EP1459134A1 - Verfahren zur optimierung der abbildungseigenschaften von mindestens zwei optischen elementen sowie photolithographisches fertigungsverfahren - Google Patents

Verfahren zur optimierung der abbildungseigenschaften von mindestens zwei optischen elementen sowie photolithographisches fertigungsverfahren

Info

Publication number
EP1459134A1
EP1459134A1 EP02805274A EP02805274A EP1459134A1 EP 1459134 A1 EP1459134 A1 EP 1459134A1 EP 02805274 A EP02805274 A EP 02805274A EP 02805274 A EP02805274 A EP 02805274A EP 1459134 A1 EP1459134 A1 EP 1459134A1
Authority
EP
European Patent Office
Prior art keywords
polarization
optical
optical element
optical elements
dependent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02805274A
Other languages
English (en)
French (fr)
Inventor
Birgit Mecking
Toralf Gruner
Alexander Kohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Publication of EP1459134A1 publication Critical patent/EP1459134A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods

Definitions

  • the invention relates to a method for optimizing the imaging properties of at least two optical elements according to the preamble of claim 1 and a photolithographic production method.
  • the birefringence distribution of lenses within a projection lens of a projection exposure system is determined as a polarization-dependent disturbance variable.
  • the lenses are then selected and arranged within the projection lens in such a way that there is a total birefringence, the amount of which for each optical path through the projection lens falls below a predetermined limit value.
  • the total birefringence is made up of the sum of all birefringences of the individual lenses measured.
  • the method according to the invention is based on the following findings:
  • Polarization-dependent and polarization-independent disturbance variables generally contribute to the overall disturbance variable.
  • Polarization-dependent disturbance variables can be divided into intrinsically present polarization-dependent disturbance variables such as intrinsic birefringence, which also occurs with homogeneous and stress-free material, into polarization-dependent disturbance variables occurring due to external effects such as voltage birefringence and into polarization-dependent disturbance variables occurring due to internal material inhomogeneities due to birefringence Crystal defects, especially due to the formation of domains in the material.
  • intrinsic birefringence which also occurs with homogeneous and stress-free material
  • polarization-dependent disturbance variables occurring due to external effects such as voltage birefringence and into polarization-dependent disturbance variables occurring due to internal material inhomogeneities due to birefringence Crystal defects, especially due to the formation of domains in the material.
  • the polarization-dependent disturbance variables mean that light rays from orthogonal polarizations are imaged at different locations. At the same time, polarization effects can cause the individual polarization components to experience different aberrations.
  • the above-mentioned EP 1 063 684 AI takes into account a polarization-dependent disturbance variable, namely birefringence, ignores other disturbance variables when optimizing the arrangement of the optical components with respect to one another, which can result in avoidable error amounts for the overall imaging error.
  • a polarization-dependent disturbance variable namely birefringence
  • both the polarization-dependent and the polarization-independent disturbance variables are taken into account when calculating the target position.
  • the optical elements can be modeled precisely and completely with regard to their imaging properties.
  • the polarization-dependent disturbance variable according to claim 2 takes into account the influence of internal voltages in the optical materials. These internal stresses may have been frozen in the material during the manufacturing process or may occur due to the mechanical holder (holder) of the optical element. The consideration of the stress birefringence improves the optimization of the imaging properties even with optical elements that have no intrinsic stress birefringence.
  • claim 3 can make a further measurement of polarization-dependent disturbance variables superfluous, since the intrinsic birefringence can be calculated after determining the crystal axis position.
  • a relatively simple degree of freedom of movement that can be realized without major interventions in the holder of the optical element is the rotatability of the at least one optical element.
  • the effects of the displacement of an optical element which can be linearly displaced according to claim 5 on the imaging properties of the at least two optical elements can be predicted precisely, for example by means of optical design programs, which facilitates the calculation of the target position.
  • Centering errors in particular, can be compensated with an optical element which can be displaced according to claim 6.
  • a tiltable optical element according to claim 7 allows e.g. an alignment of the crystal axes of the optical element relative to the optical axis of an overall optical system, which comprises the at least two optical elements.
  • a determination of the polarization-dependent disturbance variable leads to the fact that the contributions of the voltage birefringence, which are based on the version, are also taken into account when determining the polarization-dependent disturbance variable. This increases the precision of the optimization process.
  • Another object of the present invention is to provide a photolithographic manufacturing process with improved optical quality.
  • FIG. 1 shows a projection exposure system for microlithography
  • FIG. 2 shows a section through a block of a single crystal as the starting material for a lens of a projection optics of the projection exposure system from
  • FIG. 3 shows a schematic illustration of the intrinsic birefringence of an optical plate of the projection optics of the projection exposure system from FIG. 1 which is produced from a single crystal;
  • FIG. 4 shows a coordinate system for defining an opening angle and an azimuth angle for
  • FIG. 5 shows the course of the intrinsic birefringence of the optical disk of FIG. 3 as a function of the azimuth angle.
  • a projection exposure system denoted overall by 1 in FIG. 1, is used to transfer a structure from a mask 2 to one not shown in FIG. put wafers.
  • a light source 3 for example an F ? Laser with a wavelength of 157 nm generates a projection light bundle 4. For shaping, this first passes through an illumination optics 5 and then the mask 2.
  • a projection optics 6 images the structure present on the mask 2 onto the wafer.
  • the projection optics 6 in FIG. 1 are subdivided into a part 7 rotatable about the optical axis of the projection optics 6 and into a stationary part 8.
  • the projection optics 6 often have several rotatable parts; for the purposes of this description, however, the restriction to only one rotatable part 7 is sufficient.
  • a biconvex lens 9 is indicated in FIG. 1 and a plane-parallel optical plate 10 is indicated for the optical components of the stationary part 8.
  • lens 9 can also be displaced both along the optical axis and transversely to the optical axis of the projection optics 6, and, as indicated by a double arrow 21 in FIG. 1, relative to the optical
  • Axis of the projection optics 6 can be tilted.
  • the double arrow 21 designates one of two possible and mutually perpendicular tilting movements with respect to the optical axis. Also other optical elements of the projection optics, which are not explicitly shown in FIG. 1
  • a position-sensitive sensor 11 is provided for measuring disturbance variables that affect the imaging properties of the projection optics 6. This is Movable transversely to the optical axis of the projection optics 6 between a measurement position shown in FIG. 1 and a projection exposure position, not shown, which is displaced out of the beam path of the projection light bundle 4 (cf. double arrow 12 in FIG. 1).
  • the sensor 11 is connected to a computer 14 via a signal line 13.
  • the lens 9 and the optical plate 10 are made from single crystals of CaF, which has a cubic crystal symmetry. For production, these optical elements 9, 10 are cut out of crystal blocks and polished.
  • Such a crystal block 15 is shown by way of example in FIG. 2 for the lens 9. This is oriented in such a way that (100) crystal planes 16 are perpendicular to the plane of the drawing in such a way that their lines of intersection with the plane of the drawing result in horizontal lines.
  • the lens 9 is worked out of the crystal block 15 so that its element axis EA, i. H. the optical axis of the lens 9 coincides with the (100) crystal direction which is perpendicular to the (100) crystal planes.
  • the optical plate 10 which is shown in isolation in FIG. 3, is also worked out in this way from a crystal block.
  • the (101) -, (110) -, (10-1) - and (1-10) - crystal directions are shown as arrows, with the negative sign when indexing the crystal direction in this Description of the designation "top across” in the drawing is equivalent.
  • An intrinsic birefringence of the optical disc 10 is schematically represented by four "lobes" 17, the surfaces of which are the amount of intrinsic birefringence for the respective one Specify the beam direction of a light beam of the projection light bundle 4 (cf. FIG. 1).
  • the maximum intrinsic birefringence of the optical disk 4 results in the (101), (110), (l ⁇ -l) and (1-10) crystal directions, respectively.
  • the beam direction of a light beam 18 of the projection light beam 4 is defined by an aperture angle theta and an azimuth angle alpha.
  • the position of these two angles is illustrated in FIG. 4:
  • There is a faxsisch.es coordinate system of the projection exposure system 1 is shown, whose z-axis coincides with the optical axis of the projection optics 6.
  • the opening angle theta is the angle between the light beam 18 and the z-axis.
  • the azimuth angle alpha is the angle between the x axis and the projection of the light beam 18 onto the xy plane.
  • the optical components 9, 10 are oriented such that the (100) crystal direction coincides with the z axis and the projection of the (101) crystal direction on the xy plane coincides with the x axis.
  • IDB intrinsic birefringence
  • the intrinsic birefringence disappears (see FIG. 3) at an aperture angle of 0 degrees, ie a beam direction along the optical axis of the projection objective 6 in the (100) crystal direction.
  • the maximum intrinsic birefringence (beam propagation, for example, in the (110) crystal direction, ie theta equal to 45 degrees, alpha equal to 90 degrees) was a value of (11.0 +/- 0.4) nm / cm at a wavelength of 156, lnm measured for CaF_.
  • the lens 9 and the optical plate 10 have, depending on their installation situation in the projection optics 6, additional voltage birefringence contributions which add up to the intrinsic birefringence. Further birefringence contributions can result, for example, from crystal defects, in particular from the formation of domains. Non-intrinsic birefringence contributions can also be present in optical materials that have no intrinsic birefringence.
  • a method for optimizing the imaging properties of the projection optics 6 is carried out as follows:
  • the optical disturbance variables of all optical elements of the projection optics 6 are determined individually.
  • Such measurement methods for determining, on the one hand, the birefringence contributions described above as an example of polarization-dependent disturbance variables and, on the other hand, polarization-independent disturbance variables are known to the person skilled in the art.
  • the overall imaging properties of the projection optics 6 can be measured with different adjustment states of the projection optics 6.
  • the individual optical elements of the projection optics 6 can be measured independently of one another using known measuring methods.
  • the determination of the birefringence contributions can include, for example, the position determination of the crystal axes of the optical elements measured, insofar as they are crystal materials.
  • the measurement results are evaluated by the computer 14. This determines the respective disturbance variable contributions of the individual optical elements of the projection optics and assigns these contributions to the individual polarization-dependent and polarization-independent disturbance variables.
  • the computer 14 then calculates and optimizes a target function (merit function). The dependencies of the disturbance variable contributions of all optical elements on the degrees of freedom of movement of these optical elements (rotation, inclination, centering) are included in this objective function.
  • the lens 9 can be rotated about the optical axis with respect to the optical plate 10. After measuring the disturbance contributions, lie for the lens 9 and the optical plate 10 present their respective contributions to the polarization-dependent and the polarization-independent disturbance variables.
  • the merit function also contains the dependence of the disturbance variable contributions of the lenses 9 on the rotation thereof about the optical axis.
  • the merit function is then optimized by varying the degrees of freedom of movement of the moving parts of the projection optics 6.
  • the merit function is evaluated at every rotational position of the rotatable part 7 of the projection optics 6. Then the rotational position is determined in which the merit function has the optimal value.
  • the movable optical elements are moved into the determined target position.
  • the rotatable part 7 is rotated with the lens 9 into the determined target position.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

Bei einem Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen (9, 10), bei dem die relative Lage der optischen Elemente (9, 10) zur Optimierung der optischen Abbildung zueinander eingestellt wird, werden folgende Verfahrensschritte durchgeführt: Zunächst wird eine polarisationsabhängige Störgrösse für mindestens ein optisches Element (9, 10) bestimmt. Anschliessend wird eine Zielposition mindestens eines beweglichen optischen Elements (9) aus der für dieses bestimmten Störgrösse und den Störgrössen der weiteren optischen Elemente berechnet. In welcher dieser Zielposition ist die Gesamtgrösse aller optischen Elemente (6), zusammengesetzt aus polarisationsabhängigen und polarisationsunabhängigen Störgrössen, minimiert. Schliesslich wird das bewegliche optische Element (9) in die Zielposition bewegt. Die Berücksichtigung der polarisationsabhängigen Störgrösse gewährleistet eine präzise Modellierung der Abbildungseigenschaften, welche die Voraussetzung für eine exakte Optimierung ist.

Description

Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen sowie photolithographisches Fertigungsverfahren
Die Erfindung betrifft ein Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen nach dem Oberbegriff des Anspruchs 1 sowie ein photolithographisches Fertigungsverfahren.
Derartige Verfahren sind aus der EP 1 063 684 AI bekannt. Dort wird als polarisationsabhängige Störgröße die Doppel- brechungsverteilung von Linsen innerhalb eines Projektionsobjektivs einer Projektionsbelichtungsanlage bestimmt. Die Linsen werden dann so ausgewählt und innerhalb des Projektionsobjektivs angeordnet, daß sich eine Gesamtdoppelbrechung ergibt, deren Betrag für jeden optischen Weg durch das Projektionsobjektiv einen vorgegebenen Grenzwert unterschreitet . Die Gesamtdoppelbrechung setzt sich hierbei zusammen aus der Summe aller Doppelbrechungen der einzelnen vermessenen Linsen. Ein derartiges Verfahren ist hilfreich, wenn Linsen aufgrund einer nicht tolerierbaren Doppelbrechungsverteilung aussortiert werden sollen, führt in der Praxis jedoch nicht immer dazu, daß Vorgabewerte für die Abbildungseigenschaften der optischen Elemente erreicht werden.
Ein anderes Optimierungsverfahren ist aus dem Fachartikel "The development of microlithographic high-performance optics, Int. J. of Optoelec, 1989, 545, bekannt. Bei der Optimierung der Abbildungseigenschaften optischer Systeme mit optischen Elementen, die aus Kristallmaterialien gefertigt sind, führt dieses Verfahren nur dann zu zufriedenstellenden Ergebnissen, wenn die Kristallmaterialien speziell ausgewählt werden und die optischen Elemente spannungsfrei gehaltert werden. Derartige Maßnahmen sind aufwendig.
Es ist daher eines erste Aufgabe der vorliegenden Erfindung, ein Optimierungsverfahren der eingangs genannten Art derart weiterzubilden, dass ein Gesamtabbildungsfehler, der sich aus den Abbildungsfehlern der einzelnen optischen Komponenten zusammensetzt, für die meisten praktischen Anwendungsfalle weiter reduziert werden kann.
Diese Aufgabe ist erfindungsgemäß gelöst durch ein Verfahren mit den im Anspruch 1 genannten Merkmalen.
Das erfindungsgemäße Verfahren stützt sich auf folgende Erkenntnisse :
Zur GesamtStörgröße tragen in aller Regel polarisations- abhängige und polarisationsunabhängige Störgrößen bei.
Polarisationsabhängige Störgrößen können unterteilt werden in intrinsisch vorliegende polarisationsabhängige Störgrößen wie der intrinsischen, also auch bei homogenem und spannungsfreien Material auftregenden, Doppelbrechung, in aufgrund externer Effekte auftretende polarisations- abhängige Störgrößen wie der Spannungsdoppelbrechung und in aufgrund innerer Materialinhomogenitäten auftretende polarisationsabhängige Störgrößen wie einer Doppelbrechung aufgrund von Kristallfehlern, insbesondere durch die Ausbildung von Domänen im Material.
Bisherige Bestimmungsverfahren zur Bestimmung von Abbildungsfehlern optischer Elemente beschränkten sich in der Regel auf polarisationsunabhängige Störgrößen, da für die gebräuchlichen optischen Materialien nur im Ausnahmefall von einer polarisationsabhängigen Störgröße ausgegangen wurde. Diesen polarisationsabhängigen Störgrößen wurde bisher Rechnung getragen, ohne sie in eine Zielpositionsberechnung einzubinden. Dies geschah, wie oben schon erwähnt, durch Materialauswahl bzw. spezielle Halterung.
Aus der Internet-Publikation "Preliminary Determination of an Intrinsic Birefringence in CaF " von J. H. Burnett, G. L. Shirley und Z. H. Levine, NIST Gaithersburg MD 20899 USA (verbreitet am 7.5.01), ist jedoch bekannt, dass CaF_ Einkristalle auch nicht spannungsinduzierte, also intrin- sische Doppelbrechung aufweisen. Dies gilt zum Beispiel für eine Strahlausbreitung in der (110) -Kristallrichtung. Bei einer Strahlausbreitung in der (100) -Kristallrichtung und in der (111) -Kristallrichtung weist CaF„ dagegen keine intrinsische Doppelbrechung auf. Die auftretende Doppelbrechung ist also strahlrichtungsabhängig. Sie kann weder durch Materialauswahl noch durch eine spannungsfreie Halterung eines optischen Elements eliminiert werden.
Da CaF? und auch andere Kristallmaterialien mit intrinsi- scher Doppelbrechung zunehmend als optische Materialien insbesondere in Verbindung mit UV-Lichtquellen eingesetzt werden, führt das Nichtberücksichtigen polarisationsab- hängiger Störgrößen zu Abbildungsfehlern, die bei den bekannten Optimierungsverfahren nicht erfaßt werden.
Die polarisationsabhängigen Störgrößen führen dazu, dass eine Abbildung von Lichtstrahlen orthogonaler Polari- sationen an unterschiedlichen Orten erfolgt. Gleichzeitig können Polarisationseffekte bewirken, daß die einzelnen Polarisationskomponenten unterschiedliche Abbildungsfehler erfahren.
Die oben erwähnte EP 1 063 684 AI berücksichtigt zwar eine polarisationsabhängige Störgröße, nämlich die Doppelbrechung, läßt aber im Rahmen der Optimierung der Anordnung der optischen Komponenten zueinander andere Störgrößen außer acht, wodurch sich vermeidbare Fehlerbeträge zum Gesamtabbildungsfehler ergeben können.
Erfindungsgemäß werden sowohl die polarisationsabhängigen als auch die polarisationsunabhängigen Störgrößen bei der Zielpositionsberechnung berücksichtigt. Auf diese Weise lassen sich die optischen Elemente hinsichtlich ihrer Abbildungseigenschaften präzise und vollständig modellieren.
Die polarisationsabhängige Störgröße gemäß Anspruch 2 berücksichtigt den Einfluss von internen Spannungen in den optischen Materialien. Diese internen Spannungen können etwa beim Herstellungsprozess im Material eingefroren worden sein oder aufgrund der mechanischen Halterung (Fassung) des optischen Elements auftreten. Die Berücksichtigung der Spannungsdoppelbrechung verbessert die Optimierung der Abbildungseigenschaften auch bei optischen Elementen, die keine intrinsische Spannungs- doppelbrechung aufweisen.
Eine Lagebestimmung mindestens einer Kristallachse gemäß
Anspruch 3 kann im günstigsten Fall, wenn keine weiteren polarisationsabhängigen Störgrößen vorliegen, eine weitere Messung polarisationabhängiger Störgrößen überflüssig machen, da nach Bestimmung der Kristallachsenlage die intrinsische Doppelbrechung berechnet werden kann.
Ein relativ einfach, da ohne größere Eingriffe in die Halterung des optischen Elements, realisierbarer Bewegungsfreiheitsgrad ist die Verdrehbarkeit des mindestens einen optischen Elements gemäß Anspruch 4. Die Auswirkungen der Verlagerung eines gemäß Anspruch 5 linear verlagerbaren optischen Elements auf die Abbildungseigenschaften der mindestens zwei optischen Elemente lassen sich präzise, z.B. mittels optischer Designprogramme vorhersagen, was die Berechnung der Zielposition erleichtert .
Mit einem gemäß Anspruch 6 verlagerbaren optischen Element lassen sich insbesondere Zentrierungsfehler kompensieren.
Ein gemäß Anspruch 7 verkippbares optisches Element erlaubt z.B. eine Ausrichtung der Kristallachsen des optischen Elements relativ zur optischen Achse einer Gesamtoptik, welche die mindestens zwei optischen Elemente umfaßt .
Eine Bestimmung der polarisationsabhängigen Störgröße gemäß Anspruch 8 führt dazu, dass auch die Beiträge der Spannungsdoppelbrechung, die von der Fassung ausgehen bei der Bestimmung der polarisationsabhängigen Störgröße berücksichtigt werden. Dies erhöht die Präzision des Optimierungsverfahrens .
Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein photolithographisches Fertigungsverfahren mit verbesserter optischer Qualität schaffen.
Diese Aufgabe ist erfindungsgemäß gelöst durch ein Ver- fahren mit den im Anspruch 9 genannten Merkmalen. Die
Vorteile des Fertigungsverfahrens ergeben sich aus den oben diskutierten Vorteilen des Optimierungsverfahrens.
Bei einer Belichtungswellenlänge gemäß Anspruch 10 liegen bei vielen optischen Materialien polarisationsabhängige Störgrößen vor, die die Abbildungseigenschaften optischer Elemente stärker beeinflussen als z.B. bei Belichtung mit sichtbarem Licht. Bei einer Belichtung mit Wellenlängen kleiner als 200 nm kommt daher das erfindungsgemäße Optimierungsverfahren stark zum Tragen.
Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert; es zeigen:
Figur 1 eine Projektionsbelichtungsanlage der Mikrolitho- graphie ;
Figur 2 einen Schnitt durch einen Block eines Einkristalls als Ausgangsmaterial für eine Linse einer Pro- jektionsoptik der Projektionsbelichtungsanlage von
Figur 1 ;
Figur 3 eine schematische Darstellung der intrinsischen Doppelbrechung einer aus einem Einkristall hergestellten optischen Platte der Projektionsoptik der Projektionsbelichtungsanlage von Figur 1 ;
Figur 4 ein Koordinatensystem zur Definition eines Öffnungswinkels und eines Azimutwinkels für
Strahlen eines Projektionslichtbündels der Projektionsbelichtungsanlage von Figur 1; und
Figur 5 den Verlauf der intrinsischen Doppelbrechung der optischen Platte von Figur 3 in Abhängigkeit vom Azimutwinkel.
Eine in Figur 1 insgesamt mit 1 bezeichnete Projektionsbelichtungsanlage dient zur Übertragung einer Struktur von einer Maske 2 auf einen in der Figur 1 nicht darge- stellten Wafer.
Eine Lichtquelle 3, zum Beispiel ein F? -Laser bei mit einer Wellenlänge 157nm, erzeugt hierzu ein Projektions- lichtbündel 4. Dieses durchtritt zur Formung zunächst eine Beleuchtungsoptik 5 und anschließend die Maske 2. Eine Projektionsoptik 6 bildet die auf der Maske 2 vorliegende Struktur auf den Wafer ab .
Die Projektionsoptik 6 ist in Figur 1 unterteilt in einen um die optische Achse der Projektionsoptik 6 verdrehbaren Teil 7 und in einen stationären Teil 8. In der Praxis liegen bei der Projektionsoptik 6 oft mehrere verdrehbare Teile vor; zu Zwecken dieser Beschreibung genügt jedoch die Beschränkung auf nur einen verdrehbaren Teil 7.
Stellvertretend für die optischen Komponenten des verdrehbaren Teils 7 ist in Figur 1 eine bikonvexe Linse 9 und für die optischen Komponenten des stationären Teils 8 eine planparallele optische Platte 10 angedeutet. Die
Linse 9 ist zudem, wie in Fig. 1 durch ein kartesisches Koordinatensystem 20 illustriert, sowohl längs der optischen Achse als auch quer zur optischen Achse der Projektionsoptik 6 verlagerbar, sowie, wie durch einen Doppel- pfeil 21 in Fig. 1 angedeutet, gegenüber der optischen
Achse der Projektionsoptik 6 verkippbar. Der Doppelpfeil 21 bezeichnet hierbei eine von zwei möglichen und aufeinander senkrecht stehenden Kippbewegungen gegenüber der optischen Achse. Auch andere, in Fig. 1 nicht explizit dargestellte optische Elemente der Projektionsoptik
6 können die genannten Bewegungsfreiheitsgrade aufweisen.
Zur Vermessung von sich auf die Abbildungseigenschaften der Projektionsoptik 6 auswirkenden Störgrößen ist ein positionsempfindlicher Sensor 11 vorgesehen. Dieser ist quer zur optischen Achse der Projektionsoptik 6 zwischen einer in Figur 1 dargestellten Messposition und einer nicht dargestellten, aus dem Strahlengang des Projektions- lichtbündels 4 herausverlagerten Projektionsbelichtungs- position verschiebbar (vgl. Doppelpfeil 12 in Fig. 1). Über eine Signalleitung 13 steht der Sensor 11 mit einem Rechner 14 in Verbindung.
Die Linse 9 und die optische Platte 10 sind aus Einkristallen aus CaF« gefertigt, welches eine kubische Kristallsymmetrie aufweist. Zur Herstellung werden diese optischen Elemente 9, 10 aus Kristallblöcken herausgeschnitten und poliert .
Für die Linse 9 ist in Fig. 2 beispielhaft ein solcher Kristallblock 15 dargestellt. Dieser ist so orientiert, dass (100) -Kristallebenen 16 derart senkrecht auf der Zeichenebene stehen, daß ihre Schnittgeraden mit der Zeichenebene horizontal verlaufende Linien ergeben. Die Linse 9 wird aus dem Kristallblock 15- so herausgearbeitet, dass ihre Elementachse EA, d. h. die optische Achse der Linse 9, mit der (100) -Kristallrichtung, die senkrecht auf den (100) -Kristallebenen steht, zusammenfällt.
Auch die optische Platte 10, die isoliert in Fig. 3 dargestellt ist, ist derart orientiert aus einem Kristallblock herausgearbeitet. Dort sind neben der (100) -Kristallrichtung auch die (101)-, (110)-, (10-1)- und (1-10)- Kristallrichtungen als Pfeile dargestellt, wobei das negative Vorzeichen bei der Indizierung der Kristallrichtung in dieser Beschreibung der Bezeichnung "oben quer" in der Zeichnung gleichzusetzen ist . Eine intrinsische Doppelbrechung der optischen Platte 10 ist schematisch durch vier "Keulen" 17 dargestellt, deren Oberflächen den Betrag der intrinsischen Doppelbrechung für die jeweilige Strahlrichtung eines Lichtstrahls des Projektionslicht- bündels 4 (vgl. Figur 1) angeben. Die maximale intrinsische Doppelbrechung der optischen Platte 4 ergibt sich jeweils in den (101)-, (110)-, (lθ-l)und (1-10) -Kristallrichtungen.
Die Strahlrichtung eines Lichtstrahls 18 des Projektionslichtbündels 4 ist durch einen Öffnungswinkel Theta und einen Azimutwinkel Alpha definiert. Die Lage dieser beiden Winkel verdeutlicht Figur 4 : Dort ist ein kartesisch.es Koordinatensystem der Projektionsbelichtungsanlage 1 gezeigt, dessen z-Achse mit der optischen Achse der Projektionsoptik 6 zusammenfällt. Der Öffnungswinkel Theta ist der Winkel zwischen dem Lichtstrahl 18 und der z-Achse. Der Azimutwinkel Alpha ist der Winkel zwischen der x-Achse und der Projektion des Lichtstrahls 18 auf die xy-Ebene .
Bei der nachfolgenden Beschreibung sind die optischen Komponenten 9, 10 so orientiert, daß die (100) -Kristallrichtung mit der z-Achse und die Projektion der (101)- Kristallrichtung auf die xy-Ebene mit der x-Achse zusammenfällt .
Figur 5 zeigt die intrinsische Doppelbrechung (IDB) der optischen Platte 10 in Abhängigkeit vom Azimutwinkel Alpha für den Öffnungswinkel Theta = 45 Grad. Es ergibt sich eine vierzählige Symmetrie, wobei die Maxima der intrinsischen Doppelbrechung sich für Lichtstrahlen ergeben, deren Strahlrichtung mit den (101)-, (110)-, (10-1)- und (1-10) -Kristallrichtungen (vgl. Figur 3) zusammenfallen, also für Lichtstrahlen mit einem Öffnungswinkel Theta von
45 Grad und einem Azimutwinkel Alpha von 0 Grad, 90 Grad,~ 180 Grad und 270 Grad. Die intrinsische Doppelbrechung verschwindet (vgl. Figur 3) bei einem Öffnungswinkel von 0 Grad, d. h. eine Strahlrichtung längs der optischen Achse des Projektionsobjektivs 6 in (100) -Kristallrichtung. Als maximale intrinsische Doppelbrechung (Strahlausbreitung z.B. in (110) -Kristallrichtung, d.h. Theta gleich 45 Grad, Alpha gleich 90 Grad) wurde ein Wert von (11,0 +/- 0,4) nm/cm bei einer Wellenlänge von 156, lnm für CaF_ gemessen.
Bei den Azimutwinkeln, bei denen eine intrinsische Doppelbrechung auftritt (vgl. Figur 5), nimmt diese für Öffnungs- winkel kleiner als 45 Grad mit dem Öffnungswinkel kontinu- ierlich ab (vgl. Figur 3) .
Neben diesen intrinsischen Beiträgen zur Doppelbrechung weisen die Linse 9 und die optische Platte 10 abhängig von ihrer Einbausituation in der Proj ektionsoptik 6 zusätzliche Spannungsdoppelbrechungsbeiträge auf, die sich zur intrinsischen Doppelbrechung addieren. Weitere Doppelbrechungsbeiträge können sich zum Beispiel durch Kristallfehler, insbesondere durch die Ausbildung von Domänen, ergeben. Nicht intrinsische Doppelbrechungsbei- träge können auch bei optischen Materialien vorliegen, die keine intrinsische Doppelbrechung aufweisen.
Ein Verfahren zur Optimierung der Abbildungseigenschaften der Projektionsoptik 6 wird folgendermaßen durchgeführt:
Zunächst werden die optischen Störgrößen aller optischen Elemente der Projektionsoptik 6 einzeln ermittelt. Derartige Messverfahren zur Bestimmung einerseits der oben beschriebenen Doppelbrechungsbeiträge als Beispiel für polarisationsabhängige Störgrößen und andererseits polarisationsunabhängiger Störgrößen sind dem Fachmann bekannt . Hierzu kann zum Beispiel, wie dies durch den Sensor 11 in Figur 1 angedeutet ist, eine Messung der Gesamtabbil- dungseigenschaften der Projektionsoptik 6 bei verschiedenen Justagezuständen der Proj ektionsoptik 6 erfolgen. Alternativ oder zusätzlich können mit Hilfe bekannter Messverfahren die einzelnen optischen Elemente der Projektionsoptik 6 unabhängig voneinander vermessen werden. Hierbei muss darauf geachtet werden, dass die Einbausituation der optischen Elemente in der Projektionsoptik 6 während dieser unabhängigen Vermessung möglichst präzise simuliert wird, so dass bedingt durch den Einbau der optischen Elemente in die Projektionsbelichtungsanlage 1 nicht zusätzliche Störbeiträge entstehen, die die Optimierung der Abbildungseigenschaften der Projektionsoptik 6 beeinträchtigen.
Die Bestimmung der Doppelbrechungsbeiträge kann zum Beispiel die Lagebestimmung der Kristallachsen der vermessenen optischen Elemente, soweit es sich um Kristallmaterialien handelt, umfassen.
Die Messergebnisse werden vom Rechner 14 ausgewertet . Dieser ermittelt die jeweiligen Störgrößenbeiträge der einzelnen optischen Elemente der Projektionsoptik und ordnet diese Beiträge den einzelnen polarisationsabhängigen und polarisationsunabhängigen Störgrößen zu. Anschließend berechnet und optimiert der Rechner 14 eine Zielfunktion (Meritfunktion) . In diese Zielfunktion gehen die Abhängigkeiten der Störgrößenbeiträge aller optischen Elemente von den Bewegungsfreiheitsgraden dieser optischen Elemente (Verdrehung, Neigung, Zentrierung) ein.
Im dargestellten Ausführungsbeispiel erfolgt diese Berechnung für die optischen Komponenten 9 und 10 :
Wie oben ausgeführt, ist die Linse 9 gegenüber der optischen Platte 10 um die optische Achse verdrehbar. Nach der Vermessung der Störgrößenbeiträge liegen für die Linse 9 und die optische Platte 10 ihre jeweiligen Beiträge zu den polarisationsabhängigen und den polarisationsunabhängigen Störgrößen vor. Die Meritfunktion enthält neben den Störgrößen der Linse 9 und der optischen Platte 10 auch die Abhängigkeit der Störgrößenbeiträge der Linsen 9 von der Verdrehung von dieser um die optische Achse.
Anschließend wird die Meritfunktion durch Variation der Bewegungsfreiheitsgrade der beweglichen Teile der Projek- tionsoptik 6 optimiert. Bei der Ausführung gemäß Figur 1 wird die Meritfunktion bei jeder Drehposition des verdrehbaren Teils 7 der Projektionsoptik 6 ausgewertet. Anschließend wird diejenige Drehposition ermittelt, in der die Meritfunktion den optimalen Wert aufweist .
Schließlich werden die beweglichen optischen Elemente in die ermittelte Zielposition gefahren. Bei der Ausführung nach Figur 1 wird der verdrehbare Teil 7 mit der Linse 9 in die ermittelte Zielposition gedreht.

Claims

Patentansprüche
1. Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen, bei dem die relative Lage der optischen Elemente zur Optimierung der optischen Abbildung zueinander eingestellt wird, mit folgenden Verfahrensschritten:
a) Bestimmen einer polarisationsabhängigen Störgröße für mindestens ein optisches Element (9, 10);
b) Berechnen einer Zielposition mindestens eines beweglichen optischen Elements (9) aus den Störgrößen, die für dieses und für das mindestens eine weitere optische Element bestimmt wurden,
c) Bewegen des beweglichen optischen Elements (9) in die Zielposition;
dadurch gekennzeichnet, daß
das Berechnen der Zielposition derart erfolgt, daß in der Zielposition die Gesamtstörgröße aller optischen Elemente (9, 10) , zusammengesetzt aus polarisationsabhängigen und polarisationsunabhängigen Störgrößen, minimiert ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass unter den polarisationsabhängigen Störgrößen die Spannungsdoppelbrechung ist.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das mindestens eine optische Element (9, 10) , - In ¬
dessen polarisationsabhängige Störgröße bestimmt wird, aus einem Kristallmaterial besteht und dass das Bestimmen der aus der Spannungsdoppelbrechung resultierenden Störgröße das Bestimmen der Lage mindestens eine Kristall- achse umfasst.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine bewegliche optische Element (9) um seine optische Achse verdrehbar ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das mindestens eine bewegliche optische Element relativ zu den anderen opti- sehen Elementen linear verlagerbar ist .
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das bewegliche optische Element quer zur optischen
Achse verlagerbar ist.
7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das bewegliche optische Element gegenüber der optischen Achse verkippbar ist.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bestimmung der polarisationsabhängigen Störgröße am gefassten optischen Element erfolgt .
9. Photolithographisches Fertigungsverfahren für Halbleiterbauelemente unter Benutzung optischer Elemente, deren Abbildungseigenschaften mit einem Verfahren nach einem der vorhergehenden Ansprüche optimiert wurden.
10. Photolithographisches Fertigungsverfahren nach Anspruch 9, gekennzeichnet durch eine Projektionsbelichtung mit einer Wellenlänge, die geringer ist als 200 nm.
EP02805274A 2001-12-20 2002-10-02 Verfahren zur optimierung der abbildungseigenschaften von mindestens zwei optischen elementen sowie photolithographisches fertigungsverfahren Withdrawn EP1459134A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10162796 2001-12-20
DE10162796A DE10162796B4 (de) 2001-12-20 2001-12-20 Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen sowie photolithographisches Fertigungsverfahren
PCT/EP2002/011030 WO2003054631A1 (de) 2001-12-20 2002-10-02 Verfahren zur optimierung der abbildungseigenschaften von mindestens zwei optischen elementen sowie photolithographisches fertigungsverfahren

Publications (1)

Publication Number Publication Date
EP1459134A1 true EP1459134A1 (de) 2004-09-22

Family

ID=7710068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805274A Withdrawn EP1459134A1 (de) 2001-12-20 2002-10-02 Verfahren zur optimierung der abbildungseigenschaften von mindestens zwei optischen elementen sowie photolithographisches fertigungsverfahren

Country Status (7)

Country Link
US (3) US6963449B2 (de)
EP (1) EP1459134A1 (de)
JP (1) JP2005513794A (de)
CN (1) CN1271473C (de)
AU (1) AU2002366852A1 (de)
DE (1) DE10162796B4 (de)
WO (1) WO2003054631A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239447B2 (en) * 2001-05-15 2007-07-03 Carl Zeiss Smt Ag Objective with crystal lenses
EP1390783A2 (de) * 2001-05-15 2004-02-25 Carl Zeiss Objektiv mit fluorid-kristall-linsen
DE10162796B4 (de) * 2001-12-20 2007-10-31 Carl Zeiss Smt Ag Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen sowie photolithographisches Fertigungsverfahren
EP1586946A3 (de) * 2004-04-14 2007-01-17 Carl Zeiss SMT AG Optisches System eines Projektions-Mikrolithographie Apparats
DE102005019726A1 (de) * 2005-04-22 2006-10-26 Carl Zeiss Smt Ag Verfahren zur Montage/Justage eines Projektionsobjektives für die Lithographie sowie Projektionsobjektiv
JP2008070730A (ja) * 2006-09-15 2008-03-27 Sony Corp マスクブランクス選定方法、複屈折性指標の算出方法、リソグラフィ方法、マスクブランクス選定装置、複屈折性指標算出装置およびそのプログラム
DE102007055567A1 (de) * 2007-11-20 2009-05-28 Carl Zeiss Smt Ag Optisches System
US20090233456A1 (en) * 2008-03-17 2009-09-17 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
JP7017985B2 (ja) * 2018-06-05 2022-02-09 株式会社日立製作所 システム及び処理条件の決定方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1332410A (en) * 1919-03-22 1920-03-02 Oscero W Potts Lens and method of making the same
JPH0652708B2 (ja) * 1984-11-01 1994-07-06 株式会社ニコン 投影光学装置
US4993823A (en) * 1989-06-29 1991-02-19 Eastman Kodak Company Method for correction of distortions of an imaging device
JP2894808B2 (ja) * 1990-07-09 1999-05-24 旭光学工業株式会社 偏光を有する光学系
US5184176A (en) * 1990-10-08 1993-02-02 Canon Kabushiki Kaisha Projection exposure apparatus with an aberration compensation device of a projection lens
US5677757A (en) * 1994-03-29 1997-10-14 Nikon Corporation Projection exposure apparatus
US5625453A (en) * 1993-10-26 1997-04-29 Canon Kabushiki Kaisha System and method for detecting the relative positional deviation between diffraction gratings and for measuring the width of a line constituting a diffraction grating
JP3368091B2 (ja) * 1994-04-22 2003-01-20 キヤノン株式会社 投影露光装置及びデバイスの製造方法
JP3534363B2 (ja) * 1995-07-31 2004-06-07 パイオニア株式会社 結晶レンズ及びこれを用いた光ピックアップ光学系
DE19535392A1 (de) * 1995-09-23 1997-03-27 Zeiss Carl Fa Radial polarisationsdrehende optische Anordnung und Mikrolithographie-Projektionsbelichtungsanlage damit
DE19637563A1 (de) * 1996-09-14 1998-03-19 Zeiss Carl Fa Doppelbrechende Planplattenanordnung und DUV-Viertelwellenplatte
US6829041B2 (en) * 1997-07-29 2004-12-07 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus having the same
DE19807120A1 (de) * 1998-02-20 1999-08-26 Zeiss Carl Fa Optisches System mit Polarisationskompensator
US6201634B1 (en) * 1998-03-12 2001-03-13 Nikon Corporation Optical element made from fluoride single crystal, method for manufacturing optical element, method for calculating birefringence of optical element and method for determining direction of minimum birefringence of optical element
JP3031375B2 (ja) * 1998-04-23 2000-04-10 キヤノン株式会社 レンズ鏡筒及びそれを用いた投影露光装置
KR100269244B1 (ko) * 1998-05-28 2000-12-01 정선종 복굴절 물질로 만들어진 투과형 광학부품을 사용한 리소그래피장비용 광학계의 초점심도 확장 방법 및 장치
US6248486B1 (en) * 1998-11-23 2001-06-19 U.S. Philips Corporation Method of detecting aberrations of an optical imaging system
US6368763B2 (en) * 1998-11-23 2002-04-09 U.S. Philips Corporation Method of detecting aberrations of an optical imaging system
DE19859634A1 (de) * 1998-12-23 2000-06-29 Zeiss Carl Fa Optisches System, insbesondere Projektionsbelichtungsanlage der Mikrolithographie
KR20010088279A (ko) * 1999-01-06 2001-09-26 시마무라 테루오 투영광학계, 그 제조방법, 및 이를 사용한 투영노광장치
WO2001050171A1 (de) * 1999-12-29 2001-07-12 Carl Zeiss Projektionsobjektiv mit benachbart angeordneten asphärischen linsenoberflächen
DE10000193B4 (de) * 2000-01-05 2007-05-03 Carl Zeiss Smt Ag Optisches System
US7239447B2 (en) * 2001-05-15 2007-07-03 Carl Zeiss Smt Ag Objective with crystal lenses
AU2002257270A1 (en) * 2001-05-16 2002-11-25 Corning Incorporated Preferred crystal orientation optical elements from cubic materials
US6683710B2 (en) * 2001-06-01 2004-01-27 Optical Research Associates Correction of birefringence in cubic crystalline optical systems
JP3639807B2 (ja) * 2001-06-27 2005-04-20 キヤノン株式会社 光学素子及び製造方法
US6788389B2 (en) * 2001-07-10 2004-09-07 Nikon Corporation Production method of projection optical system
US6775063B2 (en) * 2001-07-10 2004-08-10 Nikon Corporation Optical system and exposure apparatus having the optical system
JP4238727B2 (ja) * 2001-07-17 2009-03-18 株式会社ニコン 光学部材の製造方法
US6785051B2 (en) * 2001-07-18 2004-08-31 Corning Incorporated Intrinsic birefringence compensation for below 200 nanometer wavelength optical lithography components with cubic crystalline structures
JP2003050993A (ja) * 2001-08-06 2003-02-21 Omron Corp 指紋読取方法および指紋読取装置
FR2828933A1 (fr) * 2001-08-27 2003-02-28 Corning Inc Procede de determination de la qualite optique d'un monocristal de fluorure et element optique
US6970232B2 (en) * 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US7453641B2 (en) * 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US6844972B2 (en) * 2001-10-30 2005-01-18 Mcguire, Jr. James P. Reducing aberration in optical systems comprising cubic crystalline optical elements
JP3741208B2 (ja) * 2001-11-29 2006-02-01 株式会社ニコン 光リソグラフィー用光学部材及びその評価方法
DE10162796B4 (de) * 2001-12-20 2007-10-31 Carl Zeiss Smt Ag Verfahren zur Optimierung der Abbildungseigenschaften von mindestens zwei optischen Elementen sowie photolithographisches Fertigungsverfahren
US7075721B2 (en) * 2002-03-06 2006-07-11 Corning Incorporated Compensator for radially symmetric birefringence
JP2003309059A (ja) * 2002-04-17 2003-10-31 Nikon Corp 投影光学系、その製造方法、露光装置および露光方法
DE10329360B4 (de) * 2002-07-01 2008-08-28 Canon K.K. Doppelbrechungsmessgerät, Spannungsentfernungseinrichtung, Polarimeter und Belichtungsgerät
US7072102B2 (en) * 2002-08-22 2006-07-04 Asml Netherlands B.V. Methods for reducing polarization aberration in optical systems
JP4078161B2 (ja) * 2002-09-12 2008-04-23 キヤノン株式会社 蛍石とその製造方法
JP4455024B2 (ja) * 2002-12-13 2010-04-21 キヤノン株式会社 複屈折測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03054631A1 *

Also Published As

Publication number Publication date
DE10162796A1 (de) 2003-07-03
US20050013012A1 (en) 2005-01-20
US7027237B2 (en) 2006-04-11
US6963449B2 (en) 2005-11-08
JP2005513794A (ja) 2005-05-12
WO2003054631A1 (de) 2003-07-03
CN1271473C (zh) 2006-08-23
DE10162796B4 (de) 2007-10-31
CN1606715A (zh) 2005-04-13
US20060146427A1 (en) 2006-07-06
US20050254773A1 (en) 2005-11-17
AU2002366852A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
EP0937999B1 (de) Optisches System mit Polarisationskompensator
DE69122018T2 (de) Röntgenstrahllithographie mit ringförmigem Bildfeld
EP1407325A1 (de) Kompensation der doppelbrechung in einem objektiv mit kristall-linsen
DE102004035595B4 (de) Verfahren zur Justage eines Projektionsobjektives
EP1390783A2 (de) Objektiv mit fluorid-kristall-linsen
EP1122608A2 (de) Projektionsbelichtungsanlage mit reflektivem Retikel
DE102008001800A1 (de) Projektionsobjektiv für die Mikrolithographie, Mikrolithographie-Projektionsbelichtungsanlage mit einem derartigen Projektionsobjektiv, mikrolithographisches Herstellungsverfahren für Bauelemente sowie mit diesem Verfahren hergestelltes Bauelement
EP1932061A1 (de) Vorrichtung und verfahren zur beeinflussung der polarisationsverteilung in einem optischen system, insbesondere in einer mikrolithographischen projektionsbelichtungsanlage
DE10210782A1 (de) Objektiv mit Kristall-Linsen
EP1459134A1 (de) Verfahren zur optimierung der abbildungseigenschaften von mindestens zwei optischen elementen sowie photolithographisches fertigungsverfahren
DE69511781T2 (de) Optisches Element für photolithographie und Verfahren zur Auswertung eines optischen Elements
EP1235112B1 (de) Teilobjektiv für Beleuchtungssystem
DE102006013560A1 (de) Projektionsobjektiv einer mikrolithographischen Projektionsbelichtungsanlage sowie Verfahren zu dessen Herstellung
WO2005040925A1 (de) Euv-projektionsobjektiv mit spiegeln aus materialien mit unterschiedlichem vorzeichen der steigung der temperaturabhängigkeit des wärmeausdehnungskoeffizienten nahe der nulldurchgangstemperatur
DE10104177A1 (de) Katadioptrisches Reduktionsobjektiv
WO2004023172A1 (de) Optimierverfahren für ein objektiv mit fluorid-kristall-linsen sowie objektiv mit fluorid-kristall-linsen
DE4203464A1 (de) Katadioptrisches reduktionsobjektiv
WO1999054785A1 (de) Verfahren zur messung der lage von strukturen auf einer maskenoberfläche
DE102006027787A1 (de) Projektionsbelichtungsanlage und Betriebsmethode dieser
DE102022205700A1 (de) Projektionsobjektiv, Projektionsbelichtungsanlage und Projektionsbelichtungsverfahren
DE102012213553A1 (de) Optisches System, insbesondere einer mikrolithographischen Projektionsbelichtungsanlage
DE102021201396A1 (de) Verfahren zur Herstellung eines mehrteiligen Spiegels einer Projektionsbelichtungsanlage für die Mikrolithographie
DE10125487A9 (de) Optisches Element, Projektionsobjektiv und Mikrolithographic-Projektionsbelichtungsanlage mit Fluoridkristall-Linsen
DE102005027099A1 (de) Immersionslithographieobjektiv
EP1164399B1 (de) Projektionsobjektiv, insbesondere für die Mikrolithographie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOHL, ALEXANDER

Inventor name: GRUNER, TORALF

Inventor name: KUERZ, BIRGIT (GEB. MECKING)

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL ZEISS SMT AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080505