EP1465453B1 - Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen - Google Patents

Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen Download PDF

Info

Publication number
EP1465453B1
EP1465453B1 EP04004215A EP04004215A EP1465453B1 EP 1465453 B1 EP1465453 B1 EP 1465453B1 EP 04004215 A EP04004215 A EP 04004215A EP 04004215 A EP04004215 A EP 04004215A EP 1465453 B1 EP1465453 B1 EP 1465453B1
Authority
EP
European Patent Office
Prior art keywords
microphone
microphones
directional
omnidirectional
order
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04004215A
Other languages
English (en)
French (fr)
Other versions
EP1465453A2 (de
EP1465453A3 (de
Inventor
Torsten Dr. Niederdränk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1465453A2 publication Critical patent/EP1465453A2/de
Publication of EP1465453A3 publication Critical patent/EP1465453A3/de
Application granted granted Critical
Publication of EP1465453B1 publication Critical patent/EP1465453B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • H04R29/006Microphone matching

Definitions

  • the invention relates to a method for automatic microphone adjustment in a directional microphone system having at least three omnidirectional microphones, wherein for generating a directional characteristic in each case two omnidirectional microphones are connected to a first and a second directional microphone first order.
  • the invention relates to a directional microphone system having at least a first, a second and a third omnidirectional microphone, wherein the first and the second omnidirectional microphone to a first directional microphone first order and the second and the third omnidirectional microphone to a second directional microphone of the first order are interconnected ,
  • a hearing aid with three omnidirectional microphones known. From two microphones in each case a directional microphone of the first order is formed by inverting and delaying the microphone signal generated by a microphone and then adding both microphone signals. Similarly, by delaying and inverting the microphone signal formed by a first order directional microphone and then adding one to another Directional microphone formed first order microphone signal a directional microphone with directional characteristics of the second order (directional microphone second order) are formed.
  • a hearing aid with automatic microphone adjustment and a method for operating such a hearing aid known.
  • a difference element for subtracting mean values of the output signals of the microphones and a differential element downstream analysis / control unit for controlling the amplification of the output signal of at least one microphone is provided.
  • the regulation of the amplification takes place in such a way that the mean values of the microphone signals are brought into agreement.
  • the microphone adjustment only the amplitudes of the microphones are adjusted.
  • a hearing aid with directional microphone characteristic known.
  • the microphones downstream high passes are adjusted in their lower limit frequencies.
  • the lower limit frequency of a microphone is adjusted by a microphone connected downstream high pass of the cutoff frequency of the other microphone.
  • a hearing device and an adaptive method for adjusting the microphones of a directional microphone system in the hearing device are known.
  • characteristics of the signals of both microphones are detected via a comparison element, a control element and an actuator and aligned with each other at a detected deviation.
  • a disadvantage of the known method for microphone adjustment in directional microphones is their insufficient effect in microphone mismatches, which are caused in particular by aging and pollution effects.
  • Object of the present invention is therefore to provide a method for automatic microphone adjustment in a directional microphone system and a directional microphone system that allow without external intervention during normal operation of the directional microphone system to adapt the amplitude response as well as the phase response of the microphones of the directional microphone system.
  • a directional microphone system having at least a first, a second and a third omnidirectional microphone, wherein two omnidirectional microphones are connected to a first directional microphone first order and a second directional microphone first order, wherein level measuring means for determining the time-averaged signal level are provided by the omnidirectional microphones and the microphone signals generated by the first-order directional microphones, wherein an amplitude control means for adjusting the amplitudes in at least two of the three microphone signals generated by the omnidirectional microphones in dependence of the detected signal levels and wherein a phase control means for adjusting the phase of the microphone signal generated by at least one omnidirectional microphone as a function of the signal detected by the level measuring devices in the directional microphones of the first order level is present.
  • directional microphones with directional characteristics of second and higher order By electrically interconnecting at least three omnidirectional microphones directional microphones with directional characteristics of second and higher order (directional microphones of the second and higher order) can be formed.
  • a directional microphone of the first order can be built up by electrically interconnecting two omnidirectional microphones
  • a directional microphone of the second order can be set up by electrically interconnecting two directional microphones of the first order.
  • electrical interconnection usually a microphone signal is inverted and delayed in time and added to a further microphone signal of the same order.
  • the invention provides an amplitude adjustment of the microphone signals generated by the omnidirectional microphones of the microphone system.
  • a measure of the time-averaged sound field energy is respectively obtained from the microphone signals in the case of the microphone signals.
  • the microphone signals are then adjusted so that after the adjustment, the time-averaged Sound field energy in all microphone signals at least approximately coincident.
  • a measure of the time-averaged sound field energy is preferably the signal level.
  • other dimensions eg the RMS value, can also be used.
  • a control or regulation of the respectively obtained from a microphone signal measure of the time-averaged sound field energy can be done. For example, individual microphone signals are multiplied or filtered by a factor. Furthermore, the gain in the microphones downstream amplifiers can be changed.
  • the first method step or the entire method according to the invention can be performed in narrowband in several channels or broadband.
  • the first method step causes the amplitudes of the microphone signals to be adjusted at a certain point in the signal paths of the microphones.
  • phase position of the individual microphones must also be taken into account in directional microphones of higher order. It is less the absolute phase of the microphone signals, but rather their relative phase shift from each other of interest.
  • At least two first order directional microphones are required to form a second order directional microphone system. These in turn can be constructed by pairing at least three omnidirectional microphones. The amplitudes of the three omnidirectional microphones are adjusted as described above in a first method step. In a second method step, the amplitudes of the directional microphones are matched first order. For this purpose too, a measure of the time-averaged sound field energy, for example the signal level, is obtained and matched from the microphone signals of the directional microphones of the first order. In difference However, to the omnidirectional microphone signals, the adjustment is done not by an amplitude or gain adjustment of the microphone signals of the directional microphones of the first order, but by phase shifting at least one microphone signal generated by an omnidirectional microphone.
  • the phase of this microphone signal is varied until the directional microphones of the first order in their amplitude response match as exactly as possible. Since the omnidirectional microphones are already matched in their amplitudes, the amplitudes of the directional microphones of the first order only match exactly when the phase shift between each two omnidirectional microphones, which are connected to a directional microphone system of the first order, match. This results in their signal transmission behavior largely symmetrical directional microphones of the first order.
  • the invention offers the advantage that the phasing of individual microphones required in a directional microphone system of higher order is attributed to a relatively easy amplitude balance to be realized. Furthermore, the microphone adjustment can be done during normal operation of the directional microphone system. In addition, several signal sources may be present during the microphone adjustment and arranged arbitrarily in the room.
  • the method described for a second-order directional microphone system can analogously also be extended to directional microphone systems of higher order.
  • the method is also not limited to three omnidirectional microphones as signal inputs.
  • directional microphones of the first (and higher) order can be formed and aligned.
  • the method can be broadband or narrowband in only one frequency range or multiple parallel frequency channels.
  • a directional microphone system constructed symmetrically with respect to the external geometry facilitates the implementation of a method according to the invention.
  • the sound inlet openings of the omnidirectional microphones are advantageously located on a straight line, wherein adjacent sound inlet openings each have the same distance from each other. Then, e.g. Due to the geometry-related transit time differences of the individual microphone signals for microphone matching are not excluded. Since in the method according to the invention the time-averaged sound field energy is determined and adjusted from the microphone signals, runtime differences play no role, which arise, for example, in that a microphone with a sound inlet located further forward with respect to a signal source receives a sound signal earlier than a microphone with a rearward sound inlet opening.
  • the method for adjusting the relative phase error between individual pairs of microphones can be extended to the effect that the absolute phase of individual microphones or directional microphones is matched with the same order. This shall be described below without limiting the generality in the case of directional microphones of the first order which have been adjusted according to the method described above.
  • a first and a second directional microphone of the first order are adjusted according to the method described above. Furthermore, it is assumed that at least one source of interference is present in the rear region of a hearing device wearer, ie in the range between 90 ° and 270 ° with respect to the straight-ahead viewing direction (0 ° direction), which can almost always be assumed in real environmental situations. Then the phase in the microphone signal of an omnidirectional Microphones of the first directional microphone in a limited range of values changed so that the amplitude of the microphone signal of the first directional microphone of the first order decreases with respect to the amplitude of the microphone signal of the second directional microphone first order.
  • the limited value range of the phase shift is determined so that the incision of the sensitivity of the directional microphone (Notch) by the phase shift in the rear region between 90 ° and 270 ° remains.
  • the phase is adjusted so that the amplitude of the microphone system of the first directional microphone of the first order has a minimum compared to the amplitude of the microphone signal of the second directional microphone of the first order.
  • the two directional microphones of the first order are reconciled by also in the second directional microphone first order a phase shift in the microphone signal of an omnidirectional microphone of the second directional microphone first order is adjusted so that the two directional microphones are aligned again.
  • the above-described approach may also be modified such that the phase in the microphone signal of an omnidirectional microphone of the first directional microphone is changed only a small step in the direction that reduces the amplitude of the first directional microphone of the first order compared to the amplitude of the second directional microphone ,
  • the step size can be set to shift the notch by 2 ° with each step.
  • the two directional microphones of the first order are adjusted again as described above. This procedure is repeated until the amplitude in the microphone signal of the first directional microphone of the first order compared to the amplitude of the microphone signal of the second directional microphone first order only insignificantly reduce. Both directional microphones are then optimally aligned to the interference signal or the interference signals.
  • This procedure leads to a comparison of the absolute phase position of the omnidirectional microphones. Also, this phase adjustment is advantageously attributed to a relatively easy to implement amplitude balance.
  • FIG. 1 shows a constructed of three omnidirectional microphones 1, 2 and 3 directional microphone system with directional characteristics of the second order (directional microphone system second order).
  • the two omnidirectional microphones 1 and 2 form a first directional microphone of the first order.
  • the resulting from the omnidirectional microphone 2 microphone signal is delayed in a delay element 4 and inverted in an inverter 5, before being added by the summer 8 to the microphone signal of the omnidirectional microphone 1.
  • the microphone signal of the omnidirectional microphone 3 is delayed in a delay element 6, inverted in an inverter 7 and added in a summer 9 to the microphone signal of the omnidirectional microphone 2.
  • the microphone signal of the second directional microphone of the first order formed by the two omnidirectional microphones 2 and 3 is subsequently delayed in a delay element 10, in an inverter 11 inverted and finally added in a summer 12 to the microphone signal of the first directional microphone of the first and the second omnidirectional microphone formed first order.
  • the precise expression of the directional characteristic which can be illustrated in a directional diagram, can be varied by different settings of the signal delays in the delay elements 4, 6 and 10.
  • FIG. 1 also shows FIG. 2 a directional microphone system second order, which is composed of only three omnidirectional microphones 21, 22 and 23 and thereby takes into account in particular the limited space for use in a hearing aid.
  • a first directional microphone of the first order is formed in the summer 25 by delaying the microphone signal generated by the omnidirectional microphone 22 and inverting it in a delay and inverter unit 24 and then summing it to the microphone signal produced by the omnidirectional microphone 21.
  • the microphone pair 22, 23 also forms a second directional microphone of first order by delaying and inverting the microphone signal generated by the omnidirectional microphone 23 in the delay and inverter unit 26 and then adding the microphone signal generated by the omnidirectional microphone 22 in the summer 27.
  • the signal delays in the delay and inverter units 24 and 26 are initially set equal.
  • a first method step of the method according to the invention firstly the amplitudes of the microphone signals generated by the three omnidirectional microphones 21, 22 and 23 are adjusted.
  • the time-averaged signal levels are first obtained from the microphone signals in the level measuring devices 28, 29 and 30.
  • the measured signal levels are fed to an amplitude control device 31. This controls in at least two of the three microphone signal paths existing multipliers 32 and 33, so that deviations from the Microphone signals detected time-averaged signal level can be compensated.
  • the amplitude response of the three omnidirectional microphones 21, 22 and 23 is aligned.
  • the time-averaged signal levels of the microphone signals generated by the two directional microphones of the first order are obtained by level measuring means 34 and 35. These signal levels are supplied to a control unit 36.
  • the control unit 36 controls a phase compensation filter 38, by which a phase shift in the microphone signal generated by the omnidirectional microphone 22 is adjusted such that the same time-averaged signal levels are measured by the two level measuring devices 34 and 35. This means that the phase error present in the two microphone pairs becomes equal (relative phase adjustment). Due to the same signal transmission behavior, the two microphone pairs are therefore ideally suited for the formation of a directional microphone of the second order.
  • the microphone signal generated by the second directional microphone of the first order can be delayed in the delay and inverter unit 39 and added in the summer 40 to the microphone signal of the first directional microphone of the first order.
  • the invention has the advantage that the phase alignment of the microphones has been attributed to an amplitude balance that is easy to implement.
  • the adjustment can be done under real environmental conditions, with any number of sound sources may be present.
  • a continuation of the method according to the invention provides that, following the previously performed microphone adjustment, the phase of the microphone signal generated by the omnidirectional microphone 21 is adjusted by controlling the phase compensation unit 37 by the control unit 36 such that the one measured by the level measuring devices 34 and 35 Signal level of the first-order directional microphones reduces the signal level of the first directional microphone compared to the signal level of the second directional microphone.
  • this reduction is due to the fact that the notch of the first directional microphone of the first order, that is, the incision in the directional characteristic, which shows the direction of least sensitivity, is better aligned with the one or more interferers present in the respective environmental situation.
  • the phase variation is limited to a range of values, so that the Notch can be adjusted only in a certain angular range, e.g. Between 90 ° and 270 ° relative to the straight-ahead viewing direction of a hearing device wearer (0 ° direction).
  • phase compensation unit 38 is adjusted so that the signal levels of the microphone signals of the directional microphones of the first order again match as closely as possible, that is, the second directional microphone of the first order is adapted again to the first directional microphone of the first order.
  • an alternative embodiment provides that the notch of the first directional microphone first order is gradually rotated in small steps, for example 2 °, in the direction in which a reduction of the signal level with respect to the signal level of the microphone signal of the second directional microphone results first order. Then the two directional microphones of the first order are adjusted again as described above. This procedure is repeated until at most a slight reduction in the signal level of the microphone signal of the first directional microphone of the first order can be achieved.
  • this continuous cyclic algorithm represents a three-stage control loop, with the aid of which the three omnidirectional microphones can be adjusted according to magnitude and phase. It can be a uniform small step size or an adaptive step size can be used.
  • the realization of the phase compensation units can be done for example by delay elements or digital filters. By means of digital filters, it is possible to achieve a broadband or different phase compensation for different frequency ranges.
  • the last-described absolute phasing of the microphones is performed only when the signal levels in the current environmental situation exceed a certain threshold. Then, as a rule, it can be assumed that interference signals are also present. However, this is not a disadvantage, since in ambient situations with only very low signal levels, a directivity and thus obtained noise removal are only of minor importance anyway.
  • the second-order directional microphone system formed for the embodiment of a three-omnidirectional microphones can also be analogously transmitted to directional microphone systems with more than three omnidirectional microphones and higher than second order.
  • FIG. 3 shows a behind the ear portable hearing aid 50 with a directional microphone system according to the invention.
  • the hearing aid 50 includes a battery chamber 51 for arranging a battery 52 for powering the hearing aid 50, a signal processing electronics 53 and an MTO switch 54 for switching off the hearing aid 50 (switch position 0) and for switching on and switching the reception between the directional microphone system (switch position M ) and a telecoil (switch position T).
  • the directional microphone system of the hearing aid device 50 comprises three omnidirectional microphones 55, 56 and 57, to each of which a sound inlet opening 58, 59 and 60 is assigned.
  • the sound inlet openings 58-60 are arranged laterally on the hearing aid 50 in the embodiment. They are at least approximately on a straight line 61 and have approximately the same distance from each other. Unlike in the exemplary embodiment shown, the sound inlet openings 58-60 could also be arranged on the upper side of the housing, as is usual with hearing aids that can be worn behind the ear.
  • the microphone adjustment can be carried out with the hearing aid worn in real environmental conditions. As a result, in particular dirt and aging phenomena of the microphones 55-57 in the hearing aid 50 are compensated.
  • the hearing aid 50 is provided in a known manner with a support hook 62.
  • An acoustic input signal supplied to the hearing aid 50 is converted into electrical input signals in the microphones 55-57, processed in the signal processing electronics 53, and finally converted back into an acoustic signal in a receiver 63 and (not shown) by the wearing hook 62 and a sound tube connected thereto Auditory hearing aid wearer supplied.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Neurosurgery (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum automatischen Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei omnidirektionalen Mikrofonen, wobei zum Erzeugen einer Richtcharakteristik jeweils zwei omnidirektionale Mikrofone zu einem ersten bzw. einem zweiten Richtmikrofon erster Ordnung verschaltet sind.
  • Ferner betrifft die Erfindung ein Richtmikrofonsystem mit wenigstens einem ersten, einem zweiten und einem dritten omnidirektionalen Mikrofon, wobei das erste und das zweite omnidirektionale Mikrofon zu einem ersten Richtmikrofon erster Ordnung und das zweite und das dritte omnidirektionale Mikrofon zu einem zweiten Richtmikrofon erster Ordnung miteinander verschaltet sind.
  • Hörgeschädigte leiden häufig unter einer verminderten Kommunikationsfähigkeit in Störlärm. Zur Verbesserung des Signal/Störgeräusch-Verhältnisses werden seit einiger Zeit Richtmikrofonanordnungen eingesetzt, deren Nutzen für den Hörgeschädigten unumstritten ist. Die Ausgrenzung von rückwärtig empfangenen Störsignalen sowie die Fokussierung auf frontal einfallende Schalle ermöglichen eine bessere Verständigung in Alltagssituationen.
  • Aus der WO 00/76268 A2 ist ein Hörgerät mit drei omnidirektionalen Mikrofonen bekannt. Aus jeweils zwei Mikrofonen wird durch Invertierung und Verzögerung des von einem Mikrofon erzeugten Mikrofonsignals und anschließende Addition beider Mikrofonsignale jeweils ein Richtmikrofon erster Ordnung gebildet. Ebenso kann durch Verzögerung und Invertierung des von einem Richtmikrofon erster Ordnung gebildeten Mikrofonsignals und anschließende Addition mit einem von einem weiteren Richtmikrofon erster Ordnung gebildeten Mikrofonsignal ein Richtmikrofon mit Richtcharakteristik zweiter Ordnung (Richtmikrofon zweiter Ordnung) gebildet werden.
  • Insbesondere bei Richtmikrofonen höherer Ordnung tritt das Problem auf, dass die Systeme äußerst sensibel gegenüber Verstimmungen der Übertragungsfunktion der Mikrofone nach Betrag und Phase sind, die z.B. durch Alterungs- als auch durch Verschmutzungseffekte hervorgerufen werden. Während bei der Anwendung von Richtmikrofonen erster Ordnung in Hörgeräten oftmals eine Amplitudenabstimmung der Mikrofone ausreichend ist, muss bei Richtmikrofonen höherer Ordnung die Phasenlage der einzelnen Mikrofone ebenfalls sehr genau aufeinander abgestimmt sein.
  • Aus der DE 198 22 021 A1 ist ein Hörgerät mit automatischem Mikrofonabgleich sowie ein Verfahren zum Betrieb eines derartigen Hörgerätes bekannt. Bei dem bekannten Hörgerät ist ein Differenzelement zur Subtraktion von Mittelwerten der Ausgangssignale der Mikrofone und eine dem Differenzelement nachgeschaltete Analyse-/Regeleinheit zur Regelung der Verstärkung des Ausgangssignals mindestens eines Mikrofons vorgesehen. Die Regelung der Verstärkung erfolgt dabei derart, dass die Mittelwerte der Mikrofonsignale in Übereinstimmung gebracht werden. Bei dem Mikrofonabgleich werden lediglich die Amplituden der Mikrofone abgeglichen.
  • Aus der DE 199 18 883 C1 ist ein Hörhilfegerät mit Richtmikrofoncharakteristik bekannt. Bei dem Hörhilfegerät werden zum Amplituden- und/oder Phasenabgleich zweier omnidirektionaler Mikrofone den Mikrofonen nachgeschaltete Hochpässe in ihren unteren Grenzfrequenzen angepasst. Dabei wird jeweils die untere Grenzfrequenz des einen Mikrofons durch einen dem Mikrofon nachgeschalteten Hochpass der Grenzfrequenz des anderen Mikrofons angeglichen.
  • Aus der DE 198 49 739 A1 sind ein Hörgerät sowie ein adaptives Verfahren zum Abgleich der Mikrofone eines Richtmikrofonsystems in dem Hörgerät bekannt. Um eine unerwünschte Fälschung der Richtmikrofoncharakteristik bei einem Richtmikrofonsystem mit wenigstens zwei Mikrofonen durch nicht aufeinander abgestimmte Mikrofone zu vermeiden, werden Kennwerte der Signale beider Mikrofone über ein Vergleichselement, ein Regelelement und ein Stellelement erfasst und bei einer festgestellten Abweichung aneinander angeglichen.
  • Nachteilig bei den bekannten Verfahren zum Mikrofonabgleich bei Richtmikrofonen ist deren unzureichende Wirkung bei Mikrofon-Fehlabstimmungen, die insbesondere durch Alterungs- und Verschmutzungseffekte hervorgerufenen werden.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zum automatischen Mikrofonabgleich bei einem Richtmikrofonsystem sowie ein Richtmikrofonsystem anzugeben, die ohne äußeres Zutun auch während des normalen Betriebes des Richtmikrofonsystems eine Anpassung des Amplitudengangs als auch des Phasengangs der Mikrofone des Richtmikrofonsystems ermöglichen.
  • Diese Aufgabe wird gelöst durch ein Verfahren zum automatischen Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei omnidirektionalen Mikrofonen, wobei zum Erzeugen einer Richtcharakteristik jeweils zwei omnidirektionale Mikrofone zu einem ersten bzw. einem zweiten Richtmikrofon erster Ordnung verschaltet sind, mit folgenden Verfahrensschritten:
    • Abgleichen der Amplituden der von den omnidirektionalen Mikrofonen erzeugten Mikrofonsignale,
    • Abgleichen der Amplituden der von den Richtmikrofonen erster Ordnung erzeugten Mikrofonsignale durch Phasenverschiebung wenigstens eines von einem der drei omnidirektionalen Mikrofone erzeugten Mikrofonsignale.
  • Ferner wird die Aufgabe gelöst durch ein Richtmikrofonsystem mit wenigstens einem ersten, einem zweiten und einem dritten omnidirektionalen Mikrofon, wobei jeweils zwei omnidirektionale Mikrofone zu einem ersten Richtmikrofon erster Ordnung und einem zweiten Richtmikrofon erster Ordnung miteinander verschaltet sind, wobei Pegelmesseinrichtungen zum Ermitteln der zeitlich gemittelten Signalpegel der von den omnidirektionalen Mikrofonen und der von den Richtmikrofonen erster Ordnung erzeugten Mikrofonsignale vorhanden sind, wobei eine Amplitudensteuereinrichtung zum Einstellen der Amplituden bei wenigstens zwei der drei von den omnidirektionalen Mikrofonen erzeugten Mikrofonsignale in Abhängigkeit der ermittelten Signalpegel vorhanden ist und wobei eine Phasensteuereinrichtung zum Einstellen der Phase des von wenigstens einem omnidirektionalen Mikrofon erzeugten Mikrofonsignals in Abhängigkeit der von den Pegelmesseinrichtungen bei den Richtmikrofonen erster Ordnung ermittelten Signalpegel vorhanden ist.
  • Durch elektrische Verschaltung wenigstens dreier omnidirektionaler Mikrofone können Richtmikrofone mit Richtcharakteristiken zweiter und höherer Ordnung (Richtmikrofone zweiter und höherer Ordnung) gebildet werden. Insbesondere lässt sich durch elektrische Verschaltung zweier omnidirektionaler Mikrofone ein Richtmikrofon erster Ordnung, durch elektrische Verschaltung zweier Richtmikrofone erster Ordnung ein Richtmikrofon zweiter Ordnung usw. aufbauen. Bei der elektrischen Verschaltung wird üblicherweise ein Mikrofonsignal invertiert und zeitlich verzögert und zu einem weiteren Mikrofonsignal gleicher Ordnung addiert.
  • Die Erfindung sieht in einem ersten Verfahrensschritt eine Amplitudenanpassung der von den omnidirektionalen Mikrofonen des Mikrofonsystems erzeugten Mikrofonsignale vor. Zur Amplitudenanpassung wird bei den Mikrofonsignalen jeweils ein Maß der zeitlich gemittelten Schallfeldenergie aus den Mikrofonsignalen gewonnen. Die Mikrofonsignale werden dann derart abgeglichen, dass nach dem Abgleich die zeitlich gemittelte Schallfeldenergie bei allen Mikrofonsignalen zumindest näherungsweise übereinstimmt. Als Maß der zeitlich gemittelten Schallfeldenergie dient vorzugsweise der Signalpegel. Jedoch können auch andere Maße, z.B. der RMS-Wert, herangezogen werden. Zum Abgleich kann eine Steuerung oder Regelung des jeweils aus einem Mikrofonsignal gewonnenen Maßes der zeitlich gemittelten Schallfeldenergie erfolgen. Beispielsweise werden einzelne Mikrofonsignale mit einem Faktor multipliziert oder gefiltert. Weiterhin kann auch die Verstärkung bei den Mikrofonen nachgeschalteten Verstärkern verändert werden. Der erste Verfahrensschritt bzw. das gesamte Verfahren gemäß der Erfindung lässt sich schmalbandig in mehreren Kanälen oder auch breitbandig durchführen.
  • Der erste Verfahrensschritt bewirkt, dass ab einer bestimmten Stelle in den Signalpfaden der Mikrofone die Amplituden der Mikrofonsignale abgeglichen sind.
  • Während bei der Anwendung von Richtmikrofonen erster Ordnung oftmals eine Amplitudenabstimmung der Mikrofone ausreichend ist, muss bei Richtmikrofonen höherer Ordnung die Phasenlage der einzelnen Mikrofone ebenfalls berücksichtigt werden. Dabei ist weniger die absolute Phasenlage der Mikrofonsignale, sondern vielmehr deren relative Phasenverschiebung zueinander von Interesse.
  • Zur Ausbildung eines Richtmikrofonsystems zweiter Ordnung sind wenigstens zwei Richtmikrofone erster Ordnung erforderlich. Diese wiederum können durch paarweise Verschaltung wenigstens dreier omnidirektionaler Mikrofone aufgebaut sein. Die Amplituden der drei omnidirektionalen Mikrofone werden, wie oben beschrieben, in einem ersten Verfahrensschritt abgeglichen. In einem zweiten Verfahrensschritt werden die Amplituden der Richtmikrofone erster Ordnung abgeglichen. Auch hierzu wird aus den Mikrofonsignalen der Richtmikrofone erster Ordnung ein Maß der zeitlich gemittelten Schallfeldenergie, z.B. der Signalpegel, gewonnen und abgeglichen. Im Unterschied zu den omnidirektionalen Mikrofonsignalen erfolgt hierbei der Abgleich allerdings nicht durch eine Amplitudenoder Verstärkungseinstellung der Mikrofonsignale der Richtmikrofone erster Ordnung, sondern durch Phasenverschiebung wenigstens eines von einem omnidirektionalen Mikrofon erzeugten Mikrofonsignals. Die Phase dieses Mikrofonsignals wird so lange variiert, bis die Richtmikrofone erster Ordnung in ihrem Amplitudengang möglichst exakt übereinstimmen. Da die omnidirektionalen Mikrofone in ihren Amplituden bereits aufeinander abgestimmt sind, stimmen die Amplituden der Richtmikrofone erster Ordnung nur dann exakt überein, wenn die Phasenverschiebung zwischen jeweils zwei omnidirektionalen Mikrofonen, die zu einem Richtmikrofonsystem erster Ordnung verschaltet sind, übereinstimmen. Dadurch entstehen in ihrem Signalübertragungsverhalten weitgehend symmetrische Richtmikrofone erster Ordnung.
  • Die Erfindung bietet den Vorteil, dass der bei einem Richtmikrofonsystem höherer Ordnung erforderliche Phasenabgleich einzelner Mikrofone auf einen verhältnismäßig einfach zu realisierenden Amplitudenabgleich zurückgeführt wird. Weiterhin kann der Mikrofonabgleich während des normalen Betriebs des Richtmikrofonsystems erfolgen. Darüber hinaus dürfen auch mehrere Signalquellen während des Mikrofonabgleichs vorhanden und beliebig im Raum angeordnet sein.
  • Das für ein Richtmikrofonsystem zweiter Ordnung beschriebene Verfahren kann analog auch auf Richtmikrofonsysteme höherer Ordnung erweitert werden. Das Verfahren ist ferner nicht auf drei omnidirektionale Mikrofone als Signaleingänge beschränkt. So können auch bei mehr als drei omnidirektionalen Mikrofonen Richtmikrofone erster (und höherer) Ordnung gebildet und abgeglichen werden. Durch die Erfindung erfolgt in der Regel kein absoluter Phasenabgleich, sondern ein relativer Phasenabgleich bei Mikrofonpaaren, die zur Bildung eines Mikrofons der nächsthöheren Ordnung miteinander verschaltet werden. Das Verfahren kann breitbandig oder auch schmalbandig in nur einem Frequenzbereich oder mehreren parallelen Frequenzkanälen ausgeführt werden.
  • Ein in Bezug auf die äußere Geometrie symmetrisch aufgebautes Richtmikrofonsystem erleichtert die Durchführung eines Verfahrens gemäß der Erfindung. So befinden sich die Schalleintrittsöffnungen der omnidirektionalen Mikrofone vorteilhaft auf einer Geraden, wobei benachbarte Schalleintrittsöffnungen jeweils den gleichen Abstand zueinander aufweisen. Dann müssen z.B. durch die Geometrie bedingte Laufzeitunterschiede der einzelnen Mikrofonsignale zum Mikrofonabgleich nicht herausgerechnet werden. Da bei dem Verfahren gemäß der Erfindung die zeitlich gemittelte Schallfeldenergie aus den Mikrofonsignalen ermittelt und abgeglichen wird, spielen Laufzeitunterschiede keine Rolle, die beispielsweise dadurch entstehen, dass ein Mikrofon mit einer in Bezug auf eine Signalquelle weiter vorne liegenden Schalleintrittsöffnung ein Schallsignal früher empfängt als ein Mikrofon mit einer weiter hinten liegenden Schalleintrittsöffnung.
  • Das Verfahren zum Abgleich des relativen Phasenfehlers zwischen einzelnen Mikrofon-Pärchen lässt sich dahingehend erweitern, dass auch die absolute Phasenlage einzelner Mikrofone bzw. Richtmikrofone mit jeweils gleicher Ordnung angeglichen wird. Dies soll ohne Beschränkung der Allgemeinheit bei nach dem eingangs beschriebenen Verfahren abgeglichenen Richtmikrofonen erster Ordnung im Folgenden beschrieben werden.
  • Ein erstes sowie ein zweites Richtmikrofon erster Ordnung seien nach dem eingangs beschriebenen Verfahren abgeglichen. Weiterhin wird davon ausgegangen, dass im rückwärtigen Bereich eines Hörgeräteträgers, also im Bereich zwischen 90° und 270° bezogen auf die Geradeaus-Blickrichtung (0° - Richtung) wenigstens eine Störquelle vorhanden ist, wovon in realen Umgebungssituationen fast immer ausgegangen werden kann. Dann wird die Phase in dem Mikrofonsignal eines omnidirektionalen Mikrofons des ersten Richtmikrofons in einem eingeschränkten Wertebereich so verändert, dass sich die Amplitude des Mikrofonsignals des ersten Richtmikrofons erster Ordnung gegenüber der Amplitude des Mikrofonsignals des zweiten Richtmikrofons erster Ordnung verringert. Der eingeschränkte Wertebereich der Phasenverschiebung ist dabei so festgelegt, dass der Einschnitt der Empfindlichkeit des Richtmikrofons (Notch) durch die Phasenverschiebung in dem rückwärtigen Bereich zwischen 90° und 270° verbleibt. Vorzugsweise wird die Phase so eingestellt, dass die Amplitude des Mikrofonsystems des ersten Richtmikrofons erster Ordnung ein Minimum im Vergleich zu der Amplitude des Mikrofonsignals des zweiten Richtmikrofons erster Ordnung aufweist. Physikalisch bedeutet dies, dass dann der Notch bei dem ersten Richtmikrofonsystem so eingestellt ist, dass ein Störsignal (bzw. Störsignale) aus dem rückwärtigen Bereich bestmöglich unterdrückt wird. Nachfolgend werden die beiden Richtmikrofone erster Ordnung wieder abgeglichen, indem auch bei dem zweiten Richtmikrofon erster Ordnung eine Phasenverschiebung in dem Mikrofonsignal eines omnidirektionalen Mikrofons des zweiten Richtmikrofons erster Ordnung derart eingestellt wird, dass die beiden Richtmikrofone erster Ordnung wieder abgeglichen sind.
  • Die oben beschriebene Vorgehensweise kann auch dahingehend abgewandelt werden, dass die Phase in dem Mikrofonsignal eines omnidirektionalen Mikrofons des ersten Richtmikrofons lediglich einen kleinen Schritt in der Richtung verändert wird, dass sich die Amplitude des ersten Richtmikrofons erster Ordnung gegenüber der Amplitude des zweiten Richtmikrofons erster Ordnung verringert. Die Schrittweite kann zum Beispiel so eingestellt werden, dass mit jedem Schritt eine Verschiebung des Notches um 2° erfolgt. Anschließend werden die beiden Richtmikrofone erster Ordnung wieder wie oben beschrieben abgeglichen. Dieses Vorgehen wird so lange wiederholt, bis sich die Amplitude in dem Mikrofonsignal des ersten Richtmikrofons erster Ordnung gegenüber der Amplitude des Mikrofonsignals des zweiten Richtmikrofons erster Ordnung nur noch unwesentlich verringern lässt. Beide Richtmikrofone sind dann optimal auf das Störsignal bzw. die Störsignale ausgerichtet.
  • Diese Vorgehensweise führt zu einem Abgleich der absoluten Phasenlage der omnidirektionalen Mikrofone. Auch dieser Phasenabgleich ist vorteilhaft auf einen verhältnismäßig einfach zu realisierenden Amplitudenabgleich zurückgeführt.
  • Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels. Dabei zeigen:
  • Figur 1
    ein Richtmikrofonsystem zweiter Ordnung nach dem Stand der Technik,
    Figur 2
    ein Richtmikrofonsystem gemäß der Erfindung und
    Figur 3
    ein hinter dem Ohr tragbares Hörhilfegerät mit einem Richtmikrofonsystem gemäß der Erfindung.
  • Figur 1 zeigt ein aus drei omnidirektionalen Mikrofonen 1, 2 und 3 aufgebautes Richtmikrofonsystem mit Richtcharakteristik zweiter Ordnung (Richtmikrofonsystem zweiter Ordnung). Die beiden omnidirektionalen Mikrofone 1 und 2 bilden ein erstes Richtmikrofon erster Ordnung. Hierbei wird das aus dem omnidirektionalen Mikrofon 2 hervorgehende Mikrofonsignal in einem Verzögerungselement 4 verzögert und in einem Inverter 5 invertiert, bevor es durch den Summierer 8 zu dem Mikrofonsignal des omnidirektionalen Mikrofons 1 addiert wird. Ebenso wird auch das Mikrofonsignal des omnidirektionalen Mikrofons 3 in einem Verzögerungselement 6 verzögert, in einem Inverter 7 invertiert und in einem Summierer 9 zu dem Mikrofonsignal des omnidirektionalen Mikrofons 2 addiert. Wie bei den omnidirektionalen Mikrofonen 2 und 3 wird anschließend auch das Mikrofonsignal des aus den beiden omnidirektionalen Mikrofonen 2 und 3 gebildeten zweiten Richtmikrofons erster Ordnung in einem Verzögerungselement 10 verzögert, in einem Inverter 11 invertiert und schließlich in einem Summierer 12 zu dem Mikrofonsignal des aus dem ersten und dem zweiten omnidirektionalen Mikrofon gebildeten ersten Richtmikrofon erster Ordnung addiert. Bei dem so gebildeten Richtmikrofonsystem zweiter Ordnung lässt sich die genaue Ausprägung der Richtcharakteristik, die in einem Richtdiagramm veranschaulicht werden kann, durch unterschiedliche Einstellungen der Signalverzögerungen in den Verzögerungselementen 4, 6 und 10 variieren.
  • Ebenso wie Figur 1 zeigt auch Figur 2 ein Richtmikrofonsystem zweiter Ordnung, das aus lediglich drei omnidirektionalen Mikrofonen 21, 22 und 23 aufgebaut ist und dadurch insbesondere den beengten Platzverhältnissen für die Anwendung in einem Hörhilfegerät Rechnung trägt. Aus dem Mikrofonpaar 21, 22 wird durch Verzögerung des von dem omnidirektionalen Mikrofon 22 erzeugten Mikrofonsignals und Invertierung in einer Verzögerungs- und Invertereinheit 24 und anschließende Summation zu dem von dem omnidirektionalen Mikrofon 21 erzeugten Mikrofonsignal in dem Summierer 25 ein erstes Richtmikrofon erster Ordnung gebildet. Ebenso bildet auch das Mikrofonpaar 22, 23 durch Verzögerung und Invertierung des von dem omnidirektionalen Mikrofon 23 erzeugten Mikrofonsignals in der Verzögerungs- und Invertereinheit 26 und anschließende Addition des von dem omnidirektionalen Mikrofon 22 erzeugten Mikrofonsignals in dem Summierer 27 ein zweites Richtmikrofon erster Ordnung. Zur Durchführung des Verfahrens gemäß der Erfindung sind die Signalverzögerungen in den Verzögerungs- und Invertereinheiten 24 und 26 zunächst gleich eingestellt. In einem ersten Verfahrensschritt des Verfahrens gemäß der Erfindung werden zunächst die Amplituden der von den drei omnidirektionalen Mikrofonen 21, 22 und 23 erzeugten Mikrofonsignale abgeglichen. Hierzu werden in den Pegelmesseinrichtungen 28, 29 und 30 zunächst die zeitlich gemittelten Signalpegel aus den Mikrofonsignalen gewonnen. Die gemessenen Signalpegel sind einer Amplitudensteuereinrichtung 31 zugeführt. Diese steuert in wenigstens zwei der drei Mikrofonsignalpfade vorhandene Multiplikatoren 32 und 33, so dass Abweichungen der aus den Mikrofonsignalen ermittelten zeitlich gemittelten Signalpegel ausgeglichen werden. Dadurch ist der Amplitudengang der drei omnidirektionalen Mikrofone 21, 22 und 23 angeglichen. Nachfolgend werden auch die zeitlich gemittelten Signalpegel der von den beiden Richtmikrofonen erster Ordnung erzeugten Mikrofonsignale durch Pegelmesseinrichtungen 34 und 35 gewonnen. Diese Signalpegel sind einer Steuereinheit 36 zugeführt. Die Steuereinheit 36 steuert ein Phasenkompensationsfilter 38, durch das eine Phasenverschiebung in dem von dem omnidirektionalen Mikrofon 22 erzeugten Mikrofonsignal derart eingestellt wird, dass von den beiden Pegelmesseinrichtungen 34 und 35 die gleichen zeitlich gemittelten Signalpegel gemessen werden. Dies bedeutet, dass der in den beiden Mikrofonpaaren vorliegende Phasenfehler gleich groß wird (relativer Phasenabgleich). Durch das gleiche Signalübertragungsverhalten sind die beiden Mikrofonpaare daher bestens zur Bildung eines Richtmikrofons zweiter Ordnung geeignet. Hierzu kann das von dem zweiten Richtmikrofon erster Ordnung erzeugte Mikrofonsignal in der Verzögerungs- und Invertereinheit 39 verzögert und in dem Summierer 40 zu dem Mikrofonsignal des ersten Richtmikrofons erster Ordnung addiert werden.
  • Die Erfindung bietet den Vorteil, dass der Phasenabgleich der Mikrofone auf einen einfach zu realisierenden Amplitudenabgleich zurückgeführt wurde. Der Abgleich kann unter realen Umgebungsbedingungen erfolgen, wobei beliebig viele Schallquellen vorhanden sein dürfen.
  • Eine Weiterführung des erfindungsgemäßen Verfahrens sieht vor, dass im Anschluss an den bislang durchgeführten Mikrofonabgleich die Phase des von dem omnidirektionalen Mikrofon 21 erzeugten Mikrofonsignals durch Steuerung der Phasenkompensationseinheit 37 durch die Steuereinheit 36 derart eingestellt wird, dass sich bei dem durch die Pegelmesseinrichtungen 34 und 35 gemessenen Signalpegel der Richtmikrofone erster Ordnung der Signalpegel des ersten Richtmikrofons gegenüber dem Signalpegel des zweiten Richtmikrofons verringert.
  • Physikalisch kommt diese Verringerung dadurch zustande, dass der Notch des ersten Richtmikrofons erster Ordnung, das heißt, der Einschnitt in der Richtcharakteristik, der die Richtung der geringsten Empfindlichkeit zeigt, besser auf den oder die in der jeweiligen Umgebungssituation vorhandenen Störer ausgerichtet ist. Die Phasenvariation ist dabei auf einen Wertebereich beschränkt, so dass auch der Notch nur in einem bestimmten Winkelbereich eingestellt werden kann, z.B. zwichen 90° und 270° bezogen auf die Geradeaus-Blickrichtung eines Hörgeräteträgers (0°-Richtung). Anschließend wird die Phasenkompensationseinheit 38 so eingestellt, dass die Signalpegel der Mikrofonsignale der Richtmikrofone erster Ordnung wieder möglichst genau übereinstimmen, d.h., das zweite Richtmikrofon erster Ordnung wird wieder an das erste Richtmikrofon erster Ordnung angepasst.
  • Die zuletzt beschriebene Vorgehensweise kann zum Mikrofonabgleich einmal durchlaufen werden, wobei die Phasenverschiebung in dem vorgegebenen Wertebereich so eingestellt wird, dass der Signalpegel des ersten Richtmikrofons gegenüber dem Signalpegel des zweiten Richtmikrofons minimal wird. Das erste Richtmikrofon ist dann optimal an die Störsignale in der speziellen Umgebungssituation angepasst und das zweite Mikrofon wird anschließend entsprechend nachgeführt. Nachteilig dabei ist allerdings der zusätzliche Aufwand, der betrieben werden muss, um das Minimum festzustellen. Daher sieht eine alternative Ausführungsform vor, dass der Notch des ersten Richtmikrofons erster Ordnung schrittweise in kleinen Schritte, z.B. 2°, in der Richtung gedreht wird, in der sich eine Verringerung des Signalpegels gegenüber dem Signalpegel des Mikrofonsignals des zweiten Richtmikrofons erster Ordnung ergibt. Anschließend werden die beiden Richtmikrofone erster Ordnung wieder wie eingangs beschrieben abgeglichen. Diese Vorgehensweise wird so lange wiederholt, bis allenfalls noch eine geringe Verringerung des Signalpegels des Mikrofonsignals des ersten Richtmikrofons erster Ordnung erreicht werden kann.
  • Insgesamt stellt dieser kontinuierlich ablaufende zyklische Algorithmus einen dreistufigen Regelkreis dar, mit dessen Hilfe die drei omnidirektionalen Mikrofone nach Betrag und Phase abgeglichen werden können. Es kann eine gleichförmige kleine Schrittweite oder auch eine adaptive Schrittweite verwendet werden. Die Realisierung der Phasenkompensationseinheiten kann beispielsweise durch Laufzeitglieder oder digitale Filter erfolgen. Mittels digitaler Filter lässt sich eine breitbandige oder auch für verschiedene Frequenzbereiche unterschiedliche Phasenkompensation erreichen.
  • Vorzugsweise wird der zuletzt beschriebene absolute Phasenabgleich der Mikrofone nur dann durchgeführt, wenn die Signalpegel in der augenblicklichen Umgebungssituation einen bestimmten Schwellenwert überschreiten. Dann kann in der Regel davon ausgegangen werden, dass auch Störsignale vorhanden sind. Dies stellt jedoch keinen Nachteil dar, da in Umgebungssituationen mit nur sehr geringen Signalpegeln eine Richtwirkung und dadurch erlangte Störgeräuschbefreiung ohnehin nur von untergeordneter Bedeutung sind.
  • Das für das Ausführungsbeispiel eines aus drei omnidirektionalen Mikrofonen gebildeten Richtmikrofonsystems zweiter Ordnung kann analog auch auf Richtmikrofonsysteme mit mehr als drei omnidirektionalen Mikrofonen und höherer als zweiter Ordnung übertragen werden.
  • Figur 3 zeigt ein hinter dem Ohr tragbares Hörhilfegerät 50 mit einem Richtmikrofonsystem gemäß der Erfindung. Das Hörhilfegerät 50 umfasst eine Batteriekammer 51 zur Anordnung einer Batterie 52 zur Spannungsversorgung des Hörhilfegerätes 50, eine Signalverarbeitungselektronik 53 und einen MTO-Schalter 54 zum Ausschalten des Hörhilfegerätes 50 (Schaltstellung 0) sowie zum Ein- und Umschalten des Empfangs zwischen dem Richtmikrofonsystem (Schaltstellung M) und einer Telefonspule (Schaltstellung T).
  • Das Richtmikrofonsystem des Hörhilfegerätes 50 umfasst drei omnidirektionale Mikrofone 55, 56 und 57, denen jeweils eine Schalleintrittsöffnung 58, 59 bzw. 60 zugeordnet ist. Die Schalleintrittsöffnungen 58-60 sind im Ausführungsbeispiel seitlich an dem Hörhilfegerät 50 angeordnet. Sie liegen zumindest näherungsweise auf einer Geraden 61 und weisen in etwa gleichen Abstand zueinander auf. Anders als in dem gezeigten Ausführungsbeispiel könnten die Schalleintrittsöffnungen 58-60 auch - wie bei hinter dem Ohr tragbaren Hörhilfegeräten üblich - an der Gehäuseoberseite angeordnet sein.
  • Gemäß der Erfindung kann bei dem hinter dem Ohr tragbaren Hörhilfegerät 50 der Mikrofonabgleich bei getragenem Hörhilfegerät in realen Umgebungsbedingungen erfolgen. Hierdurch werden insbesondere Verschmutzungs- sowie Alterungserscheinungen der Mikrofone 55-57 bei dem Hörhilfegerät 50 ausgeglichen.
  • Zum Tragen des Hörhilfegerätes 50 hinter dem Ohr ist das Hörhilfegerät 50 in bekannter Weise mit einem Tragehaken 62 versehen. Ein dem Hörhilfegerät 50 zugeführtes akustisches Eingangssignal wird in den Mikrofonen 55-57 in elektrische Eingangssignale umgewandelt, in der Signalverarbeitungselektronik 53 verarbeitet und schließlich in einem Hörer 63 in ein akustisches Signal zurückverwandelt und durch den Tragehaken 62 und einem damit verbundenen Schallschlauch (nicht dargestellt) dem Gehör des Hörgeräteträgers zugeführt.

Claims (14)

  1. Verfahren zum automatischen Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei omnidirektionalen Mikrofonen (21, 22, 23; 55, 56, 57), wobei zum Erzeugen einer Richtcharakteristik jeweils zwei omnidirektionale Mikrofone (21, 22; 22, 23; 55, 56; 56, 57) zu einem ersten bzw. einem zweiten Richtmikrofon erster Ordnung verschaltet sind, mit folgenden Verfahrensschritten:
    - Abgleichen der Amplituden der von den omnidirektionalen Mikrofonen (21, 22, 23; 55, 56, 57) erzeugten Mikrofonsignale,
    - Abgleichen der Amplituden der von den Richtmikrofonen erster Ordnung erzeugten Mikrofonsignale durch Phasenverschiebung wenigstens eines von einem der drei omnidirektionalen Mikrofone (21, 22, 23; 55, 56, 57) erzeugten Mikrofonsignale.
  2. Verfahren nach Anspruch 1, wobei die omnidirektionalen Mikrofone (55, 56, 57) jeweils wenigstens eine Schalleintrittsöffnung (58, 59, 60) aufweisen und diese zumindest näherungsweise entlang einer Geraden (61) und in gleichem Abstand zueinander angeordnet sind.
  3. Verfahren nach Anspruch 1 oder 2, wobei zum Abgleich der Amplituden der von den omnidirektionalen Mikrofonen (21, 22, 23; 55, 56, 57) erzeugten Mikrofonsignale jeweils ein Maß der zeitlich gemittelten Schallfeldenergie aus den Mikrofonsignalen gewonnen wird und die Signalübertragungsfunktionen der omnidirektionalen Mikrofone (21, 22, 23; 55, 56, 57) durch den Mikrofonen (21, 22, 23; 55, 56, 57) nachgeschaltete Einstellmittel dahingehend angepasst werden, dass das jeweils aus einem Mikrofonsignal ermittelte Maß der zeitlich gemittelten Schallfeldenergie für alle drei Mikrofonsignale zumindest näherungsweise übereinstimmt.
  4. Verfahren nach Anspruch 3, wobei als Maß der zeitlich gemittelten Schallfeldenergie der Signalpegel ermittelt wird.
  5. Verfahren nach Anspruch 3 oder 4, wobei die Signalübertragungsfunktionen der omnidirektionalen Mikrofone (21, 22, 23; 55, 56, 57) jeweils durch Multiplikation der Mikrofonsignale mit einem Faktor eingestellt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei zum Abgleich der Amplituden der von den Richtmikrofonen erster Ordnung erzeugten Mikrofonsignale jeweils ein Maß der zeitlich gemittelten Schallfeldenergie aus den Mikrofonsignalen der Richtmikrofone erster Ordnung gewonnen und abgeglichen wird.
  7. Verfahren nach Anspruch 6, wobei als Maß der zeitlich gemittelten Schallfeldenergie der Signalpegel ermittelt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, mit einem ersten, einem zweiten und einem dritten omnidirektionalen Mikrofon (21, 22, 23; 55, 56, 57), wobei zum Erzeugen einer Richtcharakteristik das erste und das zweite omnidirektionale Mikrofon (21, 22; 55, 56) zu einem ersten Richtmikrofon erster Ordnung sowie das zweite und das dritte omnidirektionale Mikrofon (22, 23; 56, 57) zu einem zweiten Richtmikrofon erster Ordnung verschaltet sind, wobei eine Phasenverschiebung des von dem ersten oder dem zweiten omnidirektionalen Mikrofon (21, 22; 56, 57) erzeugten Mikrofonsignals derart erfolgt, dass sich die Amplitude des von dem ersten Richtmikrofon erster Ordnung erzeugten Mikrofonsignals gegenüber der Amplitude des von dem zweiten Richtmikrofon erster Ordnung erzeugten Mikrofonsignals verringert, und wobei nachfolgend die Amplituden der Richtmikrofone erster Ordnung durch Phasenverschiebung des von dem zweiten oder dem dritten omnidirektionalen Mikrofon (22, 23; 56, 57) erzeugten Mikrofonsignals erneut abgeglichen werden.
  9. Verfahren nach Anspruch 8, wobei die Phasenverschiebung innerhalb eines vorgebbaren Wertebereiches derart erfolgt, dass die Amplitude des von dem ersten Richtmikrofon erster Ordnung erzeugten Mikrofonsignals gegenüber der Amplitude des von dem zweiten Richtmikrofon erster Ordnung erzeugten Mikrofonsignals minimiert ist.
  10. Verfahren nach Anspruch 8, wobei die Verfahrensschritte so lange wiederholt werden, bis ein Abbruchkriterium erreicht ist.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei eine Einteilung der von den omnidirektionalen Mikrofonen (21, 22, 23; 55, 56, 57) erzeugten Mikrofonsignale in Frequenzbänder erfolgt und der Mikrofonabgleich jeweils in einem Frequenzband durchgeführt wird.
  12. Richtmikrofonsystem mit wenigstens einem ersten, einem zweiten und einem dritten omnidirektionalen Mikrofon (21, 22, 23; 55, 56, 57), wobei jeweils zwei omnidirektionale Mikrofone (21, 22; 22, 23; 55, 56; 56, 57) zu einem ersten Richtmikrofon erster Ordnung und einem zweiten Richtmikrofon erster Ordnung miteinander verschaltet sind, dadurch gekennzeichnet, dass Pegelmesseinrichtungen (28, 29, 30; 34, 35) zum Ermitteln der zeitlich gemittelten Signalpegel der von den omnidirektionalen Mikrofonen (21, 22, 23; 55, 56, 57) und der von den Richtmikrofonen erster Ordnung erzeugten Mikrofonsignale vorhanden sind, wobei eine Amplitudensteuereinrichtung (31) zum Einstellen der Amplituden bei wenigstens zwei der drei von den omnidirektionalen Mikrofonen (21, 22, 23; 55, 56, 57) erzeugten Mikrofonsignale in Abhängigkeit der ermittelten Signalpegel vorhanden ist und wobei eine Phasensteuereinrichtung zum Einstellen der Phase des von wenigstens einem omnidirektionalen Mikrofon (21, 22; 55, 56) erzeugten Mikrofonsignals in Abhängigkeit der von den Pegelmesseinrichtungen (34, 35) bei den Richtmikrofonen erster Ordnung ermittelten Signalpegel vorhanden ist.
  13. Richtmikrofonsystem nach Anspruch 12, wobei eine Phasensteuereinrichtung (36) zum Einstellen der Phasen der von wenigstens zwei omnidirektionalen Mikrofonen (21, 22; 55, 56) erzeugten Mikrofonsignale in Abhängigkeit der von den Pegelmesseinrichtungen (34, 35) bei den Richtmikrofonen erster Ordnung ermittelten Signalpegel vorhanden ist.
  14. Anordnung eines Richtmikrofonsystems nach Anspruch 12 oder 13 in einem Hörhilfegerät (50).
EP04004215A 2003-03-11 2004-02-25 Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen Expired - Lifetime EP1465453B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10310579A DE10310579B4 (de) 2003-03-11 2003-03-11 Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen
DE10310579 2003-03-11

Publications (3)

Publication Number Publication Date
EP1465453A2 EP1465453A2 (de) 2004-10-06
EP1465453A3 EP1465453A3 (de) 2009-12-16
EP1465453B1 true EP1465453B1 (de) 2011-01-26

Family

ID=32842150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04004215A Expired - Lifetime EP1465453B1 (de) 2003-03-11 2004-02-25 Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen

Country Status (4)

Country Link
US (1) US7474755B2 (de)
EP (1) EP1465453B1 (de)
DE (2) DE10310579B4 (de)
DK (1) DK1465453T3 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010867B3 (de) * 2004-03-05 2005-08-18 Siemens Audiologische Technik Gmbh Verfahren und Vorrichtung zum Anpassen der Phasen von Mikrofonen eines Hörgeräterichtmikrofons
EP1614528A1 (de) 2004-07-01 2006-01-11 Alcan Technology & Management Ltd. Verfahren zur Herstellung eines Verpackungsmaterials
US7542580B2 (en) * 2005-02-25 2009-06-02 Starkey Laboratories, Inc. Microphone placement in hearing assistance devices to provide controlled directivity
JP2009529699A (ja) * 2006-03-01 2009-08-20 ソフトマックス,インコーポレイテッド 分離信号を生成するシステムおよび方法
DE102006049870B4 (de) * 2006-10-23 2016-05-19 Sivantos Gmbh Differentielles Richtmikrofonsystem und Hörhilfsgerät mit einem solchen differentiellen Richtmikrofonsystem
US8103030B2 (en) 2006-10-23 2012-01-24 Siemens Audiologische Technik Gmbh Differential directional microphone system and hearing aid device with such a differential directional microphone system
US8160273B2 (en) * 2007-02-26 2012-04-17 Erik Visser Systems, methods, and apparatus for signal separation using data driven techniques
TW200849219A (en) * 2007-02-26 2008-12-16 Qualcomm Inc Systems, methods, and apparatus for signal separation
EP2071873B1 (de) * 2007-12-11 2017-05-03 Bernafon AG Hörgerätsystem mit einem angepassten Filter und Messverfahren
US8175291B2 (en) * 2007-12-19 2012-05-08 Qualcomm Incorporated Systems, methods, and apparatus for multi-microphone based speech enhancement
US8321214B2 (en) * 2008-06-02 2012-11-27 Qualcomm Incorporated Systems, methods, and apparatus for multichannel signal amplitude balancing
DE102008049086B4 (de) * 2008-09-26 2011-12-15 Siemens Medical Instruments Pte. Ltd. Hörhilfegerät mit einem Richtmikrofonsystem sowie Verfahren zum Betrieb eines derartigen Hörhilfegerätes
US9648421B2 (en) * 2011-12-14 2017-05-09 Harris Corporation Systems and methods for matching gain levels of transducers
EP3629602A1 (de) 2018-09-27 2020-04-01 Oticon A/s Hörvorrichtung und ein hörsystem mit einer vielzahl von adaptiven zweikanaligen beamformern
US11303994B2 (en) * 2019-07-14 2022-04-12 Peiker Acustic Gmbh Reduction of sensitivity to non-acoustic stimuli in a microphone array
CN113689875B (zh) * 2021-08-25 2024-02-06 湖南芯海聆半导体有限公司 一种面向数字助听器的双麦克风语音增强方法和装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK164349C (da) * 1989-08-22 1992-11-02 Oticon As Hoereapparat med tilbagekoblingskompensation
AT407815B (de) * 1990-07-13 2001-06-25 Viennatone Gmbh Hörgerät
US5463694A (en) * 1993-11-01 1995-10-31 Motorola Gradient directional microphone system and method therefor
US5515445A (en) * 1994-06-30 1996-05-07 At&T Corp. Long-time balancing of omni microphones
US5757933A (en) * 1996-12-11 1998-05-26 Micro Ear Technology, Inc. In-the-ear hearing aid with directional microphone system
DE19810043A1 (de) * 1998-03-09 1999-09-23 Siemens Audiologische Technik Hörgerät mit einem Richtmikrofon-System
DE19822021C2 (de) 1998-05-15 2000-12-14 Siemens Audiologische Technik Hörgerät mit automatischem Mikrofonabgleich sowie Verfahren zum Betrieb eines Hörgerätes mit automatischem Mikrofonabgleich
US6654468B1 (en) * 1998-08-25 2003-11-25 Knowles Electronics, Llc Apparatus and method for matching the response of microphones in magnitude and phase
DE19849739C2 (de) * 1998-10-28 2001-05-31 Siemens Audiologische Technik Adaptives Verfahren zur Korrektur der Mikrofone eines Richtmikrofonsystems in einem Hörgerät sowie Hörgerät
US6741713B1 (en) * 1998-12-17 2004-05-25 Sonionmicrotronic Nederlan B.V. Directional hearing device
DE19918883C1 (de) 1999-04-26 2000-11-30 Siemens Audiologische Technik Hörhilfegerät mit Richtmikrofoncharakteristik
DE60012316T2 (de) * 1999-04-28 2005-07-21 Gennum Corp., Burlington Programmierbares multi-mode, multi-mikrofon system
US7324649B1 (en) * 1999-06-02 2008-01-29 Siemens Audiologische Technik Gmbh Hearing aid device, comprising a directional microphone system and a method for operating a hearing aid device
AU4776999A (en) * 1999-06-24 2001-01-31 Topholm & Westermann Aps Hearing aid with controllable directional characteristics
WO2001010169A1 (en) * 1999-08-03 2001-02-08 Widex A/S Hearing aid with adaptive matching of microphones
EP1091615B1 (de) * 1999-10-07 2003-01-08 Zlatan Ribic Verfahren und Anordnung zur Aufnahme von Schallsignalen
US7092537B1 (en) * 1999-12-07 2006-08-15 Texas Instruments Incorporated Digital self-adapting graphic equalizer and method
CN1418448A (zh) * 2000-03-14 2003-05-14 奥迪亚科技股份责任有限公司 多麦克风定向系统的适应性麦克风匹配
DE10045197C1 (de) * 2000-09-13 2002-03-07 Siemens Audiologische Technik Verfahren zum Betrieb eines Hörhilfegerätes oder Hörgerätessystems sowie Hörhilfegerät oder Hörgerätesystem
AU2001294960A1 (en) * 2000-09-29 2002-04-08 Knowles Electronics, Llc. Second order microphone array

Also Published As

Publication number Publication date
DE502004012137D1 (de) 2011-03-10
US7474755B2 (en) 2009-01-06
DE10310579B4 (de) 2005-06-16
US20040240683A1 (en) 2004-12-02
EP1465453A2 (de) 2004-10-06
EP1465453A3 (de) 2009-12-16
DK1465453T3 (da) 2011-05-16
DE10310579A1 (de) 2004-09-23

Similar Documents

Publication Publication Date Title
EP1465453B1 (de) Automatischer Mikrofonabgleich bei einem Richtmikrofonsystem mit wenigstens drei Mikrofonen
DE102011006471B4 (de) Hörhilfegerät sowie Hörgerätesystem mit einem Richtmikrofonsystem sowie Verfahren zum Einstellen eines Richtmikrofons bei einem Hörhilfegerät
DE10331956C5 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteistiken einstellbar sind
EP1192838B1 (de) Hörhilfsgerät mit richtmikrofonsystem sowie verfahren zum betrieb eines hörhilfsgeräts
DE10249416B4 (de) Verfahren zum Einstellen und zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät
EP1489885B1 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
EP0942627A2 (de) Hörgerät mit einem Richtmikrofon-System sowie Verfahren zum Betrieb desselben
EP1489884A2 (de) Verfahren zum Betrieb eines Hörhilfegerätes sowie Hörhilfegerät mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
DE60004863T2 (de) EINE METHODE ZUR REGELUNG DER RICHTWIRKUNG DER SCHALLEMPFANGSCHARAkTERISTIK EINES HÖRGERÄTES UND EIN HÖRGERÄT ZUR AUSFÜHRUNG DER METHODE
EP2840809A2 (de) Steuerung der Effektstärke eines binauralen direktionalen Mikrofons
DE102006047986A1 (de) Verarbeitung eines Eingangssignals in einer Hörhilfe
EP2595414B1 (de) Hörvorrichtung mit einer Einrichtung zum Verringern eines Mikrofonrauschens und Verfahren zum Verringern eines Mikrofonrauschens
EP1503612B1 (de) Hörhilfegerät sowie Verfahren zum Betrieb eines Hörhilfegerätes mit einem Mikrofonsystem, bei dem unterschiedliche Richtcharakteristiken einstellbar sind
DE102013201043B4 (de) Verfahren und Vorrichtung zum Bestimmen eines Verstärkungsfaktors eines Hörhilfegeräts
EP1269576B1 (de) Verfahren zur vorgabe der übertragungscharakteristik einer mikrophonanordnung und mikrophonanordnung
DE102014218672B3 (de) Verfahren und Vorrichtung zur Rückkopplungsunterdrückung
DE10310580A1 (de) Vorrichtung und Verfahren zur Adaption von Hörgerätemikrofonen
EP2802158A2 (de) Verfahren zur Nutzsignalanpassung in binauralen Hörhilfesystemen
EP1916872B1 (de) Differentielles Richtmikrofonsystem und Hörhilfsgerät mit einem solchen differentiellen Richtmikrofonsystem
EP1309225B1 (de) Verfahren zur Bestimmung einer Rückkopplungsschwelle in einem Hörgerät
EP2169984B1 (de) Hörhilfegerät mit einem Richtmikrofonsystem sowie Verfahren zum Betrieb eines derartigen Hörhilfegerätes
DE102015205488A1 (de) Audioverarbeitungseinheit und Verfahren zur Verarbeitung eines Audiosignals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20091120

17Q First examination report despatched

Effective date: 20091208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

AKX Designation fees paid

Designated state(s): CH DE DK FR GB LI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004012137

Country of ref document: DE

Date of ref document: 20110310

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012137

Country of ref document: DE

Effective date: 20110310

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012137

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004012137

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012137

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220221

Year of fee payment: 19

Ref country code: DK

Payment date: 20220221

Year of fee payment: 19

Ref country code: DE

Payment date: 20220217

Year of fee payment: 19

Ref country code: CH

Payment date: 20220221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220221

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012137

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20230228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230225

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901