EP1466122A1 - Method for filling a storage tank with a gaseous fuel - Google Patents

Method for filling a storage tank with a gaseous fuel

Info

Publication number
EP1466122A1
EP1466122A1 EP03729429A EP03729429A EP1466122A1 EP 1466122 A1 EP1466122 A1 EP 1466122A1 EP 03729429 A EP03729429 A EP 03729429A EP 03729429 A EP03729429 A EP 03729429A EP 1466122 A1 EP1466122 A1 EP 1466122A1
Authority
EP
European Patent Office
Prior art keywords
pressure
pressure level
storage tank
refueled
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03729429A
Other languages
German (de)
French (fr)
Inventor
Robert Adler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1466122A1 publication Critical patent/EP1466122A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/002Automated filling apparatus
    • F17C5/007Automated filling apparatus for individual gas tanks or containers, e.g. in vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/043Methods for emptying or filling by pressure cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to a method for refueling a storage container, in particular a motor vehicle storage container, with a gaseous fuel, in particular with gaseous hydrogen, to a pressure of more than 300 bar, the fuel being compressed and temporarily stored.
  • cryogenic media for example GH 2 or LH 2 for gaseous or liquid hydrogen.
  • CNG is also used for compressed natural gas.
  • Hydrogen in particular is currently becoming increasingly important as an energy source due to increasing energy requirements and increased environmental awareness. Aircraft, ships, submarines, trucks, buses and passenger cars are already being piloted using hydrogen-powered turbines or engines.
  • the object of the present invention is to provide a generic method for refueling a storage container, in which the aforementioned disadvantages can be avoided.
  • the power consumption required for the compression of the gaseous fuel should be reduced and the refueling temperature should be reduced by approx. 20 to 30 ° C.
  • a generic method for refueling a storage tank which is characterized in that - the compressed fuel is temporarily stored at one or more pressure levels, the storage tank to be refueled during the refueling process in the event of a pressure level from the buffer store or in the case several pressure levels is refueled from the intermediate store or stores, preferably with the one located at the lowest pressure level
  • Intermediate storage is started, and after reaching a compensating pressure between the storage tank to be refueled and the one or more intermediate stores, the filling of the storage tank to be refueled to the final pressure by means of at least one compressor which removes the gaseous fuel from the or at least one of the
  • three or more intermediate pressure levels are preferably provided in practice, in particular when refueling a storage container with gaseous hydrogen.
  • the provision of only one intermediate storage pressure level can represent a comparatively inexpensive and technically satisfactory solution, for example when refueling a storage container with CNG.
  • the method according to the invention for refueling a storage tank is therefore proposed that the compressed fuel be temporarily stored at a low, medium and high pressure level, - the storage tank to be refueled during the refueling process is first refueled from the low-pressure level store and then from the medium-pressure level store and after reaching a compensating pressure between the storage tank to be refueled and the medium-pressure level store, filling the storage tank to be refueled to the final pressure by means of at least one
  • Compressor which compresses the gaseous fuel from the medium-pressure level storage.
  • FIG. 1 shows the schematic structure of a gas station for gaseous hydrogen, in which the method according to the invention can be implemented with three intermediate pressure levels.
  • the stage pressure ratio of the compressor stages 4 and 8 will be determined by the inlet pressure of the hydrogen prevailing in line 1.
  • the compressors 4 and 8 work on electricity consumption. They are preferably driven hydraulically and cooled with hydraulic oil in the outer jacket. An approximately isothermal compression of the gaseous hydrogen can thereby be achieved.
  • the compressed hydrogen is stored in both stores 10 and 13
  • the stores 10 and 13 are constructed, for example, from six bundles each with a geometric volume of 600 l each. With a filling pressure of 300 bar and a compressibility factor of approx. 0.9, this results in a filling volume of approx. 162 m 3 hydrogen per bundle.
  • the stores 10 and 13 thus each have a capacity of 972 m 3 .
  • the store 10 will be referred to as a low-pressure level store and the store 13 as a medium-pressure level store.
  • the required compressor capacity in normal operation is approx. 300 Nm 3 at an inlet pressure of 15 bar. This requires an electrical output of 46 KW, which results in a specific electricity requirement of 0.15 KWh / Nm 3 .
  • the two stores 10 and 13 are filled with 300 bar of hydrogen.
  • a further store 18 - hereinafter referred to as a high-pressure level store - is provided, which is filled with gaseous hydrogen at a pressure of 450 bar.
  • the memory 18 consists, for example, of a 50 liter buffer bottle.
  • the storage pressure of the low-pressure level store 10 is between 150 and 300 bar
  • the storage pressure of the medium-pressure level store 13 is between 200 and 300 bar
  • the storage pressure of the high-pressure level store 18 is between 400 and 450 bar.
  • the maximum storage volume of the high-pressure level store 18 is preferably 1 to 10% of the maximum storage volume of the low-pressure level store 10 and preferably 1 to 10% of the maximum storage volume of the medium-pressure level store 13.
  • the stores 10, 13 and 18 are connected via extraction lines 11, 14 and 19 to a common line 15 leading to the refueling coupling.
  • the initial pressure in the storage tank to be refueled - that is, for example, the motor vehicle storage tank - is first determined using a test burst. A heating curve is calculated from this pressure and compared with the outside temperature, which results in the filling pressure.
  • This test surge is fed from the high-pressure level store 18. Due to the associated drop in pressure in the high-pressure level store 18, the compressors 4 and 8 are switched to the so-called high booster mode.
  • the hydrogen compressed and stored to at least three pressure levels - namely the low 10, the medium 13 and the high pressure level 18 - is initially extracted from the low pressure level accumulator 10 during the refueling process and then from the medium pressure level accumulator 13 via the extraction lines 11 and 14 as well 15 relaxed in the storage tank to be refueled and this filled at least up to the highest pressure prevailing in the medium pressure level storage 13.
  • the maximum flow is preferably regulated to 90 m 3 / min.
  • the hydrogen is regulated to approx. 250 bar so that the maximum flow rate is not exceeded even at a high differential pressure.
  • the controller (not shown in the figure) is switched off by a control valve (also not shown in the figure).
  • the storage tank to be refueled After reaching the equilibrium pressure between the storage tank to be refueled and the medium-pressure level store 13, the storage tank to be refueled is filled to the final pressure in that the second compressor stage 8 takes the gaseous hydrogen from the line 16
  • Medium-pressure level accumulator 13 sucks, compressed to, for example, 450 bar and fed via lines 17 and 15 to the refueling coupling and via this to the storage tank to be refueled;
  • the compressor 8 operates in the so-called high booster mode.
  • the inlet pressure of the second compressor stage 8 should preferably be at least 150 bar.
  • the filling capacity in high booster mode is at least 32.5 Nm 3 hydrogen / min and a maximum of 43 Nm 3 hydrogen / min.
  • the hydrogen still contained therein is supercooled; it has a temperature of approx. - 40 ° C.
  • the outlet temperature of the second compressor stage 8 is therefore approx. 10 ° C., as a result of which a comparatively efficient filling of the storage tank is achieved at approx. 350 bar.
  • the second compressor stage 8 works only approx. 30% of the total refueling time in high booster mode.
  • the electricity consumption per Nm 3 of hydrogen in high booster mode is - based on the total gas volume - approx. 0.015 KWh / Nm 3 of hydrogen. Therefore, the total electricity requirement of the method according to the invention at a refueling pressure of 350 bar is 0.165 KWh / Nm 3 hydrogen.
  • High-pressure level store 18 - for example for the test burst described above - takes place via lines 19 and 15.
  • the method according to the invention also has the advantage that conventional flow meters can be used. So far have been verified
  • Medium pressure level accumulator 13 sucks, conventional, calibrated flow meters can be provided on the suction side of the compressor 8 - that is, for example, in the line 16.
  • the method according to the invention thus makes it possible, for example, to fill two buses in succession.
  • a third bus can then be refueled either more slowly or in the same refueling time of approx. 10 min after a waiting time of 1.6 hours.
  • These refueling times are based on a refueling quantity of 500 Nm 3 hydrogen and are dependent on the storage volume of the low and medium pressure level storage.
  • the entire two-stage compressor station is preferably housed in a concrete housing consisting of an electrical and a gas space.
  • the concrete housing is made explosion-proof - as is the case with gas control stations.
  • the hydraulic unit and the entire electrical installation are housed in the electrical room.
  • the compressor stages are driven by hydraulic oil in the explosion-protected part of the housing (gas space). All cable bushings should be gastight. In the gas room, all installations must be carried out in accordance with ExZone 1.
  • a pressure relief flap is expediently located in the roof of the gas space. Furthermore, the room air in the gas room should be monitored for hydrogen leakage. A hydrogen leak then leads to the compressor station being switched off and the individual sections being sealed off via pneumatic quick-closing valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to a method for filling a storage tank, in particular a motor vehicle storage tank with a gaseous fuel, in particular with gaseous hydrogen, at a pressure in excess of 300 bar, whereby the fuel is compressed and temporarily stored. According to the invention, the condensed fuel is stored temporarily at one or more pressure levels and during the filling process, the storage tank to be filled is filled from one temporary storage container if the fuel is stored at one pressure level and from one or more temporary storage containers if the fuel is stored at more than one pressure level, said filling process preferably starting with the temporary storage container that has the lowest pressure level. Once the pressure between the storage container to be filled and the temporary storage container or containers has equalised, said storage tank is filled at a final pressure by means of at least one compressor, which compresses the gaseous fuel from the temporary storage container or containers.

Description

Beschreibung description
Verfahren zum Betanken eines Speicherbehälters mit einem gasförmigen TreibstoffProcess for filling a storage tank with a gaseous fuel
Die Erfindung betrifft ein Verfahren zum Betanken eines Speicherbehälters, insbesondere eines Kfz-Speicherbehälters, mit einem gasförmigen Treibstoff, insbesondere mit gasförmigem Wasserstoff, auf einen Druck von mehr als 300 bar, wobei der Treibstoff verdichtet und zwischengespeichert wird.The invention relates to a method for refueling a storage container, in particular a motor vehicle storage container, with a gaseous fuel, in particular with gaseous hydrogen, to a pressure of more than 300 bar, the fuel being compressed and temporarily stored.
Im Folgenden werden bei den Bezeichnungen spezieller kryogener Medien entsprechend ihrem Aggregatzustand die Buchstaben "G" für "gasförmig" und "L" für "flüssig" bzw. "liquid" vorangestellt; also beispielsweise GH2 bzw. LH2 für gasförmigen bzw. flüssigen Wasserstoff. Ferner wird der Begriff "CNG" für komprimiertes Erdgas verwendet.In the following, the letters "G" for "gaseous" and "L" for "liquid" or "liquid" are prefixed in the names of special cryogenic media according to their physical state; for example GH 2 or LH 2 for gaseous or liquid hydrogen. The term "CNG" is also used for compressed natural gas.
Insbesondere Wasserstoff gewinnt gegenwärtig durch den steigenden Energiebedarf und das gestiegene Umweltbewusstsein als Energieträger zunehmend an Bedeutung. So werden bereits versuchsweise Flugzeuge, Schiffe, U-Boote, Lastkraftwagen, Busse sowie Personenkraftwagen mittels mit Wasserstoff-betriebener Turbinen bzw. Motoren angetrieben.Hydrogen in particular is currently becoming increasingly important as an energy source due to increasing energy requirements and increased environmental awareness. Aircraft, ships, submarines, trucks, buses and passenger cars are already being piloted using hydrogen-powered turbines or engines.
Des Weiteren befinden sich bereits Fahrzeuge im Feldversuch, bei denen mittels einer Brennstoffzelle elektrische Energie erzeugt wird, die wiederum einen E-Motor antreibt. Der für den Betrieb der Brennstoffzelle erforderliche Wasserstoff wird bei diesen Fahrzeugen entweder in flüssiger oder gasförmiger und komprimierter Form gespeichert.Furthermore, vehicles are already being tested in the field, in which electrical energy is generated by means of a fuel cell, which in turn drives an electric motor. The hydrogen required to operate the fuel cell is stored in these vehicles either in liquid or gaseous and compressed form.
Gattungsgemäße Verfahren zum Betanken von Speicherbehältern mit gasförmigem Wasserstoff mit einem Druck von mehr als 300 bar - üblicherweise werden zwischenzeitlich bereits ca. 450 bar Druck im zu betankenden Speicherbehälter realisiert - haben den Nachteil, dass der gasförmige Treibstoff zunächst auf einen Druck von ca. 500 bar verdichtet und anschließend auf diesem DruckGeneric methods for refueling storage tanks with gaseous hydrogen at a pressure of more than 300 bar - usually around 450 bar pressure have already been realized in the storage tank to be refueled - have the disadvantage that the gaseous fuel initially has a pressure of about 500 bar compressed and then on this pressure
(zwischen)gespeichert werden muss, damit jederzeit das Betanken eines oder mehrerer Fahrzeuge in kurzer Zeit möglich ist. Nachteilig bei dieser Verfahrensweise ist jedoch, dass die gesamte Gasmenge auf den hohen Druck verdichtet und gespeichert werden muss. Die hierzu erforderlichen Speicherbehälter bzw. -bündeln sind vergleichsweise teuer; ferner müssen sie entsprechend groß bemessen sein.(intermediate) must be saved so that it is possible to refuel one or more vehicles in a short time at any time. A disadvantage of this procedure, however, is that the entire amount of gas must be compressed to the high pressure and stored. The storage containers or bundles required for this are comparatively expensive; furthermore, they must be sized accordingly.
Aufgabe der vorliegenden Erfindung ist es, ein gattungsgemäßes Verfahren zum Betanken eines Speicherbehälters anzugeben, bei dem die vorgenannten Nachteile vermieden werden können. Darüber hinaus soll der für die Verdichtung des gasförmigen Treibstoffes benötigte Stromverbrauch reduziert und die Betankungstemperatur um ca. 20 bis 30 °C abgesenkt werden können.The object of the present invention is to provide a generic method for refueling a storage container, in which the aforementioned disadvantages can be avoided. In addition, the power consumption required for the compression of the gaseous fuel should be reduced and the refueling temperature should be reduced by approx. 20 to 30 ° C.
Zur Lösung der vorgenannten Aufgabe wird ein gattungsgemäßes Verfahren zum Betanken eines Speicherbehälters vorgeschlagen, das dadurch gekennzeichnet ist, dass - der verdichtete Treibstoff auf einem oder mehreren Druckniveaus zwischengespeichert wird, der zu betankende Speicherbehälter während des Betankungsvorganges im Falle eines Druckniveaus aus dem Zwischenspeicher oder im Falle mehrerer Druckniveaus aus dem oder den Zwischenspeichern betankt wird, wobei vorzugsweise mit dem auf dem niedrigsten Druckniveau befindlichenTo achieve the aforementioned object, a generic method for refueling a storage tank is proposed, which is characterized in that - the compressed fuel is temporarily stored at one or more pressure levels, the storage tank to be refueled during the refueling process in the event of a pressure level from the buffer store or in the case several pressure levels is refueled from the intermediate store or stores, preferably with the one located at the lowest pressure level
Zwischenspeicher begonnen wird, und nach Erreichen eines Ausgleichsdruckes zwischen dem zu betankenden Speicherbehälter und dem oder den Zwischenspeichern das Befüllen des zu betankenden Speicherbehälters auf den Enddruck mittels wenigstens eines Verdichters, der den gasförmigen Treibstoff aus dem oder zumindest einem derIntermediate storage is started, and after reaching a compensating pressure between the storage tank to be refueled and the one or more intermediate stores, the filling of the storage tank to be refueled to the final pressure by means of at least one compressor which removes the gaseous fuel from the or at least one of the
Zwischenspeicher verdichtet, erfolgt.Intermediate storage compressed, takes place.
Vorzugsweise werden in der Praxis - insbesondere bei der Betankung eines Speicherbehälters mit gasförmigem Wasserstoff - drei oder auch mehr Zwischenspeicher-Druckniveaus vorgesehen werden.In practice, three or more intermediate pressure levels are preferably provided in practice, in particular when refueling a storage container with gaseous hydrogen.
Das Vorsehen lediglich eines Zwischenspeicher-Druckniveaus kann jedoch bspw. bei der Betankung eines Speicherbehälters mit CNG ein vergleichsweise kostengünstige und technisch zufriedenstellende Lösung darstellen. Das erfindungsgemäße Verfahren zum Betanken eines Speicherbehälters weiterbildend wird daher vorgeschlagen, dass der verdichtete Treibstoff auf einem Nieder-, einem Mittel- und einem Hockdruckniveau, zwischengespeichert wird, - der zu betankende Speicherbehälter während des Betankungsvorganges zunächst aus dem Niederdruckniveauspeicher und anschließend aus dem Mitteldruckniveauspeicher betankt wird und nach Erreichen eines Ausgleichsdruckes zwischen dem zu betankenden Speicherbehälter und dem Mitteldruckniveauspeicher das Befüllen des zu betankenden Speicherbehälters auf den Enddruck mittels wenigstens einesHowever, the provision of only one intermediate storage pressure level can represent a comparatively inexpensive and technically satisfactory solution, for example when refueling a storage container with CNG. The method according to the invention for refueling a storage tank is therefore proposed that the compressed fuel be temporarily stored at a low, medium and high pressure level, - the storage tank to be refueled during the refueling process is first refueled from the low-pressure level store and then from the medium-pressure level store and after reaching a compensating pressure between the storage tank to be refueled and the medium-pressure level store, filling the storage tank to be refueled to the final pressure by means of at least one
Verdichters, der den gasförmigen Treibstoff aus dem Mitteldruckniveauspeicher verdichtet, erfolgt.Compressor, which compresses the gaseous fuel from the medium-pressure level storage.
Das erfindungsgemäße Verfahren sowie weitere Ausgestaltungen desselben, die Gegenstände der Unteransprüche darstellen, seien im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert. Die Figur zeigt den schematischen Aufbau einer Tankstelle für gasförmigen Wasserstoff, in der das erfindungsgemäße Verfahren mit drei Zwischenspeicher-Druckniveaus realisiert werden kann.The method according to the invention and further refinements of the same, which are the subject matter of the subclaims, are explained in more detail below with reference to the exemplary embodiment shown in the figure. The figure shows the schematic structure of a gas station for gaseous hydrogen, in which the method according to the invention can be implemented with three intermediate pressure levels.
Über Leitung 1 wird an der Ansaugstelle Wasserstoff mit einem Druck von 3 bis 20 bar einem Puffer 2 zugeführt. Aus diesem wird der benötigte Wasserstoff über Leitung 3 abgezogen und der ersten Stufe 4 eines zweistufigen Verdichtersystems zugeführt. In dieser ersten Stufe 4 erfolgt eine Verdichtung des Wasserstoffes auf einen Druck zwischen 17 und 150 bar. Der verdichtete Wasserstoff wird anschließend über Leitung 5 einem Kühler 6 zugeführt und in diesem auf eine Temperatur zwischen 20 und 60 °C abgekühlt. Anschließend wird der verdichtete Wasserstoffstrom über Leitung 7 der zweiten Verdichterstufe 8 zugeführt und auf einen Druck von 300 bar verdichtet. Wiederum erfolgt in einem, in der Figur nicht dargestellten Nachkühler eine Abführung der Kompressionswärme, bevor der verdichtete Wasserstoff über die Leitungen 9 und 12 zwei Speicher 10 und 13 - auf die im Folgenden noch näher eingegangen werden wird - zugeführt wird.Via line 1, hydrogen is fed to a buffer 2 at the suction point at a pressure of 3 to 20 bar. From this, the required hydrogen is drawn off via line 3 and fed to the first stage 4 of a two-stage compressor system. In this first stage 4, the hydrogen is compressed to a pressure between 17 and 150 bar. The compressed hydrogen is then fed via line 5 to a cooler 6 and cooled to a temperature between 20 and 60 ° C. in the latter. The compressed hydrogen stream is then fed via line 7 to the second compressor stage 8 and compressed to a pressure of 300 bar. Again, the compression heat is removed in an aftercooler (not shown in the figure) before the compressed hydrogen is fed via lines 9 and 12 to two stores 10 and 13 - which will be discussed in more detail below.
Das Stufendruckverhältnis der Verdichterstufen 4 und 8 wird von dem in der Leitung 1 herrschenden Eingangsdruck des Wasserstoffes bestimmt werden. Die Verdichter 4 und 8 arbeiten stromverbrauchsorientiert. Sie werden vorzugsweise hydraulisch angetrieben und mit Hydrauliköl im Außenmantel gekühlt. Dadurch kann eine annähernd isotherme Verdichtung des gasförmigen Wasserstoffes erzielt werden.The stage pressure ratio of the compressor stages 4 and 8 will be determined by the inlet pressure of the hydrogen prevailing in line 1. The compressors 4 and 8 work on electricity consumption. They are preferably driven hydraulically and cooled with hydraulic oil in the outer jacket. An approximately isothermal compression of the gaseous hydrogen can thereby be achieved.
Der verdichtete Wasserstoff wird in den beiden Speichern 10 und 13The compressed hydrogen is stored in both stores 10 and 13
(zwischen)gespeichert. Die Speichern 10 und 13 sind beispielsweise aus jeweils sechs Bündeln mit einem geometrischen Volumen von je 600 I aufgebaut. Bei einem Fülldruck von 300 bar und einem Kompressibilitätsfaktor von ca. 0,9 ergibt sich ein Füllvolumen so von ca. 162 m3 Wasserstoff pro Bündel. Die Speicher 10 und 13 besitzen somit je ein Fassungsvermögen von 972 m3.(Between) are stored. The stores 10 and 13 are constructed, for example, from six bundles each with a geometric volume of 600 l each. With a filling pressure of 300 bar and a compressibility factor of approx. 0.9, this results in a filling volume of approx. 162 m 3 hydrogen per bundle. The stores 10 and 13 thus each have a capacity of 972 m 3 .
Im Folgenden werden der Speicher 10 als Niederdruckniveauspeicher und der Speicher 13 als Mitteldruckniveauspeicher bezeichnet werden.In the following, the store 10 will be referred to as a low-pressure level store and the store 13 as a medium-pressure level store.
Die erforderliche Verdichterleistung im Normalbetrieb beträgt bei einem Eingangsdruck von 15 bar ca. 300 Nm3. Dies erfordert eine elektrische Leistung von 46 KW, woraus ein spezifischer Strombedarf von 0,15 KWh/Nm3 resultiert.The required compressor capacity in normal operation is approx. 300 Nm 3 at an inlet pressure of 15 bar. This requires an electrical output of 46 KW, which results in a specific electricity requirement of 0.15 KWh / Nm 3 .
Im betriebsbereiten Zustand der Wasserstoff-Tankstelle sind die beiden Speicher 10 und 13 mit 300 bar Wasserstoff befüllt.When the hydrogen filling station is ready for operation, the two stores 10 and 13 are filled with 300 bar of hydrogen.
Zusätzlich ist ein weiterer Speicher 18 - im Folgenden als Hochdruckniveauspeicher bezeichnet - vorgesehen, der mit gasförmigem Wasserstoff bei einem Druck von 450 bar befüllt ist. Der Speicher 18 besteht beispielsweise aus einer 50 I Pufferflasche.In addition, a further store 18 - hereinafter referred to as a high-pressure level store - is provided, which is filled with gaseous hydrogen at a pressure of 450 bar. The memory 18 consists, for example, of a 50 liter buffer bottle.
Gemäß vorteilhafter Ausgestaltungen des erfindungsgemäßen Verfahrens liegt der Speicherdruck des Niederdruckniveauspeichers 10 zwischen 150 und 300 bar, der Speicherdruck des Mitteldruckniveauspeichers 13 zwischen 200 und 300 bar und der Speicherdruck des Hochdruckniveauspeichers 18 zwischen 400 und 450 bar.According to advantageous embodiments of the method according to the invention, the storage pressure of the low-pressure level store 10 is between 150 and 300 bar, the storage pressure of the medium-pressure level store 13 is between 200 and 300 bar and the storage pressure of the high-pressure level store 18 is between 400 and 450 bar.
Das maximale Speichervolumen des Hochdruckniveauspeichers 18 beträgt vorzugsweise 1 bis 10 % des maximalen Speichervolumens des Niederdruckniveauspeichers 10 und vorzugsweise 1 bis 10 % des maximalen Speichervolumens des Mitteldruckniveauspeichers 13. Die Speicher 10, 13 und 18 sind über Entnahmeleitungen 11 , 14 bzw. 19 mit einer gemeinsamen, zu der Betankungskupplung führenden Leitung 15 verbunden.The maximum storage volume of the high-pressure level store 18 is preferably 1 to 10% of the maximum storage volume of the low-pressure level store 10 and preferably 1 to 10% of the maximum storage volume of the medium-pressure level store 13. The stores 10, 13 and 18 are connected via extraction lines 11, 14 and 19 to a common line 15 leading to the refueling coupling.
Im Betankungsfall wird zunächst über einen Teststoß der Anfangsdruck im zu betankenden Speicherbehälter - also beispielsweise dem Kfz-Speicherbehälter- ermittelt. Aus diesem Druck wird eine Aufheizkurve errechnet und mit der Außentemperatur ins Verhältnis gesetzt, woraus sich der Fülldruck ergibt. Dieser Teststoß wird aus dem Hochdruckniveauspeicher 18 gespeist. Durch den damit verbundenen Druckabfall in dem Hochdruckniveauspeicher 18 werden die Verdichter 4 und 8 in den sog. High Booster-Betrieb geschaltet.In the case of refueling, the initial pressure in the storage tank to be refueled - that is, for example, the motor vehicle storage tank - is first determined using a test burst. A heating curve is calculated from this pressure and compared with the outside temperature, which results in the filling pressure. This test surge is fed from the high-pressure level store 18. Due to the associated drop in pressure in the high-pressure level store 18, the compressors 4 and 8 are switched to the so-called high booster mode.
Erfindungsgemäß wird nunmehr der auf wenigstens drei Druckniveaus - nämlich dem Nieder- 10, dem Mittel- 13 und dem Hockdruckniveau 18 - verdichtete und gespeicherte Wasserstoff während des Betankungsvorganges zunächst aus dem Niederdruckniveauspeicher 10 und anschließend aus dem Mitteldruckniveauspeicher 13 über die Entnahmeleitungen 11 bzw. 14 sowie 15 in den zu betankenden Speicherbehälter entspannt und dieser so zumindest bis zu dem höchsten, in dem Mitteldruckniveauspeicher 13 herrschenden Druck gefüllt.According to the invention, the hydrogen compressed and stored to at least three pressure levels - namely the low 10, the medium 13 and the high pressure level 18 - is initially extracted from the low pressure level accumulator 10 during the refueling process and then from the medium pressure level accumulator 13 via the extraction lines 11 and 14 as well 15 relaxed in the storage tank to be refueled and this filled at least up to the highest pressure prevailing in the medium pressure level storage 13.
Hierbei wird der maximale Durchfluss vorzugsweise auf 90 m3/min eingeregelt. Bei der Befüllung eines leeren Kfz-Speicherbehälters wird der Wasserstoff auf ca. 250 bar geregelt, damit der maximale Durchfluss auch bei einem hohen Differenzdruck nicht überschritten wird. Bei der anschließenden Befüllung auf Höchstdruck (beispielsweise 450 bar) wird der in der Figur nicht dargestellte Regler durch ein in der Figur ebenfalls nicht dargestelltes Steuerventil weggeschaltet.Here, the maximum flow is preferably regulated to 90 m 3 / min. When filling an empty vehicle storage tank, the hydrogen is regulated to approx. 250 bar so that the maximum flow rate is not exceeded even at a high differential pressure. During the subsequent filling to maximum pressure (for example 450 bar), the controller (not shown in the figure) is switched off by a control valve (also not shown in the figure).
Nach Erreichen des Ausgleichsdruckes zwischen dem zu betankenden Speicherbehälter und dem Mitteldruckniveauspeicher 13 erfolgt das Befüllen des zu betankenden Speicherbehälters auf den Enddruck dadurch, dass die zweite Verdichterstufe 8 über Leitung 16 den gasförmigen Wasserstoff aus demAfter reaching the equilibrium pressure between the storage tank to be refueled and the medium-pressure level store 13, the storage tank to be refueled is filled to the final pressure in that the second compressor stage 8 takes the gaseous hydrogen from the line 16
Mitteldruckniveauspeicher 13 ansaugt, auf beispielsweise 450 bar verdichtet und über die Leitungen 17 und 15 der Betankungskupplung und über diese dem zu betankenden Speicherbehälter zuführt; während dieses Verfahrensschrittes arbeitet der Verdichter 8 im sog. High Booster-Betrieb. Der Eingangsdruck der zweiten Verdichterstufe 8 sollte vorzugsweise wenigstens 150 bar betragen. Im High Booster-Betrieb wird eine elektrische Leistung von va. 85 KW benötigt. Die Fülleistung im High Booster-Betrieb beträgt wenigstens 32,5 Nm3 Wasserstoff/min und maximal 43 Nm3 Wasserstoff/min.Medium-pressure level accumulator 13 sucks, compressed to, for example, 450 bar and fed via lines 17 and 15 to the refueling coupling and via this to the storage tank to be refueled; During this process step, the compressor 8 operates in the so-called high booster mode. The inlet pressure of the second compressor stage 8 should preferably be at least 150 bar. In high booster mode, an electrical output of va. 85 KW needed. The filling capacity in high booster mode is at least 32.5 Nm 3 hydrogen / min and a maximum of 43 Nm 3 hydrogen / min.
Aufgrund der vorangegangenen Entnahme von Wasserstoff aus dem Mitteldruckniveauspeicher 13 ist der noch darin befindliche Wasserstoff unterkühlt; er weist eine Temperatur von ca. - 40 °C auf. Die Austrittstemperatur der zweiten Verdichterstufe 8 liegt daher bei ca. 10 °C, wodurch eine vergleichsweise effiziente Befüllung des Speicherbehälters bei ca. 350 bar erreicht wird.Due to the previous removal of hydrogen from the medium pressure level store 13, the hydrogen still contained therein is supercooled; it has a temperature of approx. - 40 ° C. The outlet temperature of the second compressor stage 8 is therefore approx. 10 ° C., as a result of which a comparatively efficient filling of the storage tank is achieved at approx. 350 bar.
Die zweite Verdichterstufe 8 arbeitet nur ca. 30 % der gesamten Betankungszeit im High Booster-Betrieb. Der Stromverbrauch je Nm3 Wasserstoff im High Booster-Betrieb beträgt - bezogen auf das gesamt getankte Gasvolumen - ca. 0,015 KWh/Nm3 Wasserstoff. Daher liegt der gesamte Strombedarf des erfindungsgemäßen Verfahrens bei einem Betankungsdruck von 350 bar bei 0,165 KWh/ Nm3 Wasserstoff.The second compressor stage 8 works only approx. 30% of the total refueling time in high booster mode. The electricity consumption per Nm 3 of hydrogen in high booster mode is - based on the total gas volume - approx. 0.015 KWh / Nm 3 of hydrogen. Therefore, the total electricity requirement of the method according to the invention at a refueling pressure of 350 bar is 0.165 KWh / Nm 3 hydrogen.
Zur Auffüllung des Hochdruckniveauspeichers 18 wird diesem im High Booster-Betrieb der zweiten Verdichterstufe 8 über die Leitungen 17 und 17' verdichteter Wasserstoff zugeführt. Eine Entnahme des verdichteten Wasserstoffes aus demIn order to fill up the high-pressure level store 18, hydrogen is supplied to the second compressor stage 8 via lines 17 and 17 ′ in high booster mode. A removal of the compressed hydrogen from the
Hochdruckniveauspeicher 18 - beispielsweise für den vorbeschriebenen Teststoß - erfolgt über die Leitungen 19 und 15.High-pressure level store 18 - for example for the test burst described above - takes place via lines 19 and 15.
Das erfindungsgemäße Verfahren hat des Weiteren den Vorteil, dass herkömmliche Durchflussmesser zum Einsatz kommen können. Bisher sind geeichteThe method according to the invention also has the advantage that conventional flow meters can be used. So far have been verified
Durchflussmesser nur für Drücke bis 300 bar erhältlich. Somit konnten bei den zum Stand der Technik zählenden Betankungsverfahren, bei denen die gesamte Wasserstoffmenge auf Drücke bis 500 bar verdichtet wurde, keine geeichten Durchflussmesser verwendet werden. Da im High Booster-Betrieb der maximale Speicherdruck bei ca. 300 bar liegt und der Verdichter 8 bei diesem Druck aus demFlow meters only available for pressures up to 300 bar. Thus, no calibrated flow meters could be used in the refueling processes, which are part of the prior art and in which the entire amount of hydrogen was compressed to pressures of up to 500 bar. Since in high booster mode the maximum storage pressure is approx. 300 bar and the compressor 8 at this pressure from the
Mitteldruckniveauspeicher 13 saugt, können herkömmliche, geeichte Durchflussmesser auf der Saugseite des Verdichters 8 - also beispielsweise in der Leitung 16 - vorgesehen werden. Das erfindungsgemäße Verfahren ermöglicht es somit, dass beispielsweise zwei Busse hintereinander betankt werden können. Die Betankung eines dritten Busses kann dann entweder langsamer oder in der gleichen Betankungszeit von ca. 10 min nach einer Wartezeit von 1,6 Stunden erfolgen. Diese Betankungszeiten sind auf eine Betankungsmenge von 500 Nm3 Wasserstoff bezogen und anhängig von dem Speichervolumen des Nieder- sowie des Mitteldruckniveauspeichers.Medium pressure level accumulator 13 sucks, conventional, calibrated flow meters can be provided on the suction side of the compressor 8 - that is, for example, in the line 16. The method according to the invention thus makes it possible, for example, to fill two buses in succession. A third bus can then be refueled either more slowly or in the same refueling time of approx. 10 min after a waiting time of 1.6 hours. These refueling times are based on a refueling quantity of 500 Nm 3 hydrogen and are dependent on the storage volume of the low and medium pressure level storage.
Die gesamte, zweistufige Verdichterstation ist vorzugsweise in einem Betongehäuse, bestehend aus einem E- und einem Gasraum, untergebracht. Das Betongehäuse ist hierbei explosionsfest gefertigt - wie dies auch bei der Gasregelstationen der Fall ist.The entire two-stage compressor station is preferably housed in a concrete housing consisting of an electrical and a gas space. The concrete housing is made explosion-proof - as is the case with gas control stations.
Im E-Raum sind das Hydraulikaggregat sowie die gesamte E-Installation untergebracht. Der Antrieb der Verdichterstufen erfolgt über Hydrauliköl im Exgeschützten Teil des Gehäuses (Gasraum). Alle Leitungsdurchführungen sollten gasdicht ausgeführt werden. In dem Gasraum sind alle Einbauten entsprechend ExZone 1 auszuführen. Im Dach des Gasraumes befindet sich zweckmäßigerweise eine Druckentlastungsklappe. Ferner sollte die Raumluft in dem Gasraum auf einen Wasserstoffaustritt überwacht werden. Ein Wasserstoffaustritt führt dann zur Abschaltung der Verdichterstation und zu einem Abschotten der einzelnen Sektionen über pneumatische Schnellschlussventile. The hydraulic unit and the entire electrical installation are housed in the electrical room. The compressor stages are driven by hydraulic oil in the explosion-protected part of the housing (gas space). All cable bushings should be gastight. In the gas room, all installations must be carried out in accordance with ExZone 1. A pressure relief flap is expediently located in the roof of the gas space. Furthermore, the room air in the gas room should be monitored for hydrogen leakage. A hydrogen leak then leads to the compressor station being switched off and the individual sections being sealed off via pneumatic quick-closing valves.

Claims

Patentansprüche claims
1. Verfahren zum Betanken eines Speicherbehälters, insbesondere eines Kfz- Speicherbehälters, mit einem gasförmigen Treibstoff, insbesondere mit gasförmigem Wasserstoff, auf einen Druck von mehr als 300 bar, wobei der Treibstoff verdichtet und zwischengespeichert wird, dadurch gekennzeichnet, dass1. A method for refueling a storage container, in particular a motor vehicle storage container, with a gaseous fuel, in particular with gaseous hydrogen, to a pressure of more than 300 bar, the fuel being compressed and temporarily stored, characterized in that
- der verdichtete Treibstoff auf einem oder mehreren Druckniveaus zwischengespeichert wird,- the compressed fuel is temporarily stored at one or more pressure levels,
- der zu betankende Speicherbehälter während des Betankungsvorganges im Falle eines Druckniveaus aus dem Zwischenspeicher oder im Falle mehrerer- The storage tank to be refueled during the refueling process in the case of a pressure level from the intermediate store or in the case of several
Druckniveaus aus dem oder den Zwischenspeichern betankt wird, wobei vorzugsweise mit dem auf dem niedrigsten Druckniveau befindlichen Zwischenspeicher begonnen wird, undPressure levels from the intermediate store or stores is refueled, preferably starting with the intermediate store located at the lowest pressure level, and
- nach Erreichen eines Ausgleichsdruckes zwischen dem zu betankenden Speicherbehälter und dem oder den Zwischenspeichern das Befüllen des zu betankenden Speicherbehälters auf den Enddruck mittels wenigstens eines Verdichters, der den gasförmigen Treibstoff aus dem oder zumindest einem der Zwischenspeicher verdichtet, erfolgt.- After reaching a compensating pressure between the storage tank to be refueled and the intermediate store or stores, the storage tank to be refueled is filled to the final pressure by means of at least one compressor which compresses the gaseous fuel from or at least one of the intermediate stores.
2. Verfahren nach Anspruch 1 , wobei drei Zwischenspeicher-Druckniveaus vorgesehen sind, dadurch gekennzeichnet, dass2. The method according to claim 1, wherein three buffer pressure levels are provided, characterized in that
- der verdichtete Treibstoff auf einem Nieder- (10), einem Mittel- (13) und einem Hockdruckniveau (18), zwischengespeichert wird, - der zu betankende Speicherbehälter während des Betankungsvorganges zunächst aus dem Niederdruckniveauspeicher (10) und anschließend aus dem Mitteldruckniveauspeicher (13) betankt wird und- The compressed fuel is temporarily stored at a low (10), a medium (13) and a high pressure level (18), - The storage tank to be refueled during the refueling process first from the low pressure level store (10) and then from the medium pressure level store (13 ) is refueled and
- nach Erreichen eines Ausgleichsdruckes zwischen dem zu betankenden Speicherbehälter und dem Mitteldruckniveauspeicher (13) das Befüllen des zu betankenden Speicherbehälters auf den Enddruck mittels wenigstens eines- After reaching a compensating pressure between the storage tank to be refueled and the medium-pressure level store (13), the filling of the storage tank to be refueled to the final pressure by means of at least one
Verdichters (4, 8), der den gasförmigen Treibstoff aus dem Mitteldruckniveauspeicher (13) verdichtet, erfolgt. Compressor (4, 8), which compresses the gaseous fuel from the medium-pressure level store (13).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Speicherdruck des Niederdruckniveaus (10) zwischen 150 und 300 bar liegt, der Speicherdruck des Mitteldruckniveaus (13) zwischen 200 und 300 bar liegt und der Speicherdruck des Hochdruckniveaus (18) zwischen 400 und 450 bar liegt.3. The method according to claim 2, characterized in that the storage pressure of the low pressure level (10) is between 150 and 300 bar, the storage pressure of the medium pressure level (13) is between 200 and 300 bar and the storage pressure of the high pressure level (18) between 400 and 450 bar.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das maximale Speichervolumen des Hochdruckniveaus (18) 1 bis 10 % des maximalen Speichervoiumens des Niederdruckniveaus (10) beträgt.4. The method according to claim 2 or 3, characterized in that the maximum storage volume of the high pressure level (18) is 1 to 10% of the maximum storage volume of the low pressure level (10).
5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass das maximale Speichervolumen des Hochdruckniveaus (18) 1 bis 10 % des maximalen Speichervolumens des Mitteldruckniveaus (13) beträgt.5. The method according to any one of claims 2 to 4, characterized in that the maximum storage volume of the high pressure level (18) is 1 to 10% of the maximum storage volume of the medium pressure level (13).
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Verdichtung (4, 8) des gasförmigen Treibstoffes im Wesentlichen isotherm erfolgt.6. The method according to any one of claims 1 to 5, characterized in that the compression (4, 8) of the gaseous fuel takes place essentially isothermally.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Befüllen des zu betankenden Speicherbehälters auf den Enddruck mittels wenigstens eines Verdichters (8) und/oder einer Verdichterstufe, der bzw. die auch der Verdichtung des gasförmigen Treibstoffes vor dessen Zwischenspeicherung dient, erfolgt. 7. The method according to any one of claims 1 to 6, characterized in that the filling of the storage tank to be refueled to the final pressure by means of at least one compressor (8) and / or a compressor stage, or the compression of the gaseous fuel before it is temporarily stored serves, takes place.
EP03729429A 2002-01-15 2003-01-07 Method for filling a storage tank with a gaseous fuel Withdrawn EP1466122A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002101273 DE10201273A1 (en) 2002-01-15 2002-01-15 Gas tank filling system for road vehicle running on hydrogen has two-stage compressor system with intercooler and includes low- intermediate and high-pressure reservoirs
DE10201273 2002-01-15
PCT/EP2003/000073 WO2003060374A1 (en) 2002-01-15 2003-01-07 Method for filling a storage tank with a gaseous fuel

Publications (1)

Publication Number Publication Date
EP1466122A1 true EP1466122A1 (en) 2004-10-13

Family

ID=7712180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03729429A Withdrawn EP1466122A1 (en) 2002-01-15 2003-01-07 Method for filling a storage tank with a gaseous fuel

Country Status (4)

Country Link
EP (1) EP1466122A1 (en)
AU (1) AU2003235622A1 (en)
DE (1) DE10201273A1 (en)
WO (1) WO2003060374A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072884A1 (en) * 2002-09-25 2009-06-24 Taiyo Nippon Sanso Corporation Apparatus and method for filling fuel

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005024068A (en) 2003-07-02 2005-01-27 Toyo Tanso Kk Feeder of halogen gas or halogen-contained gas
EP1559949A1 (en) * 2004-01-28 2005-08-03 Gaveco AB A method and a system for refuelling of gas driven vehicles and a vehicle gas container
CA2583651A1 (en) * 2004-10-21 2006-05-04 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Device for generating highly compressed gas
AT502901B1 (en) 2005-10-31 2009-08-15 Electrovac Ag DEVICE FOR HYDROGEN MANUFACTURE
JP2007139145A (en) 2005-11-22 2007-06-07 Honda Motor Co Ltd Hydrogen filling station and hydrogen filling method
DE102006034791A1 (en) * 2006-07-27 2008-01-31 Linde Ag Method and apparatus for refueling a pressure accumulator, in particular the pressure accumulator of a vehicle with pressurized hydrogen
DE102006047313B4 (en) * 2006-10-06 2009-08-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for the rapid filling of compressed gas containers
FR2919375B1 (en) * 2007-07-23 2009-10-09 Air Liquide METHOD FOR FILLING A PRESSURIZED GAS IN A RESERVOIR
KR101239352B1 (en) 2010-02-24 2013-03-06 삼성중공업 주식회사 Floating liquefied natural gas charging station
DE102010020280A1 (en) 2010-05-12 2011-11-17 Linde Aktiengesellschaft Hydrogen infrastructure
JP5746962B2 (en) * 2011-12-20 2015-07-08 株式会社神戸製鋼所 Gas supply method and gas supply apparatus
SE542134C2 (en) * 2017-07-07 2020-03-03 Boh Westerlund Hydrogen refuelling station comprising a fill tank arranged with a cooling system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653585A1 (en) * 1993-11-08 1995-05-17 Maschinenfabrik Sulzer-Burckhardt AG Process and device for the quick filling of a pressure container with a gaseous fluid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719196A (en) * 1970-05-06 1973-03-06 Jones R Mc Charging sequence system and process
EP0607750B1 (en) * 1993-01-22 1997-11-19 Maschinenfabrik Sulzer-Burckhardt AG Filling device for a mobile pressure vessel with a gaseous fuel and process for operating such a device
DE19650999C1 (en) * 1996-11-26 1998-06-04 Mannesmann Ag Tap installation method for filling mobile gas tank
DE19843669C1 (en) * 1998-09-23 2000-03-16 Hermann Josef Winter Tap installation for filling gas tank with methane has gas accumulator and emission device for feeding gas into tank
DE10018612C1 (en) * 2000-04-09 2001-12-06 Winter Hermann Josef System for filling gas tanks
JP2001295994A (en) * 2000-04-11 2001-10-26 Air Liquide Japan Ltd Compressed gas transfer filling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653585A1 (en) * 1993-11-08 1995-05-17 Maschinenfabrik Sulzer-Burckhardt AG Process and device for the quick filling of a pressure container with a gaseous fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO03060374A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2072884A1 (en) * 2002-09-25 2009-06-24 Taiyo Nippon Sanso Corporation Apparatus and method for filling fuel

Also Published As

Publication number Publication date
AU2003235622A1 (en) 2003-07-30
DE10201273A1 (en) 2003-07-24
WO2003060374A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
EP1360084B1 (en) Filling station for hydrogen
WO2011026551A1 (en) Filling storage containers with compressed media
EP1466122A1 (en) Method for filling a storage tank with a gaseous fuel
EP2175187A2 (en) Fuelling of vehicles with pressurised, gaseous media
DE102007011742A1 (en) Process to refuel pressurised automotive fuel tank with liquid hydrogen
DE102005023036B4 (en) Hydrogen storage and hydrogen storage method
EP2569571B1 (en) Hydrogen infrastructure
DE102017204746A1 (en) Apparatus and method for providing a compressed gas
DE102011109824A1 (en) Refueling a vehicle with a pressurized gaseous medium
DE19945462A1 (en) Method for removing a gaseous and liquid cryogenic medium from a storage container and storage container
DE102016112843A1 (en) Method for refueling, in particular lorries with natural gas
EP1500864A2 (en) Process for filling a vehicle tank
DE102020207827A1 (en) Filling device for filling storage containers with compressed hydrogen, filling station having the same and method for filling a storage container
DE102019219826A1 (en) Method for refueling a vehicle
DE10242804A1 (en) Storage and metering system for hydrogen fuel for combustion engine and/or fuel cell system, e.g. in automobile, with simultaneous expansion and heating of hydrogen supplied from high pressure storage tank
DE102017120256B4 (en) Traction energy hybrid charging arrangement
EP1642062B1 (en) Storage system for cryogenic media
EP1780460B1 (en) Apparatus to increase pressure
DE102021101340B4 (en) Device and method for emptying at least one gas pressure container for a drive unit that can be operated with gas
DE4420621A1 (en) Overflow-proof method of filling a storage tank
DE102021213172A1 (en) Multi-stage compression device for compressing a gaseous medium, system and filling station having the same and method for multi-stage compression of a gaseous medium
EP2236945A2 (en) Method and application of seal
DE10005726A1 (en) Method for shutting off storage container of gaseous media uses non-return valve in filling pipe which closes when pressure in pipe drops causing shut-off device in return gas pipe to also close
WO2012038039A1 (en) Filling of storage containers with a compressed medium
DE102020212078A1 (en) Pressure storage device for storing a medium and method for operating a pressure storage device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20041013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181005