WO2003006880A1 - Method and burner element for burning gas by void combustion system - Google Patents

Method and burner element for burning gas by void combustion system Download PDF

Info

Publication number
WO2003006880A1
WO2003006880A1 PCT/JP2002/006969 JP0206969W WO03006880A1 WO 2003006880 A1 WO2003006880 A1 WO 2003006880A1 JP 0206969 W JP0206969 W JP 0206969W WO 03006880 A1 WO03006880 A1 WO 03006880A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
combustion
metals
volume ratio
void volume
Prior art date
Application number
PCT/JP2002/006969
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Suzuki
Masahito Ishihara
Original Assignee
Sun Frontier Technology Co., Ltd
Asahi Sesakusyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Frontier Technology Co., Ltd, Asahi Sesakusyo Co., Ltd. filed Critical Sun Frontier Technology Co., Ltd
Publication of WO2003006880A1 publication Critical patent/WO2003006880A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/16Radiant burners using permeable blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • F23D2212/103Fibres

Definitions

  • the present invention relates to a method for burning gas using liquefied petroleum gas, liquefied natural gas, city gas, or the like as a fuel, and more particularly to a gas burning method advantageous for performing radiant heating by a gap combustion method and a burner element used therefor.
  • a heating method using a gas perch there is a radiant heating method in addition to a convection heating method using a blue flame by diffusion combustion.
  • the latter radiant heating method is widely used industrially because of its advantages such as high heat transfer efficiency at high temperatures and the possibility of heating an arbitrary atmosphere when burning in a radiant tube, for example.
  • a premixed gas in which gas fuel substantially contains theoretical combustion oxygen is introduced through a header 12 through a header 12 through a ceramic harder having a large number of pores 37.
  • the gas is burned in or near the outlet of the pores 37 to heat the ceramic honeycomb plate 36 to a high temperature to dissipate the radiant heat, or as shown in Fig.
  • the theoretical combustion The gaseous fuel mixed with oxygen was introduced from the introduction pipe 11 to the header 21 and was burned while ejecting gas from a large number of horns 39 attached to the header, and the fuel was provided facing the nozzle surface by the heat of combustion. There is a method of radiating radiant heat by heating the ceramic plate 38 to a high temperature.
  • Japanese Patent Application Laid-Open No. 2002-22120 proposes a technique in which a burner mat made of a heat-resistant fiber of Si-C-0 system is used to burn the premixed gas supplied from the back surface to the surface.
  • Japanese Patent Application Laid-Open No. 2001-296005 Japanese Patent Application Publication No. 2001-519519 (W099 / 18393), and the like disclose techniques using metal fibers as burner'mats.
  • those using the former ceramic honeycomb or ceramic plate as a heating element have a risk of diffusion combustion, in which case the radiant heating efficiency is inevitably reduced.
  • the radiant heating type gas burner shown in FIG. 4 since PANA one 'element Ha second cam ceramic Itaa Rui is constituted by a laminate such as a metal net, CO, harmful combustion exhaust such NO x There are limits to controlling the generation of substances.
  • those using metal fibers disclosed in JP-A-2001-296005, JP-T-2001-519519 (W099 / 18393), etc. have a structure in which the metal fibers are made of a metal having a large specific heat, and Due to its high conductivity, the surface temperature of the burner made of metal fibers during surface combustion becomes higher than the ignition temperature of premixed gas, and there is a risk of internal ignition or flashback. In addition, there is you it is also the NO x in the combustion gas is increased.
  • the present invention provides a gas combustion method comprising laminating Si-CM-0 filaments containing 30 to 60% Si, 30 to 70% C, 5.0% or less, and 0: 30% or less in atomic ratio.
  • the premixed gas is supplied to the burner element having a void volume ratio of 60 to 98%, and the burner element The premixed gas is burned by crevice immediately below the surface to radiate radiant heat from the surface of the planar element.
  • M is one or more selected from alkali metals, alkaline earth metals, polyvalent metals, transition metals, precious metals, rare earth metals, and actinide metals that form stable oxides, carbides, and silicides. It is a metal element.
  • the void volume ratio on the supply surface side of the premixed gas is larger than the void volume ratio on the combustion surface side, or conversely, the void volume ratio on the supply surface side of the premixed gas is It can be smaller than the void volume ratio on the surface side. Further, it is preferable that the void volume ratio of the Pana 1 ′ element be 90 to 98%.
  • the gas combustion zone should be within 2 mm from the surface of the burner element, but in addition, the gas combustion zone should also be present on the surface of the burner element. Can also.
  • the mixed gas may contain oxygen gas in an amount of 0.90 to L10 times the theoretical combustion oxygen amount with respect to the combustion gas.
  • M is one or more metals selected from the group consisting of alkali metals, alkaline earth metals, polyvalent metals, transition metals, noble metals, rare earth metals, and actinide metals that form stable oxides, carbides, and silicides. Element.
  • the burner-element may have a different void volume ratio between the combustion surface side and the supply surface side of the premixed gas.
  • the void volume ratio is preferably set to 90 to 98%.
  • FIG. 1 is a schematic view of a gas combustion device incorporating a burner element according to the present invention.
  • FIG. 2 is a conceptual diagram showing a structure of a wrench element according to the present invention.
  • FIG. 3 is an explanatory diagram showing a heating state by a gas combustion device incorporating a parner element according to the present invention.
  • FIG. 4 is a schematic diagram showing an example of a conventional gas combustion device using a radiant heating method.
  • FIG. 5 is a schematic diagram showing another example of a conventional gas heating device using a radiant heating method.
  • the present invention employs a known gap combustion method.
  • the gap combustion method means that the premixed gas that has passed through the inside of a porous solid such as a black body material burns in a layer very close to the outlet surface, and the solid itself is heated by the energy to form a radiant heat radiator. Combustion method. In this combustion system, the floating of the flame is not apparently observed, and it is attached to the surface.
  • FIG. 1 is a schematic view of a gas combustion device incorporating a burner element according to the present invention. That is, the premixed gas is supplied to the burner element 31 through the introduction pipe 11, the header 12, and the flow straightening plate 21, and the gap is burned immediately below the surface to radiate radiant heat from the surface. By doing so, the premixed gas is guided into the parner element 31 while maintaining a substantially laminar flow state without substantially causing a pressure loss, and is ignited from the surface thereof so that the premixed gas is reduced. Continue burning in the gap just below the element surface.
  • the premixed gas for example, a hydrocarbon-based gas such as propane or butane, or a gas containing oxygen necessary for combustion of a hydrogen gas can be used.
  • the oxygen content of this premixed gas may be in the range of 0.90 to 1.10 of the theoretical combustion oxygen content.
  • the burner 'element 31 in which the above-mentioned crevice combustion is performed has an atomic ratio of Si: 30 to 60%, C: 30 to 70%, M: 5.0% or less (0 is not included), 0: 30% or less ( It does not include 0). It is composed of mats with a void volume ratio of 60 to 98% by laminating Si-CM-0 type long fibers having the composition
  • M is an alkali metal, alkaline earth metal, polyvalent metal, transition metal, noble metal, rare earth metal, which forms stable oxides, carbides, and silicides. It is one or more metal elements selected from octinide metals.
  • Such a fibrous substance can be produced, for example, by an organic-inorganic conversion process using polycarbosilane as a precursor, and is known as a Tyranno fiber of Ube Industries, Ltd.
  • the present invention utilizes this effectively.
  • this fiber substance can appropriately contain B, N and the like as skeletal elements in addition to the above basic components.
  • the metal element M is an alkali metal such as Li, Na, K, Rb, and Cs; an alkaline earth metal such as Mg, Ca, Sr, and Ba; a polyvalent metal such as Al, Ge, and Sn; 3d transition metals such as Ti, V, Cr, Mn, Fe, Co, Ni, 4d transition metals such as Y, Zr, Nb, Mo, Ru, Rh, etc., 5d transition metals such as W, Re, Os, Ir , Pd, Ag, Pt, Au etc., Noble metals, La ⁇ Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu etc., rare earth metals and Th, U Etc., and not only one kind but also several kinds of metal elements can be simultaneously contained at an appropriate ratio.
  • an alkali metal such as Li, Na, K, Rb, and Cs
  • an alkaline earth metal such as Mg, Ca, Sr, and
  • the Si-CMO filament-made burner element emits an almost ideal, ideal blackbody staple, it is heated by the crevice combustion of the premixed gas and becomes hot from the surface of the burner. Ideal radiant heat is dissipated.
  • fuel gas for example, propane and butane contains oxygen which is substantially equivalent to the theoretical combustion amount in advance, secondary air is not required for crevice combustion. As a result, diffusion combustion is practically eliminated, and radiant heating efficiency is improved.
  • the specific heat is extremely small, about 0.7 J / gK, so that the surface of the parner instantly glows red by ignition, and strong radiant heating is obtained.
  • the Si-CM-0 type long fiber is amorphous and has a uniform component over the entire cross section. Also, its strength reaches 3000MPa, so it does not break when it is spread and molded into a mat. In addition, since it has a thermal conductivity of 3 W / mK or less, even if the front surface is heated to a high temperature, for example, 1000 ° C, the back surface remains at a low temperature, at most about 100 ° C. Furthermore, even if heating and cooling are repeated, surface peeling does not occur.
  • the Si-C-M-0 system constituting the Pana 'element is a long fiber having a diameter of 8 to 100 / m. Reducing the fiber diameter in this way makes it easier for the fiber to bend freely, burns it into a matte shape, reduces the generation of cut pieces when it is used as an element, and cuts the fiber during combustion. Solves the problem of flying around.
  • the burner element can be formed as a long, laminated fiber in a folded or entangled mat shape.
  • the fiber length has at least the span length of the burner 'element. Considering that the burner element is manufactured in a square having a side of about 150 mm as will be described later in the examples, the fiber length is preferably at least 150 mm.
  • the void volume ratio of the PANA-1 'element is not particularly limited, and may be about 60% to 90% which is generally used. However, the void volume ratio is preferably 90 to 98%, particularly 93 to 98%. As a result, the premixed gas is introduced into the burner element ⁇ ⁇ without substantially causing a pressure loss, and the crevice combustion is performed smoothly.
  • the void volume ratio of the Pana 'element may be within the above-mentioned range on the average of the entire Pana' element, but this is closer to the supply surface side than the premixed gas combustion surface side. Can be increased. By changing the void volume ratio in this way, the premixed gas burns most strongly under the surface of the burner 'element, and the combustion decreases rapidly toward the inside.
  • the method of changing the void volume ratio may not be uniform.For example, only the vicinity of the combustion surface is reduced, that is, the Si-C-M-0 fiber which is a black body is clogged. It can also be in the state of being left. These may be appropriately determined empirically so as to optimize the condition of crevice combustion. Most typically, the porosity can be 70-95% on the combustion side and 95-98% on the supply side.
  • the above void volume ratio is determined by, for example, linearly injecting a resin into the manufactured PANA-MAT and solidifying the resin, and then observing the cross section with an optical microscope to determine the area ratio occupied by the fiber. 'It can be determined by asking by analysis.
  • the gas combustion zone be within a range of 2 mm or less from the surface of the PANER' element.
  • Such adjustment of the gas combustion zone can be performed by adjusting the lamination state of the Si-C-M-0-based fibers described above.
  • the above porosity of 70-95% on the combustion side and 95-98% on the supply side is desirable for such combustion.
  • the surface temperature of the burner's element reaches 800 to 900 ° C by the above gap combustion method. Further, as shown in FIG. 3, a part of the radiant heat energy radiated from the surface of the burner element 31 is reflected from the bottom surface of the heating element 41 to make the surface of the burner element 31 hotter, thereby further increasing the temperature. High radiant heating is possible.
  • the temperature on the bottom side of the burner element 31 is at most several tens of degrees Celsius due to the large void volume ratio of the burner element 31 and the low thermal conductivity of the material that composes it. It only rises up to. This has the advantage that flashback is effectively prevented and that the Pana 'element can be manufactured in any shape, such as flat, cylindrical or spherical.
  • the porosity is sufficiently small on the combustion surface side, that is, the fiber density is sufficiently high, because the premixed gas introduced into the parner element in a laminar flow state is turbulent in the combustion zone. It mixes the gas and increases the combustion rate by mixing the gas. As a result, the turndown ratio can be increased, for example, as large as 1:10, and combustion with a relatively small load density can be performed. This allows for efficient extraction of far-infrared radiation.
  • the premixed gas is mostly Crevice combustion occurs just below the surface, causing virtually no flames and radiating heat from the ideal blackbody radiation from the surface of the burner 'element.
  • the secondary air is practically unnecessary, and there is no need for a flame outlet as in the conventional burner element.
  • the gas combustion zone need not be limited to just below the Pana 'element.
  • a gas combustion zone exists on the element surface, even if the air volume of the premixed gas is small, for example, containing oxygen gas that is about 0.90 times the theoretical combustion oxygen amount with respect to the combustion gas. You can also do so.
  • FIG. 2 (a) is a conceptual diagram showing an example of the entire structure of a wrench element according to the present invention.
  • FIG. 2 (b) is a partially enlarged schematic view showing the state of entanglement of the fiber by its cross section.
  • the Pana 'element 31 is formed by vertically and horizontally tangling and stacking Si-C-M-0 type long fibers 32 represented by Tyranno fibers.
  • the fiber diameter of the Si-C-M-O type long fiber is 8 to 100 ⁇ , and the length is, for example, 150 mm or more. This allows the shape to be kept constant while maintaining a higher void volume ratio (90 to 98%).
  • the portion A near the surface has a relatively low void volume ratio, and the void volume ratio increases as it enters the interiors B and C.
  • the gas flow force S is guided into the burner's element while being maintained almost laminar, and becomes turbulent immediately below the surface and burns rapidly.
  • the heat of combustion is not transmitted to the interior of the perforation, due to the characteristics of the black body fiber, and the temperature of the rear surface is almost room temperature.
  • the above-mentioned PARNER 'element may be manufactured as a so-called integral element, but is divided into' polygonal ',' circular 'and' elliptical 'unit shapes in consideration of safety during use. It is desirable.
  • the area of one division unit is, for example, about 10 to 300 cm 2 in consideration of the spread of the flame when used for household gas stoves.
  • the premixed gas is preferably sent in a laminar flow into the burner element 31.
  • the burner element 31 and a header for introducing gas are used. It is good to arrange the current plate 21 between 12.
  • This burner element is attached to the burner section of the cassette inlet, and a premixed gas of liquefied butane gas and air is supplied from the back of the burner element, and the gap is burned in a combustion zone with a thickness of 0.6 to 1.0 mm just below the surface. I let it.
  • Example 2 Burner with Si-C-Zr-0 fibers laminated area: 150mm X 150mm, thickness: 6mm (two 3mm thick mats), volume porosity: 95% * Element size of opening The same combustion test as described above was conducted by mounting on the opening side of a steel potter with a size of 150 mm X 150 mm and a depth of 20 mm.
  • the fuel gas was liquefied butane gas, and its secondary pressure was controlled to 200 hPa with respect to atmospheric pressure.
  • combustion efficiency of 58%, or less CO concentration 20ppm in the combustion exhaust gas, NO x concentration 20ppm following data was obtained.
  • the burner element is thin and the burner is a steel box that houses the burner element.
  • the secondary pressure is sufficiently large even when the space behind the element is narrow. As a result, high combustion efficiency and clean combustion exhaust are realized.
  • the present invention can be applied to household gas stoves as in the above embodiment, and can be applied to industrial heating furnaces such as ceramics, steel, paint baking, and the like. Can be widely applied. Further, in this embodiment, in addition to using the parner in a naked state, the parner can be used by being wrapped with a suitable infrared transmitting means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

A method for burning a gas, characterized in that a pre-mixed gas is fed to a burner element which comprises laminated Si-C-M-O type continuous fibers containing, in atomic %, 30 to 60 % of Si, 30 to 70 % of carbon, not more than 5.0 % of M, and not more than 30 % of O, and has a void volume percentage of 60 to 98%, wherein M represents one or more metal elements selected from among alkali metals, alkaline earth metals, multi-valent metals, transition metals, noble metals, rare earth metals and actinide metals which form a stable oxide, carbide or silicide, and the pre-mixed gas undergoes void combustion directly under the surface of the burner element to thereby emit radiant heat; and a burner element for use in the method. The method can be advantageously used for carrying out radiant heating by means of a void combustion system using a liquefied petroleum gas, a liquefied natural gas, a city gas, or the like as a fuel.

Description

隙間燃焼方式によるガス燃焼方法及びパーナ一'エレメント  Gas combustion method by crevice combustion method and Pana 1 'element
技術分野 Technical field
この発明は、 液化石油ガス、 液化天然ガス、 都市ガス等を燃料とするガスの燃 焼方法、 特に隙間燃焼方式により輻射加熱を行うのに有利なガスの燃焼方法及び それに用いるバーナー 'エレメントに関する。  The present invention relates to a method for burning gas using liquefied petroleum gas, liquefied natural gas, city gas, or the like as a fuel, and more particularly to a gas burning method advantageous for performing radiant heating by a gap combustion method and a burner element used therefor.
背景技術 Background art
ガスパーチ一による加熱方法には、 拡散燃焼による青色火炎を用いる対流加 熱方式のほかに輻射加熱方式がある。 後者の輻射加熱方式は、 高温での伝熱効率 が高く、 また例えばラデイアントチューブ中で燃焼させる場合には任意の雰囲気 加熱ができるなどの利点があるので工業的に広く採用されている。 この輻射加熱 方式には、 図 4に示すようにガス燃料にほぼ理論燃焼酸素を含有させた予混合ガ スを導入管 11からへッダー 12を介して多数の細孔 37を有するセラミックハ-カ ム板 36に供給し、細孔 37中あるいはその出口近傍でガスを燃焼させてセラミッ クハ-カム板 36を高温に加熱して輻射熱を放散させる方式、 あるいは図 5に示 すように、理論燃焼酸素を混合したガス燃料を導入管 11からヘッダー 21に導き、 該ヘッダーに取りつけられた多数のノズノレ 39力 らガスを噴出させながら燃焼さ せ、 その燃焼熱によりノズル面に対向して設けられたセラミック板 38を高温に 加熱して輻射熱を放射させる方式などがある。  As a heating method using a gas perch, there is a radiant heating method in addition to a convection heating method using a blue flame by diffusion combustion. The latter radiant heating method is widely used industrially because of its advantages such as high heat transfer efficiency at high temperatures and the possibility of heating an arbitrary atmosphere when burning in a radiant tube, for example. In this radiant heating method, as shown in FIG. 4, a premixed gas in which gas fuel substantially contains theoretical combustion oxygen is introduced through a header 12 through a header 12 through a ceramic harder having a large number of pores 37. In this system, the gas is burned in or near the outlet of the pores 37 to heat the ceramic honeycomb plate 36 to a high temperature to dissipate the radiant heat, or as shown in Fig. 5, the theoretical combustion The gaseous fuel mixed with oxygen was introduced from the introduction pipe 11 to the header 21 and was burned while ejecting gas from a large number of horns 39 attached to the header, and the fuel was provided facing the nozzle surface by the heat of combustion. There is a method of radiating radiant heat by heating the ceramic plate 38 to a high temperature.
また、 特開 2002-22120号公報等には、 Si- C-0系の耐熱繊維製のバーナー ·マ ットを用い、 その背面から供給した予混合ガスを表面燃焼させる技術が提案され ている。 さらに、 特開 2001-296005 号公報、 特表 2001-519519 号公報 (W099/18393) 等には、 バーナー 'マットとして金属繊維を利用する技術が開 示されている。 しかしながら、 これら従来の輻射加熱方式のうち、 前者のセラミックハ二カム あるいはセラミック板を発熱体として用いるものは、 拡散燃焼が混在する危険が あり、 その場合には輻射加熱効率の低下が避けられない。 さらに、 図 4に示した 輻射加熱型ガスバーナーでは、 パーナ一 'エレメントがハ二カムセラミック板あ るいは金属ネット等の積層体により構成されているので、 CO、 NOx等の有害燃 焼排気物質の発生を抑制するには限界がある。 Japanese Patent Application Laid-Open No. 2002-22120 proposes a technique in which a burner mat made of a heat-resistant fiber of Si-C-0 system is used to burn the premixed gas supplied from the back surface to the surface. . Furthermore, Japanese Patent Application Laid-Open No. 2001-296005, Japanese Patent Application Publication No. 2001-519519 (W099 / 18393), and the like disclose techniques using metal fibers as burner'mats. However, among these conventional radiant heating methods, those using the former ceramic honeycomb or ceramic plate as a heating element have a risk of diffusion combustion, in which case the radiant heating efficiency is inevitably reduced. . Furthermore, the radiant heating type gas burner shown in FIG. 4, since PANA one 'element Ha second cam ceramic Itaa Rui is constituted by a laminate such as a metal net, CO, harmful combustion exhaust such NO x There are limits to controlling the generation of substances.
これに対し、 特開 2002-22120号公報に開示された燃焼エレメントとして Si- C-0系の耐熱繊維製のパーナ一♦マットを用いるものでは、 上記のような問題は ないが、 繊維が結晶質であり、 固く、 脆く、 力 >つ短いという特性に由来して、 燃. 焼マットの強度が十分大きくできない。 そのため、 一且逆火や内部発火が生ずる と、誘起された爆発的風圧によりパーナ一 ·マ.ットが裂断する危険がある。また、 これらのバーナー '·マツトに用いられる Si-C-0系の繊維は SiCを表面にコ^テ ィングすることによって理想的な黒体条件を実現するものであるが、 その使用中 に表面被膜が、 例えば、 繰り返し熱履歴のため欠落し輻射伝熱効率が低下するお それがある。 さらに、 このような短繊維のバーナ'マットは組み立ての際、あるい は燃焼の際、 折れてちぎれた繊維端が周囲に飛散して皮膚に突き刺さり、 不快感 を与えることがある。  On the other hand, in the case of using a Pana mat made of heat-resistant fiber of Si-C-0 series as the combustion element disclosed in JP-A-2002-22120, there is no such problem, but the fiber Due to its high quality, hardness, brittleness, and short strength, the strength of the burning mat cannot be increased sufficiently. Therefore, when flashback or internal ignition occurs, there is a danger that the burner will break due to the induced explosive wind pressure. In addition, the Si-C-0 fibers used in these burners and mats achieve ideal black body conditions by coating SiC on the surface. The coating may be lost due to repeated heat history, for example, and the radiation heat transfer efficiency may be reduced. In addition, such short fiber burner mats can cause discomfort during assembly or burning, with broken fiber ends scattered around and piercing the skin.
一方、 特開 2001- 296005号公報、 特表 2001-519519号公報 (W099/18393) 等に開示された金属繊維を用いるものは、 金属繊維が比熱の大きい金属から構成 されており、 かつその熱伝導率が大きいため、 表面燃焼の際に金属繊維からでき たパーナ一.マツトの裏面温度が予混合ガスの着火温度より高くなり、内部発火や 逆火の危険がある。 また、 燃焼ガス中の NOxが高くなるおそれもある。 On the other hand, those using metal fibers disclosed in JP-A-2001-296005, JP-T-2001-519519 (W099 / 18393), etc., have a structure in which the metal fibers are made of a metal having a large specific heat, and Due to its high conductivity, the surface temperature of the burner made of metal fibers during surface combustion becomes higher than the ignition temperature of premixed gas, and there is a risk of internal ignition or flashback. In addition, there is you it is also the NO x in the combustion gas is increased.
発明の開示 Disclosure of the invention
本発明は、 ガス燃焼方法を原子比で Si: 30〜60%、 C: 30〜70%、 M: 5.0%以 下、 0: 30%以下を含む Si-C-M-0系長繊維を積層してなり、 空隙体積率が 60〜 98%のバーナー ·エレメントに予混合ガスを供給し、 該バーナー 'エレメントの 表面直下において前記予混合ガスを隙間燃焼させ、 前記パーナ一 'エレメントの 表面から輻射熱を放射させるものである。 ここに、 Mは安定な酸化物、 炭化物、 珪化物を形成するアルカリ金属、 アルカリ土類金属、 多価金属、 遷移金属、 貴金 属、稀土類金属、ァクチナイド金属から選ばれる 1又は 2以上の金属元素である。 ここにお 、て、 予混合ガスの供給面側の空隙体積率が燃焼面側の空隙体積率に 比べて大きいものとすること、 あるいは逆に予混合ガスの供給面側の空隙体積率 が燃焼面側の空隙体積率に比べて小さいものとすることができる。 また、 パーナ 一'エレメントの空隙体積率は、 90〜98%とすることが好適である。 The present invention provides a gas combustion method comprising laminating Si-CM-0 filaments containing 30 to 60% Si, 30 to 70% C, 5.0% or less, and 0: 30% or less in atomic ratio. The premixed gas is supplied to the burner element having a void volume ratio of 60 to 98%, and the burner element The premixed gas is burned by crevice immediately below the surface to radiate radiant heat from the surface of the planar element. Here, M is one or more selected from alkali metals, alkaline earth metals, polyvalent metals, transition metals, precious metals, rare earth metals, and actinide metals that form stable oxides, carbides, and silicides. It is a metal element. Here, it is assumed that the void volume ratio on the supply surface side of the premixed gas is larger than the void volume ratio on the combustion surface side, or conversely, the void volume ratio on the supply surface side of the premixed gas is It can be smaller than the void volume ratio on the surface side. Further, it is preferable that the void volume ratio of the Pana 1 ′ element be 90 to 98%.
上記ガス燃焼方法においてはガスの燃焼ゾーンをバーナー ·エレメントの表面 から 2mm以内にあるようにするのがよいが、 加えてガスの燃焼ゾーンをパーナ 一 ·エレメント表面にも存在する.ようにすることもできる。  In the above gas combustion method, the gas combustion zone should be within 2 mm from the surface of the burner element, but in addition, the gas combustion zone should also be present on the surface of the burner element. Can also.
なお、 上記ガス燃焼方法において、 混合ガスは燃焼ガスに対して理論燃焼酸素 量の 0,90〜: L10倍の酸素ガスを含有するものとすることができる。  In the above gas combustion method, the mixed gas may contain oxygen gas in an amount of 0.90 to L10 times the theoretical combustion oxygen amount with respect to the combustion gas.
上記ガス燃焼方法を実施するためには、 原子比で Si: 30〜60%、 C: 30〜70%、 M: 5.0%以下、 0: 30%以下を含む直径 8〜: LOO mの Si-C-M-0系長繊維を積層 してなる空隙体積率が 60〜98%、 厚さ l〜20mm (好ましくは 1〜 10mm) のマ ット状に形成してなる隙間燃焼用バーナー ·エレメントを用いるのがよい。 ここ に、 Mは安定な酸化物、 炭化物、 珪化物を形成するアルカリ金属、 アルカリ土類 金属、 多価金属、 遷移金属、 貴金属、 稀土類金属、 ァクチナイド金属から選ばれ る 1又は 2以上の金属元素である。  In order to carry out the above gas combustion method, it is necessary to include Si: 30 to 60%, C: 30 to 70%, M: 5.0% or less, and 0: 30% or less in atomic ratio. Uses a gap-burning burner element that is formed in a mat shape with a void volume ratio of 60 to 98% and a thickness of 1 to 20 mm (preferably 1 to 10 mm) formed by laminating CM-0 type long fibers. Is good. Here, M is one or more metals selected from the group consisting of alkali metals, alkaline earth metals, polyvalent metals, transition metals, noble metals, rare earth metals, and actinide metals that form stable oxides, carbides, and silicides. Element.
上記パーナ一-エレメントは、空隙体積率が予混合ガスの燃焼面側と供給面側と で異なるものとすることができる。また、その空隙体積率が 90〜98%とするのが よい。 '  The burner-element may have a different void volume ratio between the combustion surface side and the supply surface side of the premixed gas. The void volume ratio is preferably set to 90 to 98%. '
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明に係るバーナー 'エレメントを組み込んだガス燃焼装置の模式 図である。 図 2は本発明に係るパーナ一 ·'エレメントの構造を示す概念図である。 FIG. 1 is a schematic view of a gas combustion device incorporating a burner element according to the present invention. FIG. 2 is a conceptual diagram showing a structure of a wrench element according to the present invention.
図 3は本発明に係るパーナ一'エレメントを組み込んだガス燃焼装置による 加熱状態を示す説明図である。  FIG. 3 is an explanatory diagram showing a heating state by a gas combustion device incorporating a parner element according to the present invention.
図 4は従来の輻射加熱方式によるガス燃焼装置の一例を示す模式図である。 図 5は従来の輻射加熱方式によるガス燃焼装置の他の例を示す模式図である。  FIG. 4 is a schematic diagram showing an example of a conventional gas combustion device using a radiant heating method. FIG. 5 is a schematic diagram showing another example of a conventional gas heating device using a radiant heating method.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 公知の隙間燃焼方式をとる。 ここに隙間燃焼方式とは、 黒体物質 等の多孔性固体の内部を通過してきた予混合ガスが出口表面に極めて近い層内で 燃焼し、 そのエネルギーで固体自体が加熱されて輻射熱放射体となる燃焼方式を いう。 この燃焼方式ではフレームの浮上は外見上認められず、 表面に付着した状 態となる。  The present invention employs a known gap combustion method. Here, the gap combustion method means that the premixed gas that has passed through the inside of a porous solid such as a black body material burns in a layer very close to the outlet surface, and the solid itself is heated by the energy to form a radiant heat radiator. Combustion method. In this combustion system, the floating of the flame is not apparently observed, and it is attached to the surface.
図 1は、本発明に係るバーナー 'エレメントを組み込んだガス燃焼装置の模式図 である。 すなわち、 導入管 11、 ヘッダー 12、 整流板 21を通してバーナー 'エレ メント 31に予混合ガスを供給し、 その表面直下において隙間燃焼させ、 表面か ら輻射熱を放射させるのである。 このようにすることにより、 予混合ガスは圧力 損失を実質的に生ずることなく、 ほぼ層流状態を維持してパーナ一 ·エレメント 31内に導かれ、 その表面から着火されることによりパーナ一'エレメント表面直 下の隙間内で燃焼を継続する。 なお、 予混合ガスとしては例えば、 プロパン、 ブ タンなどの炭化水素系ガスあるいは水素ガスに対してその燃焼に必要な酸素を含 有するガスを用いることができる。 この予混合ガスの含有酸素量は理論燃焼酸素 量の 0.90〜1.10の範囲とすればよい。  FIG. 1 is a schematic view of a gas combustion device incorporating a burner element according to the present invention. That is, the premixed gas is supplied to the burner element 31 through the introduction pipe 11, the header 12, and the flow straightening plate 21, and the gap is burned immediately below the surface to radiate radiant heat from the surface. By doing so, the premixed gas is guided into the parner element 31 while maintaining a substantially laminar flow state without substantially causing a pressure loss, and is ignited from the surface thereof so that the premixed gas is reduced. Continue burning in the gap just below the element surface. Note that, as the premixed gas, for example, a hydrocarbon-based gas such as propane or butane, or a gas containing oxygen necessary for combustion of a hydrogen gas can be used. The oxygen content of this premixed gas may be in the range of 0.90 to 1.10 of the theoretical combustion oxygen content.
本発明では、上記隙間燃焼の行われるバーナー 'エレメント 31を原子比で Si: 30〜60%、 C: 30〜70%、 M: 5.0%以下 (0は含まない)、 0: 30%以下 (0は含 まない) の組成を有する Si-C-M-0系長繊維を積層してなる空隙体積率が 60〜 98%のマツトで構成する。 ここで、 Mは安定な酸化物、 炭化物、 珪化物を形成す るアルカリ金属、 アルカリ土類金属、多価金属、遷移金属、 貴金属、稀土類金属、 了クチナイド金属から選ばれる 1又は 2以上の金属元素である。 このような繊維 物質は、 例えば、 ポリカルボシランを前駆体として有機一無機変換プロセスによ り作成することができ、 宇部興産株式会ネ のチラノ繊維として知られている。 本発明はこれを有効に利用する。 なお、 この繊維物質は上記基本成分のほか、 骨 格形成元素として B、 Nなどを適宜含むことができる。 In the present invention, the burner 'element 31 in which the above-mentioned crevice combustion is performed has an atomic ratio of Si: 30 to 60%, C: 30 to 70%, M: 5.0% or less (0 is not included), 0: 30% or less ( It does not include 0). It is composed of mats with a void volume ratio of 60 to 98% by laminating Si-CM-0 type long fibers having the composition Here, M is an alkali metal, alkaline earth metal, polyvalent metal, transition metal, noble metal, rare earth metal, which forms stable oxides, carbides, and silicides. It is one or more metal elements selected from octinide metals. Such a fibrous substance can be produced, for example, by an organic-inorganic conversion process using polycarbosilane as a precursor, and is known as a Tyranno fiber of Ube Industries, Ltd. The present invention utilizes this effectively. In addition, this fiber substance can appropriately contain B, N and the like as skeletal elements in addition to the above basic components.
上記において金属元素 Mは、 Li、 Na、 K、 Rb、 Cs等のアルカリ金属、 Mg、 Ca、 Sr、 Ba等のアル力リ土類金属、 Al、 Ge、 Sn等の多価金属、 Sc、 Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni等の 3 d遷移金属、 Y、 Zr、 Nb、 Mo、 Ru、 Rh等の 4d 遷移金属、 W、 Re、 Os、 Ir等の 5 d遷移金属、 Pd、 Ag、 Pt、 Au等の貴金属、 Laヽ Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu等の 稀土類金属そして Th、 U等のァクチナイド金属であり、 一種類のみならず数種 類の金属元素を適当な割合で同時に含有させることができる。  In the above, the metal element M is an alkali metal such as Li, Na, K, Rb, and Cs; an alkaline earth metal such as Mg, Ca, Sr, and Ba; a polyvalent metal such as Al, Ge, and Sn; 3d transition metals such as Ti, V, Cr, Mn, Fe, Co, Ni, 4d transition metals such as Y, Zr, Nb, Mo, Ru, Rh, etc., 5d transition metals such as W, Re, Os, Ir , Pd, Ag, Pt, Au etc., Noble metals, La ヽ Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu etc., rare earth metals and Th, U Etc., and not only one kind but also several kinds of metal elements can be simultaneously contained at an appropriate ratio.
この Si-C-M-O系長繊維製のパーナ一 ·エレメントは、 ほぼ理想、的な黒体スぺ タトルを発するものであるから、 予混合ガスの隙間燃焼によって加熱され、 高温 となったバーナーの表面から理想的な輻射熱が放散される。 また、 燃料ガス、 例 えば、 プロパン、 ブタンにはほぼ理論燃焼量に相当する酸素が予め混合されてい るので、 隙間燃焼に当たつて二次空気を必要としない。 それにより拡散燃焼が実 質的になくなり、 輻射加熱効率が向上する。 また、 比熱が極めて小さく、 ほぼ 0.7J/gK程度であるから点火により瞬間的にパーナ一表面が赤熱し強力な輻射加 熱が得られる。  Since the Si-CMO filament-made burner element emits an almost ideal, ideal blackbody staple, it is heated by the crevice combustion of the premixed gas and becomes hot from the surface of the burner. Ideal radiant heat is dissipated. In addition, since fuel gas, for example, propane and butane contains oxygen which is substantially equivalent to the theoretical combustion amount in advance, secondary air is not required for crevice combustion. As a result, diffusion combustion is practically eliminated, and radiant heating efficiency is improved. In addition, the specific heat is extremely small, about 0.7 J / gK, so that the surface of the parner instantly glows red by ignition, and strong radiant heating is obtained.
また、 この Si-C-M-0系長繊維は、 アモルファスであり、 断面全体に亘つて均' 一な成分を有する。 また、'その強度は 3000MPaに達するので、 敷き詰めてマツ ト状に成形したとき千切れることがない。 また、 熱伝導率が 3W/mK以下の特性 を有するので、 また、表面が高温、たとえば 1000°Cに熱せられても裏面は低温、 最高でも 100°C程度に留まる。 さらに、 加熱と冷却が繰り返されても表面剥離を 生ずることがない。 また、 使用中に食塩水がかかっても、 Si-C-M-0系長繊維中 金属成分 (M) として Zr、 A1等が存在するときは、 Zr02、 A1203等を含む緻密な 高温耐熱ガラスが表面に形成され、 長期間に亘つて繊維の劣化を生じない。 W The Si-CM-0 type long fiber is amorphous and has a uniform component over the entire cross section. Also, its strength reaches 3000MPa, so it does not break when it is spread and molded into a mat. In addition, since it has a thermal conductivity of 3 W / mK or less, even if the front surface is heated to a high temperature, for example, 1000 ° C, the back surface remains at a low temperature, at most about 100 ° C. Furthermore, even if heating and cooling are repeated, surface peeling does not occur. Further, even when a saline during use, when the Zr, A1 or the like is present as a Si-CM-0-based long fiber in the metal component (M) is dense hot containing Zr0 2, A1 2 0 3, etc. Heat resistant glass is formed on the surface and does not cause fiber deterioration over a long period of time. W
上記の Si-C-M- O ¾長繊維製の優れた特性を生かし、 隙間燃焼を理想的に行わ せるためには、 パーナ一 ·エレメントの構造について以下の点について留意する ことが望ましい。 まず、 パーナ一 'エレメントを構成する Si-C-M-0系 は直 径 8〜100 / mの長繊維とするのがよい。 このように繊維径を小さくすることは、 繊維を自由に曲げ易くし、マツト状に成形してバーナー.エレメントとするとき切 断片の発生を少なくし、 また、 燃焼の際、 繊維が切断されて周囲に飛散するとい う問題を解決する。 また、繊維長を大きく取ることにより、バーナー'エレメント を長レ、繊維が折り畳まれ、 あるいは絡まつたマット状に積層されたものとして形 成することができる。 これにより、パーナ一'エレメントを、燃焼中にガス圧の変 動があっても、 容易に裂断しないものとしながら、 所望の空隙体積率を有するも のとすることができる。また、繊維の自由端が少なく、燃焼中にもバーナー 'エレ メントの形状を安定保持できるようになる。 このような意味で、 繊維長は少なく ともバーナー'エレメントの差し渡し長さをもつのが好ましい。バーナー ·ェレメ ントが、 後に実施例で示すような一辺が 150mm程度の正方形で製作されること を考慮すると繊維長は少なくとも 150mm以上とするのがよい。 In order to take advantage of the excellent characteristics of Si-C-M-O long fiber and to perform crevice combustion ideally, it is desirable to pay attention to the following points regarding the structure of the wrench element. First, it is preferable that the Si-C-M-0 system constituting the Pana 'element is a long fiber having a diameter of 8 to 100 / m. Reducing the fiber diameter in this way makes it easier for the fiber to bend freely, burns it into a matte shape, reduces the generation of cut pieces when it is used as an element, and cuts the fiber during combustion. Solves the problem of flying around. In addition, by increasing the fiber length, the burner element can be formed as a long, laminated fiber in a folded or entangled mat shape. This allows the parner element to have a desired void volume ratio while not easily breaking even if the gas pressure fluctuates during combustion. In addition, the free ends of the fibers are small, and the shape of the burner element can be maintained stably even during combustion. In this sense, it is preferable that the fiber length has at least the span length of the burner 'element. Considering that the burner element is manufactured in a square having a side of about 150 mm as will be described later in the examples, the fiber length is preferably at least 150 mm.
パーナ一'エレメントの空隙体積率は、特に制限されず、一般に用いられる 60% 〜90%程度とすることもできる。 しかしながら、 空隙体積率を 90〜98%、 とりわ け 93〜98%とすることが好ましい。 これにより、予混合ガスは実質的に圧力損失 を生ずることなくバーナー ·エレメント內に導入され、 隙間燃焼が円滑に行われ るようになる。  The void volume ratio of the PANA-1 'element is not particularly limited, and may be about 60% to 90% which is generally used. However, the void volume ratio is preferably 90 to 98%, particularly 93 to 98%. As a result, the premixed gas is introduced into the burner element な く without substantially causing a pressure loss, and the crevice combustion is performed smoothly.
その際、パーナ一 'エレメントの空隙体積率は、パーナ一'エレメント全体の平 均で上記範囲に収まるようにすればよいが、 これを予混合ガスの燃焼面側に比べ て供給面側の方が大きくなるようにすることもできる。 このように空隙体積率を 変化させることによって、予混合ガスがバーナー'エレメントの表面直下で最も強 力に燃焼し、 その内部に向かうにしたがい燃焼が急速に減少するようにすること ができる。  At this time, the void volume ratio of the Pana 'element may be within the above-mentioned range on the average of the entire Pana' element, but this is closer to the supply surface side than the premixed gas combustion surface side. Can be increased. By changing the void volume ratio in this way, the premixed gas burns most strongly under the surface of the burner 'element, and the combustion decreases rapidly toward the inside.
なお、 上記空隙体積率の変化の仕方は一様でなくてもよく、 例えぱその燃焼面 のごく近傍のみを小さくする、 すなわち、 黒体である Si-C- M-0系繊維が詰まつ た状態にすることもできる。 これらは、 隙間燃焼の、欢態を最適にするように経験 的に適宜定めればよい。もっとも代表的には前記空隙率を燃焼面側で 70〜95%、 供給面側で 95〜98%とすることができる。 The method of changing the void volume ratio may not be uniform.For example, only the vicinity of the combustion surface is reduced, that is, the Si-C-M-0 fiber which is a black body is clogged. It can also be in the state of being left. These may be appropriately determined empirically so as to optimize the condition of crevice combustion. Most typically, the porosity can be 70-95% on the combustion side and 95-98% on the supply side.
なお、上記空隙体積率は、たとえば製造されたパーナ一'マツトに静かに樹脂を 注入して固ィヒさせた後、 断面を光学顕微鏡によつて観測して繊維の占める面積率 を、たとえばリニア'アナリシスによって求めることによって定めることができる。 上述のパーナ'エレメントを用いた隙間燃焼方式において、ガスの燃焼ゾーンは 上記パーナ一 'エレメントの表面から 2mm以内の範囲にあるようにするのがよ い。 このようなガスの燃焼ゾーンの調整は、 上記の Si-C-M-0系繊維の積層状態 の調整によって行うことができる。 上記の燃焼面側で 70〜95%、 供給面側で 95 〜98%とした空隙率はそのような燃焼にとって望ましい。  The above void volume ratio is determined by, for example, linearly injecting a resin into the manufactured PANA-MAT and solidifying the resin, and then observing the cross section with an optical microscope to determine the area ratio occupied by the fiber. 'It can be determined by asking by analysis. In the gap combustion method using the above-described PANER 'element, it is preferable that the gas combustion zone be within a range of 2 mm or less from the surface of the PANER' element. Such adjustment of the gas combustion zone can be performed by adjusting the lamination state of the Si-C-M-0-based fibers described above. The above porosity of 70-95% on the combustion side and 95-98% on the supply side is desirable for such combustion.
上記の隙間燃焼方式によりバーナー 'エレメントの表面温度が 800〜900°Cに 達する。 さらに、 図 3に示すように、 バーナー 'エレメント 31の表面から放射 された輻射熱エネルギーの一部はネ JD熱体 41 の底面から反射されてバーナー · エレメント 31の表面をより高温にし、 これによりさらに高い輻射加熱が可能と なる。  The surface temperature of the burner's element reaches 800 to 900 ° C by the above gap combustion method. Further, as shown in FIG. 3, a part of the radiant heat energy radiated from the surface of the burner element 31 is reflected from the bottom surface of the heating element 41 to make the surface of the burner element 31 hotter, thereby further increasing the temperature. High radiant heating is possible.
しかしながら、 バーナー 'エレメント 31の底面側の温度は、 バーナー ·エレ メント 31の空隙体積率が大であること、 それを構成する材料の熱伝導率が小さ いことなどにより、 高々数十 °C程度までしか上昇しない。 それにより逆火が効果 的に防止されるとともに、パーナ'エレメントを平板、 円筒、球形など任意の形状 に製造できるという利益がもたらされる。  However, the temperature on the bottom side of the burner element 31 is at most several tens of degrees Celsius due to the large void volume ratio of the burner element 31 and the low thermal conductivity of the material that composes it. It only rises up to. This has the advantage that flashback is effectively prevented and that the Pana 'element can be manufactured in any shape, such as flat, cylindrical or spherical.
また、本発明のバーナー 'エレメントにおいて燃焼面側で空隙率を十分小さく、 すなわち繊維密度を十分大きくとることは、パーナ一'エレメント内へ層流状態で 導入された予混合ガスを燃焼ゾーンで乱流ィヒさせ、 ガスの混合により燃焼速度を 上げることに寄与する。 それにより、 ターンダウン比を大きく、 たとえば 1 : 10 と大きく取れることになり、 比較的小さな負荷密度での燃焼が可能になる。 これ により遠赤外放射の効率的な取り出しが可能になる。  Further, in the burner element of the present invention, the porosity is sufficiently small on the combustion surface side, that is, the fiber density is sufficiently high, because the premixed gas introduced into the parner element in a laminar flow state is turbulent in the combustion zone. It mixes the gas and increases the combustion rate by mixing the gas. As a result, the turndown ratio can be increased, for example, as large as 1:10, and combustion with a relatively small load density can be performed. This allows for efficient extraction of far-infrared radiation.
本発明によるガス燃焼方法では、 予混合ガスは大部分パーナ一 'エレメントの 表面直下において隙間燃焼し、 それにより実質的に炎を生ぜず、 理想的な黒体輻 射による輻射熱をバーナー 'エレメントの表面から放射させる。 本 is明の燃焼方 式では、 二次空気は実質的に必要でなく、 また従来のバーナー 'エレメントに設 けられているような炎口も必要でない。 ' In the gas combustion method according to the present invention, the premixed gas is mostly Crevice combustion occurs just below the surface, causing virtually no flames and radiating heat from the ideal blackbody radiation from the surface of the burner 'element. In the combustion method of the present invention, the secondary air is practically unnecessary, and there is no need for a flame outlet as in the conventional burner element. '
しかしながら、ガスの燃焼ゾーンは、パーナ一'エレメントの直下にのみ限る必 要はない。 予混合ガスの空気量をいくらカ沙なく、 たとえば燃焼ガスに対して理 論燃焼酸素量の 0.90倍程度の酸素ガスを含有するようにしてガスの燃焼ゾーン がパーナ一.エレメント表面にも存在するようにすることもできる。  However, the gas combustion zone need not be limited to just below the Pana 'element. A gas combustion zone exists on the element surface, even if the air volume of the premixed gas is small, for example, containing oxygen gas that is about 0.90 times the theoretical combustion oxygen amount with respect to the combustion gas. You can also do so.
図 2(a)は、本発明に係るパーナ一 'エレメントの全体構造の一例を示す概念図 である。図 2 (b)はその横断面による繊維の絡み状態を示す一部拡大模式図である。 図 2 (b)に示すように、 パーナ一 'エレメント 31はチラノ繊維に代表される Si- C-M-0系長繊維 32を縦横にからませ積層して作られている。 Si-C-M-O系長繊 維の繊維径は 8〜100 μ πιであり、 長さはたとえば 150mm以上とする。 これに より高い空隙体積率 (90〜98%) を維持しながら、 形状を一定に維持できる。 また、図 2 (a)に示すように、その表面に近い部分 Aでは、比較的空隙体積率を 低くし、 内部 B、 Cに入るにしたがい空隙体積率を大 くしている。 これにより すでに述べたように、 ガス流力 Sほぼ層流に維持された状態でバーナー 'エレメン ト内に導かれ、 表面直下で乱流となって急速に燃焼する。 し力 し、 燃焼熱は上記 黒体繊維の特性と相俟ってパーナ ·ェレメント内部に伝達されず、その背面ではほ ぼ常温となる。  FIG. 2 (a) is a conceptual diagram showing an example of the entire structure of a wrench element according to the present invention. FIG. 2 (b) is a partially enlarged schematic view showing the state of entanglement of the fiber by its cross section. As shown in FIG. 2 (b), the Pana 'element 31 is formed by vertically and horizontally tangling and stacking Si-C-M-0 type long fibers 32 represented by Tyranno fibers. The fiber diameter of the Si-C-M-O type long fiber is 8 to 100 μπι, and the length is, for example, 150 mm or more. This allows the shape to be kept constant while maintaining a higher void volume ratio (90 to 98%). In addition, as shown in Fig. 2 (a), the portion A near the surface has a relatively low void volume ratio, and the void volume ratio increases as it enters the interiors B and C. As a result, as already described, the gas flow force S is guided into the burner's element while being maintained almost laminar, and becomes turbulent immediately below the surface and burns rapidly. However, the heat of combustion is not transmitted to the interior of the perforation, due to the characteristics of the black body fiber, and the temperature of the rear surface is almost room temperature.
なお、上記パーナ'エレメントは、いわゆる一体物として製作してもよいが、使 用時の安全性を考慮するとある程度の広さの多角形、 円形、 楕円形の単位形状に 分割 '区分されていることが望ましい。 一分割単位の面積としては、 例えば家庭 用のガスこんろに用いる場合には、火炎の広がりから考えて 10〜300cm2前後が 適当である。 Note that the above-mentioned PARNER 'element may be manufactured as a so-called integral element, but is divided into' polygonal ',' circular 'and' elliptical 'unit shapes in consideration of safety during use. It is desirable. The area of one division unit is, for example, about 10 to 300 cm 2 in consideration of the spread of the flame when used for household gas stoves.
上記のバーナー 'エレメントを組みこんで燃焼装置を組み立て、 通常の燃料一 空気予混合ガスを隙間燃焼させた場合、 燃焼負荷が 10〜30W/cm2 の範囲におい て燃焼排気中の CO濃度を 20ppm以下、 NOx濃度を 20ppm以下にすることが できる。 Assemble the combustion apparatus by incorporating the burner 'element, when the normal fuel primary air premixed gas is a gap burning, 20 ppm of CO concentration in the combustion exhaust gas combustion load Te range odor 10~30W / cm 2 hereinafter, to make the concentration of NO x in 20ppm or less it can.
本発明では、 予混合ガスは、 バ^ "ナ一'エレメント 31内に層流にした状態で 送り込むことが好ましい。 そのためには図 1に示すようにバーナー 'エレメント 31とガスの導入用のヘッダー 12の間に整流板 21を配設するのがよい。 実施例 1  In the present invention, the premixed gas is preferably sent in a laminar flow into the burner element 31. For this purpose, as shown in FIG. 1, the burner element 31 and a header for introducing gas are used. It is good to arrange the current plate 21 between 12. Example 1
以下、 本発明を家庭用カセットガスこんろに応用する場合について具体的に説 明する。 ポリカルボシランを前駆体として有機一無機変換プロセスにより作成さ れた平均繊維径 10 μ πι、 長さ 1000mmの Si-C-Ti-0繊維 (チラノ繊維) を素材 として製作された空隙体積率 (供給側: 98%、 燃焼側: 95%) のマツト (厚み: 10mm) から面積 180cm2の円形のバーナー ·'エレメントを切り出した。 このバ ーナ一'エレメントをカセットコン口の燃焼部に装着し、液化ブタンガス一空気の 予混合ガスをバーナー ·ェレメントの背面から供給し、 表面直下の厚み 0.6〜 1.0mmの燃焼ゾーンにおいて隙間燃焼させた。 Hereinafter, the case where the present invention is applied to a household cassette gas stove will be specifically described. Void volume ratio made of Si-C-Ti-0 fiber (Tyranno fiber) with a mean fiber diameter of 10 μπι and a length of 1000 mm, which was made by an organic-inorganic conversion process using polycarbosilane as a precursor ( supply side: 98%, firing side: mat 95%) (thickness: 10 mm) was cut out circular burner 'element of the area 180cm 2 from. This burner element is attached to the burner section of the cassette inlet, and a premixed gas of liquefied butane gas and air is supplied from the back of the burner element, and the gap is burned in a combustion zone with a thickness of 0.6 to 1.0 mm just below the surface. I let it.
燃料のブタンガスを圧力調整器によって二次圧を大気圧に対して約 70hPa に 制御した場合、 ならびに圧力調整器を省略して 30°Cに保持された液ィ匕ブタン缶 When the secondary pressure of butane gas as fuel is controlled to about 70 hPa with respect to the atmospheric pressure by a pressure regulator, and the liquid regulator butane can kept at 30 ° C without the pressure regulator
(内圧: 200〜300kPa) からコン口のベンチュリ一管に直接導入した場合につい て燃焼実験を実施した。 燃焼が定常状態に達した後、 JIS規格にしたがって内径 200mm, 深さ 100mmのアルミニウム金属鍋に入れた 2000mlの水が 20°Cから 50°Cまで昇温するのに消費したブタンガス量を測定して熱効率を決定した。 また、 パーナ一 .エレメントの燃焼面とネ j¾ti熱体である鍋底の間の間隔を 7mmとし、 燃焼面から 50mm上方の位置で鍋の側面に沿って燃焼排気を採取し COならぴに NOx濃度の測定を実施した。 その結果、燃焼出力 3,000kca]/h、燃焼効率 57%、 燃焼排気中の CO濃度 20ppm以下、 NOx濃度 20ppm以下のデータが得られた。 このように、 本発明によれば、 大きな省エネルギー効果が得られ、 またクリーン な燃焼排気が実現される。 実施例 2 Si-C-Zr-0系繊維を積層した面積: 150mm X 150mm、 厚さ: 6mm (3mm厚 のマツトを 2枚重ねしたもの)、体積空隙率: 95%のバーナー *エレメントを開口 部の大きさが 150mm X 150mm, 深さが 20mmの鋼板製ポッタスの開口部側に 装着し、 前記と同様な燃焼実験を行った。 燃料ガスは液化ブタンガスであり、 そ の二次圧を大気圧に対して 200hPaに制御した。 その結果、燃焼効率 58%、 燃焼 排気中の CO濃度 20ppm以下、 NOx濃度 20ppm以下のデータが得られた。本実 '施例のように、 バーナー'エレメントが薄く、 かつ該パーナ一 'エレメントが収容 される鋼板製ボックスのバーナー 'エレメント背面側空間が狭レ、ときでも、二次圧 を十分大きくすることにより、 高い燃焼効率及びクリーンな燃焼排気が実現され る。 (Internal pressure: 200-300 kPa) Combustion experiments were performed when the gas was directly introduced into a venturi tube of the con- trol opening. After the combustion reaches a steady state, the amount of butane gas consumed to raise the temperature of 2000 ml of water placed in an aluminum metal pan with an inner diameter of 200 mm and a depth of 100 mm from 20 ° C to 50 ° C according to JIS standards is measured. To determine the thermal efficiency. The distance between the combustion surface of the element and the bottom of the pan, which is the heating element, is 7 mm. Combustion exhaust is sampled along the side of the pan at a position 50 mm above the combustion surface, and if CO, NO x A concentration measurement was performed. As a result, the combustion output 3,000kca] / h, combustion efficiency 57%, or less CO concentration 20ppm in the combustion exhaust gas, NO x concentration 20ppm following data was obtained. As described above, according to the present invention, a large energy-saving effect is obtained, and clean combustion exhaust is realized. Example 2 Burner with Si-C-Zr-0 fibers laminated area: 150mm X 150mm, thickness: 6mm (two 3mm thick mats), volume porosity: 95% * Element size of opening The same combustion test as described above was conducted by mounting on the opening side of a steel potter with a size of 150 mm X 150 mm and a depth of 20 mm. The fuel gas was liquefied butane gas, and its secondary pressure was controlled to 200 hPa with respect to atmospheric pressure. As a result, combustion efficiency of 58%, or less CO concentration 20ppm in the combustion exhaust gas, NO x concentration 20ppm following data was obtained. As in this example, the burner element is thin and the burner is a steel box that houses the burner element.The secondary pressure is sufficiently large even when the space behind the element is narrow. As a result, high combustion efficiency and clean combustion exhaust are realized.
以上、 本発明についてその基本的な実施形態を説明したが、 本発明は上記実施 例のように家庭用ガスこんろに適用できるほか、 工業用加熱炉、 例えば窯業、 鉄 鋼、 塗料焼付けなどに広く応用できる。 また、 その実施形態もパーナ一を裸の状 態で使用するもののほかに、 適当な赤外線透過手段により包んで使用することも できる。  As described above, the basic embodiment of the present invention has been described. However, the present invention can be applied to household gas stoves as in the above embodiment, and can be applied to industrial heating furnaces such as ceramics, steel, paint baking, and the like. Can be widely applied. Further, in this embodiment, in addition to using the parner in a naked state, the parner can be used by being wrapped with a suitable infrared transmitting means.

Claims

請求の範囲 The scope of the claims
1 . 原子比で Si: 30〜60%、 C: 30〜70%、 M: 5.0%以下、 O: 30%以下を含 む Si-C- M-0系長繊維を積層してなり、空隙体積率が 60〜98%のバーナー ·ェレ メントに予混合ガスを供給し、 該バーナー ·エレメントの表面直下において前記 予混合ガスを隙間燃焼させ、 前記バーナー ·エレメントの表面から輻射熱を放射 させることを特徴とする隙間燃焼方式によるガス燃焼方法。 ここに、 Mは安定な 酸化物、炭化物、珪化物を形成するアルカリ金属、 アルカリ土類金属、多価金属、 遷移金属、 貴金属、 稀土類金属、 ァクチナイド金属から選ばれる 1又は 2以上の 金属元素である。 1. Laminated Si-C-M-0 filaments containing 30 to 60% Si, 30 to 70% C, 5.0% or less, and O: 30% or less in atomic ratio. A premixed gas is supplied to a burner element having a volume ratio of 60 to 98%, and the premixed gas is combusted immediately below the surface of the burner element to radiate radiant heat from the surface of the burner element. A gas combustion method using a gap combustion method, characterized by the following. Here, M is one or more metal elements selected from alkali metals, alkaline earth metals, polyvalent metals, transition metals, noble metals, rare earth metals, and actinide metals that form stable oxides, carbides, and silicides. It is.
2. パーナ一 'エレメントは予混合ガスの供給面側の空隙体積率が燃焼面側の 空隙体積率に比べて大きいものであることを特徴とする請求項 1記載の隙間燃焼 方式によるガス燃焼方法。  2. The gas combustion method using the gap combustion method according to claim 1, wherein the porner element has a larger void volume ratio on the supply surface side of the premixed gas than on the combustion surface side. .
3. バーナー 'エレメントは予混合ガスの供給面側の空隙体積率が燃焼面側の 空隙体積率に比べて小さいものであることを特徴とする請求項 1記載の隙間燃焼 方式によるガス燃焼方法。  3. The gas combustion method according to claim 1, wherein the burner element has a void volume ratio on a supply surface side of the premixed gas smaller than a void volume ratio on a combustion surface side.
4. バーナー ·エレメントは空隙体積率が 90〜98%であることを特徴とする 請求項 1、 2または 3のいずれかに記載の隙間燃焼方式によるガス燃焼方法。  4. The gas burning method according to claim 1, wherein the burner element has a void volume ratio of 90 to 98%.
5. ガスの燃焼ゾーンがバーナー ·エレメントの表面から 2mm以内にあるこ とを特徴とする請求項 1、 2又は 3のいずれかに記載の隙間燃焼方式によるガス 燃焼方法。  5. The gas burning method according to claim 1, wherein the gas burning zone is within 2 mm from the surface of the burner element.
6 . ガスの燃焼ゾーンがパーナ一 ·エレメントの表面から 2mm以内にあるこ とを特徴とする請求項 4記載の隙間燃焼方式によるガス燃焼方法。  6. The gas combustion method using the gap combustion method according to claim 4, wherein the gas combustion zone is within 2 mm from the surface of the pruner element.
7. ガスの燃焼ゾーンはパーナ一 'エレメント表面にも存在することを特徴と する請求項 1記載の隙間燃焼方式によるガス燃焼方法。  7. The gas combustion method according to claim 1, wherein the gas combustion zone is also present on the surface of the Pana 'element.
8 . 予混合ガスは燃焼ガスに対して理論燃焼酸素量の 0.90〜: L.10倍の酸素ガ スを含有するものであることを特徴とする請求項 1記載の隙間燃焼方式によるガ ス燃焼方法。 8. The gas according to claim 1, wherein the premixed gas contains oxygen gas of 0.90 to L.10 times the theoretical combustion oxygen amount with respect to the combustion gas. The burning method.
9. 原子比で Si: 30〜60%、 C: 30〜70%、 M: 5.0%以下、 0: 30%以下を含 む直径 8-100 μ mの Si-C-M- 0系長繊維を積層してなる空隙体積率が 60〜98%、 厚さ l〜20mmのマツト状に形成してなる隙間燃焼用バーナー 'エレメント。 こ こに、 Mは安定な酸化物、 炭化物、.珪化物を形成するアルカリ金属、 アルカリ土 類金属、 多価金属、 遷移金属、 貴金属、 稀土類金属、 ァクチナイド金属から選ば れる 1又は 2以上の金属元素である。 '  9. Laminated 8 to 100 μm diameter Si-CM-0 long fibers including Si: 30 to 60%, C: 30 to 70%, M: 5.0% or less, 0: 30% or less in atomic ratio A burner element for crevice combustion formed in a mat shape with a void volume ratio of 60 to 98% and a thickness of l to 20 mm. Here, M is one or more selected from alkali metals, alkaline earth metals, polyvalent metals, transition metals, noble metals, rare earth metals, and actinide metals that form stable oxides, carbides, and silicides. It is a metal element. '
1 0. 空隙体積率が予混合ガスの燃焼面側と供給面側とで異なるものであるこ とを特徴とする請求項 9記載の隙間燃焼用パーチ一 'エレメント。  10. The gap combustion perch element according to claim 9, wherein a void volume ratio is different between a combustion surface side and a supply surface side of the premixed gas.
1 1 . 空隙体積率が 90〜98%である請求項 9又は 1 0記載の隙間燃焼用パー ナー ·エレメント。  11. The gap combustion partner element according to claim 9 or 10, wherein the void volume ratio is 90 to 98%.
PCT/JP2002/006969 2001-07-10 2002-07-10 Method and burner element for burning gas by void combustion system WO2003006880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001209736 2001-07-10
JP2001-209736 2001-07-10

Publications (1)

Publication Number Publication Date
WO2003006880A1 true WO2003006880A1 (en) 2003-01-23

Family

ID=19045352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006969 WO2003006880A1 (en) 2001-07-10 2002-07-10 Method and burner element for burning gas by void combustion system

Country Status (1)

Country Link
WO (1) WO2003006880A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069224A1 (en) * 2002-02-12 2003-08-21 Voith Paper Patent Gmbh Infra-red emitter embodied as a planar emitter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114650A (en) * 1985-11-12 1987-05-26 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst body
JPS6288126U (en) * 1985-11-14 1987-06-05
JPH02279908A (en) * 1989-04-20 1990-11-15 Nkk Corp Burner plate
JPH0328611A (en) * 1989-06-27 1991-02-06 Nkk Corp Burner plate
JPH0328608A (en) * 1989-06-27 1991-02-06 Nkk Corp Burner plate
JPH0367911A (en) * 1989-08-04 1991-03-22 Matsushita Electric Ind Co Ltd Catalytic combustion apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114650A (en) * 1985-11-12 1987-05-26 Nippon Shokubai Kagaku Kogyo Co Ltd Combustion catalyst body
JPS6288126U (en) * 1985-11-14 1987-06-05
JPH02279908A (en) * 1989-04-20 1990-11-15 Nkk Corp Burner plate
JPH0328611A (en) * 1989-06-27 1991-02-06 Nkk Corp Burner plate
JPH0328608A (en) * 1989-06-27 1991-02-06 Nkk Corp Burner plate
JPH0367911A (en) * 1989-08-04 1991-03-22 Matsushita Electric Ind Co Ltd Catalytic combustion apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069224A1 (en) * 2002-02-12 2003-08-21 Voith Paper Patent Gmbh Infra-red emitter embodied as a planar emitter
US7038227B2 (en) 2002-02-12 2006-05-02 Voith Paper Patent Gmbh Infrared emitter embodied as a planar emitter

Similar Documents

Publication Publication Date Title
US10359213B2 (en) Method for low NOx fire tube boiler
CN105579776B (en) With the premix fuel burner for having hole flame holder
US4643667A (en) Non-catalytic porous-phase combustor
JP4653082B2 (en) Portable heat transfer device
CN105899876A (en) Method for operating a combustion system including a perforated flame holder
CA2555936A1 (en) Heating solid oxide fuel cell stack
EA010875B1 (en) Device and method for preparing a homogeneous mixture consisting of fuel and oxidants
JP2682362B2 (en) Exhaust heat recovery type combustion device
JP3071833B2 (en) Catalytic combustion device
US20050069830A1 (en) Infrared radiator embodied as a surface radiator
WO2003006880A1 (en) Method and burner element for burning gas by void combustion system
JP3657675B2 (en) Combustion equipment
US20050017203A1 (en) Infrared emitter embodied as a planar emitter
JP2003090515A (en) Gas combustion method by void combustion system and burner element
JP2697155B2 (en) Burner plate
JP2697156B2 (en) Burner plate
WO1998012476A1 (en) Catalytic radiant heater
JP2751426B2 (en) Burner plate
CN112369726B (en) Heating device for low-temperature cigarettes
CN212058338U (en) Tail gas treatment device and catalytic degreasing furnace
JP2774968B2 (en) Burner plate
JP2855664B2 (en) Infrared heater
JP2007113908A (en) Portable heat transfer unit
JP2004353940A (en) Portable radiation heating device
JPS62297611A (en) Liquid fuel burning device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP