EP1468950B1 - Linear motor drive, elevator having said drive and method for using said drive - Google Patents

Linear motor drive, elevator having said drive and method for using said drive Download PDF

Info

Publication number
EP1468950B1
EP1468950B1 EP04008042A EP04008042A EP1468950B1 EP 1468950 B1 EP1468950 B1 EP 1468950B1 EP 04008042 A EP04008042 A EP 04008042A EP 04008042 A EP04008042 A EP 04008042A EP 1468950 B1 EP1468950 B1 EP 1468950B1
Authority
EP
European Patent Office
Prior art keywords
secondary part
drive
primary parts
normal force
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04008042A
Other languages
German (de)
French (fr)
Other versions
EP1468950A1 (en
Inventor
Johannes Kocher
Jörg Evertz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP04008042A priority Critical patent/EP1468950B1/en
Publication of EP1468950A1 publication Critical patent/EP1468950A1/en
Application granted granted Critical
Publication of EP1468950B1 publication Critical patent/EP1468950B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/0407Driving gear ; Details thereof, e.g. seals actuated by an electrical linear motor

Definitions

  • the invention relates to a drive with a linear motor, a lift with this drive and method for operating this drive according to the definition of the independent claims.
  • EP-A-0503980 discloses a drive with a linear motor, which linear motor has a secondary part between a first primary part and a second primary part. The width of air gaps between the primary parts and the secondary part remains constant and thus this linear motor does not take over a braking function. Accordingly, in an elevator with this drive, the functions of the holding and trapping brake are realized by specialized assemblies.
  • a first object of the present invention is to provide a drive with a linear motor, which drive also performs a braking function.
  • a second object of this invention is to provide a method of operating this drive.
  • a third object of this invention is to provide an elevator with such a drive.
  • the elevator has at least one cabin for moving people or goods with this drive.
  • the drive advantageously consists of several series-connected linear motors. Drives with diverse overall performance can be thus put together according to the modular principle with little effort and low cost.
  • the width of the air gaps between the primary parts and the secondary part of each linear motor is individually controlled, so that unwanted, the linear motor damaging contacts of the primary parts with the secondary part or performance variations due to changes in the width of the air gaps can be avoided.
  • the Fig. 1 and 2 show schematic representations of an embodiment of the drive 10th
  • the drive has at least one linear motor, in which at least one first primary part 1, 1 ' and at least one second primary part 2, 2' are spaced from each other in a plane XY by a secondary part 3 .
  • the drive has two linear motors, a first linear motor consists of a first pair of primary parts 1, 2 to the secondary part 3, a second linear motor consists of a second pair of primary parts 1 ', 2' to the secondary part 3.
  • the linear motor is a synchronous linear motor whose primary parts are excited by permanent magnets of the secondary part.
  • the primary parts have windings through which an electric current can flow in a known manner.
  • an electric current can flow in a known manner.
  • an attractive normal force along a direction of action Y transverse to the direction of movement of the drive. If no electric current flows, the linear motor is deactivated.
  • a residual normal force acting between the secondary part and the currentless primary parts is neglected in the context of this description.
  • the drive 10 has a support means 4 , which carries support means all components of the drive with the exception of the secondary part.
  • a support means 4 which carries support means all components of the drive with the exception of the secondary part.
  • Fig. 1 and 2 is the supporting means of two struts 4.1, 4.2, a first L ticasverstrebung 4.1 arranged on the first side of the secondary part and a second stringer is 4.2 arranged on the second side of the secondary part.
  • the support means is rigid and, for example, executed in metal.
  • the Leksverstrebonne are connected by means of at least one U-shaped cross brace 4.3 in the direction of action Y.
  • the drive 10 is guided over at least one guide element 6, 6 ', 7, 7 ' along the secondary part.
  • Fig. 1 is in each primary part 1, 1 ', 2, 2', a guide element 6, 6 ', 7, 7' attached.
  • the guide elements are mounted in pairs on both sides of the secondary part in end portions of the primary parts and mounted on eccentric shafts 11, 11 ', 12, 12' . With these four guide elements there is a uniformly distributed and stable guidance of the drive along the secondary part.
  • the drive 10 has at least one compensating means 5 which acts with a compensating normal force against the attractive normal force between each of the primary parts and the secondary part.
  • the compensation means is a first spring 5.1, whose spring ends on the first side of the secondary part first primary parts 1, 1 ' connects to each other and pushes away from the secondary part.
  • the compensating means is a second spring 5.1, whose spring ends on the second side of the secondary part second primary parts of the secondary part pushes away.
  • the compensation means is arranged substantially along the direction of movement of the drive.
  • the compensation agent is made of known and proven elastic materials such as metal.
  • the compensation means is mounted in the suspension means and bears the compensation means the primary parts.
  • the first and second springs are mounted in end portions of the U-shaped cross brace.
  • the first spring carries the first primary parts and the second spring carries the second primary parts.
  • the drive 10 is held and braked via at least one brake element 8, 8 ', 9, 9' on the secondary part.
  • Fig. 1 is in each primary part 1, 1 ', 2, 2' a brake elements 8, 8 ', 9, 9' attached.
  • the brake elements are arranged in pairs on both sides of the secondary part.
  • Each brake element is connected via a brake lever 8.1 , 8.1 ', 9.1, 9.1' with the support means 4 .
  • Each of the brake levers has first and second brake lever ends. The first brake lever end is mounted on a shaft 13, 13 ', 14, 14' in the respective primary part, the second brake lever end is with connected to the support means. With these four brake elements is a uniformly distributed and stable braking of the drive along the secondary part.
  • the eccentric shafts 11, 11 ', 12, 12' can be rotated by means of at least one actuator 15, 15 ', 16, 16' in the plane XY about a control axis Z.
  • Each eccentric shaft is rotated by an actuator.
  • the actuators are electric motors which rotate the eccentric shafts back and forth by one setting angle.
  • the guide elements are in direct contact with the secondary part and the brake elements are without contact to the secondary part.
  • the brake elements are in direct contact with the secondary part.
  • the eccentric In the de-energized state of the actuators, the eccentric rotate automatically under the action of the attractive normal force back to the second end position until the brake elements rest on the abutment.
  • the braking function and the catching function of the drive takes place by friction on the secondary part.
  • the guide elements and the brake elements are linings, rollers, rollers, balls, etc., which consist of known materials such as metal, ceramic, hard rubber, etc.
  • rollers, rollers, balls for the guide elements they have a rolling friction on the secondary part.
  • pads for the brake elements they have a sliding friction on the secondary part.
  • actuators which are actuated not electrically but hydraulically or pneumatically or by means of a Bowden cable.
  • the eccentric shafts 11, 11 ', 12, 12' By turning the eccentric shafts 11, 11 ', 12, 12' back and forth, the primary parts 1, 1 ', 2, 2' are moved toward the secondary part 3 or moved away from the secondary part 3 .
  • the compensating means 5 is not affected by the back and forth of the eccentric waves.
  • the back and forth of the eccentric shafts is in Fig. 1 indicated by curved double arrows.
  • the width of air gaps between the primary parts and the secondary part is changed.
  • the width of the air gaps changes along a direction of action transverse to the direction of movement of the drive. In the first end position, where the guide elements cause the drive in contact with the secondary part, the width of the air gaps is maximum and the attractive normal force between the primary parts and the secondary part is small.
  • the width of the air gaps is minimal and the attractive normal force z between the primary parts and the secondary part is large.
  • the width of the air gaps is changed continuously, whereby the attractive normal force is continuously reduced or increased accordingly.
  • the attractive normal force is as small as possible in the first end position and in the second end position the pulling normal force is the greatest possible.
  • the second brake lever ends When rotating the eccentric shaft, the second brake lever ends form fixed points that do not change their distance to the secondary part 3 , while the first brake lever ends, which are mounted in the primary parts, change their distance to the secondary part.
  • Brake lever length 84 denotes the distance between the first and second brake lever ends.
  • Brake length 83 denotes the distance between the projection of the brake elements on the connecting end of the brake lever ends and the second brake lever end.
  • the brake elements are pressed with a lever against the secondary part. According to Fig. 1 the ratio of the lever is 2: 1. In the second end position, where the brake elements hold the drive in contact with the secondary part, the compensating normal force of the compensating means 5 acts as a braking force amplified by this lever.
  • the drive 10 has at least one catch trigger 4.5, 4.5 ' , which holds the compensation means 5 at least partially in the primary parts 1, 1, 2, 2' .
  • the catch trigger can be brought into two positions. In a normal operating position, the compensation means is activated and the catch trigger maintains the bias of the compensation means. In a catch position the compensation means is deactivated and the catch trigger has released the bias of the compensation means.
  • the compensating means consists of a spring 5.1 , which connects the primary parts 1, 1 ' and a spring 5.2, which the primary parts 2, 2' combines. Each spring is tensioned with at least one spring end of a catch trigger in a primary part.
  • the catch trigger has at least one support which holds the spring ends in the direction of action Y and pushes the primary parts away from the secondary part.
  • the deactivation of the catch trigger takes place in a known manner mechanically or electrically.
  • the catch trigger for deactivation is mechanically rotated about the adjusting axis Z.
  • the pad slips thereby laterally from the spring end and the spring relaxes accordingly.
  • the compensating normal force of the compensating means is removed, the attractive normal force of the primary parts comes into full effect and becomes correspondingly large due to the minimally wide air gaps.
  • the drive is then pressed only with the attractive normal force of the primary parts against the secondary part.
  • the brake elements brake by friction on the secondary part, which performs a catch function. With this catch function, a car or a counterweight is decelerated and held at an overspeed.
  • Fig. 3 to 5 show three schematic representations of embodiments of the elevator 100 , which is driven by the drive 10 .
  • the drive directly drives at least one cab 20 for moving persons or goods of the elevator.
  • the drive directly drives at least one counterweight 30 , wherein the car and counterweight are connected via at least one connecting means 40 .
  • the lanyard is a rope or belt with at least one load-bearing steel, aramid, etc. cable. Both the car and the counterweight are moved with a 2: 1 suspension.
  • the connecting means is deflected over a plurality of deflection rollers 41, 42, 43, 44 .
  • a first diverting pulley 41 is mounted on the counterweight, at least a second diverting pulley 42 is mounted in the wellhead and third and fourth diverting pulleys 43, 44 are mounted on the cabin.
  • Fig. 5 corresponds to Fig. 4 , with the difference that only the counterweight is 2: 1 umge gleich while the cabin is 1: 1 umgehormon. In this way, the counterweight is moved at half the speed of the car.
  • the secondary part 3 is at least one guide rail for the elevator.
  • the cab is moved as a backpack cabin with two drives along two guide rails, which guide rails extend over the entire length of a shaft in a building.
  • the counterweight is moved with a drive along a single guide rail, which extends a guide rail over the entire length of the shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Types And Forms Of Lifts (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Linear Motors (AREA)
  • Elevator Control (AREA)
  • Control Of Linear Motors (AREA)

Abstract

The elevator drive (10) has a linear motor with a secondary part (3) displaced between 2 primary parts (1,1'; 2,2') via guide elements (6,6'; 7,7') provided by the latter, at least one compensation device (5) providing a compensation normal force in opposition to the normal force between each primary part and the secondary part, e.g. via springs (5.1,5.2). Also included are Independent claims for the following: an operating method for a linear motor elevator drive; an elevator with at least one elevator cabin having a linear motor drive.

Description

Die Erfindung betrifft einen Antrieb mit Linearmotor, ein Aufzug mit diesem Antrieb und Verfahren zum Betrieb dieses Antriebs gemäss der Definition der unabhängigen Patentansprüche.The invention relates to a drive with a linear motor, a lift with this drive and method for operating this drive according to the definition of the independent claims.

EP-A-0503980 offenbart einen Antrieb mit Linearmotor, welcher Linearmotor ein Sekundärteil zwischen einem ersten Primärteil und einem zweiten Primärteil aufweist. Die Breite von Luftspalten zwischen den Primärteilen und dem Sekundärteil konstant bleibt und dadurch dieser Linearmotor übernimmt keine Bremsfunktion. Demgemäss sind bei einem Aufzug mit diesem Antrieb die Funktionen der Halte- und Fangbremse durch spezialisierte Baugruppen realisiert. EP-A-0503980 discloses a drive with a linear motor, which linear motor has a secondary part between a first primary part and a second primary part. The width of air gaps between the primary parts and the secondary part remains constant and thus this linear motor does not take over a braking function. Accordingly, in an elevator with this drive, the functions of the holding and trapping brake are realized by specialized assemblies.

Eine erste Aufgabe der vorliegenden Erfindung ist es, einen Antrieb mit Linearmotor anzugeben, welcher Antrieb ebenfalls eine Bremsfunktion ausführt. Eine zweite Aufgabe dieser Erfindung ist es, ein Verfahren zum Betrieb dieses Antriebs anzugeben. Eine dritte Aufgabe dieser Erfindung ist es, einen Aufzug mit einem solchen Antrieb anzugeben.A first object of the present invention is to provide a drive with a linear motor, which drive also performs a braking function. A second object of this invention is to provide a method of operating this drive. A third object of this invention is to provide an elevator with such a drive.

Diese Aufgaben werden durch die Erfindung gemäss der Definition der unabhängigen Patentansprüche gelöst. Weitere vorteilhafte Merkmale der Erfindung werden in den abhängigen Patentansprüchen definiert.These objects are achieved by the invention according to the definition of the independent patent claims. Further advantageous features of the invention are defined in the dependent claims.

Der Antrieb wird durch eine Gesamtnormalkraft geführt bzw. gebremst, die sich aus der anziehenden Normalkraft zwischen den Primärteilen und dem Sekundärteil abzüglich der kompensierenden Normalkraft des Kompensationsmittels zusammensetzt. Die Erfindung nutzt die bei Linearantrieben vorhandene grosse anziehende Normalkraft aus, um so eine Bremsfunktion des Antriebs zu erzielen. Zum gezielten Verändern Gesamtnormalkraft erfolgt a) ein Hin- bzw. Herbewegen der Primärteile bezüglich des Sekundärteils über Stellglieder um eine Breite von Luftspalten zwischen den Primärteilen und dem Sekundärteil zu varieren bzw. b) vorteilhafterweise ein Aktivieren bzw. Desaktivieren des Linearmotors. Die Breite der Luftspalte wird entlang der Wirkungsrichtung quer zur Bewegungsrichtung des Antriebs ermittelt. Dabei werden die folgenden vier Betriebsmodi unterschieden:

  • In einem ersten Betriebsmodus ist der Linearmotor desaktiviert und einzig die kompensierende Normalkraft des Kompensationsmittels die Primärteile vom Sekundärteil beabstandet, was den Antrieb haltend führt. Die Breite der Luftspalte ist frei wählbar maximal bzw. minimal eingestellt.
  • In einem zweiten Betriebsmodus ist der Linearmotor aktiviert und die Breite der Luftspalte zwischen den Primärteilen und dem Sekundärteil ist maximal eingestellt. Die anziehende Normalkraft zwischen den Primärteilen und dem Sekundärteil ist dann klein, was den Antrieb haltend führt.
  • In einem dritten Betriebsmodus ist der Linearmotor aktiviert und die Breite der Luftspalte zwischen den Primärteilen und dem Sekundärteil ist minimal eingestellt. Die anziehende Normalkraft zwischen den Primärteilen und dem Sekundärteil ist dann gross, was den Antrieb bremst.
  • In einem vierten Betriebsmodus wird das Kompensationsmittel desaktiviert und die Primärteile werden mit der voll anziehenden Normalkraft des Linearmotors gegen das Sekundärteil gedrückt, was den Antrieb im Fang bremst.
The drive is guided or braked by a total normal force, which is composed of the attractive normal force between the primary parts and the secondary part minus the compensating normal force of the compensating means. The invention makes use of the large attractive normal force present in linear drives so as to achieve a braking function of the drive. For purposefully changing the total normal force, a) a reciprocating movement of the primary parts with respect to the secondary part via actuators to vary a width of air gaps between the primary parts and the secondary part or b) advantageously activating or deactivating the linear motor. The width of the air gaps is determined along the direction of action transverse to the direction of movement of the drive. The following four operating modes are distinguished:
  • In a first mode of operation of the linear motor is deactivated and only the compensating normal force of the compensation means the primary parts spaced from the secondary part, which keeps the drive holding. The width of the air gaps is freely selectable maximum or minimum set.
  • In a second operating mode, the linear motor is activated and the width of the air gaps between the primary parts and the secondary part is set at a maximum. The attractive normal force between the primary parts and the secondary part is then small, which keeps the drive holding.
  • In a third operating mode, the linear motor is activated and the width of the air gaps between the primary parts and the secondary part is set to a minimum. The attractive normal force between the primary parts and the secondary part is then large, which brakes the drive.
  • In a fourth operating mode, the compensating means is deactivated and the primary parts are pressed against the secondary part with the fully attractive normal force of the linear motor, which brakes the drive in the catch.

Der Aufzug weist mindestens eine Kabine zum Verfahren von Personen bzw. Gütern mit diesem Antrieb auf. Der Antrieb besteht vorteilhafterweise aus mehreren, in Reihe geschalteten Linearmotoren. Antriebe mit vielfältigen Gesamtleistungen lassen sich somit nach dem Baukastenprinzip mit wenig aufwand und geringen Kosten zusammenstellen. Die Breite der Luftspalte zwischen den Primärteilen und dem Sekundärteil eines jeden Linearmotors wird individuell kontrolliert, so dass unerwünschte, den Linearmotor beschädigende Berührungen der Primärteile mit dem Sekundärteil bzw. Leistungsschwankungen aufgrund von Änderungen der Breite der Luftspalte vermieden werden.The elevator has at least one cabin for moving people or goods with this drive. The drive advantageously consists of several series-connected linear motors. Drives with diverse overall performance can be thus put together according to the modular principle with little effort and low cost. The width of the air gaps between the primary parts and the secondary part of each linear motor is individually controlled, so that unwanted, the linear motor damaging contacts of the primary parts with the secondary part or performance variations due to changes in the width of the air gaps can be avoided.

Im Folgenden werden beispielhafte Ausführungsformen der Erfindung anhand der Fig. 1 bis 5 im Detail erläutert. Hierbei zeigt:

Fig. 1
eine schematische Darstellung im Schnitt eines Teils des Antriebs,
Fig. 2
eine perspektivische Ansicht eines Teils des Antriebs,
Fig. 3
eine schematische Darstellung einer ersten Ausführungsform des Aufzugs entlang der Bewegungsrichtung dessen Antriebs,
Fig. 4
eine schematische Darstellung einer zweiten Ausführungsform des Aufzugs entlang der Bewegungsrichtung dessen Antriebs, und
Fig. 5
eine schematische Darstellung einer dritten Ausführungsform des Aufzugs entlang der Bewegungsrichtung dessen Antriebs.
In the following, exemplary embodiments of the invention will be described with reference to FIG Fig. 1 to 5 explained in detail. Hereby shows:
Fig. 1
a schematic representation in section of a part of the drive,
Fig. 2
a perspective view of a part of the drive,
Fig. 3
a schematic representation of a first embodiment of the elevator along the direction of movement of the drive,
Fig. 4
a schematic representation of a second embodiment of the elevator along the direction of the drive, and
Fig. 5
a schematic representation of a third embodiment of the elevator along the direction of the drive.

Die Fig. 1 und 2 zeigen schematische Darstellungen einer Ausführungsform des Antriebs 10. Der Antrieb weist mindestens einen Linearmotor auf, bei dem mindestens ein erstes Primärteil 1, 1' und mindestens ein zweites Primärteil 2, 2' in einer Ebene XY durch ein Sekundärteil 3 voneinander beabstandet sind. Auf einer ersten Seite des Sekundärteils befinden sich erste Primärteile, auf einer zweiten Seite des Sekundärteils befinden sich zweite Primärteile. Gemäss Fig. 1 weist der Antrieb zwei Linearmotoren auf, ein erster Linearmotor besteht aus einem ersten Paar von Primärteilen 1, 2 um das Sekundärteil 3, ein zweiter Linearmotor besteht aus einem zweiten Paar von Primärteilen 1', 2' um das Sekundärteil 3. Der Linearmotor ist ein Synchronlinearmotor, dessen Primärteile von Permanentmagneten des Sekundärteils erregt werden. Beliebige bekannte Permanentmagnete lassen sich verwenden. Die Primärteile weisen Wicklungen auf, durch die in bekannter Weise ein elektrischer Strom fliessen kann. Bei Stromfluss wirkt zwischen jedem der Primärteile und dem Sekundärteil eine anziehende Normalkraft entlang einer Wirkungsrichtung Y quer zur Bewegungsrichtung des Antriebs. Wenn kein elektrischer Strom fliesst, ist der Linearmotor desaktiviert. Eine restliche Normalkraft, die zwischen dem Sekundärteil und den stromlosen Primärteilen wirkt, wird im Rahmen dieser Beschreibung vernachlässigt.The Fig. 1 and 2 show schematic representations of an embodiment of the drive 10th The drive has at least one linear motor, in which at least one first primary part 1, 1 ' and at least one second primary part 2, 2' are spaced from each other in a plane XY by a secondary part 3 . On a first side of the secondary part there are first primary parts, on a second side of the secondary part are second primary parts. According to Fig. 1 the drive has two linear motors, a first linear motor consists of a first pair of primary parts 1, 2 to the secondary part 3, a second linear motor consists of a second pair of primary parts 1 ', 2' to the secondary part 3. The linear motor is a synchronous linear motor whose primary parts are excited by permanent magnets of the secondary part. Any known permanent magnets can be used. The primary parts have windings through which an electric current can flow in a known manner. When current flows between each of the primary parts and the Abutment an attractive normal force along a direction of action Y transverse to the direction of movement of the drive. If no electric current flows, the linear motor is deactivated. A residual normal force acting between the secondary part and the currentless primary parts is neglected in the context of this description.

Bspw. besteht der Antrieb aus beliebig vielen Linearmotoren, die entlang einer Bewegungsrichtung X des Antriebs in Reihe angeordnet sind. So entspricht Fig. 2 der Fig. 1 , mit dem Unterschied, dass in Fig. 2 zwei Antriebseinheiten gemäss Fig. 1 in Reihe zu einer Gesamtantriebseinheit verbunden sind. Je nach gewünschter Gesamtleistung, setzt sich diese Gesamtantriebseinheit somit im Baukastenprinzip aus mehreren relativ kurzen Linearmotoren zusammen. Dies hat drei Vorteile:

  1. a) die Gesamtantriebseinheit ist einfach und rasch an die Vielfälten vom Kunden gewünschten Gesamtleistungen anzupassen,
  2. b) diese Vielfältigen Gesamtleistungen werden durch die Reihenschaltung identischer Linearmotoren mit niedrigen Kosten erreicht,
  3. c) Ungeradheiten des Sekundärteils haben auf die Mehrzahl von relativ kurzen Primärteile keine nachteilige Wirkung. Jeder Linearmotor wird individuell geführt und eine Breite von Luftspalten zwischen den Primärteilen und dem Sekundärteil kontrolliert beibehalten, was unerwünschte, den Linearmotor beschädigende Berührungen der Primärteile mit dem Sekundärteil sowie Leistungsschwankungen aufgrund von Änderungen der Breite der Luftspalte vermeidet.
For example. the drive consists of any number of linear motors, which are arranged along a direction of movement X of the drive in series. So corresponds Fig. 2 of the Fig. 1 , with the difference that in Fig. 2 two drive units according Fig. 1 connected in series to a total drive unit. Depending on the desired overall performance, this total drive unit is thus composed of several relatively short linear motors in the modular principle. This has three advantages:
  1. a) the total drive unit is easy and quick to adapt to the many needs of the customer,
  2. b) these diverse overall performances are achieved by the series connection of identical linear motors with low costs,
  3. c) Oddities of the secondary part have no detrimental effect on the plurality of relatively short primary parts. Each linear motor is individually guided and maintains a width of air gaps between the primary parts and the secondary part controlled, which avoids unwanted, the linear motor damaging contacts of the primary parts with the secondary part and power fluctuations due to changes in the width of the air gaps.

Der Antrieb 10 weist ein Tragmittel 4 auf, welches Tragmittel alle Komponenten des Antriebs mit Ausnahme des Sekundärteils trägt. Gemäss Fig. 1 und 2 besteht das Tragmittel aus zwei Verstrebungen 4.1, 4.2, wobei eine erste L ängsverstrebung 4.1 auf der ersten Seite des Sekundärteils angeordnet ist und eine zweite Längsverstrebung 4.2 auf der zweiten Seite des Sekundärteils angeordnet ist. Das Tragmittel ist biegesteif und bspw. in Metall ausgeführt. Die Längsverstrebungen sind mittels mindestens einer U-förmigen Querverstrebung 4.3 in Wirkungsrichtung Y verbunden.The drive 10 has a support means 4 , which carries support means all components of the drive with the exception of the secondary part. According to Fig. 1 and 2 is the supporting means of two struts 4.1, 4.2, a first L ängsverstrebung 4.1 arranged on the first side of the secondary part and a second stringer is 4.2 arranged on the second side of the secondary part. The support means is rigid and, for example, executed in metal. The Längsverstrebungen are connected by means of at least one U-shaped cross brace 4.3 in the direction of action Y.

Der Antrieb 10 wird über mindestens ein Führungselement 6, 6', 7, 7' entlang des Sekundärteils geführt. Gemäss Fig. 1 ist in jedem Primärteil 1, 1', 2, 2' ein Führungselement 6, 6', 7, 7' angebracht. Die Führungselemente sind paarweise beidseitig am Sekundärteil in Endbereichen der Primärteile angebracht und auf Exzenterwellen 11, 11', 12, 12' gelagert. Mit diesen vier Führungselementen erfolgt eine gleichmässig verteilte und stabile Führung des Antriebs entlang des Sekundärteils.The drive 10 is guided over at least one guide element 6, 6 ', 7, 7 ' along the secondary part. According to Fig. 1 is in each primary part 1, 1 ', 2, 2', a guide element 6, 6 ', 7, 7' attached. The guide elements are mounted in pairs on both sides of the secondary part in end portions of the primary parts and mounted on eccentric shafts 11, 11 ', 12, 12' . With these four guide elements there is a uniformly distributed and stable guidance of the drive along the secondary part.

Der Antrieb 10 weist mindestens ein Kompensationsmittel 5 auf, das mit einer kompensierenden Normalkraft entgegen der anziehenden Normalkaft zwischen jedem der Primärteile und dem Sekundärteil wirkt. Gemäss Fig. 1 ist das Kompensationsmittel eine erste Feder 5.1, deren Federenden auf der ersten Seite des Sekundärteils erste Primärteile 1, 1' miteinander verbindet und vom Sekundärteil wegdrückt. Das Kompensationsmittel ist eine zweite Feder 5.1, deren Federenden auf der zweiten Seite des Sekundärteils zweite Primärteile vom Sekundärteil wegdrückt. Das Kompensationsmittel ist weitgehend längs der Bewegungsrichtung des Antriebs angeordnet. Das Kompensationsmittel ist aus bekannten und bewährten elastischen Materialien wie Metall gefertigt. Vorteilhafterweise ist das Kompensationsmittel im Tragmittel befestigt und trägt das Kompensationsmittel die Primärteile. Bspw. sind die erste und zweite Feder in Endbereichen der U-förmigen Querverstrebung befestigt. Bspw. trägt die erste Feder die ersten Primärteile und die zweite Feder trägt die zweiten Primärteile.The drive 10 has at least one compensating means 5 which acts with a compensating normal force against the attractive normal force between each of the primary parts and the secondary part. According to Fig. 1 the compensation means is a first spring 5.1, whose spring ends on the first side of the secondary part first primary parts 1, 1 ' connects to each other and pushes away from the secondary part. The compensating means is a second spring 5.1, whose spring ends on the second side of the secondary part second primary parts of the secondary part pushes away. The compensation means is arranged substantially along the direction of movement of the drive. The compensation agent is made of known and proven elastic materials such as metal. Advantageously, the compensation means is mounted in the suspension means and bears the compensation means the primary parts. For example. the first and second springs are mounted in end portions of the U-shaped cross brace. For example. the first spring carries the first primary parts and the second spring carries the second primary parts.

Der Antrieb 10 wird über mindestens ein Bremselement 8, 8', 9, 9' am Sekundärteils gehalten und gebremst. Gemäss Fig. 1 ist in jedem Primärteil 1, 1', 2, 2' ein Bremselemente 8, 8', 9, 9' angebracht. Die Bremselemente sind paarweise beidseitig am das Sekundärteil angeordnet. Jedes Bremselement ist über einen Bremshebel 8.1, 8.1', 9.1, 9.1' mit dem Tragmittel 4 verbunden. Jeder der Bremshebel weist ein erstes und ein zweites Bremshebelende auf. Das erste Bremshebelende ist auf einer Wellen 13, 13', 14, 14' im jeweiligen Primärteil gelagert, das zweite Bremshebelende ist mit dem Tragmittel verbunden. Mit diesen vier Bremselementen erfolgt ein gleichmässig verteiltes und stabiles Bremsen des Antriebs entlang des Sekundärteils.The drive 10 is held and braked via at least one brake element 8, 8 ', 9, 9' on the secondary part. According to Fig. 1 is in each primary part 1, 1 ', 2, 2' a brake elements 8, 8 ', 9, 9' attached. The brake elements are arranged in pairs on both sides of the secondary part. Each brake element is connected via a brake lever 8.1 , 8.1 ', 9.1, 9.1' with the support means 4 . Each of the brake levers has first and second brake lever ends. The first brake lever end is mounted on a shaft 13, 13 ', 14, 14' in the respective primary part, the second brake lever end is with connected to the support means. With these four brake elements is a uniformly distributed and stable braking of the drive along the secondary part.

Die Exzenterwellen 11, 11', 12, 12' lassen sich mittels mindestens eines Stellglieds 15, 15', 16, 16' in der Ebene XY um eine Stellachse Z drehen. Gemäss Fig. 1 wird jede Exzenterwelle von einem Stellglied gedreht. Die Stellglieder sind Elektromotoren, welche die Exzenterwellen um einen Stellwinkel vor- und zurückdrehen. In einer ersten Endstellung sind die Führungselemente im direkten Kontakt mit dem Sekundärteil und die Bremselemente sind ohne Kontakt zum Sekundärteil. In einer zweiten Endstellung sind die Führungselemente ohne Kontakt zum Sekundärteil und die Bremselemente sind im direkten Kontakt mit dem Sekundärteil. Im stromlosen Zustand der Stellglieder, drehen die Exzenterwellen unter Wirkung der anziehenden Normalkraft selbsttätig in die zweite Endstellung zurück, bis die Bremselemente am Sekundärteil aufliegen. Die Bremsfunktion und die Fangfunktion des Antriebs erfolgt durch Reibung am Sekundärteil. Die Führungselemente und die Bremselemente sind Beläge, Walzen, Rollen, Kugeln, usw., die aus bekannten Materialien wie Metall, Keramik, Hartgummi, usw. bestehen. Bei Verwendung von Walzen, Rollen, Kugeln für die Führungselemente, weisen diese eine Rollreibung auf dem Sekundärteil auf. Bei Verwendung von Belägen für die Bremselemente, weisen diese eine Gleitreibung auf dem Sekundärteil auf. Bei Kenntnis der vorliegenden Erfindung lassen sich auch Stellglieder verwenden, die nicht elektrisch sondern hydraulisch bzw. pneumatisch oder per Bowdenzug betätigt werden.The eccentric shafts 11, 11 ', 12, 12' can be rotated by means of at least one actuator 15, 15 ', 16, 16' in the plane XY about a control axis Z. According to Fig. 1 Each eccentric shaft is rotated by an actuator. The actuators are electric motors which rotate the eccentric shafts back and forth by one setting angle. In a first end position, the guide elements are in direct contact with the secondary part and the brake elements are without contact to the secondary part. In a second end position, the guide elements are without contact to the secondary part and the brake elements are in direct contact with the secondary part. In the de-energized state of the actuators, the eccentric rotate automatically under the action of the attractive normal force back to the second end position until the brake elements rest on the abutment. The braking function and the catching function of the drive takes place by friction on the secondary part. The guide elements and the brake elements are linings, rollers, rollers, balls, etc., which consist of known materials such as metal, ceramic, hard rubber, etc. When using rollers, rollers, balls for the guide elements, they have a rolling friction on the secondary part. When using pads for the brake elements, they have a sliding friction on the secondary part. With knowledge of the present invention, it is also possible to use actuators which are actuated not electrically but hydraulically or pneumatically or by means of a Bowden cable.

Durch Vor- und Zurückdrehen der Exzenterwellen 11, 11', 12, 12' werden die Primärteile 1, 1', 2, 2' zum Sekundärteil 3 hinbewegt bzw. vom Sekundärteil 3 wegbewegt. Das Kompensationsmittel 5 wird durch das Vor- und Zurückdrehen der Exzenterwellen jedoch nicht beeinflusst. Das Vor- und Zurückdrehen der Exzenterwellen ist in Fig. 1 durch gebogenen Doppelpfeile angedeutet. Dadurch wird die Breite von Luftspalten zwischen den Primärteilen und dem Sekundärteil verändert. Die Breite der Luftspalte verändert sich entlang einer Wirkungsrichtung quer zur Bewegungsrichtung des Antriebs. In der ersten Endstellung, wo die Führungselemente den Antrieb im Kontakt mit dem Sekundärteil führen, ist die Breite der Luftspalte maximal und die anziehende Normalkraft zwischen den Primärteilen und dem Sekundärteil ist klein. In der zweiten Endstellung, wo die Bremselemente den Antrieb im Kontakt mit dem Sekundärteil halten, ist die Breite der Luftspalte minimal und die anziehende Normalkraft z wischen den Primärteilen und dem Sekundärteil ist gross. Bspw. wird die Breite der Luftspalte kontinuierlich verändert, wodurch die anziehende Normalkraft entsprechend kontinuierlich verkleinert bzw. vergrössert wird. Bspw. ist die anziehende Normalkraft in der ersten Endstellung kleinstmöglich und in der zweiten Endstellung ist die amziehende Normalkraft grösstmöglich.By turning the eccentric shafts 11, 11 ', 12, 12' back and forth, the primary parts 1, 1 ', 2, 2' are moved toward the secondary part 3 or moved away from the secondary part 3 . The compensating means 5 is not affected by the back and forth of the eccentric waves. The back and forth of the eccentric shafts is in Fig. 1 indicated by curved double arrows. As a result, the width of air gaps between the primary parts and the secondary part is changed. The width of the air gaps changes along a direction of action transverse to the direction of movement of the drive. In the first end position, where the guide elements cause the drive in contact with the secondary part, the width of the air gaps is maximum and the attractive normal force between the primary parts and the secondary part is small. In the second end position, where the brake elements hold the drive in contact with the secondary part, the width of the air gaps is minimal and the attractive normal force z between the primary parts and the secondary part is large. For example. The width of the air gaps is changed continuously, whereby the attractive normal force is continuously reduced or increased accordingly. For example. the attractive normal force is as small as possible in the first end position and in the second end position the pulling normal force is the greatest possible.

Beim Drehen der Exzenterwellen bilden die zweiten Bremshebelenden Fixpunkte, die ihre Entfernung zum Sekundärteil 3 nicht ändern, während die ersten Bremshebelenden, die in den Primärteilen gelagert sind, ihre Entfernung zum Sekundärteil ändern. Mit Bremshebellänge 84 wird die Distanz zwischen den ersten und zweiten Bremshebelenden bezeichnet. Mit Bremslänge 83 wird die Distanz zwischen der Projektion der Bremselemente auf die Verbindende der Bremshebelenden und dem zweiten Bremshebelende bezeichnet. Je nach Grösse des Verhältnisses der Bremshebellänge geteilt durch die Bremslänge werden die Bremselemente mit einem Hebel gegen das Sekundärteil gedrückt. Gemäss Fig. 1 beträgt das Verhältnis des Hebels 2:1. In der zweiten Endstellung, wo die Bremselemente den Antrieb im Kontakt mit dem Sekundärteil halten, wirkt die kompensierende Normalkraft des Kompensationsmittels 5 als eine um diesen Hebel verstärkte Bremskraft.When rotating the eccentric shaft, the second brake lever ends form fixed points that do not change their distance to the secondary part 3 , while the first brake lever ends, which are mounted in the primary parts, change their distance to the secondary part. Brake lever length 84 denotes the distance between the first and second brake lever ends. Brake length 83 denotes the distance between the projection of the brake elements on the connecting end of the brake lever ends and the second brake lever end. Depending on the size of the ratio of the brake lever length divided by the braking length, the brake elements are pressed with a lever against the secondary part. According to Fig. 1 the ratio of the lever is 2: 1. In the second end position, where the brake elements hold the drive in contact with the secondary part, the compensating normal force of the compensating means 5 acts as a braking force amplified by this lever.

Der Antrieb 10 weist mindestens einen Fangauslöser 4.5, 4.5' auf, der das Kompensationsmittels 5 zumindestens teilweise in den Primärteilen 1, 1, 2, 2' festhält. Der Fangauslöser ist in zwei Stellungen bringbar. In einer Normalbetriebsstellung ist das Kompensationsmittel aktiviert und der Fangauslöser hält die Vorspannung des Kompensationsmittels aufrecht. In einer Fangstellung ist das Kompensationsmittel desaktiviert und der Fangauslöser hat die Vorspannung des Kompensationsmittels gelöst. Gemäss Fig. 1 besteht das Kompensationsmittel aus einer Feder 5.1, welche die Primärteile 1, 1' verbindet und aus einer Feder 5.2, welche die Primärteile 2, 2' verbindet. Jede Feder wird mit mindestens einem Federende von einem Fangauslöser in einem Primärteil gespannt. Der Fangauslöser weist mindestens eine Auflage auf, welche die Federenden in Wirkungsrichtung Y hält und die Primärteile vom Sekundärteil wegdrückt. Die Desaktivierung des Fangauslösers erfolgt auf bekannte Weise mechanisch oder elektrisch. Gemäss Fig. 1 wird der Fangauslöser zur Desaktivierung mechanisch um die Stellachse Z gedreht. Die Auflage rutscht dadurch seitlich vom Federende und die Feder entspannt sich dementsprechend. Bei Wegfall der kompensierenden Normalkraft des Kompensationsmittels kommt die anziehende Normalkraft der Primärteile voll zur Wirkung und wird durch die minimal breiten Luftspalte entsprechend gross. Der Antrieb wird dann einzig mit der anziehenden Normalkraft der Primärteile gegen das Sekundärteil gedrückt. Dabei bremsen die Bremselemente durch Reibung auf dem Sekundärteil, was eine Fangfunktion ausführt. Mit dieser Fangfunktion wird eine Kabine oder ein Gegengewicht bei einer Übergeschwindigkeit abgebremst und festgehalten.The drive 10 has at least one catch trigger 4.5, 4.5 ' , which holds the compensation means 5 at least partially in the primary parts 1, 1, 2, 2' . The catch trigger can be brought into two positions. In a normal operating position, the compensation means is activated and the catch trigger maintains the bias of the compensation means. In a catch position the compensation means is deactivated and the catch trigger has released the bias of the compensation means. According to Fig. 1 If the compensating means consists of a spring 5.1 , which connects the primary parts 1, 1 ' and a spring 5.2, which the primary parts 2, 2' combines. Each spring is tensioned with at least one spring end of a catch trigger in a primary part. The catch trigger has at least one support which holds the spring ends in the direction of action Y and pushes the primary parts away from the secondary part. The deactivation of the catch trigger takes place in a known manner mechanically or electrically. According to Fig. 1 the catch trigger for deactivation is mechanically rotated about the adjusting axis Z. The pad slips thereby laterally from the spring end and the spring relaxes accordingly. When the compensating normal force of the compensating means is removed, the attractive normal force of the primary parts comes into full effect and becomes correspondingly large due to the minimally wide air gaps. The drive is then pressed only with the attractive normal force of the primary parts against the secondary part. The brake elements brake by friction on the secondary part, which performs a catch function. With this catch function, a car or a counterweight is decelerated and held at an overspeed.

Fig. 3 bis 5 zeigen drei schematische Darstellungen von Ausführungsformen des Aufzugs 100, der mit dem Antrieb 10 angetrieben wird. Gemäss Fig. 3 treibt der Antrieb in direkter Weise mindestens eine Kabine 20 zum Verfahren von Personen bzw. Gütern des Aufzugs an. Gemäss Fig. 4 treibt der Antrieb in direkter Weise mindestens ein Gegengewicht 30 an, wobei Kabine und Gegengewicht über mindestens ein Verbindungsmittel 40 verbunden sind. Das Verbindungsmittel ist ein Seil oder Riemen mit mindestens einer lastaufnehmenden Litze aus Stahl, Aramid, usw.. Sowohl die Kabine als auch das Gegengewicht werden mit einer 2:1 Umhängung verfahren. Das Verbindungsmittel ist über mehrere Umlenkrollen 41, 42, 43, 44 umgelenkt. Eine erste Umlenkrolle 41 ist am Gegengewicht angebracht, mindestens eiine zweite Umlenkrolle 42 ist im Schachtkopf angebracht und eine dritte und vierte Umlenkrolle 43, 44 sind an der Kabine angebracht. Fig. 5 entspricht Fig. 4 , mit dem Unterschied, dass nur das Gegengewicht 2:1 umgehängt ist, während die Kabine 1:1 umgehängt ist. Auf diese Weise wird das Gegengewicht mit halb so hoher Geschwindigkeit wie die Kabine verfahren. Fig. 3 to 5 show three schematic representations of embodiments of the elevator 100 , which is driven by the drive 10 . According to Fig. 3 the drive directly drives at least one cab 20 for moving persons or goods of the elevator. According to Fig. 4 the drive directly drives at least one counterweight 30 , wherein the car and counterweight are connected via at least one connecting means 40 . The lanyard is a rope or belt with at least one load-bearing steel, aramid, etc. cable. Both the car and the counterweight are moved with a 2: 1 suspension. The connecting means is deflected over a plurality of deflection rollers 41, 42, 43, 44 . A first diverting pulley 41 is mounted on the counterweight, at least a second diverting pulley 42 is mounted in the wellhead and third and fourth diverting pulleys 43, 44 are mounted on the cabin. Fig. 5 corresponds to Fig. 4 , with the difference that only the counterweight is 2: 1 umgehängt while the cabin is 1: 1 umgehängt. In this way, the counterweight is moved at half the speed of the car.

Das Sekundärteil 3 ist mindestens eine Führungsschiene für den Aufzug. Gemäss Fig. 3 wird die Kabine als Rucksackkabine mit zwei Antrieben entlang von zwei Führungsschienen verfahren, welche Führungsschienen sich über die gesamte Länge eines Schachts in einem Gebäude erstrecken. Gemäss Fig. 4 und 5 wird das Gegengewicht mit einem Antrieb entlang einer einzigen Führungsschiene verfahren, welche eine Führungsschiene sich über die gesamte Länge des Schachts erstreckt.The secondary part 3 is at least one guide rail for the elevator. According to Fig. 3 The cab is moved as a backpack cabin with two drives along two guide rails, which guide rails extend over the entire length of a shaft in a building. According to 4 and 5 the counterweight is moved with a drive along a single guide rail, which extends a guide rail over the entire length of the shaft.

Der Aufzug 100 mit Kabine 10 und Gegengewicht 20 gemäss Fig. 4 hat zwei Vorteile:

  • Erstens wird durch Anordnung des Antriebs im Gegengewicht das Kabinengewicht um das Eigengewicht des Antriebs reduziert. Dadurch wird ein Antrieb mit entsprechend reduzierter Antriebsleistung benötigt, was kostengünstig ist.
  • Zweitens wird durch Verbindung der Kabine mit dem Gegenwicht die vom Antrieb zu verfahrende Last reduziert. Typischerweise lautet die Auslegung des Gegengewichts gleich Kabinenleergewicht plus halbe Nutzlast. Dadurch wird ein Antrieb mit entsprechend reduzierter Antriebsleistung benötigt, was kostengünstig ist.
The elevator 100 with cabin 10 and counterweight 20 according to Fig. 4 has two advantages:
  • First, by placing the counterweight of the drive, the cabin weight is reduced by the weight of the drive. This requires a drive with correspondingly reduced drive power, which is cost-effective.
  • Second, connecting the cab to the counterweight reduces the load to be traveled by the operator. Typically, the design of the counterweight is equal to cabin empty weight plus half payload. This requires a drive with correspondingly reduced drive power, which is cost-effective.

Zusätzlich zu diesen Vorteilen der Ausführungsform gemäss Fig. 4 hat der Aufzug 100 mit Kabine 10 und Gegengewicht 20 gemäss Fig. 5 den Vorteil:

  • Nur das Gegengewicht wird mit einer 2:1 Umhängung verfahren, die Kabine wird hingegen mit 1:1 Umhängung verfahren. Das Gegengewicht wird somit nur über die halbe Länge des Schachts verfahren, während die Kabine mit doppelt so hoher Geschwindigkeit wie diejenige des Gegengewichts über die ganze Länge des Schachts verfahren wird. Dadurch wird Sekundärteil mit entsprechend halbierter Länge benötigt, was kostengünstig ist.
In addition to these advantages of the embodiment according to Fig. 4 the elevator has 100 with cabin 10 and counterweight 20 according to Fig. 5 the advantage:
  • Only the counterweight is moved with a 2: 1 suspension, the cabin, however, is moved with 1: 1 suspension. The counterweight is thus moved only over half the length of the shaft, while the cabin is moved twice as fast as that of the counterweight over the entire length of the shaft. As a result, secondary part is required with correspondingly halved length, which is inexpensive.

Bei Kenntnis der vorliegenden Erfindung ist natürlich auch eine Kombination dieser beiden Ausführungsformen des Aufzugs möglich. Dem Fachmann stehen hier vielfältige Möglichkeiten frei:

  • So ist es möglich, einen einzigen Antrieb an der Kabine anzubringen und Kabine und Gegengewicht in 1:1 Umhängung zu verfahren. Dadurch wird nur ein einziger Antrieb mit entsprechen der Umhängung reduzierter Antriebsleistung benötigt, was kostengünstig ist.
  • Schliesslich ist es möglich, die Kabine bzw. das Gegengewicht mit höheren Graden der Umhängung wie 4:1 zu verfahren.
With knowledge of the present invention, of course, a combination of these two embodiments of the elevator is possible. The expert has many options here:
  • So it is possible to attach a single drive to the cabin and to move the car and counterweight in 1: 1 hanger. As a result, only a single drive with corresponding to the suspension reduced drive power is needed, which is inexpensive.
  • Finally, it is possible to move the car or counterweight with higher levels of hitching as 4: 1.

Claims (14)

  1. Drive (10) with at least one linear motor, which linear motor comprises a secondary part (3) between a first primary part (1, 1') and a second primary part (2, 2'), wherein the primary parts are separated from the secondary part by air gaps and the drive comprises at least one compensation means (5) which acts by a compensating normal force against an attractive normal force between each of the primary parts and the secondary part, characterised in that the width of the air gaps between the primary parts and the secondary part is variable by reciprocating movement of the primary parts relative to the secondary part by way of setting elements (15, 15', 16, 16').
  2. Drive according to claim 1, characterised in that the compensation means carries the primary parts.
  3. Drive according to claim 1, characterised in that the primary parts carry at least one guide element (6, 6', 7, 7') which guides the drive along the secondary part and that the primary parts carry at least one brake element (8, 8', 9, 9') which holds and brakes the drive along the secondary part.
  4. Drive according to claim 3, characterised in that the primary parts carry at least one setting element (15, 15', 16, 16') which moves the guide element and/or the brake element towards the secondary part or away from the secondary part and brings it or them into contact with the secondary part.
  5. Drive according to claim 4, characterised in that the air gaps which change in the width thereof by movement of the guide element and/or the brake element towards and away from the secondary part.
  6. Drive according to claim 5, characterised in that the width of the air gaps is at a maximum and the attractive normal force between the primary parts and the secondary part is small in a first end setting where the guide element guides the drive into contact with the secondary part and the width of the air gaps is at a minimum and the attractive normal force between the primary parts and the secondary part is large in a second end setting where the brake element keeps the drive in contact with the secondary part.
  7. Drive according to claim 4, characterised in that the setting elements do not move the compensation means towards or away from the secondary part, that the brake element is connected by way of a brake lever (8.1, 8.1', 9.1, 9.1') with a support means (4) and that the brake element presses by a lever against the secondary part.
  8. Drive according to claim 2, characterised in that the support means comprises at least one safety brake trigger (4.5, 4.5'), that the activated safety brake trigger fixes the compensation means, which is biased by the compensating normal force, at least partly in the primary parts and that the deactivated safety brake trigger releases the compensating normal force of the compensation means.
  9. Drive according to one of claims 1 to 8, characterised in that the drive comprises a plurality of linear motors connected in series.
  10. Method of operating a drive (10) with at least one linear motor, which linear motor comprises a secondary part (3) between a first primary part (1, 1') and a second primary part (2, 2'), wherein the primary parts are separated from the secondary part by air gaps, an attractive normal force acts between each of the primary parts and the secondary part along a direction (Y) of action transverse to the direction (X) of movement of the drive and at least one compensation means (5) acts against this attractive normal force by a compensating normal force, characterised in that the width of air gaps between the primary parts and secondary part is varied by reciprocating movement of the primary parts relative to the secondary part by way of setting elements (15, 15', 16, 16').
  11. Method according to claim 10, characterised in that in a first operating mode the linear motor is deactivated and solely the compensating normal force of the compensation means spaces the primary parts from the secondary part, which guides the drive in holding manner, and/or that in a second operating mode the linear motor is activated and a width of air gaps between the primary parts and the secondary part is set to a maximum, which reduces the attractive normal force between the primary parts and the secondary part and guides the drive in holding manner, and/or that in a third operating mode the linear motor is activated and a width of air gaps between the primary parts and the secondary part is set to a minimum, which increases the attractive normal force between the primary parts and secondary part and brakes the drive, and/or that in a fourth operating mode the compensation means is deactivated and the primary parts are pressed by the full attractive normal force of the linear motor against the secondary part, which brakes the drive.
  12. Lift (100) with at least one cage (20) for moving persons or goods, with a drive (10), which comprises at least one linear motor with a secondary part (3) between a first primary part (1, 1') and a second primary part (2, 2'), wherein the primary parts are separated from the secondary part by air gaps and the drive comprises at least one compensation means (5) which acts by a compensating normal force against an attractive normal force between each of the primary parts and the secondary part, characterised in that the width of the air gaps between the primary parts and the secondary part is variable by reciprocating movement of the primary parts relative to the secondary part by way of setting elements (15, 15', 16, 16').
  13. Lift according to claim 12, characterised in that the drive drives the cage directly and/or that the drive drives a counterweight (30) directly.
  14. Lift according to claim 13, characterised in that the cage and the counterweight are connected by way of at least one connecting means (40) and/or that the drive moves the cage or the counterweight with a 2:1 slinging and/or that the drive moves the cage or the counterweight with a 1:1 slinging and/or that the secondary part extends over the entire length of the shaft and/or that the secondary part extends over half the length of the shaft.
EP04008042A 2003-04-14 2004-04-02 Linear motor drive, elevator having said drive and method for using said drive Expired - Lifetime EP1468950B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04008042A EP1468950B1 (en) 2003-04-14 2004-04-02 Linear motor drive, elevator having said drive and method for using said drive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405257 2003-04-14
EP03405257 2003-04-14
EP04008042A EP1468950B1 (en) 2003-04-14 2004-04-02 Linear motor drive, elevator having said drive and method for using said drive

Publications (2)

Publication Number Publication Date
EP1468950A1 EP1468950A1 (en) 2004-10-20
EP1468950B1 true EP1468950B1 (en) 2008-05-14

Family

ID=33155285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04008042A Expired - Lifetime EP1468950B1 (en) 2003-04-14 2004-04-02 Linear motor drive, elevator having said drive and method for using said drive

Country Status (8)

Country Link
US (1) US7478706B2 (en)
EP (1) EP1468950B1 (en)
JP (1) JP4613027B2 (en)
KR (1) KR101169621B1 (en)
CN (1) CN1315713C (en)
AT (1) ATE395294T1 (en)
CA (1) CA2464150C (en)
DE (1) DE502004007106D1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008414A (en) * 2003-06-18 2005-01-13 Inventio Ag Lift installation, method for operating lift installation, and method for realizing modernizing lift installation
SG109535A1 (en) * 2003-08-14 2005-03-30 Inventio Ag Electric motor, lift with a cage movable by an electric motor, and lift with a cage and with an electric motor for movement of a guide element relative to the cage
NZ552308A (en) * 2006-02-08 2008-11-28 Inventio Ag Lift installation with a linear drive system and linear drive system for such a lift installation
DE102009048822A1 (en) * 2009-10-09 2011-04-14 Siemens Aktiengesellschaft Transport system with electromagnetic brake
JP5664177B2 (en) * 2010-11-29 2015-02-04 日立金属株式会社 Linear motor and linear drive stage
CN104271486B (en) * 2012-05-03 2018-11-27 奥的斯电梯公司 Merge the elevator device of mobile motor
DE202012006176U1 (en) * 2012-06-27 2013-10-01 Horst Becker x: 1 linear motor
US9136749B1 (en) * 2012-09-28 2015-09-15 John M. Callier Elevator electrical power system
CN106132864B (en) * 2014-03-14 2019-09-10 奥的斯电梯公司 System and method for determining the magnetic field orientating of magnetic part in cordless elevator system
EP3115330B1 (en) * 2015-07-09 2018-09-12 Otis Elevator Company Vibration damper for elevator linear propulsion system
US9906112B2 (en) * 2015-08-25 2018-02-27 Otis Elevator Company Electromagnetic propulsion system having a wireless power transfer system
US10138091B2 (en) 2016-06-13 2018-11-27 Otis Elevator Company Variable linear motor gap
DE102016118028A1 (en) * 2016-09-23 2018-03-29 Thyssenkrupp Ag Transport device with a safety device for limiting delays
RU2718858C1 (en) * 2019-07-22 2020-04-15 Сергей Анатольевич Брюханов Vertical magnetic levitating runway
US11584621B2 (en) * 2020-07-30 2023-02-21 Otis Elevator Company Autonomous elevator car movers and traction surfaces therefor, configured with traction increasing and guidance enhancing implements
CN115402895A (en) * 2021-05-28 2022-11-29 奥的斯电梯公司 Band-type brake monitoring circuit system, elevator system and band-type brake monitoring method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602786A (en) * 1970-06-22 1971-08-31 Georgy Ignatievich Izhelya Induction linear electric motor
JP2530384B2 (en) * 1990-06-01 1996-09-04 三菱電機株式会社 Linear motor elevator
US5086881A (en) * 1991-03-15 1992-02-11 Otis Elevator Company Elevator driven by a flat linear motor
JP2684889B2 (en) * 1991-08-07 1997-12-03 三菱電機株式会社 Linear motor driven elevator
US5203430A (en) * 1991-10-17 1993-04-20 Otis Elevator Company Elevator flat linear motor secondary
US5189268A (en) * 1991-10-30 1993-02-23 Otis Elevator Company Elevator with linear motor drive assembly
US5203432A (en) * 1991-11-15 1993-04-20 Otis Elevator Company Flat linear motor driven elevator
US5235226A (en) * 1992-01-13 1993-08-10 Otis Elevator Company Highly conductive layer arrangement for a linear motor secondary
US5518087A (en) * 1993-09-11 1996-05-21 Lg Industrial Systems Co., Ltd. Rail brake apparatus for a linear motor elevator
JP3420811B2 (en) * 1993-12-17 2003-06-30 オーチス エレベータ カンパニー Linear motor type elevator
US5841082A (en) * 1996-11-07 1998-11-24 Otis Elevator Company Secondary guidance system for linear induction motors driving elevator car doors
FI108025B (en) * 1997-06-19 2001-11-15 Kone Corp Elevator
US5949036A (en) * 1998-10-21 1999-09-07 Otis Elevator Company Double linear motor and elevator doors using same
MY133384A (en) * 2000-07-17 2007-11-30 Inventio Ag Secondary part of a linear motor, method for the production thereof, linear motor with secondary part and use of the linear motor
JP3972575B2 (en) * 2000-11-02 2007-09-05 株式会社日立製作所 Door system
US20030000778A1 (en) * 2001-06-14 2003-01-02 Rory Smith Drive system for multiple elevator cars in a single shaft
SG109535A1 (en) * 2003-08-14 2005-03-30 Inventio Ag Electric motor, lift with a cage movable by an electric motor, and lift with a cage and with an electric motor for movement of a guide element relative to the cage
NZ552308A (en) * 2006-02-08 2008-11-28 Inventio Ag Lift installation with a linear drive system and linear drive system for such a lift installation

Also Published As

Publication number Publication date
US20040216960A1 (en) 2004-11-04
DE502004007106D1 (en) 2008-06-26
CN1537800A (en) 2004-10-20
JP2004357494A (en) 2004-12-16
CA2464150C (en) 2012-01-10
CN1315713C (en) 2007-05-16
KR101169621B1 (en) 2012-07-30
EP1468950A1 (en) 2004-10-20
US7478706B2 (en) 2009-01-20
ATE395294T1 (en) 2008-05-15
CA2464150A1 (en) 2004-10-14
JP4613027B2 (en) 2011-01-12
KR20040089576A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
EP1468950B1 (en) Linear motor drive, elevator having said drive and method for using said drive
DE19632850C2 (en) Traction sheave elevator without counterweight
EP1621509B1 (en) Positioning of a driving machine for elevators
EP2308344B1 (en) Height adjustable work bench
EP3807205B1 (en) Method for operating a lift facility
DE102007015277A1 (en) Elevator installation with an elevator car brake device and method for braking an elevator car
DE102012109969B4 (en) Brake device for an elevator
WO2018234211A1 (en) Cabin arrangement
WO2019034381A1 (en) Elevator system
EP2709941A1 (en) Elevator system
EP4061757B1 (en) Electronic catching device that can be easily reset
EP3074335B1 (en) Handrail drive for an escalator or moving walkway
EP0135041B1 (en) Rodless working cylinder
EP2492232A1 (en) Tensioning device in a lift assembly
EP0873963A1 (en) Linear drive for a transportation device
DD215136A5 (en) CONTINUOUSLY CONTROLLABLE GEARBOX
DE102018100776A1 (en) Lifting system, overhead conveyor with a lifting system and production and / or assembly system with a monorail conveyor
EP3966409B1 (en) Apparatus for parking objects with a horizontally oriented drive
EP1880970B1 (en) Method for optimising the weight of a counterweight of a lift facility and lift facility with such a counterweight
EP3795034A1 (en) Height positioning device and blackboard system incorporating same
DE202014103138U1 (en) Drive arrangement for a guided on a mounting rail stair lift
EP1588978B1 (en) Driving gear for elevator
EP3176120A1 (en) Traction sheave elevator in backpack design
EP3705443A1 (en) Lift system with balanced traction means
DE19839864A1 (en) Vertical shifting device for lifts (elevators) for freight and people

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050404

AKX Designation fees paid

Designated state(s): AT CH DE FI FR GB LI

17Q First examination report despatched

Effective date: 20060922

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FI FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004007106

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120411

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130426

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20130411

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20140422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004007106

Country of ref document: DE

Effective date: 20140426

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 395294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140402

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210427

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210426

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220428

Year of fee payment: 19

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220402

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004007106

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231103