air supply opens in the upper part of the mixing tube 1 in a the outlet end of the mixing nozzle 2 comprehensive, downwardly open air chamber 9, so that in the mixing chamber 10 of the mixing tube 1 from above a gas-air mixture is introduced.
  • a housing 11 is fixed, in which a burner plate 12 is disposed of ceramic as a barrier.
  • the burner plate 12 includes a series of through holes 13 which open into a combustion chamber 14 which is formed between the burner plate 12 and a substantially parallel to this spaced beam body 15.
  • flames form, which heat the radiation body 15 from the rear side, so that it emits infrared radiation.
  • the mixing tube 1 opens into a sealed by a hood 16 distribution chamber 17, which is completed at the other end of the burner plate 12. So that the gas-air mixture is evenly distributed on the back of the burner plate 12, a baffle plate 18 is arranged in the distribution chamber 17, against which the supplied mixture flows.
  • the burner plate 12 is fitted in the housing 11 in circumferential, refractory seals 19.
  • the jet body 15 hangs in one circumferential refractory frame 20 which is fixed to the housing 11 and together with the seals 19 the combustion chamber 14 closes laterally gas-tight.
  • the radiating body 15 is made of a high heat resistant material containing as a main component more than 50% by weight of a metal silicide.
  • metal silicides it is preferable to use molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ).
  • MoSi 2 molybdenum disilicide
  • WSi 2 tungsten disilicide
  • As a further component are preferably silicon oxide (SiO 2 ) zirconium oxide (ZrO 2 ) or silicon carbide (SiC) or mixtures of these compounds. These materials are extremely temperature resistant and stable, so that the spotlight - if necessary - with flame temperatures of more than 1700 ° C up to 1850 ° C can be operated.
  • the material Compared with a likewise high-temperature resistant alloy, which consists exclusively of metals (for example, a metallic Schuleiterlegtechnik), the material has the further advantage that no scaling occurs. In order to obtain an extremely long service life of the radiator, this can be operated with a flame temperature slightly below the maximum possible temperature of the jet body 15; for example between 1100 ° C and 1400 ° C, whereby the formation of thermal NO x is kept within a tolerable range.
  • the jet body 15 consists of a block containing a plurality of continuous channels 21.
  • the channels 21 are heated at the combustion chamber 14 bounding the rear side of the jet body 15.
  • the channels 21 are designed either tubular or slot-shaped.
  • the cross-section of the tubular channels is preferably either circular or in the form of a regular polygon.
  • the channels 21 are arranged honeycomb next to each other.
  • the channels 21 may also be slit-shaped.
  • the jet body 15 is preferably constructed from a series of plates arranged at a distance from one another, the spaces between which form the slot-shaped channels.
  • the jet body 15 is composed of a plurality of spaced apart tubes 22 or rods.
  • the tubes 22 or rods extend parallel to the burner plate 14 and are secured with their ends in the frame 20, respectively.
  • the outside of the tubes 22 form the radiating front surface, in each case between two tubes 22 forms a slit-shaped Opening 23, can escape through the hot combustion gases and infrared radiation.
  • FIG. 5 A particularly advantageous embodiment of a radiator is in FIG. 5 shown.
  • the jet body 15 is composed of a plurality of spaced-apart strips 24 which, like the tubes 22 in FIG FIG. 4 arranged parallel to the barrier and are mounted at their ends in the frame of the housing 11.
  • the strips are constructed and arranged so that parts of them form baffles for the flames.
  • the strips 24 have a U-shaped or H-shaped cross section, wherein the open sides between the two legs 25 to the outside (in FIG. 5 down) is directed.
  • the transverse webs 26 between the legs 25 define the combustion chamber 14 and form the baffles for the flames.
  • the baffle surface in use with the barrier structure described below, effects maximum convective heat transfer from the flames to the blast body 15.
  • the transverse webs 26 of the ledges 24 preferably have indentations 27 opposite the flames, as in FIG FIG. 7 is shown.
  • the indentations 27 act as an enlarged, the flames catching baffles.
  • Between each two strips 24 slot-shaped openings 23 are arranged, which allow a discharge of the combustion gases.
  • Each strip 24 is made of the above-described high-temperature resistant material) containing more than 50% by weight of MoSi 2 or WSi 2 as a main component.
  • FIGS. 8 to 12 In cross-section preferred embodiments are shown in which the jet body is composed of at least two superposed layers of strips 24. In operation, the strips 24 of the two layers assume different radiation temperatures, which significantly increases the efficiency.
  • the FIGS. 8 to 12 are the flames - as well as in the FIGS. 1 to 5 - directed from top to bottom.
  • the strips 24 are each designed as angle profiles with two legs.
  • the two legs form an angle between 30 ° and 150 ° to each other, preferably about 90 °.
  • the strips 24 of the two layers are arranged offset to one another, so that the combustion exhaust gases pass through the two Layers are additionally deflected. The redirection causes a significantly improved heat transfer to the two layers.
  • the embodiment according to FIG. 8 are the angle profile of the two layers in the direction of flame rectified and offset from each other, in the embodiment according to FIG. 9 aligned opposite to each other. In both embodiments, the flames collide with the angle of the upper layer ledges 24.
  • the strips are also opposite and offset from each other, the flames bouncing on the angled side of the strips of the lower layer.
  • the jet body 15 is constructed of strips 24, which are each designed in the form of a half-shell.
  • the half-shell-shaped strips 24 are aligned opposite to each other in the two layers and offset from each other, so that even in this embodiment, the combustion exhaust gases are very largely deflected.
  • FIG. 12 have the strips 24 as in the embodiment according to FIG. 5 a U-shaped cross section. They are also arranged in two layers, wherein the strips 24 of the lower layer are respectively arranged opposite to and offset from the strips 24 of the upper layer. The strips 24 of the lower layer thus cover the space between two strips 24 of the upper layer and thus force the exhaust gases exiting through the intermediate spaces to a change in direction by 180 °.
  • FIG. 5 a particularly advantageous embodiment of the barrier is shown, which can also be used in conjunction with the Strahlkörpem 15 shown in other figures instead of the burner plate 12 made of ceramic.
  • the barrier consists of a nozzle plate 28 made of a heat-resistant metal, in which a series of tubular nozzles 29 are inserted, which are also made of metal. Through the nozzles 29, the gas-air mixture from the distribution chamber 17 enters the combustion chamber 14.
  • the nozzles 29 are arranged so that the outlet opening of each nozzle 29 is directed against baffles formed by parts of the jet body 15. In the embodiment according to FIG. 5 the outlet openings of the nozzles 29 are each directed approximately centrally against the transverse web 26 of a bar 24 of the jet body 15.
  • FIG. 5 the outlet openings of the nozzles 29 are each directed approximately centrally against the transverse web 26 of a bar 24 of the jet body 15.
  • Each nozzle 29 is directed against an indentation 27 in the transverse web 26.
  • the nozzles 29 in a gas-permeable non-woven fabric 30 are made of a heat-resistant material embedded.
  • the non-woven fabric 30 formed by high-temperature resistant ceramic fibers acts as an insulating layer for the nozzle plate 28 and prevented so that it is damaged by the high temperatures in the combustion chamber 14.
  • the diameter of a nozzle 29 is 1.5 mm - 4 mm.
  • Ceramic burner plate 12 shown contains the nozzle plate 28 comparatively few passages for the gas-air mixture. There are about 1500 - 2500 openings (nozzles 29) per m 2 of the area of the nozzle plate 28.
  • FIGS. 13 to 16 a further embodiment of an infrared emitter according to the invention is shown, in which the jet body is constructed from a plurality of juxtaposed beam elements 31.
  • FIG. 13 a view is shown on the back of the radiator housing 11, wherein the hood 16 and the burner plate 12 are partially not shown to allow a view from the inside of the radiator.
  • the radiator housing 11 is completed at its infrared radiation emitting front of a metal grid 32 made of a refractory metal, in which a plurality of radiation elements 31 are mounted.
  • Each radiating element 31 is made of the above-described high-temperature resistant material containing more than 50% by weight of MoSi 2 as a main component. It consists of an approximately square disc 33 with lateral hooks 34, with which it can be hung in the grid 32.
  • the radiating elements 21 are suspended in the grid 32 in such a way that the discs 33 form an incidence surface for the flames parallel to the burner plate 12, which is interrupted only by passage openings between the individual discs 33.
  • the inner portion of each disc 33 is slightly arched outwardly to increase the area of incidence of the flames.
  • the infrared emitters according to the invention are particularly suitable for drying web-like materials at high web speeds.
  • a preferred field of application is the drying of running board or paper webs in paper mills, for example behind coating devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

Infra-red emitters embodied as a planar emitter with an emitting body (15) are known. Said body is heated on the rear face thereof by means of a burning liquid/air mixture and the front face thereof emits the infra-red radiation. According to the invention, the emitting body (15) is made from a heat-resistant material comprising more than 50 wt. % of a metal silicide, preferably molybdenum silicide (MoSi2) or tungsten silicide (WSi2).

Description

Die Erfindung betrifft einen als Flächenstrahler ausgebildeten Infrarot-Strahler mit einem Strahlkörper, der an seiner Rückseite von einem brennenden Fluid-Luftgemisch beheizt wird und dessen Vorderfläche die Infrarotstrahlung abgibt.The invention relates to a designed as a surface radiator infrared radiator with a jet body, which is heated at its rear by a burning fluid-air mixture and emits the front surface of the infrared radiation.

Als Flächenstrahler ausgebildete Infrarot-Strahler werden bekannterweise in Trocknersystemen eingesetzt, die zum Trocknen bahnförmiger Materialien, beispielsweise Papier- oder Kartonbahnen, dienen. In Abhängigkeit der Breite der zu trocknenden Bahn und der gewünschten Heizleistung wird die erforderliche Anzahl von Strahlern mit fluchtenden Abstrahlflächen zu einer Trocknungseinheit zusammengestellt.Infrared radiators designed as surface radiators are known to be used in drying systems which serve for drying sheet-like materials, for example paper or board webs. Depending on the width of the web to be dried and the desired heating power, the required number of radiators with aligned radiating surfaces is combined to form a drying unit.

Der prinzipielle Aufbau eines einzelnen, gattungsgemäßen Infrarot-Strahlers ist in Figur 16 dargestellt und beispielsweise in der DE 199 01 145-A1 beschrieben.The basic structure of a single, generic infrared radiator is in FIG. 16 represented and for example in the DE 199 01 145-A1 described.

Das für den Betrieb des Strahlers notwendige Brennstoff/Luft-Gemisch wird dem Strahler durch eine Öffnung (a) im Gehäuse (b) zugeführt und gelangt zunächst in eine Verteilkammer (c) in der das Gemisch gleichmäßig über die Strahlerfläche - senkrecht zur hier gezeigten Ansicht - verteilt wird. Anschließend treten die Gase durch eine durchlässig gestaltete Barriere (d). Hauptaufgabe der Barriere (d) ist es, den Feuerraum (e), in dem das Gas verbrannt wird, von der Verteilkammer (c), in der sich das unverbrannte Gasgemisch befindet, so zu trennen, daß kein Flammenrückschlag von dem Feuerraum (e) nach der Verteilkammer (c) erfolgen kann. Daneben ist die Barriere (d) sinnvoller Weise so auszuführen, daß eine möglichst gute Wärmeübertragung der heißen Verbrennungsabgase an die die Strahlung abgebenden festen Körper, also die Oberfläche der Barriere (d) selbst, ggf. die Wände des Feuerraumes (e) und den eigentlichen Strahlkörper (f) vorbereitet wird. Die geometrische / konstruktive Ausgestaltung von Feuerraum (e) und Strahlkörper (f) erfolgt ebenfalls unter den Gesichtspunkten

  • optimierter Wärmeübertragung,
  • maximierter Wärmeabstrahlung
  • minimaler Wärmeverluste zur Seite und in Richtung Verteilkammer
unter Berücksichtigung von auftretenden Wärmedehnungen und anwendungsspezifischen Besonderheiten, wie z.B. mögliche Verschmutzungen, auftretende Thermoschocks u.ä..The necessary for the operation of the radiator fuel / air mixture is supplied to the radiator through an opening (a) in the housing (b) and first passes into a distribution chamber (c) in the mixture uniformly over the radiator surface - perpendicular to the view shown here - is distributed. The gases then pass through a permeable barrier (d). The main task of the barrier (d) is to separate the combustion chamber (s) in which the gas is burned from the distribution chamber (c) in which the unburned gas mixture is located so that no flashback from the combustion chamber (e) can take place after the distribution chamber (c). In addition, the barrier (d) is meaningful way to perform so that the best possible heat transfer of the hot combustion gases to the radiation-emitting solid body, ie the surface of the barrier (d) itself, possibly the walls of the firebox (e) and the actual Radiation body (f) is prepared. The geometric / structural design of the firebox (s) and the radiator (f) also takes place from the point of view
  • optimized heat transfer,
  • maximized heat radiation
  • minimal heat losses to the side and towards the distribution chamber
taking into account occurring thermal expansions and application-specific features, such as possible contamination, occurring thermal shocks, etc. ..

Der Erfindung liegt die Aufgabe zugrunde, die Lebensdauer einer solchen Konstruktion durch Einsatz eines besonders geeigneten Werkstoffes für den Strahlkörper zu maximieren, da dieser in der Regel das Verschleißteil der Konstruktion darstellt.The invention has for its object to maximize the life of such a construction by using a particularly suitable material for the jet body, as this is usually the wear part of the construction.

Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß der Strahlkörper aus einem hochhitzebeständigen Material hergestellt ist, das mehr als 50 Gewichts-Prozent eines Metallsilicids, vorzugsweise Molybdändisilicid (MoSi2) oder Wolframdisilicid (WSi2), enthält.This object is achieved according to the invention in that the jet body is made of a highly heat-resistant material containing more than 50 percent by weight of a metal silicide, preferably molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ).

Ein Infrarot-Strahler nach der Erfindung läßt sich für eine sehr hohe spezifische Heizleistung mit Flammentemperaturen von mehr als 1200 °C, nötigenfalls sogar mehr als 1700 °C betreiben. Der Strahlkörper weist dabei einen hohen Emissionsfaktor und eine lange Standzeit auf. Als weiterer Vorteil tritt hinzu, daß sich das Material zur Optimierung des Abstrahlverhaltens und des konvektiven Wärmeübergangs in verschiedene Formen bringen läßt.An infrared radiator according to the invention can be operated for a very high specific heating power with flame temperatures of more than 1200 ° C, if necessary even more than 1700 ° C. The jet body has a high emission factor and a long service life. Another advantage is that the material can be brought into various forms to optimize the radiation behavior and the convective heat transfer.

Die Unteransprüche enthalten bevorzugte, da besonders vorteilhafte Ausgestaltungen eines erfindungsgemäßen Infrarot-Strahlers.The subclaims contain preferred, since particularly advantageous embodiments of an infrared emitter according to the invention.

Die Zeichnung dient zur Erläuterung der Erfindung anhand vereinfacht dargestellter Ausführungsbeispiele. Es zeigen

Figur 1
in einem Querschnitt den Aufbau eines Infrarot-Strahlers nach der Erfindung,
Figur 2
eine Draufsicht auf die strahlende Vorderseite des Strahlkörpers nach Figur 1,
Figur 3
eine Draufsicht auf einen Strahlkörper, der aus einzelnen Röhren aufgebaut ist,
Figur 4
ausschnittsweise einen Schnitt durch den Strahler mit dem Strahlkörper nach Figur 3,
Figur 5
zeigt einen Schnitt durch das Gehäuse eines Strahlers, dessen Strahlkörper aus einzelnen Leisten aufgebaut ist,
Figur 6 bis Figur 12
zeigen jeweils die Draufsicht und/oder Querschnitte durch verschieden gestaltete und angeordnete Leisten,
Figur 13
zeigt eine weitere Ausführungsform von der Rückseite des Strahlergehäuses her, wobei die Haube des Strahlers teilweise geöffnet gezeichnet ist,
Figur 14
zeigt einen Schnitt durch das Strahlergehäuse der Ausführungsform nach Figur 8,
Figur 15
zeigt ein einzelnes Strahlelement des Strahlkörpers,
Figur 16
zeigt im Querschnitt den prinzipiellen Aufbau eines Strahlergehäuses.
The drawing serves to explain the invention with reference to simplified illustrated embodiments. Show it
FIG. 1
in a cross section the structure of an infrared radiator according to the invention,
FIG. 2
a plan view of the radiating front of the jet body after FIG. 1 .
FIG. 3
a plan view of a jet body, which is composed of individual tubes,
FIG. 4
a section of a section through the radiator with the jet body after FIG. 3 .
FIG. 5
shows a section through the housing of a radiator whose jet body is constructed of individual strips,
FIG. 6 to FIG. 12
each show the top view and / or cross sections through differently shaped and arranged strips,
FIG. 13
shows a further embodiment of the back of the radiator housing ago, wherein the hood of the radiator is drawn partially open,
FIG. 14
shows a section through the radiator housing of the embodiment according to FIG. 8 .
FIG. 15
shows a single radiation element of the radiation body,
FIG. 16
shows in cross section the basic structure of a radiator housing.

Die Infrarot-Strahler nach der Erfindung werden bevorzugt mit Gas beheizt, alternativ ist die Beheizung mit einem flüssigen Brennstoff als Heizfluid möglich.The infrared emitters according to the invention are preferably heated with gas, alternatively heating with a liquid fuel is possible as the heating fluid.

Wie in Figur 1 dargestellt, enthält jeder Strahler ein Mischrohr 1, in das an einem Ende eine Mischdüse 2 eingeschraubt ist. An die Mischdüse 2 ist eine Gaszuführleitung 3 angeschlossen, die mit einer Sammelleitung 4 verbunden ist, aus der mehrere nebeneinander angeordnete Strahler mit Gas 5 versorgt werden. Die Versorgung mit Luft 6 erfolgt über eine Hohltraverse 7, an der das Mischrohr 1 befestigt ist. Die Verbindungsleitung 8 für die Luftzufuhr mündet im oberen Teil des Mischrohrs 1 in eine das Auslaßende der Mischdüse 2 umfassende, nach unten offene Luftkammer 9, so daß in den Mischraum 10 des Mischrohrs 1 von oben ein Gas-Luftgemisch eingeleitet wird.As in FIG. 1 illustrated, each radiator includes a mixing tube 1, in which at one end a mixing nozzle 2 is screwed. To the mixing nozzle 2, a gas supply line 3 is connected, which is connected to a manifold 4, from which a plurality of juxtaposed radiator are supplied with gas 5. The supply of air 6 via a hollow cross-member 7, to which the mixing tube 1 is attached. The connecting line 8 for the air supply opens in the upper part of the mixing tube 1 in a the outlet end of the mixing nozzle 2 comprehensive, downwardly open air chamber 9, so that in the mixing chamber 10 of the mixing tube 1 from above a gas-air mixture is introduced.

Am unteren, offenen Ende des Mischrohrs 1 ist ein Gehäuse 11 befestigt, in dem als Barriere eine Brennerplatte 12 aus Keramik angeordnet ist. Die Brennerplatte 12 enthält eine Reihe von durchgehenden Bohrungen 13, die in einen Feuerraum 14 münden, der zwischen der Brennerplatte 12 und einem im wesentlichen parallel zu dieser mit Abstand angeordneten Strahlkörper 15 gebildet wird. In dem Feuerraum 14 bilden sich Flammen, die den Strahlkörper 15 von der Rückseite her beheizen, so daß dieser Infrarot-Strahlung abgibt.At the lower, open end of the mixing tube 1, a housing 11 is fixed, in which a burner plate 12 is disposed of ceramic as a barrier. The burner plate 12 includes a series of through holes 13 which open into a combustion chamber 14 which is formed between the burner plate 12 and a substantially parallel to this spaced beam body 15. In the combustion chamber 14, flames form, which heat the radiation body 15 from the rear side, so that it emits infrared radiation.

Für die Zufuhr des Gas-Luftgemisches mündet das Mischrohr 1 in eine von einer Haube 16 abgedichteten Verteilkammer 17, die an dem anderen Ende von der Brennerplatte 12 abgeschlossen wird. Damit das Gas-Luftgemisch gleichmäßig an der Rückseite der Brennerplatte 12 verteilt wird, ist in der Verteilkammer 17 eine Prallplatte 18 angeordnet, gegen die das zugeführte Gemisch strömt. Die Brennerplatte 12 ist in dem Gehäuse 11 in umlaufende, feuerfeste Dichtungen 19 eingepaßt. Der Strahlkörper 15 hängt in einem umlaufenden feuerfesten Rahmen 20, der an dem Gehäuse 11 befestigt ist und gemeinsam mit den Dichtungen 19 den Feuerraum 14 seitlich gasdicht abschließt.For the supply of the gas-air mixture, the mixing tube 1 opens into a sealed by a hood 16 distribution chamber 17, which is completed at the other end of the burner plate 12. So that the gas-air mixture is evenly distributed on the back of the burner plate 12, a baffle plate 18 is arranged in the distribution chamber 17, against which the supplied mixture flows. The burner plate 12 is fitted in the housing 11 in circumferential, refractory seals 19. The jet body 15 hangs in one circumferential refractory frame 20 which is fixed to the housing 11 and together with the seals 19 the combustion chamber 14 closes laterally gas-tight.

Der Strahlkörper 15 ist aus einem hochhitzebeständigen Material gefertigt, das als Hauptbestandteil mehr als 50 Gewichts-Prozent eines Metallsilicids enthält. Als Metallsilicide werden bevorzugt Molybdändisilicid (MoSi2) oder Wolframdisilicid (WSi2) verwendet. Als weiterer Bestandteil sind bevorzugt Siliciumoxid (SiO2) Zirkoniumoxid (ZrO2) oder Siliciumcarbid (SiC) oder Mischungen aus diesen Verbindungen enthalten. Diese Materialien sind extrem temperaturbeständig und standfest, so daß der Strahler - falls erforderlich - mit Flammentemperaturen von mehr als 1700°C bis zu 1850°C betrieben werden kann. Gegenüber einer ebenfalls hochtemperaturbeständigen Legierung, die ausschließlich aus Metallen besteht (beispielsweise einer metallischen Heizleiterlegierung), hat das Material den weiteren Vorteil, daß keine Verzunderung auftritt. Um eine extrem lange Standzeit des Strahlers zu erhalten, kann dieser mit einer Flammentemperatur etwas unterhalb der maximal möglichen Temperatur des Strahlkörpers 15 betrieben werden; beispielsweise zwischen 1100°C und 1400°C, wodurch die Bildung von thermischem NOx in einem verträglichen Rahmen gehalten wird.The radiating body 15 is made of a high heat resistant material containing as a main component more than 50% by weight of a metal silicide. As metal silicides, it is preferable to use molybdenum disilicide (MoSi 2 ) or tungsten disilicide (WSi 2 ). As a further component are preferably silicon oxide (SiO 2 ) zirconium oxide (ZrO 2 ) or silicon carbide (SiC) or mixtures of these compounds. These materials are extremely temperature resistant and stable, so that the spotlight - if necessary - with flame temperatures of more than 1700 ° C up to 1850 ° C can be operated. Compared with a likewise high-temperature resistant alloy, which consists exclusively of metals (for example, a metallic Heizleiterlegierung), the material has the further advantage that no scaling occurs. In order to obtain an extremely long service life of the radiator, this can be operated with a flame temperature slightly below the maximum possible temperature of the jet body 15; for example between 1100 ° C and 1400 ° C, whereby the formation of thermal NO x is kept within a tolerable range.

Bei der Ausführungsform nach den Figuren 1 und 2 besteht der Strahlkörper 15 aus einem Block, der eine Vielzahl von durchgehenden Kanälen 21 enthält. Die Kanäle 21 werden an der den Feuerraum 14 begrenzenden Rückseite des Strahlkörpers 15 beheizt. Die Kanäle 21 sind entweder röhrenförmig oder schlitzförmig gestaltet. Der Querschnitt der röhrenförmig gestalteten Kanäle ist bevorzugt entweder kreisförmig oder in Form eines regelmäßigen Polygons ausgebildet. Bei der Ausführungsform nach Figur 2 sind die Kanäle 21 wabenförmig nebeneinander angeordnet. Alternativ können die Kanäle 21 auch schlitzförmig ausgebildet sein. Bevorzugt wird dazu der Strahlkörper 15 aus einer Reihe mit Abstand voneinander angeordneten Platten aufgebaut, deren Zwischenräume die schlitzförmigen Kanäle bilden.In the embodiment of the FIGS. 1 and 2 the jet body 15 consists of a block containing a plurality of continuous channels 21. The channels 21 are heated at the combustion chamber 14 bounding the rear side of the jet body 15. The channels 21 are designed either tubular or slot-shaped. The cross-section of the tubular channels is preferably either circular or in the form of a regular polygon. In the embodiment according to FIG. 2 the channels 21 are arranged honeycomb next to each other. Alternatively, the channels 21 may also be slit-shaped. For this purpose, the jet body 15 is preferably constructed from a series of plates arranged at a distance from one another, the spaces between which form the slot-shaped channels.

In den Figuren 3 und 4 ist eine Ausführungsform dargestellt, bei der der Strahlkörper 15 aus mehreren, mit Abstand voneinander angeordneten Röhren 22 oder Stäben aufgebaut ist. Die Röhren 22 oder Stäbe erstrecken sich parallel zu der Brennerplatte 14 und sind mit ihren Enden jeweils in dem Rahmen 20 befestigt. Die Außenseite der Röhren 22 bilden die strahlende Vorderfläche, jeweils zwischen zwei Röhren 22 bildet sich eine spaltförmige Öffnung 23, durch die heiße Verbrennungsabgase und auch Infrarotstrahlung austreten können.In the FIGS. 3 and 4 an embodiment is shown in which the jet body 15 is composed of a plurality of spaced apart tubes 22 or rods. The tubes 22 or rods extend parallel to the burner plate 14 and are secured with their ends in the frame 20, respectively. The outside of the tubes 22 form the radiating front surface, in each case between two tubes 22 forms a slit-shaped Opening 23, can escape through the hot combustion gases and infrared radiation.

Eine besonders vorteilhafte Ausführungsform eines Strahlers ist in Figur 5 dargestellt. Bei dieser Ausführungsform ist der Strahlkörper 15 aus mehreren, mit Abstand voneinander angeordneten Leisten 24 aufgebaut, die wie die Röhren 22 in Figur 4 parallel zur Barriere angeordnet und an ihren Enden in dem Rahmen des Gehäuses 11 gelagert sind. Bei allen nachfolgend beschriebenen Ausführungsformen sind die Leisten so aufgebaut und angeordnet, daß Teile von ihnen Prallflächen für die Flammen bilden.A particularly advantageous embodiment of a radiator is in FIG. 5 shown. In this embodiment, the jet body 15 is composed of a plurality of spaced-apart strips 24 which, like the tubes 22 in FIG FIG. 4 arranged parallel to the barrier and are mounted at their ends in the frame of the housing 11. In all embodiments described below, the strips are constructed and arranged so that parts of them form baffles for the flames.

Bei dem in den Figuren 6 und 7 dargestellten Ausführungsbeispiel weisen die Leisten 24 einen U-oder H-förmigen Querschnitt auf, wobei die offene Seiten zwischen den beiden Schenkeln 25 nach außen (in Figur 5 nach unten) gerichtet ist. Die Querstege 26 zwischen den Schenkeln 25 begrenzen den Feuerraum 14 und bilden die Prallflächen für die Flammen. Die Prallfläche bewirkt in Verwendung mit dem nachfolgend beschriebenen Aufbau der Barriere einen maximalen konvektiven Wärmeübergang von den Flammen auf den Strahlkörper 15. Dazu weisen die Querstege 26 der Leisten 24 bevorzugt den Flammen entgegengerichtete Einbuchtungen 27 auf, wie in Figur 7 dargestellt ist. Die Einbuchtungen 27 wirken als vergrößerte, die Flammen auffangende Prallflächen. Zwischen jeweils zwei Leisten 24 sind schlitzförmige Öffnungen 23 angeordnet, die eine Abfuhr der Verbrennungsabgase ermöglichen. Jede Leiste 24 ist aus dem vorstehend beschriebenen hochhitzebeständigen Material) gefertigt, das als Hauptbestandteil mehr als 50 Gewichtsprozent MoSi2 oder WSi2 enthält.In the in the FIGS. 6 and 7 illustrated embodiment, the strips 24 have a U-shaped or H-shaped cross section, wherein the open sides between the two legs 25 to the outside (in FIG. 5 down) is directed. The transverse webs 26 between the legs 25 define the combustion chamber 14 and form the baffles for the flames. The baffle surface, in use with the barrier structure described below, effects maximum convective heat transfer from the flames to the blast body 15. For this, the transverse webs 26 of the ledges 24 preferably have indentations 27 opposite the flames, as in FIG FIG. 7 is shown. The indentations 27 act as an enlarged, the flames catching baffles. Between each two strips 24 slot-shaped openings 23 are arranged, which allow a discharge of the combustion gases. Each strip 24 is made of the above-described high-temperature resistant material) containing more than 50% by weight of MoSi 2 or WSi 2 as a main component.

In den Figuren 8 bis 12 sind im Querschnitt bevorzugte Ausführungsformen dargestellt, bei denen der Strahlkörper aus zumindest zwei übereinander liegenden Schichten von Leisten 24 aufgebaut ist. Im Betrieb nehmen die Leisten 24 der beiden Schichten unterschiedliche Abstrahltemperaturen an, wodurch der Wirkungsgrad deutlich erhöht wird. In den Figuren 8 bis 12 sind die Flammen - ebenso wie in den Figuren 1 bis 5 - von oben nach unten gerichtet.In the FIGS. 8 to 12 In cross-section preferred embodiments are shown in which the jet body is composed of at least two superposed layers of strips 24. In operation, the strips 24 of the two layers assume different radiation temperatures, which significantly increases the efficiency. In the FIGS. 8 to 12 are the flames - as well as in the FIGS. 1 to 5 - directed from top to bottom.

Bei den Strahlkörpem nach den Figuren 8 bis 10 sind die Leisten 24 jeweils als Winkelprofile mit zwei Schenkeln gestaltet. Die beiden Schenkel bilden einen Winkel zwischen 30° und 150° zueinander, bevorzugt etwa 90°. Die Leisten 24 der beiden Schichten sind versetzt zueinander angeordnet, so daß die Verbrennungsabgase beim Durchgang durch die beiden Schichten zusätzlich umgelenkt werden. Die Um-lenkung bewirkt einen erheblich verbesserten Wärmeübergang an die beiden Schichten. Bei der Ausführungsform nach Figur 8 sind die Winkelprofilleisten der beiden Schichten in Flammenrichtung gleichgerichtet und versetzt zueinander angeordnet, bei der Ausführungsform nach Figur 9 entgegengesetzt zueinander ausgerichtet. Bei beiden Ausführungsformen prallen die Flammen in den Winkel der Leisten 24 der oberen Schicht. Bei der Anordnung nach Figur 10 sind die Leisten ebenfalls entgegengesetzt und versetzt zueinander angeordnet, wobei die Flammen auf die abgewinkelte Seite der Leisten der unteren Schicht prallen.At the Strahlkörpem after the FIGS. 8 to 10 the strips 24 are each designed as angle profiles with two legs. The two legs form an angle between 30 ° and 150 ° to each other, preferably about 90 °. The strips 24 of the two layers are arranged offset to one another, so that the combustion exhaust gases pass through the two Layers are additionally deflected. The redirection causes a significantly improved heat transfer to the two layers. In the embodiment according to FIG. 8 are the angle profile of the two layers in the direction of flame rectified and offset from each other, in the embodiment according to FIG. 9 aligned opposite to each other. In both embodiments, the flames collide with the angle of the upper layer ledges 24. In the arrangement according to FIG. 10 the strips are also opposite and offset from each other, the flames bouncing on the angled side of the strips of the lower layer.

In Figur 11 ist eine Ausführungsform dargestellt, bei der der Strahlkörper 15 aus Leisten 24 aufgebaut ist, die jeweils in Form einer Halbschale gestaltet sind. Die halbschalenförmigen Leisten 24 sind in den beiden Schichten jeweils entgegengesetzt ausgerichtet und versetzt zueinander angeordnet, so daß auch bei dieser Ausführungsform die Verbrennungsabgase sehr weitgehend umgelenkt werden.In FIG. 11 an embodiment is shown in which the jet body 15 is constructed of strips 24, which are each designed in the form of a half-shell. The half-shell-shaped strips 24 are aligned opposite to each other in the two layers and offset from each other, so that even in this embodiment, the combustion exhaust gases are very largely deflected.

In Figur 12 weisen die Leisten 24 wie bei der Ausführungsform nach Figur 5 einen U-förmigen Querschnitt auf. Sie sind ebenfalls in zwei Schichten angeordnet, wobei die Leisten 24 der unteren Schicht jeweils entgegengesetzt und versetzt zu den Leisten 24 der oberen Schicht angeordnet sind. Die Leisten 24 der unteren Schicht decken so den Zwischenraum zwischen zwei Leisten 24 der oberen Schicht ab und zwingen so die durch die Zwischenräume austretenden Verbrennungsabgase zu einer Richtungsänderung um 180°.In FIG. 12 have the strips 24 as in the embodiment according to FIG. 5 a U-shaped cross section. They are also arranged in two layers, wherein the strips 24 of the lower layer are respectively arranged opposite to and offset from the strips 24 of the upper layer. The strips 24 of the lower layer thus cover the space between two strips 24 of the upper layer and thus force the exhaust gases exiting through the intermediate spaces to a change in direction by 180 °.

In Figur 5 ist eine besonders vorteilhafte Ausführungsform der Barriere dargestellt, die auch in Verbindung mit den in anderen Figuren dargestellten Strahlkörpem 15 anstelle der Brennerplatte 12 aus Keramik eingesetzt werden kann. Die Barriere besteht aus einer Düsenplatte 28 aus einem hitzebeständigen Metall, in die eine Reihe von rohrförmigen Düsen 29 eingesetzt sind, die ebenfalls aus Metall gefertigt sind. Durch die Düsen 29 tritt das Gas-Luft-Gemisch aus der Verteilkammer 17 in den Feuerraum 14. Die Düsen 29 sind dabei so angeordnet, daß die Austrittsöffnung jeder Düse 29 gegen von Teilen des Strahlkörpers 15 gebildete Prallflächen gerichtet ist. Im Ausführungsbeispiel nach Figur 5 sind die Austrittsöffnungen der Düsen 29 jeweils in etwa mittig gegen den Quersteg 26 einer Leiste 24 des Strahlkörpers 15 gerichtet. Bei der Ausführungsform nach Figur 7 ist jede Düse 29 gegen eine Einbuchtung 27 im Quersteg 26 gerichtet. Auf der Seite des Feuerraums 14 sind die Düsen 29 in einem gasdurchlässigen Faservlies 30 aus einem hitzbeständigen Material eingebettet. Das von hochtemperaturbeständigen Keramikfasern gebildete Faservlies 30 wirkt als Isolierschicht für die Düsenplatte 28 und verhindet so, daß diese durch die hohen Temperaturen im Feuerraum 14 beschädigt wird. Der Durchmesser einer Düse 29 beträgt 1,5 mm - 4 mm. Gegenüber der in Figur 1 dargestellten Brennerplatte 12 aus Keramik enthält die Düsenplatte 28 vergleichsweise wenige Durchtrittsöffnungen für das Gas-Luft-Gemisch. Es sind etwa 1500 - 2500 Öffnungen (Düsen 29) pro m2 der Fläche der Düsenplatte 28 vorhanden.In FIG. 5 a particularly advantageous embodiment of the barrier is shown, which can also be used in conjunction with the Strahlkörpem 15 shown in other figures instead of the burner plate 12 made of ceramic. The barrier consists of a nozzle plate 28 made of a heat-resistant metal, in which a series of tubular nozzles 29 are inserted, which are also made of metal. Through the nozzles 29, the gas-air mixture from the distribution chamber 17 enters the combustion chamber 14. The nozzles 29 are arranged so that the outlet opening of each nozzle 29 is directed against baffles formed by parts of the jet body 15. In the embodiment according to FIG. 5 the outlet openings of the nozzles 29 are each directed approximately centrally against the transverse web 26 of a bar 24 of the jet body 15. In the embodiment according to FIG. 7 Each nozzle 29 is directed against an indentation 27 in the transverse web 26. On the side of the firebox 14, the nozzles 29 in a gas-permeable non-woven fabric 30 are made of a heat-resistant material embedded. The non-woven fabric 30 formed by high-temperature resistant ceramic fibers acts as an insulating layer for the nozzle plate 28 and prevented so that it is damaged by the high temperatures in the combustion chamber 14. The diameter of a nozzle 29 is 1.5 mm - 4 mm. Opposite the in FIG. 1 Ceramic burner plate 12 shown contains the nozzle plate 28 comparatively few passages for the gas-air mixture. There are about 1500 - 2500 openings (nozzles 29) per m 2 of the area of the nozzle plate 28.

In den Figuren 13 bis 16 ist eine weitere Ausführungsform eines erfindungsgemäßen Infrarot-Strahlers dargestellt, bei dem der Strahlkörper aus einer Vielzahl von nebeneinander angeordneten Strahlelementen 31 aufgebaut ist. In Figur 13 ist eine Ansicht auf die Rückseite des Strahlergehäuses 11 dargestellt, wobei die Haube 16 und die Brennerplatte 12 teilweise nicht eingezeichnet sind, um einen Blick von innen auf den Strahlkörper zu ermöglichen.In the FIGS. 13 to 16 a further embodiment of an infrared emitter according to the invention is shown, in which the jet body is constructed from a plurality of juxtaposed beam elements 31. In FIG. 13 a view is shown on the back of the radiator housing 11, wherein the hood 16 and the burner plate 12 are partially not shown to allow a view from the inside of the radiator.

Bei dieser Ausführungsform ist das Strahlergehäuse 11 an seiner die Infrarotstrahlung abgebenden Vorderseite von einem Metallgitter 32 aus einem hitzebeständigen Metall abgeschlossen, in das eine Vielzahl von Strahlelementen 31 eingehängt sind.In this embodiment, the radiator housing 11 is completed at its infrared radiation emitting front of a metal grid 32 made of a refractory metal, in which a plurality of radiation elements 31 are mounted.

Jedes Strahlelement 31 ist aus dem vorstehend beschriebenen hochhitzebeständigen Material gefertigt, das als Hauptbestandteil mehr als 50 Gewichtsprozent MoSi2 enthält. Es besteht aus einer in etwa quadratischen Scheibe 33 mit seitlichen Haken 34, mit denen es in dem Gitter 32 eingehängt werden kann. Die Strahlelemente 21 sind so in das Gitter 32 eingehängt, daß die Scheiben 33 eine zur Brennerplatte 12 parallele Auftrefffläche für die Flammen bilden, die nur von Durchtrittsöffnungen zwischen den einzelnen Scheiben 33 unterbrochen ist. Bevorzugt ist der innere Bereich jeder Scheibe 33 etwas nach außen gewölbt, damit die Auftrefffläche der Flammen vergrößert wird.Each radiating element 31 is made of the above-described high-temperature resistant material containing more than 50% by weight of MoSi 2 as a main component. It consists of an approximately square disc 33 with lateral hooks 34, with which it can be hung in the grid 32. The radiating elements 21 are suspended in the grid 32 in such a way that the discs 33 form an incidence surface for the flames parallel to the burner plate 12, which is interrupted only by passage openings between the individual discs 33. Preferably, the inner portion of each disc 33 is slightly arched outwardly to increase the area of incidence of the flames.

Aufgrund ihrer Einsatzmöglichkeit bei sehr hohen Temperaturen von mehr als 1100°C, ihrer hohen spezifischen Leistungdichte und ihrer langen Standzeit sind die erfindungsgemäßen Infrarot-Strahler besonders zum Trocknen von bahnförmigen Materialien bei hohen Bahngeschwindigkeiten geeignet. Ein bevorzugtes Anwendungsgebiet ist die Trocknung von laufenden Karton- oder Papierbahnen in Papierfabriken, beispielsweise hinter Beschichtungsvorrichtungen.Due to their potential use at very high temperatures of more than 1100 ° C, their high specific power density and their long service life, the infrared emitters according to the invention are particularly suitable for drying web-like materials at high web speeds. A preferred field of application is the drying of running board or paper webs in paper mills, for example behind coating devices.

Claims (21)

  1. Infrared emitter embodied as a planar emitter, comprising a radiant element (15) which is heated on its rear side by a burning fluid-air mixture and whose front side emits the infrared radiation, characterized in that the radiant element (15) is produced from a highly heat-resistant material which contains more than 50% by weight of a metal silicide.
  2. Infrared emitter according to Claim 1, characterized in that the material contains more than 50% by weight of molybdenum disilicide (MoSi2) .
  3. Infrared emitter according to Claim 1, characterized in that the material contains more than 50% by weight of tungsten disilicide (WSi2).
  4. Infrared emitter according to one of Claims 1 to 3, characterized in that the material of the radiant element (15) contains silicon oxide (SiO2) as a further constituent.
  5. Infrared emitter according to one of Claims 1 to 3, characterized in that the material of the radiant element (15) contains zirconium oxide (ZrO2) as a further constituent.
  6. Infrared emitter according to one of Claims 1 to 3, characterized in that the material of the radiant element (15) contains silicon carbide (SiC) as a further constituent.
  7. Infrared emitter according to one of Claims 1 to 6, characterized in that the radiant element (15) consists of a block which contains a large number of continuous ducts (21).
  8. Infrared emitter according to one of Claims 1 to 6, characterized in that the radiant element (15) is built up from a row of plates arranged at a distance from one another.
  9. Infrared emitter according to one of Claims 1 to 6, characterized in that the radiant element (15) is built up from a plurality of tubes (22) or rods arranged at a distance from one another, which are fixed with their ends in each case in a frame (20) on the emitter housing (11).
  10. Infrared emitter according to one of Claims 1 to 6, characterized in that the radiant element (15) is built up from a plurality of strips (24) arranged at a distance from one another, which have baffle surfaces for the flames.
  11. Infrared emitter according to Claim 10, characterized in that the strips (24) in each case have a U-shaped or H-shaped cross section with a transverse web (26) forming the baffle surface and legs (25) oriented outward.
  12. Infrared emitter according to either of Claims 10 and 11, characterized in that the transverse webs (26) of the strips (24) have indentations (27) which are oriented counter to the flames.
  13. Infrared emitter according to Claim 10, characterized in that the radiant element (15) is built up from angled profiled strips (24) each having two legs.
  14. Infrared emitter according to Claim 13, characterized in that the two legs of a strip (24) have an angle of between 30° and 150°.
  15. Infrared emitter according to Claim 10, characterized in that the strips (24) are configured in the form of a half-shell.
  16. Infrared emitter according to one of Claims 10 to 15, characterized in that the radiant element (15) is built up from at least two layers of strips (24) located above one another, the strips of one layer being arranged offset from the strips of the other layer.
  17. Infrared emitter according to one of Claims 1 to 6, characterized in that the radiant element (15) is built up from individual radiating elements (31) which are hooked into a grid (32) fixed to the housing (11).
  18. Infrared emitter according to Claim 17, characterized in that the radiating elements partly have the form of a panel (33) and are hooked into the grid (25) in such a way that they form an impingement surface for the flames which is closed apart from passage openings.
  19. Infrared emitter according to one of Claims 1 to 18, comprising a gas permeable barrier which bounds the combustion chamber (14), characterized in that the barrier consists of a jet plate (28), into which a row of tubular jets (29) is inserted and which, on the combustion-chamber side, is embedded in a gas-permeable fibrous nonwoven (30) made of ceramic fibers.
  20. Infrared emitter according to Claim 19, characterized in that the jet plate (28) and the jets (29) are fabricated from a heat-resistant metal.
  21. Infrared emitter according to Claim 19 or 20, characterized in that the outlet openings of each jet (29) are aimed towards baffle surfaces formed by parts of the radiant element (15).
EP03709604A 2002-02-12 2003-02-11 Planar infra-red emitter Expired - Lifetime EP1476697B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10205922 2002-02-12
DE10205922 2002-02-12
DE10222450A DE10222450A1 (en) 2002-02-12 2002-05-22 Infrared heater designed as a surface heater
DE10222450 2002-05-22
PCT/DE2003/000387 WO2003069224A1 (en) 2002-02-12 2003-02-11 Infra-red emitter embodied as a planar emitter

Publications (2)

Publication Number Publication Date
EP1476697A1 EP1476697A1 (en) 2004-11-17
EP1476697B1 true EP1476697B1 (en) 2010-10-20

Family

ID=27735669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03709604A Expired - Lifetime EP1476697B1 (en) 2002-02-12 2003-02-11 Planar infra-red emitter

Country Status (4)

Country Link
US (1) US7038227B2 (en)
EP (1) EP1476697B1 (en)
CA (1) CA2475915A1 (en)
WO (1) WO2003069224A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7448428B2 (en) * 2005-10-14 2008-11-11 Pcc Airfoils, Inc. Method of casting
KR100778716B1 (en) * 2006-07-07 2007-11-22 주식회사 경동나비엔 Flame hole structure of gas burner
US8274064B2 (en) * 2007-12-07 2012-09-25 The General Hospital Corporation System and apparatus for dermatological treatment
WO2011057897A1 (en) * 2009-11-13 2011-05-19 Nv Bekaert Sa Multiscreen radiant burner
IT1400045B1 (en) * 2010-05-25 2013-05-17 Rude Srl DEVICE FOR ENVIRONMENTAL HEATING WITH INFRARED RAYS.
DE202013102109U1 (en) * 2012-07-03 2013-10-10 Ulrich Dreizler Burner with a surface combustion
US9676246B2 (en) * 2014-01-13 2017-06-13 GM Global Technology Operations LLC Systems for improving climate comfort for rear vehicle passengers
US20170074509A1 (en) * 2015-09-11 2017-03-16 Green Air Burner Systems, LLC Hydrocarbon Burner
EP3598000B1 (en) * 2018-07-20 2021-04-28 Solaronics Gas fired radiant emitter comprising a radiant screen
GB2599898A (en) * 2020-10-07 2022-04-20 Edwards Ltd Burner Liner
FR3117191B1 (en) * 2020-12-03 2023-02-10 Solaronics Infrared radiation emitter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE464692C (en) 1928-08-23 Wilhelm Ruppmann Fa Burner with perforated plates one behind the other
DE1218375B (en) 1959-02-04 1966-06-08 Stettner & Co Fabrik Elektroke Burners for gaseous or liquid fuels
DE1233764B (en) 1961-10-11 1967-02-02 Samuel Ruben Process for the production of high-melting, electrically conductive sintered bodies
DE1629952C3 (en) 1967-07-03 1974-02-28 Kurt 4000 Duesseldorf Krieger Radiant burner
FR1595547A (en) 1968-03-11 1970-06-15
DE1905148C3 (en) * 1969-02-03 1976-01-02 Kurt 4000 Duesseldorf Krieger Radiant burner
GB8526068D0 (en) 1985-10-22 1985-11-27 Thorn Emi Appliances Cooking apparatus
DE3734274C2 (en) * 1986-10-09 1996-07-11 Nippon Denso Co Ceramic glow plug and process for its manufacture
US4876586A (en) * 1987-12-21 1989-10-24 Sangamo-Weston, Incorporated Grooved Schottky barrier photodiode for infrared sensing
FR2683022B1 (en) 1991-10-25 1997-07-18 Gaz De France RADIANT BURNER WITH CERAMIC SCREEN.
JPH10104067A (en) * 1996-09-27 1998-04-24 Fuji Electric Co Ltd Infrared light source of molybdenum disilicide composite ceramics or heating source
US5989013A (en) * 1997-01-28 1999-11-23 Alliedsignal Composites Inc. Reverberatory screen for a radiant burner
JP3411498B2 (en) * 1997-04-23 2003-06-03 日本特殊陶業株式会社 Ceramic heater, method of manufacturing the same, and ceramic glow plug
JP3657800B2 (en) * 1998-02-20 2005-06-08 株式会社リケン Molybdenum disilicide-based composite ceramic heating element and manufacturing method thereof
DE19901145A1 (en) * 1999-01-14 2000-07-20 Krieger Gmbh & Co Kg Infrared heater designed as a surface heater
WO2003006880A1 (en) * 2001-07-10 2003-01-23 Sun Frontier Technology Co., Ltd Method and burner element for burning gas by void combustion system

Also Published As

Publication number Publication date
EP1476697A1 (en) 2004-11-17
US7038227B2 (en) 2006-05-02
US20050017203A1 (en) 2005-01-27
CA2475915A1 (en) 2003-08-21
WO2003069224A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
EP2467642B1 (en) Radiant burner
EP1476697B1 (en) Planar infra-red emitter
DE19901145A1 (en) Infrared heater designed as a surface heater
DE3147993C2 (en) Metal annealing furnace
WO2003069225A1 (en) Infrared radiator embodied as a surface radiator
WO2006008169A1 (en) Burner nozzle field comprising integrated heat exchangers
DE10222450A1 (en) Infrared heater designed as a surface heater
DE1905148B2 (en) Radiant burner
DE1218375B (en) Burners for gaseous or liquid fuels
EP0796412A1 (en) Gas burner for heaters,especially water heaters
AT402847B (en) HEAT GENERATOR WITH A PARTLY CATALYTICALLY COATED METALIC HONEYCOMB REACTOR
DE19718885C2 (en) gas burner
DE3503553C2 (en)
EP2253914A2 (en) Infrared radiator
DE10222452A1 (en) Infrared heater designed as a surface heater
CH690282A5 (en) Heater with a catalytic burner.
DE2125365C3 (en) Radiant burners for gaseous fuels
EP0794384B1 (en) Small combustion device for domestic use
EP4246043A1 (en) Gas burner arrangement, gas heater and use
DE1101675B (en) Radiant burner
AT397564B (en) HEATING CHAIN TO GUIDE THE COMBUSTION GASES OF A BURNER
DE892807C (en) Electric resistance furnace with internal heating
DE1529197C (en) Radiant burner
EP0190659A2 (en) Boiler
CH665269A5 (en) COMBUSTION PLANT.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOITH PATENT GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: PLANAR INFRA-RED EMITTER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50313204

Country of ref document: DE

Date of ref document: 20101202

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101020

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110120

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: VOITH PATENT G.M.B.H.

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

26N No opposition filed

Effective date: 20110721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313204

Country of ref document: DE

Effective date: 20110721

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120221

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 485481

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110211

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313204

Country of ref document: DE

Effective date: 20130903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130903