EP2467642B1 - Radiant burner - Google Patents

Radiant burner Download PDF

Info

Publication number
EP2467642B1
EP2467642B1 EP10740655.5A EP10740655A EP2467642B1 EP 2467642 B1 EP2467642 B1 EP 2467642B1 EP 10740655 A EP10740655 A EP 10740655A EP 2467642 B1 EP2467642 B1 EP 2467642B1
Authority
EP
European Patent Office
Prior art keywords
combustion
burner
channels
plate
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10740655.5A
Other languages
German (de)
French (fr)
Other versions
EP2467642A2 (en
Inventor
Alexander Mach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Publication of EP2467642A2 publication Critical patent/EP2467642A2/en
Application granted granted Critical
Publication of EP2467642B1 publication Critical patent/EP2467642B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/14Radiant burners using screens or perforated plates
    • F23D14/145Radiant burners using screens or perforated plates combustion being stabilised at a screen or a perforated plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/58Nozzles characterised by the shape or arrangement of the outlet or outlets from the nozzle, e.g. of annular configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/82Preventing flashback or blowback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/102Flame diffusing means using perforated plates
    • F23D2203/1023Flame diffusing means using perforated plates with specific free passage areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/10Burner material specifications ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2212/00Burner material specifications
    • F23D2212/20Burner material specifications metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00003Fuel or fuel-air mixtures flow distribution devices upstream of the outlet

Definitions

  • the invention relates to burners, in particular a radiant burner, for burning a gas mixture of fuel gas and an oxygen carrier gas.
  • the burner has a burner plate with passageways for the passage of the gas mixture from a mixing chamber side to a combustion side. On the passageways close to combustion channels on the combustion side with an opposite the passageways extended cross-section.
  • Radiant burners or surface burners of the generic type have a mixing chamber in which a gas mixture of fuel gas and an oxygen carrier gas is produced. Adjoining the mixing chamber is a burner plate with passage channels through which the gas mixture flows from the mixing chamber and is burned.
  • the passageways in the burner plate for the passage of the gas mixture from the mixing chamber side to a combustion side are so narrow that the individual flames forming on the outlet side can not strike back into the mixing chamber.
  • a flashback of the flames through the passage channels into the mixing chamber is prevented if the diameter of the passage channels is at least partially smaller than the so-called quenching distance (or quenching distance) of the combustion.
  • the extinguishing distance is the distance from the fuel gas outlet, within which no reactions take place and a flame can not spread, since the released combustion enthalpy is absorbed and discharged by the surrounding burner material and the reaction chains are stopped.
  • the erase distance is not an absolute value, but u.a. depends on the composition of the fuel gas, the fuel gas temperature and the wall temperature.
  • the thermal power generated by the combustion should be distributed evenly over a large area.
  • the burner plate is heated by the flames of gas combustion until it glows and provides effective heat radiation to the Wärmgut. If the flames burn as individual flames over the burner plate, the material is heated only weakly and with low efficiency. In order to achieve effective heating of the burner material, the flame should burn as close to and in close contact with the material as possible. For this purpose, it is preferable to shift the flame into the burner plate by either making it porous and creating a flame carpet in the porous material or by letting the combustion proceed in channels (combustion channels) within the burner plate.
  • a burner plate for a surface burner in which passageways for the fuel gas, whose diameter is smaller than the extinguishing distance of the combustion exit channels on the combustion side with an opposite the passageways extended cross-section, in which the combustion takes place.
  • the object of the invention to provide a burner plate, which allows a drastic reduction of the specific thermal power to communicate with the burner z.
  • plastic material indirectly over a large area to low temperatures of only 100 to 300 ° C to heat. For this purpose, it is necessary that the average surface temperature of the burner plate is lowered well below 900 ° C, without resulting in imperfect combustion or the flame goes out.
  • the individual flames burn on the outlet side surface of the burner plate. As the heat flux density decreases, they progressively retract and migrate into the combustion channels because their diameter is greater than the quenching distance of the combustion. At very low heat flux density, the flames are located at the transition between the passageways and the cross-sectional extensions, since the diameters of the passageways are smaller than the quenching distance of the combustion. This allows the specific thermal performance of the burner according to the DE 100 28 670 very much reduce.
  • a burner plate for a radiant burner is also from the JP 50 030336 U known.
  • the structure described has the disadvantage that at high desired fuel gas flow for a high radiant power and burner temperature, the flames emerge from the combustion channels at the surface of the burner plate, whereby the radiation power decreases and the flame is unprotected against currents and turbulence, causing the flame to extinguish May have consequences.
  • the present invention has for its object to provide a radiant burner and a burner plate for a radiant burner, in which the known disadvantages of the prior be overcome by technology and in which a high energy efficiency, a high radiant power and a high flame stability can be achieved.
  • the passageways for the passage of the gas mixture at at least one point over its length to a maximum diameter which is less than the quenching distance of the combustion.
  • maximum diameter in the sense of the present invention designates the longest possible connection within the passage channel transversely to its longitudinal axis or longitudinal extent. For a passageway of circular cross section, the diameter is always equal to the circle diameter.
  • maximum diameter is the diagonal connection of two opposite corners of the square or rectangle, whereas the minimum diameter of a square-section passageway would be the distance between two opposite sides.
  • the minimum diameter of the passageway would be the distance between the two longer, opposite sides of the rectangle.
  • the passageways for the passage of the gas mixture over substantially its entire length have a uniform maximum diameter which is less than the quenching distance of the combustion.
  • the passage channels have an oval or circular cross-section.
  • the maximum diameter remains the same over its entire length of the channel and does not change.
  • the passage channel over its entire length and the same cross section for example, circular, oval, square, rectangular, etc.
  • the combustion channels over their length at least in sections a maximum diameter which is greater than the extinguishing distance of the combustion.
  • the combustion channels have a substantially uniform diameter over their entire length, which is greater than the quenching distance of the combustion.
  • the combustion channels have an oval or circular cross-section.
  • the flames can migrate into the combustion channels and combustion can take place in the combustion channels.
  • the cross section at the transition from the passageways to the combustion channels is tapered, stepped or in a combination of both.
  • a cross-section which becomes wider at the transition from the passage channels to the combustion channels is achieved in that the burner plate is composed of at least two individual plates arranged one above the other, which have channel bores at superposed positions, which in the single plate with the passage channels According to the invention have smaller diameter or cross-section than in the single plate with the combustion channels.
  • flow obstacles are arranged in the combustion channels for contact with the combustion flame, wherein the flow obstacles made of a material are that has a higher thermal conductivity than the material of the burner plate.
  • the flow obstacles are arranged so that the combustion flame touches the flow obstacles.
  • the flow obstacles ensure a stabilization of the flame, especially at high fuel gas flow to produce a high heat flux density.
  • the flow obstacles ensure that the flame emigrates as little as possible from the combustion channels, whereby the heating power is improved.
  • the flame is protected in the channel against currents and gases that can cause extinction.
  • the flame heights are low, so that an item of heat can be positioned or guided closer to the radiation burner. At low burner output, the flame in the combustion channel can heat the flow obstruction, which can thus serve as a source of ignition.
  • the flow obstacles in the burner plate of the burner according to the invention contribute significantly to the fact that the burner flames stabilize much faster when igniting the burner and migrate faster into the combustion channels as without the flow obstacles. They also ensure that the material of the burner plate is heated faster than without the flow obstacles.
  • Radiant burners of the type according to the invention have a very low lower power limit.
  • an increased burning speed in porous or channeled media leads to a high maximum power, so that with such burners a wide power range can be covered.
  • the increased burning speed also means that surface loads of up to 4 MW / m 2 for natural gas / air mixtures can be achieved with such a burner.
  • these burners can be made significantly more compact than other burners of comparable performance.
  • a significantly higher proportion of the heat is decoupled via radiation from the combustion zone than in free flames where most of the heat remains in the exhaust gas.
  • these burners have advantages over burners with free-flames, since the combustion takes place predominantly or completely within the matrix over the entire power range. This is also favorable in the integration of heat exchangers. Due to the high surface load of such burners in conjunction with a short burn-out significantly more compact heaters can be built, as can be dispensed with large-volume combustion chambers and large convection surfaces.
  • the flow obstacles are made of metal or ceramic.
  • Flow obstacles made of metal have a very good thermal conductivity and thus favor the flame stabilization by the flow obstacles to a special degree.
  • Suitable metals for the production of flow obstacles according to the invention are, for example, steels with the material numbers 1.4841, 1.4765, 1.4767, 2.4869 and 2.4867 (material numbers according to EN 10027-2).
  • Suitable ceramic materials for the production of flow obstacles according to the invention are, for example, SiC or SiSiC.
  • the flow obstacles are designed as rods with a round or polygonal cross section or as a sheet metal strip or as a perforated plate.
  • Flow barriers formed as rods preferably extend across the combustion channels.
  • the flow obstacles are formed as extending transversely through the combustion channels rods or wires, each extending a rod or wire through the juxtaposed in a series of combustion channels across the width of the burner plate or across the burner plate ,
  • the burner plate is constructed from at least two individual plates arranged one above the other, wherein a first single plate, which is arranged in operation to the mixing chamber side, the through-channels and a second plate which in operation to the combustion side is arranged, which has combustion channels.
  • the first plate which is disposed in operation to the mixing chamber side, a lower heat capacity and / or a lower thermal conductivity than the second plate, which is disposed in operation to the combustion side.
  • the burner plate is made of high temperature resistant ceramic fiber material with low thermal conductivity.
  • the ceramic fiber material from which the burner plate is made 40 to 90 wt .-% Al 2 O 3 and 10 to 60 wt .-% SiO 2 or 60 to 85 wt .-% SiO 2 and 15 to 25 wt. -% (CaO + MgO).
  • Suitable fiber materials are commercially available from Sandvik Materials Technology GmbH, Moerfelden-Walldorf, Germany, under the name FIBROTHAL (F-17 / LS, F-19, F-14).
  • the flow obstacles are formed in the form of a cover plate arranged above the burner plate, wherein the cover plate has holes over the outlet openings of the combustion channels with a cross section which is smaller than that of the outlet openings of the combustion channels but larger as the extinguishing distance of combustion.
  • the passageways in the burner plate of the burner according to the invention preferably have a diameter of about 0.6 to 1.2 mm and a length which corresponds to about 4 times to 15 times their diameter.
  • the cross-sectional widenings are preferably bores having a diameter of approximately 1.5 to 6 mm, the length of the bores corresponding approximately to 1 to 3 times their diameter.
  • the burner plate consists of ceramic material
  • the holes can be pressed in during the production of the burner plate. They preferably run perpendicular to the outlet-side surface of the burner plate.
  • the passageways and the combustion channels in the burner plate are distributed in a regular pattern over the burner plate. The mutual distance is chosen so that a secure over ignition of the combustion is ensured over the surface of the burner plate.
  • the distance between adjacent passageways preferably corresponds to about 1.5 times to 6 times their diameter.
  • the distances in the longitudinal direction of the burner plate may be shorter or longer than the distances in the transverse direction. It is also possible to provide the burner plate with areas of different flame density by distributing the passageways and the combustion channels in the burner plate according to the desired flame density over the burner plate.
  • FIG. 1 shows a cross section through a burner according to the invention with a burner plate 1, which is mounted by means of mounting plates 9 on a mounting base plate 8.
  • the burner plate 1 has passage channels 2 and adjoining combustion channels 3, whereby the combustion channels 3 extend in cross-section with respect to the passage channels 2.
  • a mixing chamber 6 into which a fuel gas 5, a fuel gas, preferably a natural gas-air mixture is introduced.
  • a perforated plate 7 is additionally provided for a better mixing and distribution of the fuel gas.
  • the fuel gas flows from the mixing chamber 6 from the lower end through the passageways 2 and further through the combustion channels 3.
  • the passageways 2 in the burner plate 1 are formed as cylindrical bores having a diameter which is less than the extinguishing distance of the combustion so that the flames from the combustion channels 3 can not strike back into the passageways 2.
  • the cross-sectionally enlarged combustion channels 3, however, have a diameter which is greater than the extinguishing distance of the combustion, so that in this combustion can take place.
  • a flow obstruction 4 designed as a rod (round rod) extends transversely through the combustion channels 3 arranged next to one another in a row. When the combustion gas burns in the combustion channels 3, the flame comes into contact with the flow obstacle 4 and is stabilized by it.
  • the burner plate 1 is made of a ceramic material of low thermal conductivity, whereas the flow obstacles 4 are made of metal and have a higher thermal conductivity than the material of the burner plate 1.
  • FIG. 2 shows a plan view of the burner according to the invention according to FIG. 1
  • FIG. 3 shows a perspective view of the burner according to the invention according to FIG. 1 obliquely from above, wherein like parts in all three figures are designated by the same reference numerals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

Gegenstand der ErfindungSubject of the invention

Die Erfindung betrifft Brenner, insbesondere einen Strahlungsbrenner, zum Verbrennen eines Gasgemischs aus Brenngas und einem Sauerstoffträgergas. Der Brenner hat eine Brennerplatte mit Durchtrittskanälen für das Hindurchströmen des Gasgemischs von einer Mischkammerseite zu einer Verbrennungsseite. An die Durchtrittskanäle schließen sich Verbrennungskanäle auf der Verbrennungsseite mit einem gegenüber den Durchtrittskanälen erweiterten Querschnitt an.The invention relates to burners, in particular a radiant burner, for burning a gas mixture of fuel gas and an oxygen carrier gas. The burner has a burner plate with passageways for the passage of the gas mixture from a mixing chamber side to a combustion side. On the passageways close to combustion channels on the combustion side with an opposite the passageways extended cross-section.

Hintergrund der ErfindungBackground of the invention

Strahlungsbrenner oder Flächenbrenner der gattungsgemäßen Art weisen eine Mischkammer auf, in der ein Gasgemisch aus Brenngas und einem Sauerstoffträgergas hergestellt wird. An die Mischkammer schließt sich eine Brennerplatte an mit Durchtrittskanälen, durch die das Gasgemisch aus der Mischkammer hindurchströmt und verbrannt wird.Radiant burners or surface burners of the generic type have a mixing chamber in which a gas mixture of fuel gas and an oxygen carrier gas is produced. Adjoining the mixing chamber is a burner plate with passage channels through which the gas mixture flows from the mixing chamber and is burned.

Die Durchtrittskanäle in der Brennerplatte für das Hindurchströmen des Gasgemischs von der Mischkammerseite zu einer Verbrennungsseite sind so eng, dass die sich austrittsseitig bildenden Einzelflammen nicht in die Mischkammer zurückschlagen können. Ein Zurückschlagen der Flammen durch die Durchtrittskanäle in die Mischkammer wird verhindert, wenn der Durchmesser der Durchtrittskanäle wenigstens abschnittsweise kleiner als der sogenannte Löschabstand (oder auch Quenchabstand) der Verbrennung ist. Der Löschabstand ist die Distanz von der Brenngasaustrittsöffnung, innerhalb der keine Reaktionen stattfinden und sich eine Flamme nicht ausbreiten kann, da die freigesetzte Verbrennungsenthalpie vom umgebenden Brennermaterial aufgenommen und abgeleitet wird und die Reaktionsketten abgebrochen werden. Der Löschabstand ist jedoch kein absoluter Wert, sondern u.a. von der Zusammensetzung des Brenngases, der Brenngastemperatur und der Wandtemperatur abhängig.The passageways in the burner plate for the passage of the gas mixture from the mixing chamber side to a combustion side are so narrow that the individual flames forming on the outlet side can not strike back into the mixing chamber. A flashback of the flames through the passage channels into the mixing chamber is prevented if the diameter of the passage channels is at least partially smaller than the so-called quenching distance (or quenching distance) of the combustion. The extinguishing distance is the distance from the fuel gas outlet, within which no reactions take place and a flame can not spread, since the released combustion enthalpy is absorbed and discharged by the surrounding burner material and the reaction chains are stopped. However, the erase distance is not an absolute value, but u.a. depends on the composition of the fuel gas, the fuel gas temperature and the wall temperature.

Bei einem Strahlungsbrenner soll die durch die Verbrennung erzeugte thermische Leistung gleichmäßig auf eine große Fläche verteilt werden. Dafür wird das Material des Brenners bzw. der Brennerplatte durch die Flammen der Gasverbrennung erhitzt, bis es glüht und eine effektive Wärmeabstrahlung auf das Wärmgut liefert. Brennen die Flammen als Einzelflammen über der Brennerplatte, wird das Material nur schwach und mit geringer Effizienz erhitzt. Um eine effektive Erwärmung des Brennermaterials zu erreichen, soll die Flamme möglichst nah an und in engem Kontakt mit dem Material brennen. Hierfür verlagert man vorzugsweise die Flamme in die Brennerplatte hinein, indem man diese entweder porös ausgestaltet und einen Flammenteppich in dem porösen Material erzeugt oder indem man die Verbrennung in Kanälen (Verbrennungskanälen) innerhalb der Brennerplatte ablaufen lässt.
Aus der DE 100 28 670 ist beispielsweise eine Brennerplatte für einen Flächenbrenner bekannt, bei dem sich an Durchtrittskanäle für das Brenngas, deren Durchmesser kleiner als der Löschabstand der Verbrennung ist, austrittsseitig auf der Verbrennungsseite Kanäle mit einem gegenüber den Durchtrittskanälen erweiterten Querschnitt anschließen, in denen die Verbrennung stattfindet. Für diesen Aufbau lag der DE 100 28 670 die Aufgabe zugrunde, eine Brennerplatte zu schaffen, die eine drastische Verminderung der spezifischen thermischen Leistung ermöglicht, um mit dem Brenner z. B. Kunststoffmaterial indirekt großflächig auf niedrige Temperaturen von nur 100 bis 300 °C zu erwärmen. Hierzu ist es notwendig, dass die mittlere Oberflächentemperatur der Brennerplatte deutlich unter 900 °C abgesenkt wird, ohne dass es zu einer unvollkommenen Verbrennung kommt oder die Flamme erlischt.
Bei hoher Brenngasdurchströmung zur Erzeugung einer hohen Wärmestromdichte brennen die Einzelflammen auf der austrittseitigen Fläche der Brennerplatte. Bei Verminderung der Wärmestromdichte ziehen sie sich fortschreitend zurück und wandern in die Verbrennungskanäle hinein, da deren Durchmesser größer als der Löschabstand der Verbrennung ist. Bei sehr geringer Wärmestromdichte sitzen die Flammen am Übergang zwischen den Durchtrittskanälen und den Querschnittserweiterungen, da die Durchmesser der Durchtrittskanäle kleiner als der Löschabstand der Verbrennung sind. Dadurch lässt sich die spezifische thermische Leistung des Brenners gemäß der DE 100 28 670 sehr stark reduzieren.
With a radiant burner, the thermal power generated by the combustion should be distributed evenly over a large area. For the material of the burner or The burner plate is heated by the flames of gas combustion until it glows and provides effective heat radiation to the Wärmgut. If the flames burn as individual flames over the burner plate, the material is heated only weakly and with low efficiency. In order to achieve effective heating of the burner material, the flame should burn as close to and in close contact with the material as possible. For this purpose, it is preferable to shift the flame into the burner plate by either making it porous and creating a flame carpet in the porous material or by letting the combustion proceed in channels (combustion channels) within the burner plate.
From the DE 100 28 670 For example, a burner plate for a surface burner is known, in which passageways for the fuel gas, whose diameter is smaller than the extinguishing distance of the combustion exit channels on the combustion side with an opposite the passageways extended cross-section, in which the combustion takes place. For this structure was the DE 100 28 670 the object of the invention to provide a burner plate, which allows a drastic reduction of the specific thermal power to communicate with the burner z. B. plastic material indirectly over a large area to low temperatures of only 100 to 300 ° C to heat. For this purpose, it is necessary that the average surface temperature of the burner plate is lowered well below 900 ° C, without resulting in imperfect combustion or the flame goes out.
At high fuel gas flow to produce a high heat flux, the individual flames burn on the outlet side surface of the burner plate. As the heat flux density decreases, they progressively retract and migrate into the combustion channels because their diameter is greater than the quenching distance of the combustion. At very low heat flux density, the flames are located at the transition between the passageways and the cross-sectional extensions, since the diameters of the passageways are smaller than the quenching distance of the combustion. This allows the specific thermal performance of the burner according to the DE 100 28 670 very much reduce.

Eine Brennerplatte für einen Strahlungsbrenner ist ebenfalls aus der JP 50 030336 U bekannt. Der beschriebene Aufbau hat den Nachteil, dass bei gewünschter hoher Brenngasdurchströmung für eine hohe Strahlungsleistung und Brennertemperatur die Flammen an der Oberfläche der Brennerplatte aus den Verbrennungskanälen heraustreten, wodurch die Strahlungsleistung sinkt und die Flamme gegen Strömungen und Turbulenzen ungeschützt ist, was ein Verlöschen der Flamme zur Folge haben kann.A burner plate for a radiant burner is also from the JP 50 030336 U known. The structure described has the disadvantage that at high desired fuel gas flow for a high radiant power and burner temperature, the flames emerge from the combustion channels at the surface of the burner plate, whereby the radiation power decreases and the flame is unprotected against currents and turbulence, causing the flame to extinguish May have consequences.

Aufgabe der ErfindungObject of the invention

Der vorliegenden Erfindung lag die Aufgabe zugrunde, einen Strahlungsbrenner und eine Brennerplatte für einen Strahlungsbrenner bereitzustellen, bei dem die bekannten Nachteile des Standes der Technik überwunden werden und bei dem eine hohe Energieeffizienz, eine hohe Strahlungsleistung und eine große Flammenstabilität erreicht werden.The present invention has for its object to provide a radiant burner and a burner plate for a radiant burner, in which the known disadvantages of the prior be overcome by technology and in which a high energy efficiency, a high radiant power and a high flame stability can be achieved.

Beschreibung der ErfindungDescription of the invention

Die erfindungsgemäße Aufgabe wird gelöst durch einen Brenner nach Anspruch 1 gelöst. Vorteilhafte Weiterentwicklungen sind in den abhängigen Ansprüchen angegeben.The object of the invention is achieved by a burner according to claim 1. Advantageous further developments are specified in the dependent claims.

In einer Ausführungsform des erfindungsgemäßen Brenners weisen die Durchtrittskanäle für das Hindurchströmen des Gasgemischs an wenigstens einer Stelle über ihre Länge einen maximalen Durchmesser auf, der geringer ist als der Löschabstand der Verbrennung.
Der Begriff "maximaler Durchmesser" im Sinne der vorliegenden Erfindung bezeichnet die längste mögliche Verbindung innerhalb des Durchtrittskanals quer zu dessen Längsachse bzw. Längserstreckung. Bei einem Durchtrittskanal mit kreisförmigem Querschnitt ist der Durchmesser stets gleich dem Kreisdurchmesser. Bei einem quadratischen oder rechteckigen Querschnitt hingegen ist der "maximale Durchmesser" die diagonale Verbindung zweier gegenüberliegender Ecken des Quadrats oder Rechtecks, wogegen der minimale Durchmesser eines Durchtrittskanal mit quadratischem Querschnitt der Abstand zweier gegenüberliegender Seiten wäre. Bei einem rechteckigen Querschnitt wäre der minimale Durchmesser des Durchtrittskanal der Abstand der zwei längeren gegenüberliegender Seiten des Rechtecks.
Bevorzugt besitzen die Durchtrittskanäle für das Hindurchströmen des Gasgemischs im Wesentlichen über ihre gesamte Länge einen gleichmäßigen maximalen Durchmesser, der geringer ist als der Löschabstand der Verbrennung. Besonders bevorzugt haben die Durchgangskanäle einen ovalen oder kreisförmigen Querschnitt. Anders ausgedrückt, bleibt bei dieser Ausführungsform der maximale Durchmesser über ihre gesamte Länge des Kanals gleich und verändert sich nicht. Vorzugsweise hat der Durchtrittskanal über seine gesamte Länge auch den gleichen Querschnitt, z.B. kreisförmig, oval, quadratisch, rechteckig usw.
Durch die vorgenannte Maßnahme, dass der maximale Durchmesser der Durchtrittskanäle wenigstens abschnittsweise geringer ist als der Löschabstand der Verbrennung, wird ein Zurückschlagen der Flammen durch die Durchtrittskanäle in die Mischkammer verhindert. Da für bestimmte Brenneranwendungen regelmäßig die gleiche Gasgemischzusammensetzung und bekannte Materialien verwendet werden und die zu erreichende Verbrennungstemperatur und Wandtemperatur bekannt sind, kann der Fachmann den Mindestlöschabstand leicht bestimmen und den Durchmesser der Durchtrittskanäle danach bemessen.
In one embodiment of the burner according to the invention, the passageways for the passage of the gas mixture at at least one point over its length to a maximum diameter which is less than the quenching distance of the combustion.
The term "maximum diameter" in the sense of the present invention designates the longest possible connection within the passage channel transversely to its longitudinal axis or longitudinal extent. For a passageway of circular cross section, the diameter is always equal to the circle diameter. By contrast, in the case of a square or rectangular cross-section, the "maximum diameter" is the diagonal connection of two opposite corners of the square or rectangle, whereas the minimum diameter of a square-section passageway would be the distance between two opposite sides. For a rectangular cross-section, the minimum diameter of the passageway would be the distance between the two longer, opposite sides of the rectangle.
Preferably, the passageways for the passage of the gas mixture over substantially its entire length have a uniform maximum diameter which is less than the quenching distance of the combustion. Particularly preferably, the passage channels have an oval or circular cross-section. In other words, in this embodiment, the maximum diameter remains the same over its entire length of the channel and does not change. Preferably, the passage channel over its entire length and the same cross section, for example, circular, oval, square, rectangular, etc.
By the aforementioned measure, that the maximum diameter of the passage channels is at least partially smaller than the extinguishing distance of the combustion, a knockback prevents the flames through the passageways in the mixing chamber. Since the same gas mixture composition and known materials are regularly used for certain burner applications and the combustion temperature and wall temperature to be achieved are known, the skilled person can easily determine the minimum extinguishing distance and then dimension the diameter of the passageways.

In einer weiteren Ausführungsform des erfindungsgemäßen Brenners weisen die Verbrennungskanäle über ihre Länge wenigstens abschnittsweise einen maximalen Durchmesser auf, der größer ist als der Löschabstand der Verbrennung.In a further embodiment of the burner according to the invention, the combustion channels over their length at least in sections a maximum diameter which is greater than the extinguishing distance of the combustion.

Bevorzugt besitzen die Verbrennungskanäle im Wesentlichen über ihre gesamte Länge einen gleichmäßigen Durchmesser, der größer ist als der Löschabstand der Verbrennung. Besonders bevorzugt haben die Verbrennungskanäle einen ovalen oder kreisförmigen Querschnitt.Preferably, the combustion channels have a substantially uniform diameter over their entire length, which is greater than the quenching distance of the combustion. Particularly preferably, the combustion channels have an oval or circular cross-section.

Dadurch, dass der Durchmesser der Verbrennungskanäle wenigstens abschnittsweise größer ist als der Löschabstand der Verbrennung, können die Flammen in die Verbrennungskanäle einwandern und die Verbrennung kann in den Verbrennungskanälen stattfinden.The fact that the diameter of the combustion channels at least partially larger than the extinguishing distance of the combustion, the flames can migrate into the combustion channels and combustion can take place in the combustion channels.

Hierdurch wird ein enger Kontakt der Flammen mit dem Brennermaterial und eine effektive Erwärmung des Brennermaterials erreicht. Die durch die Verbrennung erzeugte thermische Leistung wird gleichmäßig über die Fläche der Brennerplatte verteilt und das Material des Brenners bzw. der Brennerplatte liefert eine effektive Wärmeabstrahlung auf das Wärmgut. Durch das Abbrennen der Flammen in den Verbrennungskanälen sind sie gegen Strömungen und Turbulenzen und vor einem Verlöschen geschützt. Es wird somit eine hohe Energieeffizienz, eine hohe Strahlungsleistung und eine große Flammenstabilität erreicht.As a result, a close contact of the flames with the burner material and an effective heating of the burner material is achieved. The thermal power generated by the combustion is distributed evenly over the surface of the burner plate and the material of the burner or the burner plate provides effective heat radiation to the Wärmgut. By burning the flames in the combustion channels they are protected against currents and turbulences and from extinction. It is thus achieved high energy efficiency, high radiation power and high flame stability.

In einer weiteren Ausführungsform des erfindungsgemäßen Brenners wird der Querschnitt am Übergang von den Durchtrittskanälen zu den Verbrennungskanälen konisch, gestuft oder in einer Kombination aus beidem weiter.In a further embodiment of the burner according to the invention, the cross section at the transition from the passageways to the combustion channels is tapered, stepped or in a combination of both.

Ein am Übergang von den Durchtrittskanälen zu den Verbrennungskanälen gestuft weiter werdender Querschnitt wird in einer Ausführungsform der Erfindung dadurch erreicht, dass die Brennerplatte aus wenigstens zwei übereinander angeordneten Einzelplatten zusammengesetzt ist, die an übereinander liegenden Positionen Kanalbohrungen aufweisen, die in der Einzelplatte mit den Durchtrittskanälen einen erfindungsgemäß geringeren Durchmesser bzw. Querschnitt haben als in der Einzelplatte mit den Verbrennungskanälen.In one embodiment of the invention, a cross-section which becomes wider at the transition from the passage channels to the combustion channels is achieved in that the burner plate is composed of at least two individual plates arranged one above the other, which have channel bores at superposed positions, which in the single plate with the passage channels According to the invention have smaller diameter or cross-section than in the single plate with the combustion channels.

Erfindungsgemäß sind in den Verbrennungskanälen Strömungshindernisse für einen Kontakt mit der Verbrennungsflamme angeordnet, wobei die Strömungshindernisse aus einem Material hergestellt sind, das eine höhere Wärmeleitfähigkeit besitzt als das Material der Brennerplatte. Die Strömungshindernisse sind so angeordnet, dass die Verbrennungsflamme die Strömungshindernisse berührt. Die Strömungshindernisse sorgen für eine Stabilisierung der Flamme, insbesondere bei hoher Brenngasdurchströmung zur Erzeugung einer hohen Wärmestromdichte. Darüber hinaus sorgen die Strömungshindernisse dafür, dass die Flamme möglichst wenig aus den Verbrennungskanälen herauswandert, wodurch die Heizleistung verbessert wird. Die Flamme ist in dem Kanal geschützt gegen Strömungen und Gase, die ein Verlöschen zur Folge haben können. Die Flammenhöhen sind gering, so dass ein Wärmgut dichter an dem Strahlungsbrenner positioniert bzw. vorbeigeführt werden kann. Bei kleiner Brennerleistung kann die Flamme im Verbrennungskanal das Strömungshindernis beheizen, welches so als Zündquelle dienen kann.According to the invention, flow obstacles are arranged in the combustion channels for contact with the combustion flame, wherein the flow obstacles made of a material are that has a higher thermal conductivity than the material of the burner plate. The flow obstacles are arranged so that the combustion flame touches the flow obstacles. The flow obstacles ensure a stabilization of the flame, especially at high fuel gas flow to produce a high heat flux density. In addition, the flow obstacles ensure that the flame emigrates as little as possible from the combustion channels, whereby the heating power is improved. The flame is protected in the channel against currents and gases that can cause extinction. The flame heights are low, so that an item of heat can be positioned or guided closer to the radiation burner. At low burner output, the flame in the combustion channel can heat the flow obstruction, which can thus serve as a source of ignition.

Die Strömungshindernisse in der Brennerplatte des erfindungsgemäßen Brenners tragen erheblich dazu bei, dass sich die Brennerflammen beim Zünden des Brenners wesentlich schneller stabilisieren und schneller in die Verbrennungskanäle einwandern als ohne die Strömungshindernisse. Sie sorgen auch dafür, dass das Material der Brennerplatte schneller erhitzt wird als ohne die Strömungshindernisse.The flow obstacles in the burner plate of the burner according to the invention contribute significantly to the fact that the burner flames stabilize much faster when igniting the burner and migrate faster into the combustion channels as without the flow obstacles. They also ensure that the material of the burner plate is heated faster than without the flow obstacles.

Strahlungsbrenner der erfindungsgemäßen Art weisen eine sehr niedrige untere Leistungsgrenze auf. Gleichzeitig führt eine erhöhte Brenngeschwindigkeit in porösen oder mit Kanälen durchzogenen Medien zu einer hohen Maximalleistung, so dass mit solchen Brennern ein weiter Leistungsbereich abgedeckt werden kann. Die erhöhte Brenngeschwindigkeit führt auch dazu, dass mit einem solchen Brenner Flächenbelastungen bis zu 4 MW/m2 für Erdgas/Luft-Gemische erreicht werden können. Demzufolge können diese Brenner deutlich kompakter gebaut werden als andere Brenner vergleichbarer Leistung. Darüber hinaus wird ein deutlich höherer Anteil der Wärme über Strahlung aus der Verbrennungszone ausgekoppelt als bei freien Flammen bei denen ein Großteil der Wärme im Abgas verbleibt. Hinsichtlich der Ausbrandstrecke haben diese Brenner Vorteile gegenüber Brennern mit freien Flammen, da die Verbrennung im gesamten Leistungsbereich überwiegend oder vollständig innerhalb der Matrix stattfindet. Dies ist auch bei der Integration von Wärmeübertragern günstig. Durch die hohe Flächenbelastung von solchen Brennern in Verbindung mit einer kurzen Ausbrandstrecke können wesentlich kompaktere Heizgeräte gebaut werden, da auf großvolumige Brennräume und große Konvektionsflächen verzichtet werden kann.Radiant burners of the type according to the invention have a very low lower power limit. At the same time, an increased burning speed in porous or channeled media leads to a high maximum power, so that with such burners a wide power range can be covered. The increased burning speed also means that surface loads of up to 4 MW / m 2 for natural gas / air mixtures can be achieved with such a burner. As a result, these burners can be made significantly more compact than other burners of comparable performance. In addition, a significantly higher proportion of the heat is decoupled via radiation from the combustion zone than in free flames where most of the heat remains in the exhaust gas. With regard to the burn-out path, these burners have advantages over burners with free-flames, since the combustion takes place predominantly or completely within the matrix over the entire power range. This is also favorable in the integration of heat exchangers. Due to the high surface load of such burners in conjunction with a short burn-out significantly more compact heaters can be built, as can be dispensed with large-volume combustion chambers and large convection surfaces.

Durch den erhöhten Wärmetransport innerhalb des Brennermaterials kann ein homogenes Temperaturfeld eingestellt werden, so dass sowohl die NOx-Emissionen als auch die CO-Emissionen sehr gering sind. Weiterhin ist in Brennern der erfindungsgemäßen Art und in Porenbrennern die Grenze, bei der es entweder zum Ausblasen oder zum Reaktionsverlöschen kommen kann, deutlich niedriger als bei vergleichbaren Brennern mit freier Flamme.Due to the increased heat transfer within the burner material, a homogeneous temperature field can be set, so that both the NO x emissions and the CO emissions are very low. Furthermore, in burners of the type according to the invention and in pore burners, the limit at which it can either lead to the blowing out or the reaction being extinguished is markedly lower than in the case of comparable burners with a free flame.

Mit dem vorgeschlagenen erfindungsgemäßen Brenneraufbau können vergleichbare Verbrennungseigenschaften wie bei bekannten Porenbrennern erreicht werden.With the proposed burner construction according to the invention comparable combustion properties can be achieved as in known pore burners.

Erfindungsgemäß sind die Strömungshindernisse aus Metall oder Keramik hergestellt. Strömungshindernisse aus Metall haben eine sehr gute Wärmeleitfähigkeit und begünstigen damit in besonderem Maße die Flammenstabilisierung durch die Strömungshindernisse. Geeignete Metalle für die Herstellung erfindungsgemäßer Strömungshindernisse sind beispielsweise Stähle mit den Werkstoffnummern 1.4841, 1.4765, 1.4767, 2.4869 und 2.4867 (Werkstoffnummern nach EN 10027-2). Geeignete Keramikmaterialien für die Herstellung erfindungsgemäßer Strömungshindernisse sind beispielsweise SiC oder SiSiC.According to the invention the flow obstacles are made of metal or ceramic. Flow obstacles made of metal have a very good thermal conductivity and thus favor the flame stabilization by the flow obstacles to a special degree. Suitable metals for the production of flow obstacles according to the invention are, for example, steels with the material numbers 1.4841, 1.4765, 1.4767, 2.4869 and 2.4867 (material numbers according to EN 10027-2). Suitable ceramic materials for the production of flow obstacles according to the invention are, for example, SiC or SiSiC.

Erfindungsgemäß sind die Strömungshindernisse als Stäbe mit rundem oder polygonalem Querschnitt oder als ein Blechstreifen oder als ein Lochblech ausgebildet.
Als Stäbe ausgebildete Strömungshindernisse erstrecken sich vorzugsweise quer durch die Verbrennungskanäle.
In einer besonders vorteilhaft herzustellenden Ausführungsform der Erfindung sind die Strömungshindernisse als sich quer durch die Verbrennungskanäle erstreckende Stäbe oder Drähte ausgebildet sind, wobei sich jeweils ein Stab oder Draht durch die in einer Reihe nebeneinander angeordneten Verbrennungskanäle über die Breite der Brennerplatte oder quer durch die Brennerplatte erstreckt.
Wie oben bereits ausgeführt wurde, ist bei einer Ausführungsform des erfindungsgemäßen Brenners die Brennerplatte aus wenigstens zwei übereinander angeordneten Einzelplatten aufgebaut, wobei eine erste Einzelplatte, die im Betrieb zur Mischkammerseite hin angeordnet ist, die Durchgangskanäle aufweist und eine zweite Platte, die im Betrieb zur Verbrennungsseite hin angeordnet ist, die Verbrennungskanäle aufweist. Bevorzugt weist bei diesem Aufbau die erste Platte, die im Betrieb zur Mischkammerseite hin angeordnet ist, eine geringere Wärmekapazität und / oder eine geringere Wärmeleitfähigkeit auf als die zweite Platte, die im Betrieb zur Verbrennungsseite hin angeordnet ist.
According to the invention the flow obstacles are designed as rods with a round or polygonal cross section or as a sheet metal strip or as a perforated plate.
Flow barriers formed as rods preferably extend across the combustion channels.
In a particularly advantageous embodiment of the invention, the flow obstacles are formed as extending transversely through the combustion channels rods or wires, each extending a rod or wire through the juxtaposed in a series of combustion channels across the width of the burner plate or across the burner plate ,
As already stated above, in one embodiment of the burner according to the invention, the burner plate is constructed from at least two individual plates arranged one above the other, wherein a first single plate, which is arranged in operation to the mixing chamber side, the through-channels and a second plate which in operation to the combustion side is arranged, which has combustion channels. Preferably, in this structure, the first plate, which is disposed in operation to the mixing chamber side, a lower heat capacity and / or a lower thermal conductivity than the second plate, which is disposed in operation to the combustion side.

Erfindungsgemäß ist die Brennerplatte aus hochtemperaturbeständigem keramischem Fasermaterial mit geringer Wärmeleitfähigkeit hergestellt.According to the burner plate is made of high temperature resistant ceramic fiber material with low thermal conductivity.

Erfindungsgemäß enthält das keramische Fasermaterial, aus dem die Brennerplatte hergestellt ist, 40 bis 90 Gew.-% Al2O3 und 10 bis 60 Gew.-% SiO2 oder 60 bis 85 Gew.-% SiO2 und 15 bis 25 Gew.-% (CaO + MgO).
Geeignete Fasermaterialien sind handelsüblich erhältlich von Sandvik Materials Technology Deutschland GmbH, Mörfelden-Walldorf, Deutschland, unter der Bezeichnung FIBROTHAL (F-17/LS, F-19, F-14).
According to the invention contains the ceramic fiber material from which the burner plate is made, 40 to 90 wt .-% Al 2 O 3 and 10 to 60 wt .-% SiO 2 or 60 to 85 wt .-% SiO 2 and 15 to 25 wt. -% (CaO + MgO).
Suitable fiber materials are commercially available from Sandvik Materials Technology Deutschland GmbH, Moerfelden-Walldorf, Germany, under the name FIBROTHAL (F-17 / LS, F-19, F-14).

In einer Ausführungsform, die nicht Teil der Erfindung ist, werden die Strömungshindernisse in der Form einer über der Brennerplatte angeordneten Abdeckplatte ausgebildet, wobei die Abdeckplatte über den Austrittsöffnungen der Verbrennungskanäle Bohrungen aufweist mit einem Querschnitt, der geringer ist als derjenige der Austrittsöffnungen der Verbrennungskanäle aber größer als der Löschabstand der Verbrennung. Dadurch dass die Bohrungen der Abdeckplatte enger sind als die austrittseitigen Enden der Verbrennungskanäle der Brennerplatte, verbessert sich die Flammenabschirmung.
Die Durchtrittskanäle in der Brennerplatte des erfindungsgemäßen Brenners haben vorzugsweise einen Durchmesser von ca. 0,6 bis 1,2 mm und eine Länge, die etwa dem 4-fachen bis 15-fachen ihres Durchmessers entspricht.
Bei den Querschnittserweiterungen handelt es sich vorzugsweise um Bohrungen mit einem Durchmesser von ca. 1,5 bis 6 mm, wobei die Länge der Bohrungen ca. dem 1-fachen bis 3-fachen ihres Durchmessers entspricht.
Besteht die Brennerplatte aus keramischem Material, so können die Bohrungen bei der Herstellung der Brennerplatte eingepresst werden. Sie verlaufen vorzugsweise senkrecht zur austrittseitigen Fläche der Brennerplatte.
Vorzugsweise sind die Durchtrittskanäle und die Verbrennungskanäle in der Brennerplatte in einem regelmäßigen Muster über die Brennerplatte verteilt. Der gegenseitige Abstand ist so gewählt, dass ein sicheres Überzünden der Verbrennung über die Fläche der Brennerplatte gewährleistet ist. Zweckmäßigerweise entspricht der Abstand zwischen benachbarten Durchtrittskanälen vorzugsweise etwa dem 1,5-fachen bis 6-fachen ihres Durchmessers. Die Abstände in Längsrichtung der Brennerplatte können kürzer oder länger sein als die Abstände in Querrichtung. Es besteht auch die Möglichkeit, die Brennerplatte mit Bereichen unterschiedlicher Flammendichte auszustatten, indem man die Durchtrittskanäle und die Verbrennungskanäle in der Brennerplatte entsprechend der gewünschten Flammendichte über die Brennerplatte verteilt.
In one embodiment, which is not part of the invention, the flow obstacles are formed in the form of a cover plate arranged above the burner plate, wherein the cover plate has holes over the outlet openings of the combustion channels with a cross section which is smaller than that of the outlet openings of the combustion channels but larger as the extinguishing distance of combustion. The fact that the holes of the cover plate are narrower than the outlet-side ends of the combustion channels of the burner plate, the flame shield improves.
The passageways in the burner plate of the burner according to the invention preferably have a diameter of about 0.6 to 1.2 mm and a length which corresponds to about 4 times to 15 times their diameter.
The cross-sectional widenings are preferably bores having a diameter of approximately 1.5 to 6 mm, the length of the bores corresponding approximately to 1 to 3 times their diameter.
If the burner plate consists of ceramic material, then the holes can be pressed in during the production of the burner plate. They preferably run perpendicular to the outlet-side surface of the burner plate.
Preferably, the passageways and the combustion channels in the burner plate are distributed in a regular pattern over the burner plate. The mutual distance is chosen so that a secure over ignition of the combustion is ensured over the surface of the burner plate. Conveniently, the distance between adjacent passageways preferably corresponds to about 1.5 times to 6 times their diameter. The distances in the longitudinal direction of the burner plate may be shorter or longer than the distances in the transverse direction. It is also possible to provide the burner plate with areas of different flame density by distributing the passageways and the combustion channels in the burner plate according to the desired flame density over the burner plate.

Weitere Vorteile, Merkmale und Ausgestaltungsformen der vorliegenden Erfindung werden im Folgenden anhand bevorzugter Ausführungsbeispiele im Zusammenhang mit den anhängenden Figuren erläutert.

Fig. 1
zeigt einen Querschnitt durch einen erfindungsgemäßen Brenner mit einer Brennerplatte.
Fig. 2
zeigt eine Draufsicht auf den erfindungsgemäßen Brenner gemäß Figur 1.
Fig. 3
zeigt eine perspektivische Ansicht des erfindungsgemäßen Brenners gemäß Figur 1 schräg von oben.
Further advantages, features and embodiments of the present invention are explained below with reference to preferred embodiments in conjunction with the attached figures.
Fig. 1
shows a cross section through a burner according to the invention with a burner plate.
Fig. 2
shows a plan view of the burner according to the invention according to FIG. 1 ,
Fig. 3
shows a perspective view of the burner according to the invention according to FIG. 1 diagonally from above.

Figur 1 zeigt einen Querschnitt durch einen erfindungsgemäßen Brenner mit einer Brennerplatte 1, die mittels Befestigungsblechen 9 auf einer Montagegrundplatte 8 montiert ist. Die Brennerplatte 1 weist Durchtrittskanäle 2 und sich daran anschließende Verbrennungskanäle 3 auf, wobei sich die Verbrennungskanäle 3 gegenüber den Durchtrittskanälen 2 im Querschnitt erweitern. Unter der Brennerplatte 1 befindet sich eine Mischkammer 6, in die durch eine Gaszuleitung 5 ein Brenngas, vorzugsweise ein Erdgas-Luft-Gemisch, eingeleitet wird. In der Mischkammer 6 ist zusätzlich ein Lochblech 7 für eine bessere Durchmischung und Verteilung des Brenngases vorgesehen. Im Betrieb des Brenners strömt das Brenngas aus der Mischkammer 6 vom unteren Ende her durch die Durchtrittskanäle 2 und weiter durch die Verbrennungskanäle 3. Die Durchtrittskanäle 2 in der Brennerplatte 1 sind als zylindrische Bohrungen ausgebildet mit einem Durchmesser, der geringer ist als der Löschabstand der Verbrennung, so dass die Flammen von den Verbrennungskanälen 3 nicht in die Durchtrittskanäle 2 zurückschlagen können. Die im Querschnitt erweiterten Verbrennungskanäle 3 besitzen dagegen einen Durchmesser, der größer ist als der Löschabstand der Verbrennung, damit in diesen die Verbrennung stattfinden kann. FIG. 1 shows a cross section through a burner according to the invention with a burner plate 1, which is mounted by means of mounting plates 9 on a mounting base plate 8. The burner plate 1 has passage channels 2 and adjoining combustion channels 3, whereby the combustion channels 3 extend in cross-section with respect to the passage channels 2. Below the burner plate 1 is a mixing chamber 6 into which a fuel gas 5, a fuel gas, preferably a natural gas-air mixture is introduced. In the mixing chamber 6, a perforated plate 7 is additionally provided for a better mixing and distribution of the fuel gas. During operation of the burner, the fuel gas flows from the mixing chamber 6 from the lower end through the passageways 2 and further through the combustion channels 3. The passageways 2 in the burner plate 1 are formed as cylindrical bores having a diameter which is less than the extinguishing distance of the combustion so that the flames from the combustion channels 3 can not strike back into the passageways 2. The cross-sectionally enlarged combustion channels 3, however, have a diameter which is greater than the extinguishing distance of the combustion, so that in this combustion can take place.

Ein als Stab (Rundstab) ausgebildetes Strömungshindernis 4 erstreckt sich quer durch die in einer Reihe nebeneinander angeordneten Verbrennungskanäle 3. Beim Verbrennen des Brenngases in den Verbrennungskanälen 3 kommt die Flamme mit dem Strömungshindernis 4 in Kontakt und wird durch dieses stabilisiert. In der hier dargestellten Ausführungsform besteht die Brennerplatte 1 aus keramischem Material niedriger Wärmeleitfähigkeit, wogegen die Strömungshindernisse 4 aus Metall hergestellt sind und eine höhere Wärmeleitfähigkeit als das Material der Brennerplatte 1 besitzen.A flow obstruction 4 designed as a rod (round rod) extends transversely through the combustion channels 3 arranged next to one another in a row. When the combustion gas burns in the combustion channels 3, the flame comes into contact with the flow obstacle 4 and is stabilized by it. In the embodiment shown here, the burner plate 1 is made of a ceramic material of low thermal conductivity, whereas the flow obstacles 4 are made of metal and have a higher thermal conductivity than the material of the burner plate 1.

Figur 2 zeigt eine Draufsicht auf den erfindungsgemäßen Brenner gemäß Figur 1, und Figur 3 zeigt eine perspektivische Ansicht des erfindungsgemäßen Brenners gemäß Figur 1 schräg von oben, wobei gleiche Teile in allen drei Figuren mit den gleichen Bezugszahlen bezeichnet sind. FIG. 2 shows a plan view of the burner according to the invention according to FIG. 1 , and FIG. 3 shows a perspective view of the burner according to the invention according to FIG. 1 obliquely from above, wherein like parts in all three figures are designated by the same reference numerals.

Bezugszeichen:Reference numerals:

11
Brennerplatteburner plate
22
DurchtrittskanälePassageways
33
Verbrennungskanälecombustion channels
44
Strömungshindernisseflow obstacles
55
Gaszuleitunggas supply
66
Mischkammermixing chamber
77
Lochblechperforated sheet
88th
MontagegrundplatteMounting Plate
99
Befestigungsblechmounting plate

Claims (9)

  1. Burner, in particular radiant burner, for the combustion of a gas mixture of fuel gas and an oxygen carrier gas, comprising
    a burner plate (1) with passage channels (2) for the throughflow of the gas mixture from a mixing chamber side to a combustion side,
    wherein, on the combustion side, combustion channels (3) with an enlarged cross-section compared with the passage channels (2) connect to the passage channels (2), wherein flow obstacles (4) formed as rods with round or polygonal cross-section or as a metal strip or as a perforated sheet made of metal or ceramics for a contact with the combustion flame are arranged in the combustion channels (3), wherein the flow obstacles are made of a material which has a higher thermal conductivity than the material of the burner plate (1), wherein the burner plate (1) is made of high-temperature-resistant ceramic fibrous material with low thermal conductivity, which contains 40 to 90 wt.-% Al2O3 and 10 to 60 wt.-% SiO2 or 60 to 85 wt.-% SiO2 and 15 to 25 wt.-% (CaO + MgO).
  2. Burner according to claim 1, characterised in that on at least one point of their length the passage channels (2) for the throughflow of the gas mixture have a maximum diameter which is smaller than a quenching distance of the combustion.
  3. Burner according to one of the preceding claims, characterised in that the combustion channels (3) have at least along a section of their length a maximum diameter which is greater than the quenching distance of the combustion.
  4. Burner according to one of the preceding claims, characterised in that the passage channels (2) and/or the combustion channels (3) in the burner plate (1) have an oval or circular cross-section.
  5. Burner according to one of the preceding claims, characterised in that the cross-section at the transition zone between the passage channels (2) and the combustion channels (3) widens conically, stepwise or in a combination of both.
  6. Burner according to one of the preceding claims, characterised in that the flow obstacles (4) extend transversely through the combustion channels (3).
  7. Burner according to one of the preceding claims, characterised in that the flow obstacles (4) are formed as rods or wires which extend transversely through the combustion channels (3), wherein in each case a rod or wire extends through the combustion channels (3) arranged adjacently in a row along the width of the burner plate or transversely through the burner plate.
  8. Burner according to one of the preceding claims, characterised in that the burner plate (1) is constructed from at least two plates (1a and 1b) arranged one above the other, wherein a first plate, which is arranged towards the mixing chamber side during operation, has the passage channels (2), and a second plate, which is arranged towards the combustion side during operation, has the combustion channels (3).
  9. Burner according to claim 8, characterised in that the first plate, which is arranged towards the mixing chamber side during operation, has a lower heat capacity and/or a lower thermal conductivity than the second plate, which is arranged towards the combustion side during operation.
EP10740655.5A 2009-08-18 2010-08-06 Radiant burner Not-in-force EP2467642B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009028624A DE102009028624A1 (en) 2009-08-18 2009-08-18 radiant burner
PCT/EP2010/061521 WO2011020723A2 (en) 2009-08-18 2010-08-06 Radiation burner

Publications (2)

Publication Number Publication Date
EP2467642A2 EP2467642A2 (en) 2012-06-27
EP2467642B1 true EP2467642B1 (en) 2018-09-19

Family

ID=43495167

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10740655.5A Not-in-force EP2467642B1 (en) 2009-08-18 2010-08-06 Radiant burner

Country Status (6)

Country Link
US (1) US9182119B2 (en)
EP (1) EP2467642B1 (en)
JP (1) JP2013502552A (en)
CN (1) CN102597625B (en)
DE (1) DE102009028624A1 (en)
WO (1) WO2011020723A2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0915469B1 (en) * 2008-07-08 2020-04-22 Bekaert Sa Nv radiant burner
CN102798123B (en) * 2011-05-26 2016-05-04 中山炫能燃气科技股份有限公司 A kind of infrared metal heater and preparation method thereof
US20120301836A1 (en) * 2011-05-27 2012-11-29 Kazuyuki Akagi Plate type burner
DE102011119163A1 (en) * 2011-11-23 2013-05-23 Man Truck & Bus Ag Burner device for the combustion chamber of a burner, in particular for raising an internal combustion engine of a motor vehicle
DE202013102109U1 (en) * 2012-07-03 2013-10-10 Ulrich Dreizler Burner with a surface combustion
DE102013101368B4 (en) * 2013-02-12 2023-04-27 Gidara Energy B.V. fluidized bed gasifier
US10125983B2 (en) 2013-02-14 2018-11-13 Clearsign Combustion Corporation High output porous tile burner
US10571124B2 (en) 2013-02-14 2020-02-25 Clearsign Combustion Corporation Selectable dilution low NOx burner
US10458649B2 (en) 2013-02-14 2019-10-29 Clearsign Combustion Corporation Horizontally fired burner with a perforated flame holder
US10119704B2 (en) 2013-02-14 2018-11-06 Clearsign Combustion Corporation Burner system including a non-planar perforated flame holder
US11460188B2 (en) 2013-02-14 2022-10-04 Clearsign Technologies Corporation Ultra low emissions firetube boiler burner
US10386062B2 (en) 2013-02-14 2019-08-20 Clearsign Combustion Corporation Method for operating a combustion system including a perforated flame holder
WO2014127305A1 (en) 2013-02-14 2014-08-21 Clearsign Combustion Corporation Startup method and mechanism for a burner having a perforated flame holder
WO2014127307A1 (en) 2013-02-14 2014-08-21 Clearsign Combustion Corporation Perforated flame holder and burner including a perforated flame holder
US10190767B2 (en) 2013-03-27 2019-01-29 Clearsign Combustion Corporation Electrically controlled combustion fluid flow
US10125979B2 (en) 2013-05-10 2018-11-13 Clearsign Combustion Corporation Combustion system and method for electrically assisted start-up
CN105339734B (en) * 2013-06-14 2017-06-23 倍耐克有限公司 Burner nozzle, burner and surface processing equipment
WO2015042614A1 (en) 2013-09-23 2015-03-26 Clearsign Combustion Corporation Burner system employing multiple perforated flame holders, and method of operation
WO2015042613A1 (en) * 2013-09-23 2015-03-26 Christopher A. Wiklof POROUS FLAME HOLDER FOR LOW NOx COMBUSTION
CN103528062B (en) * 2013-09-25 2015-10-28 杭州电子科技大学 The fire radiant of the rotary premixed porous-medium gas hot stove of air blast and combustion method thereof
WO2015054323A1 (en) 2013-10-07 2015-04-16 Clearsign Combustion Corporation Pre-mixed fuel burner with perforated flame holder
WO2015057740A1 (en) 2013-10-14 2015-04-23 Clearsign Combustion Corporation Flame visualization control for electrodynamic combustion control
JP6191961B2 (en) * 2013-11-07 2017-09-06 静岡製機株式会社 Combustion control device
EP3066385A4 (en) 2013-11-08 2017-11-15 Clearsign Combustion Corporation Combustion system with flame location actuation
US9624624B2 (en) * 2013-11-20 2017-04-18 R. Filion Manufacturing Inc. Infrared asphalt heating apparatus and method
CN105960565B (en) * 2014-01-24 2019-11-12 克利尔赛恩燃烧公司 Low NOxMultitubular boiler
EP3105173A1 (en) 2014-02-14 2016-12-21 Clearsign Combustion Corporation Down-fired burner with a perforated flame holder
WO2016007564A1 (en) * 2014-07-07 2016-01-14 Clearsign Combustion Corporation Burner system including a moveable perforated flame holder
US9885496B2 (en) 2014-07-28 2018-02-06 Clearsign Combustion Corporation Fluid heater with perforated flame holder
JP6440433B2 (en) * 2014-09-29 2018-12-19 川崎重工業株式会社 Fuel injection nozzle, fuel injection module, and gas turbine
US9702547B2 (en) 2014-10-15 2017-07-11 Clearsign Combustion Corporation Current gated electrode for applying an electric field to a flame
US20180038589A1 (en) * 2014-12-24 2018-02-08 Clearsign Combustion Corporation Flame holders with fuel and oxidant recirculation, combustion systems including such flame holders, and related methods
WO2016134061A1 (en) 2015-02-17 2016-08-25 Clearsign Combustion Corporation Perforated flame holder with adjustable fuel nozzle
US10006715B2 (en) 2015-02-17 2018-06-26 Clearsign Combustion Corporation Tunnel burner including a perforated flame holder
WO2016133934A1 (en) 2015-02-17 2016-08-25 Clearsign Combustion Corporation Methods of upgrading a conventional combustion system to include a perforated flame holder
WO2016133936A1 (en) * 2015-02-17 2016-08-25 Clearsign Combustion Corporation Prefabricated integrated combustion assemblies and methods of installing the same into a combustion system
NL2014432B1 (en) * 2015-03-10 2017-01-06 Atag Verwarming Nederland B V Heat exchanger and assembly of a heat exchanger and a burner.
DE102015217237A1 (en) * 2015-09-09 2017-03-09 Gvp Gesellschaft Zur Vermarktung Der Porenbrennertechnik Mbh Device for welding welding tracks
US10088153B2 (en) 2015-12-29 2018-10-02 Clearsign Combustion Corporation Radiant wall burner including perforated flame holders
EP3403026B1 (en) 2016-01-13 2021-12-15 ClearSign Technologies Corporation Combustion system comprising a first and a second perforated flame holder, separated by a gap
JP2019507861A (en) * 2016-03-10 2019-03-22 シーラス ヒート テクノロジー カンパニー エルエルシーSelas Heat Technology Company Llc High intensity gas fired infrared radiator
US10551058B2 (en) 2016-03-18 2020-02-04 Clearsign Technologies Corporation Multi-nozzle combustion assemblies including perforated flame holder, combustion systems including the combustion assemblies, and related methods
WO2017190080A1 (en) 2016-04-29 2017-11-02 Clearsign Combustion Corporation Burner system with discrete transverse flame stabilizers
CN105805947A (en) * 2016-05-13 2016-07-27 宁波多贝机械实业有限公司 All-premixed combustion heat exchange device
US10514165B2 (en) 2016-07-29 2019-12-24 Clearsign Combustion Corporation Perforated flame holder and system including protection from abrasive or corrosive fuel
CN109416175A (en) * 2016-08-18 2019-03-01 克利尔赛恩燃烧公司 Perforation flame holder supporting member for structural intergrity
US10539326B2 (en) 2016-09-07 2020-01-21 Clearsign Combustion Corporation Duplex burner with velocity-compensated mesh and thickness
WO2018136627A2 (en) * 2017-01-19 2018-07-26 Clearsign Combustion Corporation Furnace including perforated and bluff body flame holder for enhanced stability and turndown
WO2018160884A1 (en) 2017-03-03 2018-09-07 Clearsign Combustion Corporation Field installed perforated flame holder and method of assembly and installation
CN108954311A (en) * 2017-05-20 2018-12-07 深圳市元疆科技有限公司 A kind of variable orifice diameter porous ceramic plate
CN109990274A (en) * 2017-12-30 2019-07-09 青岛海尔智慧厨房电器有限公司 Porous heater, heater production method and the burner for being equipped with the heater
CN109986081A (en) * 2017-12-30 2019-07-09 青岛海尔智慧厨房电器有限公司 A kind of porous heater, heater production method and the burner for being equipped with the heater
CN108266726A (en) * 2018-03-15 2018-07-10 沈阳工程学院 A kind of porous media combustor of subsidiary heat exchange function
CN109631055A (en) * 2018-11-02 2019-04-16 韩燕� A kind of heat treatment burning waste gas recycling device
MX2021007898A (en) * 2018-12-28 2021-08-27 Univ Tecnica Federico Santa Maria Utfsm Porous burner for ovens.

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3695818A (en) * 1969-10-31 1972-10-03 Rinnai Kk Radiant burner
FR2157328A5 (en) 1971-10-18 1973-06-01 Mitsubishi Electric Corp
JPS5030336U (en) * 1973-05-29 1975-04-04
JPS5218236A (en) * 1975-07-31 1977-02-10 Matsushita Electric Ind Co Ltd Fully primary type gas burner
JPS58120577A (en) * 1982-01-12 1983-07-18 松下電器産業株式会社 Ceramic burner plate for gas combustion
JPS6179726U (en) * 1984-10-30 1986-05-28
US4673349A (en) * 1984-12-20 1987-06-16 Ngk Insulators, Ltd. High temperature surface combustion burner
GB2192714A (en) 1986-07-16 1988-01-20 Schlumberger Electronics Coriolis mass flow meter
JPS6330721U (en) * 1986-08-08 1988-02-29
JPS63217121A (en) * 1987-12-24 1988-09-09 Asahi Glass Co Ltd Planar burner
US5026273A (en) * 1988-07-15 1991-06-25 W. R. Grace & Co.-Conn. High temperature combuster
US4919609A (en) * 1989-05-02 1990-04-24 Gas Research Institute Ceramic tile burner
US5224856A (en) * 1990-01-31 1993-07-06 Nippon Kokan Kabushiki Kaisha Surface combustion burner
US5137583A (en) * 1991-04-17 1992-08-11 White Consolidated Industries, Inc. Emission technology
ATE174681T1 (en) * 1992-03-03 1999-01-15 Bekaert Sa Nv POROUS METAL FIBER PLATE
JPH07117219B2 (en) * 1992-06-08 1995-12-18 大阪瓦斯株式会社 Ceramic fiber burner plate for surface combustion
FR2694072B1 (en) * 1992-07-23 1994-10-14 Chaffoteaux Et Maury Improvements to gas burners.
US5360490A (en) * 1993-05-18 1994-11-01 Gas Research Institute Radiant emission and thermophotovoltaic technology
CA2154524A1 (en) * 1995-07-24 1997-01-25 Gianmario Invernizzi Combustion head, in particular for gas burners
JPH09112842A (en) * 1995-10-18 1997-05-02 Matsushita Electric Ind Co Ltd Burner device
US5989013A (en) * 1997-01-28 1999-11-23 Alliedsignal Composites Inc. Reverberatory screen for a radiant burner
DE19847042B4 (en) * 1998-10-13 2008-05-29 Ceramat, S. Coop., Asteasu Highly porous burner mat for gas and / or oil burners
DE10028670A1 (en) 2000-06-09 2001-12-13 Ruhrgas Ag Burner plate for flat burner has mixture ducts each adjoined on outlet side by cross-sectional expansion so that flame burns therein with reduced specific thermal capacity
DE10038716C2 (en) * 2000-08-09 2002-09-12 Bosch Gmbh Robert Gas burner with a porous material burner with a homogeneous combustion process
ES2312746T3 (en) * 2003-12-18 2009-03-01 Riello S.P.A. COATING ELEMENT FOR GAS COMBUSTION HEADS AND GAS BURNER THAT INCLUDES SUCH COATING ELEMENT.
US7611351B2 (en) * 2005-06-24 2009-11-03 Chemical Physics Technologies, Inc. Radiant gas burner
CN100462625C (en) * 2007-01-15 2009-02-18 冯良 Infrared radiation burner for fuel gas
US7717704B2 (en) * 2007-03-28 2010-05-18 Prince Castle, Inc. Wire mesh burner plate for a gas oven burner
CN101307899A (en) * 2007-05-15 2008-11-19 张达积 Double plate elasticity ultra-red radiation combusting device
TWI570362B (en) * 2010-12-20 2017-02-11 索拉羅尼克斯股份有限公司 Gas fired radiation emitter with embossed screen
CN103375799A (en) * 2012-04-13 2013-10-30 广州市红日燃具有限公司 Infrared gas burner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20120164590A1 (en) 2012-06-28
WO2011020723A3 (en) 2012-05-03
EP2467642A2 (en) 2012-06-27
WO2011020723A2 (en) 2011-02-24
CN102597625B (en) 2015-02-25
DE102009028624A1 (en) 2011-02-24
US9182119B2 (en) 2015-11-10
JP2013502552A (en) 2013-01-24
CN102597625A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
EP2467642B1 (en) Radiant burner
DE69724843T2 (en) incinerator
EP0415008B1 (en) Method of combustion in gasburner
DE1529197B1 (en) Radiant burner
DE19901145A1 (en) Infrared heater designed as a surface heater
EP0021035B1 (en) Operating process for premix burners and burner for carrying out the process
DE3930037A1 (en) WATER TUBE BOILER AND METHOD FOR ITS BURNER OPERATION
DE1404585A1 (en) Radiation plate for gas burner
DE1905148C3 (en) Radiant burner
WO2003069225A1 (en) Infrared radiator embodied as a surface radiator
DE69127997T2 (en) BURNER WITH SURFACE COMBUSTION
EP1476697A1 (en) Infra-red emitter embodied as a planar emitter
DE3131200C2 (en) Metal heating furnace
DE3048044A1 (en) Oil burner flame tube of heat-resisting material - is good thermal insulator with low time-constant and has burner jet acting as injector
DE19718885C2 (en) gas burner
DE69127781T2 (en) BURNER WITH SURFACE COMBUSTION
AT399563B (en) Burner
AT299490B (en) Burners for liquid and / or gaseous fuels
DE1529197C (en) Radiant burner
DE8033855U1 (en) FLAME TUBE MADE OF HEAT-RESISTANT MATERIAL FOR BURNERS, ESPECIALLY OIL BURNERS
DE4223513A1 (en) Gas burner with gas duct plate - which is formed by several, corrugated metal strips, with corrugations bounding gas ducts
DE29700869U1 (en) Burners, especially for heating systems
DE102021123219A1 (en) Burner for a heating device that can essentially be operated with hydrogen
DE9108632U1 (en) burner
DE3046682C2 (en) Gas burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120202

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MACH, ALEXANDER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23D 14/82 20060101ALI20180223BHEP

Ipc: F23D 14/14 20060101AFI20180223BHEP

Ipc: F23D 14/58 20060101ALI20180223BHEP

INTG Intention to grant announced

Effective date: 20180323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015388

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015388

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015388

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1043661

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919