EP1780460B1 - Apparatus to increase pressure - Google Patents

Apparatus to increase pressure Download PDF

Info

Publication number
EP1780460B1
EP1780460B1 EP05028677A EP05028677A EP1780460B1 EP 1780460 B1 EP1780460 B1 EP 1780460B1 EP 05028677 A EP05028677 A EP 05028677A EP 05028677 A EP05028677 A EP 05028677A EP 1780460 B1 EP1780460 B1 EP 1780460B1
Authority
EP
European Patent Office
Prior art keywords
gas
evaporator
pressure
valve
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05028677A
Other languages
German (de)
French (fr)
Other versions
EP1780460A1 (en
Inventor
Reimut Blascheck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP1780460A1 publication Critical patent/EP1780460A1/en
Application granted granted Critical
Publication of EP1780460B1 publication Critical patent/EP1780460B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG

Definitions

  • the invention relates to a device for increasing the gas pressure of cryogenic, liquefied gases from tank systems.
  • a system is from the document DE-A-196 16 811 known.
  • a new field of application for the gas pressure increase of industrial gases is the treatment of sewage sludge from sewage treatment plants.
  • various methods for sludge disintegration are used.
  • the cell walls of the microorganisms contained in the sewage sludge are destroyed, whereby a thickening of the sewage sludge is substantially facilitated.
  • a gas under high pressure eg 10 to 200 bar above atmospheric pressure.
  • the gases used are technical gases such as oxygen, nitrogen or carbon dioxide. These are available in standard fueling systems whose operating pressure is not always sufficient for this process. Therefore, additional pressure booster systems must be provided.
  • conventional pressure booster systems are problematic because the required discontinuous operation, a cold running of the pump is difficult.
  • pressure booster systems are associated with high acquisition costs.
  • the booster systems equipped with pumps or compressors also have sensitive units that require high maintenance and operating costs.
  • the present invention has for its object to provide a gas pressure booster system for supplying gases from tanks for cryogenic liquefied gases available, which largely manages without mechanical compressors or pumps.
  • the tank system is connected via a valve having a feed line with a metering, which in turn is connected via a valve having a connecting line with an evaporator in connection, wherein the evaporator on the one hand via a valve having a return line from the a bleed line having a valve (5) branches off, is connected to the supply line to the metering container and on the other hand leads away a removal line having a valve from the evaporator.
  • the proposed gas pressure booster thus has neither pumps nor compressors and comes with conventional containers and evaporators.
  • the gas taken from a standard liquefied gas tank can be increased to the desired pressure.
  • the removal line of the evaporator is preferably in communication with at least one gas storage.
  • the gas storage can be designed as a gas container or as a cylinder bundle.
  • the volume ratio of dosing and gas storage can be adjusted.
  • the volume of the dosing and the volume of the gas storage in the ratio 1:10 to 1: 200.
  • the dosing can have a volume of 4 to 10 liters
  • the gas storage consists of several gas storage containers, in particular a gas cylinder bundle with 5 to 12 gas cylinders.
  • the metering container is preferably vacuum-insulated.
  • an air-heated evaporator is used as the evaporator, in which the evaporation takes place by ambient air.
  • the performance of the pressure booster can be increased even more.
  • the invention is suitable for all processes in which gases from standard liquefied gas tank facilities are required at higher pressures than the operating pressures of the tank installations.
  • a particularly interesting application is the disintegration of sewage sludge by the application of gases under high pressures.
  • the figure shows a pressure booster for increasing the gas pressure of oxygen from a liquid oxygen tank system.
  • This pressure booster system is intended for the gas supply of a reactor for the disintegration of sewage sludge.
  • the reactor for the disintegration of sewage sludge is not shown in the figure.
  • a previously relaxed metering 7 is filled via line 6 by pressure with liquid oxygen.
  • the metering container 7 is connected via a line 8 with a consisting of a cold part 9 and a warm part 10 evaporator.
  • a return line 11 leads back to the dosing 7.
  • a vent line 12 is connected to a muffler.
  • the warm part 10 of the evaporator is connected via a line 13 with an existing gas cylinder bundle 14 gas storage in combination.
  • a provided with a pressure reducer 16 gas discharge line 15 finally leads to the reactor, not shown, for the disintegration of sewage sludge.
  • the operation of the gas pressure booster plant is carried out as follows:
  • valves 1 and 5 are closed.
  • the gas is removed via valve 3.
  • the valve 3 When the valve 3 is open, the gas pressure in the oxygen cylinder bundle 14 drops.
  • the valves 2 and 4 are closed.
  • the valve 5 is opened and closed again after about 10 seconds.
  • the valve 1 is opened and the dosing 7 filled with liquid oxygen from the connected tank system, which is operated for example at a tank pressure of about 18 bar.
  • the valve 1 After filling the dosing tank 7, which is achieved, for example, after 30 seconds, the valve 1 is closed again.
  • the valve 4 is opened and the pressure in the dosing tank 7 increases until pressure equalization.
  • Valve 2 is opened so that the liquid oxygen flows into the cold part 9 of the evaporator. In this case, a pressure equalization takes place via valve 4.
  • evaporation of the liquid oxygen increases Pressure in the evaporator 9, 10 and in the oxygen cylinder bundle 14 according to the volume ratio.
  • the predetermined minimum pressure of eg 48 bar the steps described above are repeated.
  • the gas may e.g. used to drive pneumatic valves instead of compressed air.
  • the gas can also be used for other processes with lower gas pressure.
  • oxygen can be used for the additional fumigation of activated sludge plants in sewage treatment plants. A partial relaxation in the tank to build up pressure is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Display Devices Of Pinball Game Machines (AREA)

Abstract

Device has a metering container (7) and evaporator (9,10) attached to tank system whereby tank system is connected to metering container over valve (1) and inlet pipe (6). Tank system is connected with evaporator over connecting pipe (8) consisting of valve (2) whereby evaporator is branched one side over return piping (11) with valve (4). Supply piping (6) is connected to metering container and on the other side branched to bleed line (13) with valve (3).

Description

Die Erfindung betrifft eine Vorrichtung zur Gasdruckerhöhung von tiefkalten, verflüssigten Gasen aus Tankanlagen. Eine derartige Anlage ist aus der Druckschrift DE-A-196 16 811 bekannt.The invention relates to a device for increasing the gas pressure of cryogenic, liquefied gases from tank systems. Such a system is from the document DE-A-196 16 811 known.

Üblicherweise werden technische Gase, z.B. Sauerstoff, Stickstoff, Kohlendioxid usw. in tiefkaltem, flüssigem Zustand in vakuumisolierten Tankanlagen bevorratet. Bei Bedarf werden die flüssigen Gase über Verdampfer auf nahezu Umgebungstemperatur gebracht und in gasförmigem Zustand für nachfolgende Prozesse eingesetzt. Für die meisten Verfahren sind dabei die Betriebsdrücke der vorhandenen Tankanlagen ausreichend. Werden aber Gas bei Drücken oberhalb des maximalen Betriebsdrucks der Tankanlagen, der bei Standard-Tankanlagen ca. 18 bar und bei Hochdruck-Tankanlagen ca. 36 bar beträgt, benötigt, müssten spezielle Tankanlagen oder Druckerhöhungsanlagen eingesetzt werden. Herkömmliche Druckerhöhungsanlagen arbeiten mit Pumpen für flüssige Gase oder Verdichter für bereits gasförmige Gase.Usually, technical gases, e.g. Stored oxygen, nitrogen, carbon dioxide, etc. in cryogenic, liquid state in vacuum-insulated tank facilities. If required, the liquid gases are brought to near ambient temperature via evaporators and used in gaseous state for subsequent processes. For most processes, the operating pressures of the existing tank systems are sufficient. But if gas at pressures above the maximum operating pressure of the tank systems, which is approximately 36 bar for standard tank systems and about 36 bar for high-pressure tank systems, required, special tank systems or pressure boosting systems would be used. Conventional pressure booster systems work with pumps for liquid gases or compressors for already gaseous gases.

Bei manchen Gasen kann die Verwendung von Pumpen oder Verdichtern zur Druckerhöhung problematisch sein. Beispielsweise kann es bei der Druckerhöhung von Sauerstoff mittels mechanischer Verdichter durch Reibung zur Explosionsgefahr kommen.For some gases, the use of pumps or compressors to increase pressure can be problematic. For example, the pressure increase of oxygen by means of mechanical compressors can lead to the danger of explosion due to friction.

Ein neues Anwendungsgebiet für die Gasdruckerhöhung von technischen Gasen ist die Behandlung von Klärschlämmen von Kläranlagen. Um die Entwässerbarkeit von Klärschlämmen zu verbessern, werden verschiedene Verfahren zur Klärschlammdesintegration eingesetzt. Dabei werden die Zellwände der im Klärschlamm enthaltenen Mikroorganismen zerstört, wodurch eine Eindickung des Klärschlamms wesentlich erleichtert wird. In der nicht vorveröffentlichten DE 102 00 4042 773.9 ist ein Verfahren zur Klärschlammdesintegration beschrieben, bei dem der Klärschlamm in einem Druckreaktor einem unter hohen Druck (z.B. 10 bis 200 bar über Atmosphärendruck) stehenden Gas ausgesetzt wird. Durch plötzliches Entspannen der mit Gas gesättigten Mikroorganismen brechen die Zellwände auf, so dass das Zellinnere freigesetzt wird. Als Gase werden technische Gase wie Sauerstoff, Stickstoff oder Kohlendioxid verwendet. Diese werden in Standardtankanlagen zur Verfügung gestellt, deren Betriebsdruck für diesen Prozess nicht immer ausreichend ist. Daher müssen zusätzliche Druckerhöhungsanlagen vorgesehen werden. Herkömmliche Druckerhöhungsanlagen sind jedoch problematisch, da beim erforderlichen diskontinuierlichen Betrieb ein Kaltfahren der Pumpen schwierig ist. Außerdem sind solche Druckerhöhungsanlagen mit hohen Anschaffungskosten verbunden. Die mit Pumpen oder Verdichtern ausgestatteten Druckerhöhungsanlagen weisen darüber hinaus empfindliche Aggregate auf, die hohe Wartungs- und Betriebskosten erfordern.A new field of application for the gas pressure increase of industrial gases is the treatment of sewage sludge from sewage treatment plants. In order to improve the drainability of sewage sludge, various methods for sludge disintegration are used. The cell walls of the microorganisms contained in the sewage sludge are destroyed, whereby a thickening of the sewage sludge is substantially facilitated. In the not pre-published DE 102 00 4042 773.9 describes a process for sewage sludge disintegration, in which the sewage sludge in a pressure reactor is exposed to a gas under high pressure (eg 10 to 200 bar above atmospheric pressure). By suddenly relaxing the gas-saturated microorganisms, the cell walls rupture, releasing the cell interior. The gases used are technical gases such as oxygen, nitrogen or carbon dioxide. These are available in standard fueling systems whose operating pressure is not always sufficient for this process. Therefore, additional pressure booster systems must be provided. However, conventional pressure booster systems are problematic because the required discontinuous operation, a cold running of the pump is difficult. In addition, such pressure booster systems are associated with high acquisition costs. The booster systems equipped with pumps or compressors also have sensitive units that require high maintenance and operating costs.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Gasdruckerhöhungsanlage zur Versorgung mit Gasen aus Tankanlagen für tiefkalt verflüssigte Gase zur Verfügung zu stellen, die weitgehend ohne mechanisch arbeitende Verdichter oder Pumpen auskommt.The present invention has for its object to provide a gas pressure booster system for supplying gases from tanks for cryogenic liquefied gases available, which largely manages without mechanical compressors or pumps.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Tankanlage über eine ein Ventil aufweisende Zuleitung mit einem Dosierbehälter verbindbar ist, der seinerseits über eine ein Ventil aufweisende Verbindungsleitung mit einem Verdampfer in Verbindung steht, wobei der Verdampfer einerseits über eine ein Ventil aufweisende Rückleitung, von der eine ein Ventil (5) aufweisende Entlüftungsleitung abzweigt, mit der Zuleitung zum Dosierbehälter verbunden ist und andererseits eine ein Ventil aufweisende Entnahmeleitung vom Verdampfer wegführt.This object is achieved in that the tank system is connected via a valve having a feed line with a metering, which in turn is connected via a valve having a connecting line with an evaporator in connection, wherein the evaporator on the one hand via a valve having a return line from the a bleed line having a valve (5) branches off, is connected to the supply line to the metering container and on the other hand leads away a removal line having a valve from the evaporator.

Die vorgeschlagene Gasdruckerhöhungsanlage weist also weder Pumpen noch Verdichter auf und kommt mit herkömmlichen Behältern und Verdampfern aus. Durch die beschriebene Verschaltung von Dosierbehälter und Verdampfer kann das einer Standardtankanlage für verflüssigtes Gas entnommene Gas auf den gewünschten Druck erhöht werden.The proposed gas pressure booster thus has neither pumps nor compressors and comes with conventional containers and evaporators. Through the described interconnection of metering and evaporator, the gas taken from a standard liquefied gas tank can be increased to the desired pressure.

Um eine kontinuierliche bzw. diskontinuierliche Versorgung eines Verbrauchers mit dem unter erhöhten Druck stehenden Gas zu ermöglichen, steht die Entnahmeleitung des Verdampfers vorzugsweise mit mindestens einem Gasspeicher in Verbindung. Der Gasspeicher kann als Gasbehälter oder als Flaschenbündel ausgebildet sein.In order to enable a continuous or discontinuous supply of a consumer with the gas under increased pressure, the removal line of the evaporator is preferably in communication with at least one gas storage. The gas storage can be designed as a gas container or as a cylinder bundle.

Durch Veränderung des Volumenverhältnisses von Dosierbehälter und Gasspeicher können unterschiedliche Druckbereiche eingestellt werden. Bevorzugt stehen das Volumen des Dosierbehälters und das Volumen des Gasspeichers im Verhältnis 1:10 bis 1:200. Beispielsweise kann der Dosierbehälter ein Volumen von 4 bis 10 Liter aufweisen, während der Gasspeicher aus mehreren Gasspeicherbehältern, insbesondere einem Gasflaschenbündel mit 5 bis 12 Gasflaschen besteht.By changing the volume ratio of dosing and gas storage different pressure ranges can be adjusted. Preferably, the volume of the dosing and the volume of the gas storage in the ratio 1:10 to 1: 200. For example, the dosing can have a volume of 4 to 10 liters, while the gas storage consists of several gas storage containers, in particular a gas cylinder bundle with 5 to 12 gas cylinders.

Der Dosierbehälter ist vorzugsweise vakuumisoliert.The metering container is preferably vacuum-insulated.

Zweckmäßigerweise wird als Verdampfer ein luftbeheizter Verdampfer eingesetzt, bei dem die Verdampfung durch Umgebungsluft erfolgt. Beim Einsatz von Wasserbadverdampfern bzw. durch Beheizung mit elektrischer Energie kann die Leistung der Druckerhöhungsanlage noch gesteigert werden.Conveniently, an air-heated evaporator is used as the evaporator, in which the evaporation takes place by ambient air. When using water bath evaporators or by heating with electrical energy, the performance of the pressure booster can be increased even more.

Die Erfindung bietet eine ganze Reihe von Vorteilen:The invention offers a whole series of advantages:

Durch den Verzicht auf Pumpen und Verdichtern sind Wartungs- und Betriebskosten gegenüber herkömmlichen Gasdruckerhöhungsanlagen wesentlich reduziert. Außerdem ist kein zusätzlicher Bedarf an elektrischer Energie für Antriebe erforderlich. Die Verwendung herkömmlicher Behälter und Verdampfer ermöglicht geringe Investitionskosten. Da die Druckerhöhung alleine durch die Verdampfung von Gas erfolgt, können die Probleme, die bei mechanischen Gasdruckerhöhungsanlagen auftreten, grundsätzlich nicht vorkommen. Auch ein kontinuierlicher oder diskontinuierlicher Betrieb ist problemlos möglich. Durch den Einsatz eines einfachen Dosierbehälters, von standardmäßigen elektrisch oder pneumatisch betriebenen Absperrarmaturen, standardmäßigen oder gering umgebauten Rippenrohrverdampfem oder Rippenrohbehältern wird insgesamt eine sehr kostengünstige Gasdruckerhöhungsanlage zur Verfügung gestellt. Dabei ist eine Anfertigung der Anlage in verschiedenen Größen ohne weiteres möglich. In Abhängigkeit des Volumenverhältnisses von Dosierbehälter und Gasspeicher kann jeder gewünschte Entnahmedruckbereich bestimmt werden. Schließlich ist zum Kaltfahren ein relativ geringes Volumen bzw. eine geringe Materialmenge des Dosierbehälters erforderlich.By eliminating pumps and compressors maintenance and operating costs compared to conventional gas pressure booster systems are significantly reduced. In addition, no additional power requirement for drives is required. The use of conventional containers and evaporators allows low investment costs. Since the increase in pressure occurs solely by the evaporation of gas, the problems that occur in mechanical gas pressure booster systems, in principle, can not occur. Even a continuous or discontinuous operation is easily possible. Through the use of a simple dosing container, of standard electrically or pneumatically operated shut-off valves, standard or slightly modified finned tube evaporators or Rippenrohbehältern a total of a very inexpensive gas pressure booster system is provided. In this case, a preparation of the system in different sizes is readily possible. Depending on the volume ratio of metering and gas storage any desired extraction pressure range can be determined. Finally, for cold running a relatively small volume or a small amount of material of the dosing is required.

Die Erfindung eignet sich für alle Prozesse, bei denen Gase aus standardmäßigen Tankanlagen für verflüssigte Gase bei höheren Drücken als den Betriebsdrücken der Tankanlagen erforderlich sind, eingesetzt werden. Ein besonders interessanter Anwendungsfall ist die Desintegration von Klärschlämmen durch Anwendung von Gasen unter hohen Drücken.The invention is suitable for all processes in which gases from standard liquefied gas tank facilities are required at higher pressures than the operating pressures of the tank installations. A particularly interesting application is the disintegration of sewage sludge by the application of gases under high pressures.

Im Folgenden soll die Erfindung anhand eines in der Figur schematisch dargestellten Ausführungsbeispiels näher erläutert werden:In the following, the invention will be explained in more detail with reference to an embodiment schematically illustrated in the figure:

Die Figur zeigt eine Druckerhöhungsanlage zur Gasdruckerhöhung von Sauerstoff aus einer Flüssigsauerstofftankanlage. Diese Druckerhöhungsanlage ist für die Gasversorgung eines Reaktors zur Desintegration von Klärschlämmen vorgesehen. Der Reaktor für die Desintegration von Klärschlämmen ist in der Figur nicht dargestellt.The figure shows a pressure booster for increasing the gas pressure of oxygen from a liquid oxygen tank system. This pressure booster system is intended for the gas supply of a reactor for the disintegration of sewage sludge. The reactor for the disintegration of sewage sludge is not shown in the figure.

Aus einem in der Figur nicht gezeigten Flüssiggastank für Sauerstoff wird über Leitung 6 ein zuvor entspannter Dosierbehälter 7 durch Überdruck mit flüssigem Sauerstoff befüllt. Der Dosierbehälter 7 ist über eine Leitung 8 mit einem aus einem kalten Teil 9 und einem warmen Teil 10 bestehenden Verdampfer verbunden. Eine Rückleitung 11 führt zum Dosierbehälter 7 wieder zurück. An die Rückleitung 11 ist eine Entlüftungsleitung 12 mit einem Schalldämpfer angeschlossen. Der warme Teil 10 des Verdampfers steht über eine Leitung 13 mit einem aus Sauerstoffflaschenbündel 14 bestehenden Gasspeicher in Verbindung. Eine mit einem Druckminderer 16 versehene Gasableitung 15 führt schließlich zum nicht dargestellten Reaktor zur Desintegration von Klärschlämmen.From a liquid gas tank for oxygen, not shown in the figure, a previously relaxed metering 7 is filled via line 6 by pressure with liquid oxygen. The metering container 7 is connected via a line 8 with a consisting of a cold part 9 and a warm part 10 evaporator. A return line 11 leads back to the dosing 7. To the return line 11, a vent line 12 is connected to a muffler. The warm part 10 of the evaporator is connected via a line 13 with an existing gas cylinder bundle 14 gas storage in combination. A provided with a pressure reducer 16 gas discharge line 15 finally leads to the reactor, not shown, for the disintegration of sewage sludge.

Der Betrieb der Gasdruckerhöhungsanlage erfolgt folgendermaßen:The operation of the gas pressure booster plant is carried out as follows:

In der Ausgangssituation sind die Ventile 1 und 5 geschlossen. Die Gasentnahme erfolgt über Ventil 3. Bei offenem Ventil 3 sinkt der Gasdruck in dem Sauerstoffflaschenbündel 14. Beim Unterschreiten eines vorgegebenen Mindestdrucks von z.B. 48 bar werden die Ventile 2 und 4 geschlossen. Zum Entspannen des Dosierbehälters 7 auf Umgebungsdruck wird das Ventil 5 geöffnet und nach ca. 10 Sekunden wieder geschlossen. Anschließend wird das Ventil 1 geöffnet und der Dosierbehälter 7 mit flüssigem Sauerstoff aus der angeschlossenen Tankanlage, die beispielsweise bei einem Tankdruck von ca. 18 bar betrieben wird, gefüllt. Nach der Befüllung des Dosierbehälters 7, was z.B. nach 30 Sekunden erreicht ist, wird das Ventil 1 wieder geschlossen. Dann wird das Ventil 4 geöffnet und der Druck im Dosierbehälter 7 steigt bis zum Druckausgleich an. Ventil 2 wird geöffnet, so dass der flüssige Sauerstoff in den kalten Teil 9 des Verdampfers fließt. Dabei erfolgt ein Druckausgleich über Ventil 4. Durch Verdampfen des flüssigen Sauerstoffs steigt der Druck im Verdampfer 9, 10 bzw. in dem Sauerstoffflaschenbündel 14 entsprechend dem Volumenverhältnis. Beim Unterschreiten des vorgegebenen Mindestdrucks von z.B. 48 bar werden die oben beschriebenen Schritte wiederholt.In the initial situation, the valves 1 and 5 are closed. The gas is removed via valve 3. When the valve 3 is open, the gas pressure in the oxygen cylinder bundle 14 drops. When the pressure falls below a predetermined minimum pressure of, for example, 48 bar, the valves 2 and 4 are closed. To release the dosing container 7 to ambient pressure, the valve 5 is opened and closed again after about 10 seconds. Subsequently, the valve 1 is opened and the dosing 7 filled with liquid oxygen from the connected tank system, which is operated for example at a tank pressure of about 18 bar. After filling the dosing tank 7, which is achieved, for example, after 30 seconds, the valve 1 is closed again. Then the valve 4 is opened and the pressure in the dosing tank 7 increases until pressure equalization. Valve 2 is opened so that the liquid oxygen flows into the cold part 9 of the evaporator. In this case, a pressure equalization takes place via valve 4. By evaporation of the liquid oxygen increases Pressure in the evaporator 9, 10 and in the oxygen cylinder bundle 14 according to the volume ratio. When falling below the predetermined minimum pressure of eg 48 bar, the steps described above are repeated.

Durch die Entlüftung des Dosierbehälters 7 mit einem Volumen von z.B. 6 Liter bei 48 bar entsteht ein Gasverlust (6 Liter x 48 bar) von 288 Liter. Prozentual gesehen betragen die theoretischen Verluste (288 Liter/5.118 Liter) 5,63%. In der Praxis dürften diese Verluste bei 6 bis 8% liegen. Durch folgende Nutzung des Abgases bei einem Druck von ca. 2 bis 3 bar können jedoch diese Verluste minimiert werden:By venting the dosing container 7 with a volume of e.g. 6 liters at 48 bar creates a gas loss (6 liters x 48 bar) of 288 liters. In percentage terms, the theoretical losses (288 liters / 5,118 liters) are 5.63%. In practice, these losses are likely to be 6 to 8%. However, these losses can be minimized by the following use of the exhaust gas at a pressure of about 2 to 3 bar:

Das Gas kann z.B. zum Antrieb von pneumatischen Ventilen anstelle von Druckluft eingesetzt werden. Bei Verwendung der Gasdruckerhöhungsanlage zur Desintegration von Klärschlämmen kann das Gas auch für andere Prozesse bei geringerem Gasdruck zur Anwendung kommen. Beispielsweise kann Sauerstoff zur zusätzlichen Begasung von Belebungsanlagen in Klärwerken eingesetzt werden. Auch eine Teilentspannung in den Tank zum Druckaufbau ist möglich.The gas may e.g. used to drive pneumatic valves instead of compressed air. When using the gas pressure booster for the disintegration of sewage sludge, the gas can also be used for other processes with lower gas pressure. For example, oxygen can be used for the additional fumigation of activated sludge plants in sewage treatment plants. A partial relaxation in the tank to build up pressure is possible.

Durch einfache Anpassung der Volumenverhältnisse von Dosierbehälter 7, Verdampfer 9, 10 und Sauerstoffflaschenbündel 14 ist die Anlage für jeden Druck und jede Gasmenge anwendbar.By simple adaptation of the volume ratios of dosing 7, evaporator 9, 10 and oxygen cylinder bundle 14, the system for each pressure and each amount of gas is applicable.

Das folgende Auslegungsbeispiel betrifft den Einsatz der Gasdruckerhöhungsanlage zur Desintegration von Klärschlämmen. Dabei werden die Klärschlämme in einen Reaktor gefüllt und unter hohem Druck mit Sauerstoff begast. Durch plötzliches Entspannen der mit Gas gesättigten Mikroorganismen kommt es zu einem Aufplatzen der Zellwände, wodurch die Entwässerbarkeit des Klärschlamms wesentlich verbessert wird. Der Reaktor zur Desintegration von Klärschlämmen muss also diskontinuierlich mit einem unter hohem Druck stehenden Sauerstoffgas versorgt werden. Hierzu wird eine Gasdruckerhöhungsanlage mit folgenden technischen Daten eingesetzt:

  • Gas für die Desintegration: Sauerstoff
  • Erforderlicher Gasdruck im Desintegrationsreaktor: maximal 45 bar
  • Erforderlicher Gasdurchsatz (Gasdosierung 60 Nm3/h): 5 Nm3/5 Minuten
  • Gasbedarf: 3 bis 4 mal pro Stunde
  • Betriebszeit: 8 bis 12 Stunden pro Tage
  • Gasspeicher: Sauerstoff-Flaschenbündel
  • Volumen des Dosierbehälters: 6 Liter
  • Volumen des Verdampfers (kalter Teil): 2 bis 10 Liter
  • Volumen des Flaschenbündels: 600 Liter
  • Maximaler Systemdruck: 48 bar
  • 1 Liter Sauerstoff (flüssig) entspricht 853 Liter Sauerstoff (gasförmig) bzw. 0,85 Kubikmeter bei 1 bar.
  • 6 Liter Sauerstoff (flüssig) entsprechen 5.118 Liter (gasförmig) bzw. 5,1 Kubikmeter bei 1 bar.
The following design example relates to the use of the gas pressure booster for the disintegration of sewage sludge. The sewage sludge is filled into a reactor and gassed with oxygen under high pressure. Sudden release of the gas-saturated microorganisms will burst the cell walls, significantly improving the drainability of the sewage sludge. The reactor for the disintegration of sewage sludge must therefore be supplied discontinuously with a high pressure oxygen gas. For this purpose, a gas pressure booster with the following technical data is used:
  • Gas for disintegration: oxygen
  • Required gas pressure in the disintegration reactor: maximum 45 bar
  • Required gas flow rate (gas dosage 60 Nm 3 / h): 5 Nm 3/5 Minutes
  • Gas needs: 3 to 4 times per hour
  • Operating time: 8 to 12 hours per day
  • Gas storage: oxygen cylinder bundles
  • Volume of the dosing tank: 6 liters
  • Volume of the evaporator (cold part): 2 to 10 liters
  • Volume of the bottle bundle: 600 liters
  • Maximum system pressure: 48 bar
  • 1 liter of oxygen (liquid) corresponds to 853 liters of oxygen (gaseous) or 0.85 cubic meters at 1 bar.
  • 6 liters of oxygen (liquid) correspond to 5,118 liters (gaseous) and 5.1 cubic meters at 1 bar.

Gemäß der Beziehung p x V = konstant [200(bar)x0,6 (m3)=120(m3)] beträgt das Sauerstoffvolumen des Gasspeichers bei 48 bar (48 bar x 0,6 m3) 28,8 Kubikmeter.According to the relationship px V = constant [200 (bar) x 0.6 (m 3 ) = 120 (m 3 )], the oxygen volume of the gas storage at 48 bar (48 bar x 0.6 m 3 ) is 28.8 cubic meters.

Bei einer Einspeisung von 6 Liter (= 5,1 m3) flüssigem Sauerstoff steigt der Druck (ohne gleichzeitige Gasentnahme) auf: 28 , 8 m 3 + 5 , 1 m 3 = 33 , 9 m 3

Figure imgb0001
33 , 9 m 3 × ( 200 bar / 120 m 3 ) = 56 , 5 bar
Figure imgb0002
At a feed of 6 liters (= 5.1 m 3 ) of liquid oxygen, the pressure rises (without simultaneous gas sampling) on: 28 . 8th m 3 + 5 . 1 m 3 = 33 . 9 m 3
Figure imgb0001
33 . 9 m 3 × ( 200 bar / 120 m 3 ) = 56 . 5 bar
Figure imgb0002

Claims (7)

  1. Device for the increase of gas pressure of low-temperature liquefied gases from tank installations, characterized in that the tank installation can be connected, via a delivery line (6) having a valve (1), to a metering container (7) which is itself connected, via a connecting line (8) having a valve (2), to an evaporator (9, 10), on the one hand the evaporator (9, 10) being connected to the delivery line (6) to the metering container (7) via a return line (11), which has a valve (4) and from which a venting line (12) having a valve (5) branches off, and, on the other hand, an extraction line (13), which has a valve (3), leading away from the evaporator.
  2. Device according to Claim 1, characterized in that the extraction line (13) is connected to at least one gas accumulator (14).
  3. Device according to Claim 2, characterized in that the volume of the metering container (7) and the volume of the gas accumulator (14) are in a ratio of 1:10 to 1:200.
  4. Device according to one of Claims 1 to 3, characterized in that the evaporator (9, 10) is designed as an air-heated evaporator.
  5. Device according to one of Claims 1 to 3, characterized in that the evaporator (9, 10) is designed as a water-bath evaporator.
  6. Device according to one of Claims 2 to 5, characterized in that the gas accumulator (14) is designed as a gas holder or bottle bundle.
  7. Device according to one of Claims 1 to 6, characterized in that the metering container (7) is vacuum-insulated.
EP05028677A 2005-10-27 2005-12-29 Apparatus to increase pressure Not-in-force EP1780460B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005051609 2005-10-27
DE102005056102A DE102005056102A1 (en) 2005-10-27 2005-11-24 Device for raising the gas pressure

Publications (2)

Publication Number Publication Date
EP1780460A1 EP1780460A1 (en) 2007-05-02
EP1780460B1 true EP1780460B1 (en) 2007-12-26

Family

ID=35892505

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05028677A Not-in-force EP1780460B1 (en) 2005-10-27 2005-12-29 Apparatus to increase pressure

Country Status (4)

Country Link
EP (1) EP1780460B1 (en)
AT (1) ATE382135T1 (en)
DE (2) DE102005056102A1 (en)
WO (1) WO2007048488A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8151795B2 (en) * 2008-06-30 2012-04-10 Linde Ag Method of demand valve oxygen therapy for rapid abort of cluster headache
WO2023025410A1 (en) * 2021-08-23 2023-03-02 Linde Gmbh Method and conveying device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL45660C (en) * 1935-01-24
BE413741A (en) * 1935-03-01 1900-01-01
DE683735C (en) * 1936-05-12 1939-11-14 Paul Hadamovsky Process for cooling, liquefying and storing chlorine and other aggressive gases
US2291288A (en) * 1939-08-10 1942-07-28 Air Reduction Apparatus for dispensing gas
GB987019A (en) * 1962-11-21 1965-03-24 Saunders Roe & Nuclear Entpr Improvements in or relating to the filling of containers with gas
FR2379018A1 (en) * 1976-12-23 1978-08-25 Air Liquide CRYOGENIC PROCESS AND PLANT FOR DISTRIBUTION OF GAS UNDER PRESSURE
US4961325A (en) * 1989-09-07 1990-10-09 Union Carbide Corporation High pressure gas supply system
WO1993021470A1 (en) * 1992-04-14 1993-10-28 Tovarischestvo S Ogranichennoi Otvetstvennostju, Firma 'megma Ars' (Megma Ars Ltd) Method and installation for gas generation
US5421162A (en) * 1994-02-23 1995-06-06 Minnesota Valley Engineering, Inc. LNG delivery system
JPH11505007A (en) * 1995-05-02 1999-05-11 リンデ アクチェンゲゼルシャフト High pressure gas supply method
DE19704362C1 (en) * 1997-02-05 1998-01-02 Linde Ag Vehicle tank filling device for cryogenic fuel
US6044647A (en) * 1997-08-05 2000-04-04 Mve, Inc. Transfer system for cryogenic liquids
US5937655A (en) * 1997-12-04 1999-08-17 Mve, Inc. Pressure building device for a cryogenic tank
US6000226A (en) * 1998-07-30 1999-12-14 The Boc Group, Inc. Method and apparatus for storing and dispensing a liquid composed of oxygen containing mixture
GB9825763D0 (en) * 1998-11-25 1999-01-20 Boc Group Plc Filling containers with gas
DE19919639C1 (en) * 1999-04-30 2000-11-16 Messer Griesheim Gmbh Process for providing a continuous supply of natural gas
US6230516B1 (en) * 2000-02-04 2001-05-15 Andonian Family Nominee Trust Apparatus for mixing a multiple constituent liquid into a container and method
US6786053B2 (en) * 2002-09-20 2004-09-07 Chart Inc. Pressure pod cryogenic fluid expander

Also Published As

Publication number Publication date
WO2007048488A1 (en) 2007-05-03
DE102005056102A1 (en) 2007-05-03
DE502005002361D1 (en) 2008-02-07
ATE382135T1 (en) 2008-01-15
EP1780460A1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
DE69430310T2 (en) SYSTEM AND METHOD FOR COMPRESSING NATURAL GAS
EP1360084B1 (en) Filling station for hydrogen
EP2035739B1 (en) Method for operating a device for filling a container with cryogenically stored fuel
CH615518A5 (en) Gas-mixing device for breathing, diving, medical and laboratory technology
DE102006047313B4 (en) Device for the rapid filling of compressed gas containers
EP2565514A1 (en) Device and method for topping up a storage tank
DE102007049458B4 (en) Compressed gas system and method for storing a gas
EP3270033B1 (en) Method for filling the tank of in particular hgvs with natural gas
EP1780460B1 (en) Apparatus to increase pressure
EP1828592B1 (en) Fuel supply device for a motor vehicle that can be operated by hydrogen
DE102017205642A1 (en) Process for the disposal of fuel and motor vehicle with fuel converter
EP4073416A1 (en) Filling apparatus for filling storage containers with comrpessed hydrogen, filling station having same and method for filling a storage container
WO2003060374A1 (en) Method for filling a storage tank with a gaseous fuel
DE3224608A1 (en) METHOD AND DEVICE FOR THE PRESSURE GAS SUPPLY
DE19730459C2 (en) Devices and methods for the isothermal refueling of natural gas vehicles with compressed natural gas CNG
EP1500864A2 (en) Process for filling a vehicle tank
DE2522450A1 (en) PNEUMATIC ENERGY SOURCE
DE102004050419A1 (en) Odorization of fuel medium e.g. cryogenic medium for a vehicle has accumulator which stores fluid medium in liquid, gaseous and/or in hydride form and/or at least one fuel medium leading line
DE19539329A1 (en) Compressed gas supply device for vehicle
DE102007052259A1 (en) Fuel supply device for proportional supply of hydrogen to consumer, particularly to internal combustion engine of motor vehicle, for burning gaseous fuel in combustion chamber, has hydrogen storage, particularly cryogenic tank
DE10164755A1 (en) Gas generating system has supply vessels, for reactants, placed under pressure through compressor, with additional dosing pumps for further pressure in transfer lines from gas generation component to reactants
EP4068955B1 (en) Co2 gas supply by means of an aquarium pressurized gas vessel with a nutrient substrate
DE102021213172A1 (en) Multi-stage compression device for compressing a gaseous medium, system and filling station having the same and method for multi-stage compression of a gaseous medium
DE2709036A1 (en) Power station for peak periods - uses natural gas pressure to turn turbine generators after first charging storage tank
DE202004003175U1 (en) Sea water desalination plant operated by liquid nitrogen, has evaporator pressurizing reverse osmosis unit and employs liberated gas to drive control equipment and liquids

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070417

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005002361

Country of ref document: DE

Date of ref document: 20080207

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080406

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080526

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071229

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080627

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20121213

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121208

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140701

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141223

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002361

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160701