EP1464832B1 - Méthode pour démarrer un moteur à combustion interne - Google Patents

Méthode pour démarrer un moteur à combustion interne Download PDF

Info

Publication number
EP1464832B1
EP1464832B1 EP03100843A EP03100843A EP1464832B1 EP 1464832 B1 EP1464832 B1 EP 1464832B1 EP 03100843 A EP03100843 A EP 03100843A EP 03100843 A EP03100843 A EP 03100843A EP 1464832 B1 EP1464832 B1 EP 1464832B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
cylinder
working cylinder
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03100843A
Other languages
German (de)
English (en)
Other versions
EP1464832A1 (fr
Inventor
Klemens Grieser
Ulrich Kramer
Klaus Badke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP03100843A priority Critical patent/EP1464832B1/fr
Priority to DE50309198T priority patent/DE50309198D1/de
Publication of EP1464832A1 publication Critical patent/EP1464832A1/fr
Application granted granted Critical
Publication of EP1464832B1 publication Critical patent/EP1464832B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure

Definitions

  • the invention relates to a method for starting an internal combustion engine, preferably an internal combustion engine with direct injection. Furthermore, the invention relates to a trained for carrying out such a method internal combustion engine.
  • the DE 198 35 045 C2 discloses a method for starting an internal combustion engine by the ignition of an air-fuel mixture in a cylinder ("working cylinder"), the piston is at a standstill of the internal combustion engine in a working stroke position.
  • the amount of air contained within the working cylinder is estimated based on various sensor data.
  • in such a procedure is disadvantageous that, for example, due to residual exhaust gases in the cylinder, the knowledge of the amount of air alone is not sufficient to control a subsequent combustion optimally.
  • the US 6,098,585 shows a method for starting an internal combustion engine, in which an air volume in the cylinder for the starting operation is determined based on the signals of an ambient temperature sensor, an engine temperature sensor, a pressure sensor, a throttle valve opening angle sensor and a crankshaft angle sensor. With the aid of signals from the above-mentioned sensors, a control unit calculates the volume of air trapped in the cylinder intended for starting and the associated fuel injection quantity.
  • the EP 1 267 060 A2 discloses a method for determining an air mass in a power cylinder, wherein it is provided that a determination of an incoming into the intake manifold during the expiration of the internal combustion engine Air mass and a determination of a from the intake tract (in the working cylinder) flowing air mass is made and based on these variables, the present in the cylinder air mass can be determined.
  • From the US 5,755,212 is a method for the determination of a fuel-air mixture, which is intended to make a comparison between a measured exhaust gas value and an estimated oxygen content by means of a neural network in order to achieve a predetermined target value for a fuel-air mixture.
  • the estimation of the oxygen content is made on the basis of a Drosselklappenstellwinkels, an air pressure in the intake tract, an ambient pressure, a cooling water temperature, a speed of the internal combustion engine and an exhaust gas flow always for the respective subsequent power stroke of the internal combustion engine.
  • the inventive method is used for starting an internal combustion engine, which may be in particular an internal combustion engine with direct injection of the fuel into the combustion chambers (cylinder) and with spark ignition.
  • an internal combustion engine which may be in particular an internal combustion engine with direct injection of the fuel into the combustion chambers (cylinder) and with spark ignition.
  • working cylinder in the first occurring during the starting phase of the internal combustion engine operating cycle of the piston of at least one cylinder of the internal combustion engine, which is hereinafter referred to as "working cylinder", the combustion of an air-fuel mixture is performed.
  • the method according to the invention is characterized in that, before the starting phase of the internal combustion engine, the oxygen concentration in the working cylinder is determined, and in that a quantity of fuel to be burned is metered as a function of the determined value.
  • the oxygen concentration is preferably Expressed in terms of relative size, which describes the proportion of pure oxygen 02 to the gas mixture in the working cylinder, this proportion being in percent by mass, volume percent. Mole percent, can be expressed as partial pressure or other suitable size. Such a relative value is independent of the volume of the combustion chamber.
  • the oxygen concentration is preferably estimated on the basis of an average value and / or on the basis of an accumulated, ie accumulated or integrated value of said quantities (internal cylinder pressure, intake pressure and / or air mass flow).
  • the process required for a good combustion and sufficient amount of fuel can be determined very accurately and then z. B. are fed by direct injection to the working cylinder.
  • maximum energy yield is ensured since all the available oxygen can be utilized for combustion, but on the other hand, harmful emissions caused by excess fuel are avoided would arise.
  • the mechanical energy from the combustion can be exploited, for example, to start the engine without another auxiliary unit (starter motor, etc.) solely by the ignition of the air-fuel mixture in the working cylinder, the piston of the working cylinder at standstill of the internal combustion engine in a Operating stroke (expansion stroke) must be.
  • the combustion during the start-up phase can also only support the starting of the internal combustion engine with an auxiliary unit. This made it possible, for example, to use a less powerful and thus cheaper auxiliary unit.
  • the oxygen concentration can be determined with this method in the compression cylinder, with the aid of which the actual starting process upstream reverse rotation according to DE0010020325A1 , can be initiated for startup improvement.
  • the determined oxygen concentration is used to determine therefrom the absolute amount of oxygen (eg as mass value or as number of moles) in the working cylinder at the beginning of the starting phase. From the amount of oxygen can then be calculated directly the amount of fuel to be supplied for a stoichiometric combustion.
  • the absolute amount of oxygen from the oxygen concentration can advantageously be used on already measured on an internal combustion engine variables such as the crankshaft angle, the atmospheric pressure and / or the engine temperature (or coolant temperature).
  • the measurement of the sizes in-cylinder pressure, intake pressure and / or air mass flow can only take place at predetermined positions of the crankshaft. These are preferably angular positions of the crankshaft which correspond to the lower and / or top dead center of the piston of a cylinder, preferably of the working cylinder. In this way, the sizes mentioned are sampled only at relatively few, but particularly characteristic times during the phaseout of the internal combustion engine.
  • the in-cylinder pressure can be measured during the phase-out phase of the internal combustion engine at top dead center of the piston of the working cylinder in which the first combustion takes place during the starting phase.
  • the measurement of the intake pressure can preferably be carried out in each case at the bottom dead center of the piston of the working cylinder.
  • the invention further relates to an internal combustion engine, preferably an internal combustion engine with direct injection and spark ignition, which is characterized in that it is adapted to carry out a method of the type described above.
  • the internal combustion engine may be equipped with a motor controller programmed to use the oxygen concentration in the working cylinder of the internal combustion engine to calculate the quantity of fuel to be metered for the first combustion in the working cylinder during the starting phase.
  • the internal combustion engine can furthermore have sensors coupled to the engine control for the air mass flow in the intake manifold, for the intake pressure and / or for the cylinder internal pressure in order to determine the oxygen concentration from these variables.
  • internal combustion engine 10 is an internal combustion engine with direct injection of gasoline via a leading into the cylinder 3 fuel supply 6.
  • a direct injection engine has the advantage that it can be started directly by igniting the air-fuel mixture in the cylinders 3 can, without an additional starter motor must drive the crankshaft during a cranking phase.
  • the (external or self) ignition of an air-fuel mixture during the start-up phase but only to support a starter (starter motor) done in order to accelerate the starting process (“Quick Start”) to be able to interpret the starter smaller , and to improve the comfort of the conventional launch.
  • fuel is injected and ignited already from the first revolution or from the first expansion stroke of a piston.
  • the internal combustion engine 10 further includes an intake manifold 2 for supplying fresh air, wherein the supply rate can be adjusted via a throttle valve 1.
  • an air mass flow sensor 8 is arranged, which transmits a signal representing the air mass flow MAF to a motor control 7, which can be realized for example by a microprocessor.
  • a pressure sensor 9 for the intake pressure p man is arranged, whose signal is also sent to the engine control unit 7.
  • pressure sensors 4 for the cylinder internal pressure p cyl are provided in the cylinders 3 of the internal combustion engine, which transmit their signals to the engine control unit 7.
  • the exhaust gases from the cylinders 3 of the internal combustion engine 10 are passed from an exhaust manifold 5 in an exhaust system not shown in detail.
  • the internal combustion engine can be equipped with other known components such as an exhaust gas recirculation, an exhaust gas turbocharger, a catalyst and the like, which in FIG. 1 are not shown in detail.
  • the engine controller 7 receives the aforementioned and a number of other sensory information (eg, engine speed, coolant temperature, ambient pressure, etc.) and calculates control commands for various components of the engine.
  • other sensory information eg, engine speed, coolant temperature, ambient pressure, etc.
  • FIG. 1 only the output of the engine controller 7 to the fuel injection system 6 is shown, via which the engine controller 7 can control the fuel injection (timing, duration, fuel amount, fuel pressure).
  • the absolute amount of oxygen in the working cylinder 3 depends on the volume of the combustion chamber formed by the cylinder walls and the piston (and thus the position of the crankshaft), the air density, and the oxygen concentration c 0 of the cylinder charge.
  • the absolute crankshaft position can be easily determined by an angle sensor or a similar device.
  • the air density can be determined by the pressure and the temperature in the working cylinder, the pressure being approximately equal to the ambient pressure (atmospheric pressure) and thus easily predictable, while the temperature can be approximated by the coolant temperature which is usually monitored by a corresponding temperature sensor.
  • a direct measurement of the oxygen concentration c o in the working cylinders is not possible in a simple manner.
  • Corresponding robust and simply designed sensors for measuring the oxygen concentration in a combustion chamber are not available.
  • the continuously recorded measurement data of the internal cylinder pressure p cyl , the intake pressure p man and / or the mass air flow MAF can be used during the outflow phase of the engine.
  • only a few data can be used at predefined positions of the camshaft or crankshaft. Due to the typically limited resources of computing capacity in the engine controller 7 (FIG. FIG. 1 ) is a prediction of Oxygen concentration c 0 with the selection of only a few data of the cylinder internal pressure, the intake pressure and / or the air mass flow at predefined crankshaft angles advantageous, since this can be minimized computational complexity.
  • FIG. 2 the time course of Ansaugdrukkes p man , the engine speed n and the in-cylinder pressure p cyl for a working cylinder (solid line) and the remaining three cylinders (dotted lines) of the internal combustion engine 10 during a phase-out, at the time 0 ("off") with the Turning off the fuel supply and / or the ignition begins.
  • dashed lines in the figure the times TDC1, TDC2 and TDC3 are marked, at which the piston of the working cylinder of the internal combustion engine for the first, second and third (and last) times in the phase-out phase passes the top dead center.
  • the previous passage of the piston through the bottom dead center is marked BDC1, BDC2 and BDC3.
  • This mean in-cylinder pressure ⁇ p cyl > in the working cylinder 3 is closely related to the oxygen concentration c o in the working cylinder, so that the latter can be calculated therefrom.
  • FIG. 3 schematically the relationship between the oxygen concentration c o and the average internal cylinder pressure ⁇ p cyl >.
  • Such a relationship can be empirically determined and recorded, for example, in a look-up table or mathematical approximation function to be available to the engine controller.
  • FIG. 2 is further indicated that the intake pressure p man can be recorded during the phase out of the engine at each passing through the bottom dead center BDC1, BDC2, BDC3.
  • This mean value can then be determined on the basis of FIG. 4 schematically illustrated relationship in an oxygen concentration c o be converted.
  • the in-cylinder pressure p cyl and the intake pressure p man may also be used in combination to estimate the oxygen concentration c o in the working cylinder.
  • the measured or modeled mass flow data MAF average or cumulative

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (8)

  1. Procédé de démarrage d'un moteur à combustion interne, une combustion ayant lieu pendant la phase de démarrage dans le premier cycle d'expansion d'au moins un cylindre (3) (cylindre de travail), la concentration d'oxygène (co) dans le cylindre de travail (3) étant déterminée avant la phase de démarrage et une quantité de carburant à brûler étant dosée en fonction de celle-ci, caractérisé en ce que la concentration d'oxygène (co) dans le cylindre de travail (3) est estimée en fonction d'une valeur moyenne (<pcyl>, <pman>) et/ou d'une valeur cumulée de la pression interne du cylindre (pcyl) dans le cylindre de travail (3) et/ou de la pression d'admission (pman) dans le collecteur d'admission (2) et/ou du débit massique d'air (MAF) dans le collecteur d'admission (2), déterminée pendant la course d'inertie du moteur à combustion interne (10).
  2. Procédé selon la revendication 1, caractérisé en ce que la concentration d'oxygène (co) est déterminée sur la base d'une relation déterminée de manière empirique.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la quantité d'oxygène dans le cylindre de travail (3) au début de la phase de démarrage est déterminée à partir de la concentration d'oxygène (co).
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la mesure des grandeurs mentionnées (pcyl, pman, MAF) n'est effectuée que dans des positions prédéfinies du vilebrequin, de préférence au point mort bas (BDC) et/ou au point mort haut (TDC) d'un piston du moteur à combustion interne (10).
  5. Procédé selon la revendication 4, caractérisé en ce que la mesure de la pression interne du cylindre (pcyl) est effectuée au point mort haut (TDC) et/ou que la mesure de la pression d'admission (pman) est effectuée au point mort bas (BDC) du piston du cylindre de travail (3).
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que le démarrage du moteur à combustion interne (10) est réalisé sans groupe auxiliaire par l'allumage d'un mélange air/carburant dans le cylindre de travail (3) dont le piston, à l'arrêt du moteur à combustion interne (10), se trouve dans la position d'un cycle de travail.
  7. Procédé selon au moins l'une des revendications 1 à 6, caractérisé en ce que le démarrage du moteur à combustion interne (10) est réalisé avec un groupe auxiliaire et est soutenu par la combustion dans le cylindre de travail (3).
  8. Moteur à combustion interne, caractérisé en ce que celui-ci est configuré pour mettre en oeuvre un procédé selon au moins l'une des revendications 1 à 7.
EP03100843A 2003-03-31 2003-03-31 Méthode pour démarrer un moteur à combustion interne Expired - Fee Related EP1464832B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03100843A EP1464832B1 (fr) 2003-03-31 2003-03-31 Méthode pour démarrer un moteur à combustion interne
DE50309198T DE50309198D1 (de) 2003-03-31 2003-03-31 Verfahren zum Anlassen einer Brennkraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03100843A EP1464832B1 (fr) 2003-03-31 2003-03-31 Méthode pour démarrer un moteur à combustion interne

Publications (2)

Publication Number Publication Date
EP1464832A1 EP1464832A1 (fr) 2004-10-06
EP1464832B1 true EP1464832B1 (fr) 2008-02-20

Family

ID=32842830

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03100843A Expired - Fee Related EP1464832B1 (fr) 2003-03-31 2003-03-31 Méthode pour démarrer un moteur à combustion interne

Country Status (2)

Country Link
EP (1) EP1464832B1 (fr)
DE (1) DE50309198D1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335401B4 (de) * 2003-08-01 2012-10-04 Robert Bosch Gmbh Verfahren zum Starten einer Brennkraftmaschine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335016B4 (de) * 2003-07-31 2012-11-29 Robert Bosch Gmbh Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine
JP2006183630A (ja) * 2004-12-28 2006-07-13 Nissan Motor Co Ltd 内燃機関及びその始動方法
US7117078B1 (en) * 2005-04-22 2006-10-03 Gm Global Technology Operations, Inc. Intake oxygen estimator for internal combustion engine
DE102007053719B3 (de) * 2007-11-10 2009-06-04 Audi Ag Zylinder-Kenngrößen geführte Einspritzstrategie
US20140202427A1 (en) * 2011-08-31 2014-07-24 Borgwarner Inc. Engine system control responsive to oxygen concentration estimated from engine cylinder pressure
DE102016004724A1 (de) 2016-04-19 2016-12-22 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Fahrzeugs

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3117144A1 (de) * 1981-04-30 1982-11-18 Fa. Emil Bender, 5900 Siegen Anlassvorrichtung fuer einen mehrzylindrigen otto-motor
JP3510021B2 (ja) * 1995-09-29 2004-03-22 松下電器産業株式会社 内燃機関の空燃比制御装置
US6098585A (en) * 1997-08-11 2000-08-08 Ford Global Technologies, Inc. Multi-cylinder four stroke direct injection spark ignition engine
DE10020325A1 (de) 2000-04-26 2001-11-08 Bosch Gmbh Robert Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine
WO2002042618A2 (fr) * 2000-11-27 2002-05-30 Ribakov Anatolij Aleksandrovic Procede de demarrage par injection d'un moteur a combustion interne
JP3767426B2 (ja) * 2001-06-14 2006-04-19 日産自動車株式会社 エンジンのシリンダ吸入空気量算出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335401B4 (de) * 2003-08-01 2012-10-04 Robert Bosch Gmbh Verfahren zum Starten einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE50309198D1 (de) 2008-04-03
EP1464832A1 (fr) 2004-10-06

Similar Documents

Publication Publication Date Title
DE112011102188B4 (de) Starter und Startverfahren eines Kompressionsselbstzündungsmotor
DE10250121B4 (de) Verfahren zur Erhöhung der Temperatur in einer Abgasnachbehandlungsvorrichtung
DE102006043678B4 (de) Vorrichtung und Verfahren zum Betreiben einer Brennkraftmaschine
DE19741820A1 (de) Verfahren zur Auswertung des Brennraumdruckverlaufs
DE102012203538A1 (de) Verfahren zur steuerung eines motors
DE102009027296A1 (de) Verbrennungsmotorstartvorrichtung
DE10306632A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102008001670A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102016221847A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors nach einem Kaltstart
DE102013218469A1 (de) Vorrichtung und Verfahren zum Steuern eines variablen Ventilsteuerungsmechanismus
DE19963516A1 (de) Steuervorrichtung für einen Antriebsmotor eines Motors
DE102004046182B4 (de) Verbrennungsgestützter Start/Stopp-Betrieb eines Verbrennungsmotors mit Zylinder/Ventil-Abschaltung
DE102006021091B3 (de) Verfahren und Vorrichtung zur Diagnose der Wirksamkeit eines Abgaskatalysators
DE102013214039A1 (de) Spülgasmenge-Berechnungseinrichtung und Interne-AGR-Menge-Berechnungseinrichtung für Verbrennungsmotor
DE3433525A1 (de) Verfahren zum regeln der einer verbrennungskraftmaschine nach dem anlassen zugefuehrten kraftstoffmenge
DE102007055783B4 (de) Maschinenmomentsteuergerät
DE102015226446B4 (de) Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes
EP1464832B1 (fr) Méthode pour démarrer un moteur à combustion interne
EP1478830B1 (fr) Procede et dispositif pour faire fonctionner un moteur a combustion interne
DE102007058227B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine und Steuer- oder Regeleinrichtung für eine Brennkraftmaschine
DE10225305A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102021104046A1 (de) Verfahren und system zum stoppen einer brennkraftmaschine
DE10301191B4 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
DE102016101792A1 (de) Steuervorrichtung für ein Fahrzeug
EP3430252B1 (fr) Procédé et dispositif de commande pour la détermination d&#39;une quantité d&#39;un composant de remplissage dans un cylindre d&#39;un moteur à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20050406

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50309198

Country of ref document: DE

Date of ref document: 20080403

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190215

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200228

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200219

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309198

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331