EP1456539B1 - Dosierpumpe - Google Patents

Dosierpumpe Download PDF

Info

Publication number
EP1456539B1
EP1456539B1 EP02782831A EP02782831A EP1456539B1 EP 1456539 B1 EP1456539 B1 EP 1456539B1 EP 02782831 A EP02782831 A EP 02782831A EP 02782831 A EP02782831 A EP 02782831A EP 1456539 B1 EP1456539 B1 EP 1456539B1
Authority
EP
European Patent Office
Prior art keywords
valve
pump
drive
metering pump
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02782831A
Other languages
English (en)
French (fr)
Other versions
EP1456539A1 (de
Inventor
Erwin Bolt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KNF Flodos AG
Original Assignee
KNF Flodos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KNF Flodos AG filed Critical KNF Flodos AG
Publication of EP1456539A1 publication Critical patent/EP1456539A1/de
Application granted granted Critical
Publication of EP1456539B1 publication Critical patent/EP1456539B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/0076Piston machines or pumps characterised by having positively-driven valving the members being actuated by electro-magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0201Position of the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • F04B2201/1208Angular position of the shaft

Definitions

  • the invention relates to a metering pump, in particular a membrane metering pump with a working space limiting working diaphragm or the like displacement element and a pump drive for an oscillating movement of the displacement element, wherein the pump drive is direction reversible and the displacement element is movable back and forth, wherein a position sensor for position detection of the pump drive and an electronic control are provided, and with a pump head, in which an inlet valve and an outlet valve are arranged, wherein at least one of the valves is externally controlled and has a motorized valve drive as defined in the preamble of claim 1.
  • a metering pump is for example from the EP-A-1 132 616 known.
  • Metering pumps of this type are known in different embodiments. So you know dosing pumps that work with a magnetic drive and accordingly perform fast strokes. Due to the pulse-like promotion arise for the control of the valves sufficient pressure differences.
  • the change in the delivery stroke takes place by the pump drive for different rotary sections with a correspondingly different stroke, starting from a defined starting position, is moved back and forth. Even with this metering occur at the adjustable, low dosing sealing problems in the valves, so that the desired by the operation of the pump metering can be significantly reduced.
  • metering pumps are known in which a mechanical change of the stroke length is made for metering quantity adjustment.
  • a mechanical change of the stroke length is made for metering quantity adjustment.
  • the fluid is ejected at a correspondingly high speed. This pulse-like conveying is undesirable in many applications of metering pumps.
  • a generic metering pump is known, which is designed to promote a predeterminable volume of a liquid in a range of less than about 1 ml. It has a lifting drive for a diaphragm, to whose provision a return spring is provided. For large flow rates with practically continuous delivery and / or high delivery pressures this metering pump is unsuitable.
  • Object of the present invention is to provide a metering pump, with a wide operating range can be covered with smallest Dosiermengen and high repeatability, an exact adjustability of the pump to a variety of operating conditions, the pump, both at larger and smallest flow rates a high dosing accuracy should and should also be extremely low while maintaining a high dosing accuracy and the conveying speed.
  • the pump drive has a positioning motor and an eccentric or crank drive with a peripheral crank member and a connecting rod connected to the working diaphragm or the like displacement element, that the crank member for lower deflections of the working diaphragm against the maximum possible deflections in a circulating movement , in any area within the total circulation movement oscillating back and forth is movable for a compared to the maximum flow rate reduced flow, and that the electronic control at least with the or motor valve actuators of the inlet and / or outlet valve, is connected to the positioning of the pump drive and the position sensor for detecting the position of the displacement element and / or the pump drive.
  • the pendulum stroke are influenced depending on the position within the total work area. So can be influenced by a task adapted to the selection of the position of the pendulum stroke movement within a 360 ° total work movement, the effective stroke of the displacement element.
  • a pendulum stroke movement in the region of a dead center of a pump drive with a crank mechanism leads the displacement element within the extreme positions in the top and bottom dead center of the crank mechanism back and forth by the driving positioning motor is reversed accordingly, so that given a rotational movement results in a lower effective stroke than in a region between these two dead center.
  • the metering pump according to the invention can be operated both in any area of the total working movement of your pump drive with pendulum reciprocating working stroke as well as circumferentially with maximum working stroke and correspondingly maximum flow rate per stroke. As a result, a wide range of applications of the metering pump is given.
  • both the number of working strokes of the working membrane or the like per unit time and / or the drive speed can be adjusted for the pendulum stroke with reduced amplitude relative to the maximum amplitude.
  • the metered amount can be influenced and also the pumping characteristic, in particular with regard to the conveying speed.
  • a small stroke at high operating speed or vice versa a large stroke at be set low working speed.
  • the electronic control is designed to set a non-uniform drive speed of the drive motor, in particular for a fast suction stroke and a contrast slower Dosierhub.
  • the compensation corresponds to almost a sinusoidal movement with the superposition of the own for diaphragm pumps, hydraulic phenomena.
  • the appropriate stroke compensation can be specified by a speed curve per revolution or stroke, which is parameterized in the electronic control.
  • the electronic control can be designed for the variable control of the motor or the valve actuators of the inlet and / or outlet valve as a function of the position of the displacement element. Furthermore, there is the possibility that the electronic control for controlling the motor or the valve actuators of the inlet and / or outlet valve in response to different operating parameters, in particular depending on the operating pressure, the speed, the consistency of the pumped medium and the like is formed.
  • the switching positions of the valve or valves within a revolution or a Pendelhub Symposiumes depending on the operating pressure are chosen such that the delivery rate drop due to back pressure is minimized.
  • the appropriate switching positions can be determined by tests and there is also the possibility of a variable correction of the switching positions depending on the Operating pressure, if this is changed.
  • the corresponding specifications can be made manually, analog or digital.
  • the electronic control can have a memory device for storing different operating parameters and for assigning these operating parameters to different control times of the valve or valves.
  • the stored in the memory device operating parameters can be either manually selected or it is made a selection by measuring the actual operating parameters and assignment to the stored operating parameters.
  • corresponding measuring devices are provided for measuring, for example, the operating pressure, the backpressure, the rotational speed and the like.
  • the inlet and / or the outlet valve may have as a motorized valve drive an electromagnetic lifting magnet which has a guided by means of spaced leaf springs lifting armature, which is in driving connection with a valve closing body.
  • the mounting of the armature of the lifting magnet by means of at least two leaf springs results in a spring parallelogram, which is virtually wear-free and insensitive to contamination, since no sliding guide bearing parts are present.
  • the armature is guided in the stroke direction exactly and radially without play.
  • the lifting drive for the inlet valve and / or possibly also for the outlet valve is particularly durable by these measures.
  • at least one of the leaf springs of the lifting armature guide is biased in the closing direction of the externally operated valve.
  • At least one operable by the pump medium valve may be formed in particular with a resilient valve disc which rests in the closed position with a flat side on the one Venilsitz forming opening edge of an inflow channel and that on the side facing away from the inflow channel of the valve disc within the projection extension of the inflow channel, at least in the valve opening position the valve disc supporting, web-like abutment is provided.
  • the proposed design of the valve provides a good seal even with the possibly occurring during operation only small pressure differences.
  • the pump has good vacuum properties even at low operating speeds.
  • valve forms a complete, interchangeable unit and valve insert with an abutment and a discharge channel having abutment plate, a valve receiving plate and the valve disc is formed and that preferably the abutment plate and the valve receiving plate have interlocking Randanformept and especially welded together in the assembly position, glued or the like are connected.
  • the parts for the complete valve inserts can thus be produced independently of the pump head into which the valve insert is inserted, which has considerable advantages in terms of accuracy in terms of injection technology.
  • the high precision of the valve parts leads inter alia to a stress-free storage of the valve disc, which is a prerequisite for reliable operation of the valves with good sealing even at low pressure differences and very slow motion sequences.
  • the valve inserts can be replaced very easily overall.
  • the pump drive can be a controlled or a regulated motor, in particular a stepping motor or a control circuit operating in a closed loop Motor, for example, a servo DC motor or the like, have.
  • a closed loop Motor for example, a servo DC motor or the like.
  • This makes it possible to move a defined angle at a defined speed.
  • the direction of rotation of the motor is reversible, so that within the total working movement, on the other hand, the smaller-stroke pendulum lifting movements are feasible.
  • a non-contact such as opto-electronic or magnetic position sensor is provided as a position sensor, which cooperates with the positioning motor or a part driven by this and is connected to the control electronics.
  • the position of the working diaphragm in each operating phase is known, so that accordingly receives a positioning feedback on a drive motor operating in a control loop and on the other hand can be exactly matched to the position of the working diaphragm, the inlet and / or outlet valve to be controlled.
  • the position sensor can be designed so that it emits a reference signal at prominent positions, for example, the upper or lower dead center, from which the intermediate positions can be calculated within a revolution or a pendulum motion of the pump drive.
  • the position sensor can also have an encoder, can be closed by the directly to the respective position of the pump drive or driven therefrom working diaphragm.
  • a metering pump 1 shown in FIG. 1 has a motor-driven pump drive 2 for an oscillating movement of a displacement element.
  • the metering pump 1 has a pump housing 3 with a pump head 4, in which at least one inlet valve and one outlet valve are arranged.
  • electromagnetic linear actuators 5, 6 are provided.
  • the electromotive pump drive 2, the electromagnetic linear actuators 5, 6 for the valves and a position sensor for detecting the position of the pump drive are connected to an electronic controller 7.
  • the pump drive 2 formed by a positioning motor is variably controllable in terms of its speed and its direction of rotation.
  • the electronic control 7 is designed so that the positioning motor of the pump drive in any area of its total working movement with a predetermined stroke oscillating back and forth. By means of this pendulum stroke movement, it is possible to set a delivery quantity reduced in comparison to the maximum delivery quantity.
  • the pump drive with a predetermined angle of rotation and a predetermined speed is operable.
  • the valves provided in the embodiment of Figure 1 with electromagnetic linear actuators 5 and 6 also allow the working position of the pump drive arbitrarily assignable closing and opening times. It can thus specify a variety of operating parameters in order to adapt the pump to a variety of operating conditions can.
  • FIG. 2 shows a sectional view of the internal structure of a metering pump according to the invention.
  • This is designed as a diaphragm pump with a diaphragm 8 as a displacement element, wherein the diaphragm has a crank drive 9 as a pump drive with a peripheral crank member 10 and connected to the diaphragm 8 connecting rod 11.
  • the crank member 10 is connected to the positioning motor 12 (see Fig. 3).
  • the inlet valve 13 is provided with an electromagnetic lifting drive 5, while the outlet valve is a valve which can be actuated by the conveying medium.
  • the outlet valve 14 is designed as sensitive to small pressure differences valve. For certain dosing tasks, which work with a minimum conveying speed, this training with different valves well used.
  • valve 15 shown in Figure 5 may optionally be provided as an inlet valve or exhaust valve. This valve 15 is designed so that it shows a reliable sealing behavior even at low working or delivery speeds and the resulting low differential pressures between the suction side and pressure side.
  • the valve is designed as a disk valve and essentially has a re-storage plate 16, a valve disk 17 and a valve receiving plate 18. From these three parts 16, 17 and 18 a complete, can-shaped unit is formed as a valve core. This valve insert can be inserted into a corresponding receiving recess of the pump head.
  • the valve disk 17 With its flat side facing the suction side 19 lies in the closed position on the opening edge 20 of a central inflow channel 21 forming a valve seat in the valve receiving plate 18.
  • the valve disc 17 is held by positioning, which are arranged laterally adjacent to the opening edge and engage in open-edged recesses of the valve disc 17.
  • the re-storage plate 16 has within the projection extension of the inflow channel of the valve receiving plate 18 on a web-like revelation 22, via which the valve disc 17 is supported in the open position approximately along a diameter line.
  • valve disk tabs are pivoted to the return plate 16 out, so that the inflow channel 21 is open.
  • the distance of the plane passing through the support point of the abutment 22 from the plane formed by the opening edge 20 parallel plane is such that the valve disc 17 between them is kept tension-free. This is a prerequisite for a response of the valve disc even at the slightest pressure differences and also for a fast closing or opening operation.
  • the valve 15 on the pressure side of this is used turned by 180 degrees.
  • the electromagnetic lifting drive 5 has a guided by means of spaced-apart leaf springs 23, 24 lifting armature 25 which is in driving connection with a valve closing body 26.
  • a sleeve-shaped iron pole 27 is arranged in the axial extension of the lifting armature 25 in the axial extension of the lifting armature 25.
  • a coil 28 is arranged around this and the lifting armature.
  • a parallelogram for the lifting armature 25 is formed, so that no sliding guide bearing parts are required.
  • the lifting armature 25 is guided in the stroke direction exactly and radially without play.
  • at least one of the two leaf springs of the lifting armature guide is biased in the closing direction.
  • the valve is thereby in the de-energized state in the closed position, which is shown in Figure 2.
  • a rocker arm 29 is provided, which is coupled with its drive end with an axis connected to the lifting armature 30 and is connected at its other end to the valve closing body 26.
  • a Wipplagerung 31 is provided which surrounds the rocker arm 29 sealingly and which also seals a valve chamber to the outside.
  • the Wipplagerung is preferably designed as an elastomer passage, so that an absolute tightness is given.
  • the metering pump 1 is, as can be seen particularly well in Figures 3 and 4, equipped with a position sensor 32 for detecting the position of the pump drive or the displacement element forming membrane 8.
  • the position sensor has a magnet 33 which revolves with the crank member 10 and a magnetic sensor, which is preferably designed as a Hall sensor and is fixedly arranged next to the orbit of the magnet 33. It is thus generated with each revolution of the pump drive, a reference signal to which the further positioning oriented.
  • the reference signal is used for example for resetting or for generating a certain correction value.
  • stepper motor When using a stepper motor smallest step angles are possible, so that the membrane 8 can be brought into any position within its total work area. The adjustment can be extremely slow, with over several minutes extending strokes are possible, but on the other hand can also be used at high speed to achieve a high flow rate.
  • contactless position sensor shown in the exemplary embodiment it is also possible to use other, for example, optoelectronic position sensors, which optionally emit a large number of position data in the course of one revolution.
  • a servo DC motor instead of a stepper motor and a working in a loop engine, for example a servo DC motor can be used.
  • the positioning motor 2, the electromagnetic lifting drives 5 and 6 for the inlet valve 13 and the outlet valve 14 as well as the position sensor 32 are connected to the electronic control 7.
  • the operation of the pump can be varied within wide limits.
  • the electromagnetic lifting drives 5, 6 of the valves in dependence on the position of the membrane. 8 are controlled.
  • this option is advantageous because after a dosing with expulsion of the fluid from the pressure channel, an undesirable lagging or dripping of fluid can be avoided by the conveying direction is switched by reversing the two valves.
  • a partial stroke of the working diaphragm with a reversed valve closing sequence is generally sufficient. This means that in the suction stroke of the diaphragm with enlargement of the working space, the exhaust valve is opened while the inlet valve is closed.
  • the metering accuracy of the metering pump 1 can be substantially improved by this measure and it is also a simpler handling when setting the Dosiermenge possible.
  • the metering pump 1 with externally controlled inlet and outlet valve 13,14 can be used not only for a return promotion to avoid caster, but optionally for continuous delivery in both directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Reciprocating Pumps (AREA)
  • Vending Machines For Individual Products (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Peptides Or Proteins (AREA)

Description

  • Die Erfindung bezieht sich auf eine Dosierpumpe, insbesondere Membran-Dosierpumpe mit einer, einen Arbeitsraum begrenzenden Arbeitsmembrane oder dergleichen Verdrängungselement und einem Pumpenantrieb für eine oszillierende Bewegung des Verdrängungselementes, wobei der Pumpenantrieb richtungsumkehrbar ist und das Verdrängungselement hin- und her bewegbar ist, wobei ein Positionsgeber zur Lageerfassung des Pumpenantriebs sowie eine elektronische Steuerung dafür vorgesehen sind, sowie mit einem Pumpenkopf, in dem ein Einlassventil und ein Auslassventil angeordnet sind, wobei zumindest eines der Ventile fremdgesteuert ist und einen motorischen Ventilantrieb aufweist wie es im oberbegriff von Anspruch 1 definiert ist. Eine solche Dosierpumpe ist z.B. aus der EP-A-1 132 616 bekannt.
  • Dosierpumpen dieser Art sind in unterschiedlichen Ausführungsformen bekannt. So kennt man Dosierpumpen, die mit einem Magnetantrieb arbeiten und dementsprechend schnelle Arbeitshübe durchführen. Durch die impulsartige Förderung ergeben sich für die Steuerung der Ventile ausreichende Druckdifferenzen.
  • Für Dosierpumpen, bei denen eine geringe Fördergeschwindigkeit und kleine Dosiermengen erwünscht sind, werden motorische Rotationsantriebe verwendet, die zumindest für den Dosierhub sehr langsam laufen. Entsprechend geringe Druckdifferenzen stellen sich ein, so dass bei den Ventilen Dichtprobleme auftreten können.
  • Aus der EP 0 321 339 ist eine Einrichtung zum Regeln der Förderleistung einer Dosierpumpe bekannt, mit der der Förderhub oder die Anzahl der Förderhübe pro Zeiteinheit verändert werden können.
  • Die Veränderung des Förderhubs erfolgt, indem der Pumpenantrieb für unterschiedliche Drehabschnitte mit entsprechend unterschiedlichem Hub, ausgehend von einer definierten Ausgangslage, vor- und zurückbewegt wird.
    Auch bei dieser Dosierpumpe treten bei den einstellbaren, geringen Dosiermengen Dichtprobleme bei den Ventilen auf, so dass die durch die Arbeitsweise der Pumpe angestrebte Dosiergenauigkeit dadurch erheblich reduziert sein kann.
  • Durch die DE 195 25 557 ist eine Membran-Dosierpumpe bekannt, bei der spezielle Ventile eingesetzt werden, um auch bei geringer Arbeitsgeschwindigkeit und kleinen Druckdifferenzen sowie kleinen Dosiermengen die vorgenannten Nachteile zumindest weitgehend zu vermeiden. Allerdings ist auch hier eine Mindestdruckdifferenz zum Öffnen und Schließen der Ventile erforderlich.
    Bei Dosierungen, wo sich zum Beispiel der Arbeitshub über längere Zeit, zum Beispiel einige Minuten hinzieht, kann jedoch auch mit diesen feinfühlig reagierenden Ventilen keine sichere Abdichtung erreicht werden.
  • Es sind weiterhin Dosierpumpen bekannt, bei denen zur Dosiermengeneinstellung eine mechanische Veränderung der Hublänge vorgenommen wird. Dadurch kann auch für kleine Dosiermengen mit einer ausreichend hohen Fördergeschwindigkeit gearbeitet werden, die eine genügende Druckdifferenz ergibt und für eine Funktion der Ventile ausreicht. Durch die für die Funktion der Ventile ausreichende Arbeitsgeschwindigkeit wird das Fördermedium jedoch mit entsprechend hoher Geschwindigkeit ausgespritzt. Dieses impulsartige Fördern ist in vielen Anwendungsfällen von Dosierpumpen unerwünscht.
  • Sowohl bei langsam laufenden als auch bei schnell laufenden Pumpen ergeben sich Überschneidungen der Ventilfunktionen, die sich unter anderem je nach den druck- und saugseitigen Druckverhältnissen nachteilig in Form einer Fördermedium-Rückströmung entgegen der Förderrichtung und damit von Dosierungenauigkeiten auswirken.
  • Aus der EP-A-1 132 616 ist eine gattungsgemäße Dosierpumpe bekannt, die zur Förderung eines vorgebbaren Volumens einer Flüssigkeit in einem Bereich von weniger als etwa 1 ml ausgebildet ist. Sie weist einen Hubantrieb für eine Membrane auf, zu deren Rückstellung eine Rückstellfeder vorgesehen ist. Für große Fördermengen mit praktisch kontinuierlicher Förderung und/oder hohe Förderdrücke ist diese Dosierpumpe ungeeignet.
  • Aufgabe der vorliegenden Erfindung ist es, eine Dosierpumpe zu schaffen, mit der ein weiter Betriebsbereich abgedeckt werden kann mit kleinsten Dosiermengen und hoher Wiederholgenauigkeit, einer exakten Einstellbarkeit der Pumpe auf unterschiedlichste Betriebsbedingungen, wobei die Pumpe sowohl bei größeren als auch bei kleinsten Fördermengen eine hohe Dosiergenauigkeit aufweisen soll und wobei die Fördergeschwindigkeit unter Beibehaltung einer hohen Dosiergenauigkeit auch extrem gering einstellbar sein soll.
  • Zur Lösung dieser Aufgabe wird vorgeschlagen, dass der Pumpenantrieb einen Positioniermotor und einen Exzenter- oder Kurbeltrieb mit einem umlaufenden Kurbelglied und einem mit der Arbeitsmembrane oder dergleichen Verdrängungselement verbundenen Pleuel aufweist, dass das Kurbelglied für geringere Auslenkungen der Arbeitsmembrane gegenüber den maximal möglichen Auslenkungen bei einer Umlaufbewegung, in einem beliebigen Bereich innerhalb der Gesamtumlaufbewegung pendelnd hin- und her bewegbar ist für eine gegenüber der maximalen Fördermenge reduzierte Fördermenge, und dass die elektronische Steuerung zumindest mit dem oder den motorischen Ventilantrieben des Ein- und/oder Auslassventils, mit dem Positioniermotor des Pumpenantriebs sowie dem Positionsgeber zur Erfassung der Lage des Verdrängungselementes und/oder des Pumpenantriebs verbunden ist.
  • Die Kombination aus elektronisch steuerbarem Positioniermotor und einem davon angetriebenen Exzenter- oder Kurbeltrieb mit einem umlaufenden Kurbelglied, pendelnder Bewegung des Pumpenantriebs innerhalb eines beliebigen Bereiches seines Gesamtarbeitsbereiches sowie der Einsatz eines fremdgesteuerten Ein- und/oder Auslassventils ermöglicht einen erheblich erweiterten Einsatzbereich der damit ausgerüsteten Dosierpumpe.
    So besteht die Möglichkeit, die Dosierpumpe für geringste Dosiermengen mit extrem geringer Fördergeschwindigkeit laufen zu lassen und durch das oder die dabei exakt durch die elektronische Steuerung ansteuerbaren und dadurch zu vorgebbaren Zeitpunkten unabhängig von Förderdruckdifferenzen öffen- oder schließbaren Ventilen eine genaue Dosierung zu erreichen.
    Andererseits kann bei hoher Förderleistung und schnelllaufendem Pumpenantrieb eine Rückströmung durch Gegendruck von Fördermedium durch passende Schließ- und Öffnungszeiten zumindest des fremdgesteuerten Ventiles vermindert werden. Auch dies trägt mit zu einer Verbesserung der Dosiergenauigkeit und eines universellen Einsatzes der Dosierpumpe bei.
    Schließlich kann durch die Pendelhubbewegung in einem beliebigen Bereich der Gesamtarbeitsbewegung bei dem rotativen Pumpenantrieb, bei dem der Exzenter- oder Kurbeltrieb eine rotative Bewegung in eine lineare Bewegung des Verdrängungselementes umsetzt, zusätzlich zu einer angepassten Ansteuerung des Positioniermotors durch die elektronische Steuerung, der Pendelhub in Abhängigkeit der Lage innerhalb des Gesamtarbeitsbereiches beeinflusst werden.
    So kann durch eine der Aufgabe angepasste Auswahl der Lage der Pendelhubbewegung innerhalb einer 360° umfassenden Gesamtarbeitsbewegung, der wirksame Hub des Verdrängungselementes beeinflusst werden. Bei einer Pendelhubbewegung im Bereich einer Totpunktlage eines Pumpenantriebs mit einem Kurbeltrieb
    führt das Verdrängungselement innerhalb der Extremstellungen im oberen- und unteren Totpunkt des Kurbeltriebs Hin- und Herbewegungen aus, indem der antreibende Positioniermotor entsprechend umgesteuert wird, so dass sich bei gegebener Drehbewegung ein geringerer wirksamer Hub als in einem Bereich zwischen diesen beiden Totpunktlagen ergibt.
    Die erfindungsgemäße Dosierpumpe kann sowohl in einem beliebigen Bereich der Gesamtarbeitsbewegung Ihres Pumpenantriebs mit pendelnd hin- und herbewegtem Arbeitshub betrieben werden als auch umlaufend mit maximalem Arbeitshub und entsprechend maximaler Fördermenge pro Arbeitshub. Dadurch ist ein weites Einsatzspektrum der Dosierpumpe gegeben.
  • Dabei kann für die Pendelhubbewegung mit gegenüber der maximalen Amplitude reduzierter Amplitude sowohl die Anzahl der Arbeitshübe der Arbeitsmembrane oder dergleichen pro Zeiteinheit und/oder die Antriebsgeschwindigkeit verstellbar sein. Mit beiden Maßnahmen kann die Dosiermenge beeinflusst werden und auch die Pumpcharakteristik insbesondere hinsichtlich der Fördergeschwindigkeit. Somit kann für eine gleichbleibende Fördermenge ein geringer Hub bei hoher Arbeitsgeschwindigkeit oder umgekehrt ein großer Hub bei geringer Arbeitsgeschwindigkeit eingestellt werden. Im letzteren Fall erreicht man, dass das Fördermedium schonender gefördert wird.
    Weiterhin besteht die Möglichkeit, dass die elektronische Steuerung zur Einstellung einer ungleichförmigen Antriebsgeschwindigkeit des Antriebsmotors ausgebildet ist, insbesondere für einen schnellen Saughub und einen demgegenüber langsameren Dosierhub. Damit kann ein unregelmäßiges bzw. pulsartiges Ausströmen des Fördermediums reduziert werden. Die Kompensation entspricht dabei nahezu einer sinusförmigen Bewegung mit der Überlagerung der für Membranpumpen eigenen, hydraulischen Erscheinungen. Die passende Hubkompensation kann durch einen Geschwindigkeitsverlauf pro Umdrehung oder Arbeitshub, der in der elektronischen Steuerung parametrisiert abgelegt ist, vorgegeben werden.
    Die elektronische Steuerung kann zur variablen Ansteuerung des oder der motorischen Ventilantriebe des Ein- und/oder Auslassventils in Abhängigkeit der Stellung des Verdrängungselementes ausgebildet sein. Weiterhin besteht die Möglichkeit, dass die elektronische Steuerung zur Ansteuerung des oder der motorischen Ventilantriebe des Ein- und/oder Auslassventils in Abhängigkeit unterschiedlicher Betriebsparameter, insbesondere in Abhängigkeit des Betriebsdruckes, der Drehzahl, der Konsistenz des Fördermediums und dergleichen ausgebildet ist.
    Beispielsweise werden die Schaltpositionen des oder der Ventile innerhalb einer Umdrehung oder eines Pendelhubbereiches in Abhängigkeit des Betriebsdrucks derart gewählt, dass der Förderleistungsabfall infolge Gegendrucks minimiert ist. Die passenden Schaltpositionen können durch Versuche ermittelt werden und es besteht weiterhin auch die Möglichkeit, eine variable Korrektur der Schaltpositionen in Abhängigkeit des Betriebsdruckes vorzunehmen, wenn dieser verändert wird. Die entsprechenden Vorgaben können manuell, analog oder digital erfolgen.
    Die elektronische Steuerung kann eine Speichereinrichtung zur Speicherung unterschiedlicher Betriebsparameter und zur Zuordnung dieser Betriebsparameter zu unterschiedlichen Steuerzeitpunkten des oder der Ventile aufweisen. Die in der Speichereinrichtung abgelegten Betriebsparameter können entweder manuell angewählt werden oder aber es erfolgt eine Auswahl durch Messung der tatsächlichen Betriebsparameter und Zuordnung zu den abgespeicherten Betriebsparametern.
    Für den letztern Fall sind entsprechende Messeinrichtungen zur Messung beispielsweise des Betriebsdruckes, des Gegendruckes, der Drehzahl und dergleichen vorgesehen.
  • Gemäß einer Ausführungsform der Erfindung kann das Ein- und/oder das Auslassventil als motorischen Ventilantrieb einen elektromagnetischen Hubmagneten aufweisen, der einen mittels zueinander beabstandeter Blattfedern geführten Hubanker hat, der mit einem Ventilschließkörper in Antriebsverbindung steht.
    Die Lagerung des Ankers des Hubmagneten mit Hilfe von wenigstens zwei Blattfedern ergibt eine Federparallelogrammführung, die praktisch verschleißfrei und verschmutzungsunempfindlich ist, da keine gleitführungsgelagerten Teile vorhanden sind. Gleichzeitig ist der Anker in Hubrichtung exakt und radial spielfrei geführt. Der Hubantrieb für das Einlassventil und/oder gegebenenfalls auch für das Auslassventil ist durch diese Maßnahmen besonders langlebig.
    Zweckmäßigerweise ist zumindest eine der Blattfedern der Hubanker-Führung in Schließrichtung des fremdbetätigten Ventiles vorgespannt. Das Ventil ist dadurch bei nichtaktiviertem Hubmagneten geschlossen und damit rücklaufdicht. Außerdem kann ein kostengünstiger, einfachwirkender Elektro-Hubmagnet verwendet werden, da die Blattfeder(n) die Schließbewegung des Ventiles übernimmt.
    Nach einer Ausgestaltung der Erfindung kann außer einem fremdbetätigten wenigstens ein vom Fördermedium betätigbares Ventil insbesondere mit einer elastischen Ventilscheibe ausgebildet sein, die in Schließstellung mit einer Flachseite auf dem einen Venilsitz bildenden Öffnungsrand eines Zuströmkanals aufliegt und dass auf der dem Zuströmkanal abgewandten Seite der Ventilscheibe innerhalb der Projektionsverlängerung des Zuströmkanales ein zumindest in Ventil-Öffnungsstellung die Ventilscheibe abstützendes, stegartiges Widerlager vorgesehen ist.
    Die vorgesehene Konstruktion des Ventiles ergibt eine gute Abdichtung auch bei den während des Betriebes gegebenenfalls auftretenden nur geringen Druckdifferenzen. Die Pumpe hat dadurch auch bei geringer Arbeitsgeschwindigkeit gute Vakuumeigenschaften.
  • Vorteilhaft ist es, wenn das vorbeschriebene, vom Fördermedium betätigbare Ventil eine komplette, auswechselbare Einheit bildet und als Ventileinsatz mit einer das Widerlager und einen Abströmkanal aufweisenden Widerlagerplatte, einer Ventilaufnahmeplatte sowie der Ventilscheibe ausgebildet ist und daß vorzugsweise die Widerlagerplatte und die Ventilaufnahmeplatte ineinandergreifende Randanformungen aufweisen und in Montagestellung insbesondere miteinander verschweißt, verklebt oder dergleichen verbunden sind.
    Die Teile für die kompletten Ventileinsätze können dadurch unabhängig von dem Pumpenkopf, in den der Ventileinsatz eingesetzt ist, hergestellt werden, was spritztechnisch erhebliche Vorteile bezüglich der Genauigkeit hat.
    Die hohe Präzision der Ventilteile führt unter anderem zu einer spannungsfreien Lagerung der Ventilscheibe, was Voraussetzung ist für ein zuverlässiges Arbeiten der Ventile mit guter Abdichtung auch bei geringen Druckdifferenzen und sehr langsamen Bewegungsabläufen. Außerdem lassen sich die Ventileinsätze insgesamt sehr einfach austauschen.
  • Der Pumpenantrieb kann als Antriebs- und Positioniermotor einen gesteuerten oder einen geregelten Motor, insbesondere einen Schrittmotor oder einen in einem Regelkreis arbeitenden Motor, beispielsweise einen Servogleichstrommotor oder dergleichen, aufweisen. Damit ist es möglich, einen definierten Winkel mit einer definierten Geschwindigkeit zu verfahren. Die Drehrichtung des Motors ist umkehrbar, so dass innerhalb der Gesamtarbeitsbewegung auch die demgegenüber kleinhubigeren Pendelhubbewegungen durchführbar sind.
    Bevorzugt ist als Positionsgeber ein berührungsloser, beispielsweise optoelektronischer oder magnetischer Positionsgeber vorgesehen, der mit dem Positioniermotor oder einem von diesem angetriebenen Teil zusammenarbeitet und mit der Ansteuerelektronik verbunden ist. Dadurch ist die Stellung der Arbeitsmembrane in jeder Betriebsphase bekannt, so dass dementsprechend bei einem in einem Regelkreis arbeitenden Antriebsmotor dieser eine Positionierrückmeldung erhält und andererseits kann exakt abgestimmt auf die Position der Arbeitsmembrane das Ein- und/oder Auslassventil gesteuert werden. Der Positionsgeber kann so ausgebildet sein, dass er an markanten Positionen, beispielsweise dem oberen oder unteren Totpunkt ein Referenzsignal abgibt, aus dem innerhalb einer Umdrehung oder einer Pendelbewegung des Pumpenantriebs die Zwischenpositionen errechnet werden können. Der Positionsgeber kann aber auch einen Encoder aufweisen, durch den direkt auf die jeweilige Position des Pumpenantriebs bzw. der davon angetriebenen Arbeitsmembrane geschlossen werden kann.
  • Zusätzliche Ausgestaltungen der Erfindung sind in den weiteren Unteransprüchen aufgeführt. Nachstehend ist die Erfindung mit ihren wesentlichen Einzelheiten anhand der Zeichnungen noch näher erläutert.
  • Es zeigt:
  • Fig. 1:
    Eine perspektivische Darstellung einer Dosierpumpe mit Steuerung,
    Fig. 2:
    ein Schnittdarstellung einer Dosierpumpe mit einem elektromagnetisch betätigtem Einlassventil,
    Fig. 3:
    eine Längsschnittdarstellung sowie
    Fig. 4:
    eine Querschnittdarstellung einer Dosierpumpe und
    Fig. 5:
    einen Querschnitt eines Ventileinsatzes.
  • Eine in Figur 1 gezeigte Dosierpumpe 1 weist einen motorischen Pumpenantrieb 2 für eine oszillierende Bewegung eines Verdrängungselementes auf. Die Dosierpumpe 1 hat ein Pumpengehäuse 3 mit einem Pumpenkopf 4, in dem zumindest ein Einlassventil und ein Auslassventil angeordnet sind. Zur Betätigung dieser Ventile sind im Ausführungsbeispiel gemäß Figur 1 elektromagnetische Hubantriebe 5, 6 vorgesehen.
    Der elektromotorische Pumpenantrieb 2, die elektromagnetischen Hubantriebe 5, 6 für die Ventile sowie ein Positionsgeber zur Lageerfassung des Pumpantriebs sind mit einer elektronischen Steuerung 7 verbunden. Mit Hilfe dieser elektronischen Steuerung 7 ist der durch einen Positioniermotor gebildete Pumpenantrieb 2 hinsichtlich seiner Drehzahl und seiner Drehrichtung variabel ansteuerbar. Zusätzlich ist die elektronische Steuerung 7 so ausgebildet, dass mit dem Positioniermotor der Pumpenantrieb in einem beliebigen Bereich seiner Gesamtarbeitsbewegung mit vorgebbarem Hub pendelnd hin- und herbewegbar ist.
    Durch diese Pendelhubbewegung kann eine gegenüber der maximalen Fördermenge reduzierte Fördermenge eingestellt werden. Somit ist der Pumpenantrieb mit einem vorgebbarem Drehwinkel und einer vorgebbaren Geschwindigkeit betreibbar.
    Die im Ausführungsbeispiel gemäß Figur 1 vorgesehenen Ventile mit elektromagnetischen Hubantrieben 5 und 6 erlauben darüber hinaus der Arbeitsstellung des Pumpenantriebes beliebig zuordenbare Schließ- und Öffnungszeitpunkte. Es lassen sich damit eine Vielzahl von Betriebsparametern vorgeben, um die Pumpe an die unterschiedlichsten Betriebsbedingungen anpassen zu können.
  • Figur 2 zeigt in einer Schnittdarstellung den inneren Aufbau einer erfindungsgemäßen Dosierpumpe. Diese ist als Membranpumpe mit einer Membrane 8 als Verdrängungselement ausgebildet, wobei die Membrane als Pumpenantrieb einen Kurbeltrieb 9 mit einem umlaufenden Kurbelglied 10 und einem mit der Membrane 8 verbundenen Pleuel 11 aufweist. Das Kurbelglied 10 ist mit dem Positioniermotor 12 verbunden (vergl. Figur 3).
    In dem in Figur 2 gezeigten Ausführungsbeispiel ist nur das Einlassventil 13 mit einem elektromagnetischen Hubantrieb 5 versehen, während das Auslassventil ein vom Fördermedium betätigbares Ventil ist.
    Das Auslassventil 14 ist dabei als sensibel auf kleine Druckunterschiede reagierendes Ventil ausgebildet. Für bestimmte Dosieraufgaben, bei denen mit einer Mindestfördergeschwindigkeit gearbeitet wird, ist diese Ausbildung mit unterschiedlichen Ventilen gut einsetzbar.
    Unterschreitet jedoch die Fördergeschwindigkeit dieses, für ein vom Fördermedium betätigtes Ventil notwendige Mindestmaß, oder sind spezielle Dosieraufgaben zu lösen, werden sowohl für das Einlassventil als auch für das Auslassventil fremdbetätigte Ventile vorgesehen. Das Schließen und Öffnen der Ventile kann dadurch unabhängig von der im Ventilbereich auftretenden Druckdifferenz vorgenommen werden. Damit ist auch eine Abkopplung der Ventilfunktion von der jeweiligen Position des Pumpenantriebes gegeben.
    Bei Einsatz eines vom Fördermedium betätigten Ventiles, wie dies im Ausführungsbeispiel gemäß Figur 2 vorgesehen ist, kann beispielsweise das in Figur 5 gezeigte Ventil 15 wahlweise als Einlassventil oder Auslassventil vorgesehen sein. Dieses Ventil 15 ist so ausgebildet, dass es auch bei geringen Arbeits- oder Fördergeschwindigkeiten und den dabei auftretenden geringen Differenzdrücken zwischen Saugseite und Druckseite ein zuverlässiges Dichtverhalten zeigt.
    Das Ventil ist als Scheibenventil ausgebildet und weist im wesentlichen eine Wiederlagerplatte 16, eine Ventilscheibe 17 sowie eine Ventilaufnahmeplatte 18 auf. Aus diesen drei Teilen 16, 17 und 18 ist eine komplette, dosenförmige Einheit als Ventileinsatz gebildet. Dieser Ventileinsatz kann in eine entsprechende Aufnahmevertiefung des Pumpenkopfes eingesetzt werden.
    Bei einem saugseitig angeordneten Ventil liegt die Ventilscheibe 17 mit ihrer der Saugseite 19 zugewandten Flachseite in Schließstellung auf dem einen Ventilsitz bildenden Öffnungsrand 20 eines zentralen Zuströmkanals 21 in der Ventilaufnahmeplatte 18 auf. Gegen seitliches Verschieben ist die Ventilscheibe 17 durch Positionierzapfen gehalten, die seitlich neben dem Öffnungsrand angeordnet sind und in randoffene Aussparungen der Ventilscheibe 17 eingreifen. Die Wiederlagerplatte 16 weist innerhalb der Projektionsverlängerung des Zuströmkanals der Ventilaufnahmeplatte 18 ein stegartiges Wiederlage 22 auf, über das die Ventilscheibe 17 in Öffnungsstellung etwa entlang einer Durchmesserlinie abgestützt wird. In Öffnungsstellung des Ventils sind die beidseitig der mittleren Stützlinie befindlichen Ventilscheibenlappen zu der Wiederlagerplatte 16 hin verschwenkt, so dass der Zuströmkanal 21 geöffnet ist. Der Abstand der durch die Stützstelle des Wiederlagers 22 laufenden Ebene von der von dem Öffnungsrand 20 gebildeten Parallelebene ist so bemessen, dass die Ventilscheibe 17 dazwischen spannungsfrei gehalten ist. Dies ist eine Voraussetzung für ein Ansprechen der Ventilscheibe bereits bei geringsten Druckdifferenzen und auch für einen schnellen Schließ- bzw. Öffnungsvorgang.
    Bei Einsatz des Ventiles 15 auf der Druckseite wird dieses um 180 Grad gewendet eingesetzt.
  • Wie bereits vorerwähnt, kommen bevorzugt sowohl für das Einlassventil 13 als auch für das Auslassventil 14 fremdbetätigte Ventile zum Einsatz. Ein solches ist als Einlassventil in Figur 2 gezeigt. Der elektromagnetische Hubantrieb 5 hat einen mittels zueinander beabstandeter Blattfedern 23, 24 geführten Hubanker 25 der mit einem Ventilschließkörper 26 in Antriebsverbindung steht.
    In axialer Verlängerung des Hubankers 25 ist beabstandet dazu ein hülsenförmiger Eisenpol 27 angeordnet. Um diesen und den Hubanker herum befindet sich eine Spule 28, die bei Erregung dazu führt, dass der Hubanker 25 in Richtung des Pfeiles Pf 1 bewegt wird und dabei den Ventilschließkörper 26 in Öffnungsstellung bringt.
    Durch die beiden Blattfedern 23, 24 ist eine Parallelogrammführung für den Hubanker 25 gebildet, so dass keine gleitführungsgelagerten Teile erforderlich sind. Dabei ist der Hubanker 25 in Hubrichtung exakt und radial spielfrei geführt. Bevorzugt ist zumindest eine der beiden Blattfedern der Hubanker-Führung in Schließrichtung vorgespannt. Das Ventil geht dadurch in stromlosem Zustand in Schließstellung, die in Figur 2 gezeigt ist.
    Zur Übertragung der Hubbewegung des Hubankers 25 auf dem Ventilschließkörper 26 ist ein Wipphebel 29 vorgesehen, der mit seinem Antriebsende mit einer mit dem Hubanker verbundenen Achse 30 gekoppelt ist und mit seinem anderen Ende mit dem Ventilschließkörper 26 verbunden ist. Im Verlauf der Längserstreckung des Wipphebels 29 ist eine Wipplagerung 31 vorgesehen, die den Wipphebel 29 dichtend umschließt und die auch einen Ventilraum nach außen abdichtet.
    Die Wipplagerung ist vorzugsweise als Elastomer-Durchführung ausgebildet, so dass eine absolute Dichtigkeit gegeben ist.
  • Die Dosierpumpe 1 ist, wie besonders gut in den Figuren 3 und 4 erkennbar, mit einem Positionsgeber 32 zur Lageerfassung des Pumpenantriebs beziehungsweise der das Verdrängungselement bildenden Membrane 8 ausgerüstet. Im Ausführungsbeispiel weist der Positionsgeber einen mit dem Kurbelglied 10 umlaufenden Magneten 33 sowie einen vorzugsweise als Hallsensor ausgebildeten, neben der Umlaufbahn des Magneten 33 ortsfest angeordneten Magnetsensor auf. Es wird damit bei jeder Umdrehung des Pumpenantriebs ein Referenzsignal erzeugt, an dem sich die weitere Positionierung orientiert. Insbesondere bei Verwendung eines Schrittmotors, bei dem die jeweilige Positionierung durch eine bestimmte Schrittzahl vorgebar ist, dient das Referenzsignal beispielsweise zur Rücksetzung oder zur Generierung eines bestimmten Korrekturwertes. Bei Einsatz eines Schrittmotors sind kleinste Schrittwinkel möglich, so dass die Membrane 8 in jede beliebige Position innerhalb ihres Gesamtarbeitsbereiches bringbar ist. Die Verstellung kann dabei extrem langsam ablaufen, wobei sich über mehrere Minuten erstreckende Arbeitshübe möglich sind, andererseits kann aber auch mit hoher Drehzahl gearbeitet werden, um eine hohe Förderleistung zu erreichen.
    Außer dem im Ausführungsbeispiel gezeigten, berührungslos arbeitenden Positionsgeber können auch andere, zum Beispiel optoelektronische Positionsgeber verwendet werden, die im Laufe einer Umdrehung gegebenenfalls eine Vielzahl von Positionsdaten abgeben. Erwähnt sei hierbei, dass anstatt eines Schrittmotors auch ein in einem Regelkreis arbeitender Motor, beispielsweise ein Servo-Gleichstrommotor eingesetzt werden kann.
  • Wie in Figur 1 erkennbar, sind mit der elektronischen Steuerung 7 der Positioniermotor 2, die elektromagnetischen Hubantriebe 5 und 6 für das Einlassventil 13 und das Auslassventil 14 sowie der Positionsgeber 32 verbunden. Die Arbeitsweise der Pumpe kann dadurch in weiten Grenzen variiert werden. Beispielsweise können die elektromagnetischen Hubantriebe 5, 6 der Ventile in Abhängigkeit von der Stellung der Membrane. 8 angesteuert werden.
    Andererseits besteht aber auch die Möglichkeit, unabhängig von der Stellung des Pumpenantriebes beziehungsweise der Membrane die Ventile zu öffnen oder zu schließen. Beispielsweise kann dies in Abhängigkeit unterschiedlicher Betriebsparameter, insbesondere in Abhängigkeit des Betriebsdruckes, der Drehzahl, der Konsistenz des Fördermediums und dergleichen erfolgen. Dabei besteht die Möglichkeit, dass mit Hilfe einer Speichereinrichtung unterschiedliche Betriebsparameter in der Speichereinrichtung abgelegt werden, die dann unterschiedlichen Steuerzeitpunkten der Ventile zugeordnet werden können.
    Zur Messung von Betriebsparametern, wie beispielsweise Betriebsdruck, Gegendruck, Drehzahl sind entsprechende Messeinrichtungen vorgesehen.
    Neben der bereits vorerwähnten Arbeitsweise der Pumpe mit einer innerhalb der Gesamtarbeitsbewegung pendelnd hin- und herbewegbaren Membrane für eine reduzierte Fördermenge, kann mit Hilfe der elektronischen Steuerung 7 auch eine ungleichförmige Arbeitsgeschwindigkeit des Antriebsmotors eingestellt werden für einen schnellen Saughub und einen demgegenüber langsameren Dosierhub. Dadurch kann anstatt einer sonst etwa sinusförmigen Flüssigkeitsförderung eine Vergleichmäßigung der Strömung erreicht werden.
    Sind beide Ventile fremdgesteuert, so eröffnet sich auch die Möglichkeit der Umsteuerung der Förderrichtung. Gerade bei einer Dosierpumpe ist diese Möglichkeit von Vorteil, weil nach einem Dosiervorgang mit Ausschub des Fördermediums aus dem Druckkanal, ein unerwünschtes Nachlaufen oder Nachtropfen von Fördermedium vermieden werden kann, indem die Förderrichtung durch Umsteuerung der beiden Ventile umgeschaltet wird. Um das vorerwähnte Nachlaufen oder Nachtropfen von Fördermedium zu vermeiden, genügt in der Regel ein Teilhub der Arbeitsmembrane bei umgesteuerter Ventilschließfolge.
    Dies bedeutet, daß bei dem Saughub der Membrane mit Vergrößerung des Arbeitsraumes das Auslaßventil geöffnet ist, während das Einlaßventil geschlossen ist.
    Die Dosiergenauigkeit der Dosierpumpe 1 kann durch diese Maßnahme wesentlich verbessert werden und es ist auch eine einfachere Handhabung beim Einstellen der Dosiermenge möglich.
    Die Dosierpumpe 1 mit fremdgesteuertem Ein- und Auslaßventil 13,14 kann nicht nur für eine Rückförderung zur Vermeidung eines Nachlaufs, sondern wahlweise zur kontinuierlichen Förderung in beide Förderrichtungen eingesetzt werden.

Claims (17)

  1. Dosierpumpe (1), insbesondere Membran-Dosierpumpe mit einer, einen Arbeitsraum begrenzenden Arbeitsmembrane oder dergleichen Verdrängungselement und einem Pumpenantrieb (2) für eine oszillierende Bewegung des Verdrängungselementes, wobei der Pumpenantrieb (2) richtungsumkehrbar ist und das Verdrängungselement hin- und her bewegbar ist, wobei ein Positionsgeber zur Lageerfassung des Pumpenantriebs (2) sowie eine elektronische Steuerung (7) dafür vorgesehen sind, sowie mit einem Pumpenkopf, in dem ein Einlassventil und ein Auslassventil angeordnet sind, wobei zumindest eines der Ventile fremdgesteuert ist und einen motorischen Ventilantrieb aufweist, dadurch gekennzeichnet, dass der Pumpenantrieb (2) einen Positioniermotor und einen Exzenter- oder Kurbeltrieb (9) mit einem umlaufenden Kurbelglied (10) und einem mit der Arbeitsmembrane oder dergleichen Verdrängungselement verbundenen Pleuel (11) aufweist, dass das Kurbelglied (10) für geringere Auslenkungen der Arbeitsmembrane gegenüber den maximal möglichen Auslenkungen bei einer Umlaufbewegung, in einem beliebigen Bereich innerhalb der Gesamtumlaufbewegung pendelnd hin- und her bewegbar ist für eine gegenüber der maximalen Fördermenge reduzierte Fördermenge, und dass die elektronische Steuerung (7) zumindest mit dem oder den motorischen Ventilantrieben des Ein- und/oder Auslassventils (14), mit dem Positioniermotor des Pumpenantriebs (2) sowie dem Positionsgeber zur Erfassung der Lage des Verdrängungselementes und/oder des Pumpenantriebs (2) verbunden ist.
  2. Dosierpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Pumpenantrieb (2) mit seinem mit dem Verdrängungselement verbundenen Teil für eine gegenüber der reduzierten Fördermenge mit pendelnd hin- und her bewegbarem Arbeitshub erhöhter oder maximaler Fördermenge pro Arbeitshub, insbesondere umlaufend ausgebildet und ansteuerbar ist.
  3. Dosierpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die elektronische Steuerung (7) zur variablen Ansteuerung des oder der motorischen Ventilantriebe des Ein- (13) und/oder Auslassventils (14) in Abhängigkeit der Stellung des Verdrängungselementes ausgebildet ist.
  4. Dosierpumpe (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die elektronische Steuerung (7) zur Ansteuerung des oder der motorischen Ventilantriebe des Ein- (13) und/oder Auslassventils (14) in Abhängigkeit unterschiedlicher Betriebsparameter, insbesondere in Abhängigkeit des Betriebsdruckes, der Drehzahl, der Konsistenz des Fördermediums und dergleichen ausgebildet ist.
  5. Dosierpumpe (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die elektronische Steuerung (7) eine Speichereinrichtung zur Speicherung unterschiedlicher Betriebsparameter und zur Zuordnung dieser Betriebsparameter zu unterschiedlichen Steuerzeitpunkten der Ventile aufweist.
  6. Dosierpumpe (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine oder mehrere Messeinrichtungen zur Messung von Betriebsparametern wie beispielsweise Betriebsdruck, Gegendruck, Drehzahl, Förderleistung und dergleichen vorgesehen sind.
  7. Dosierpumpe (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das elektrisch fremdbetätigte Ventil (15) in stromlosem Zustand geschlossen ist.
  8. Dosierpumpe (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Ein- und/oder das Auslassventil (13,14) als motorischen Ventilantrieb einen elektromagnetischen Hubmagneten (5,6) aufweist, der einen mittels zueinander beabstandeter Blattfedern (23,24) geführten Hubanker (25) hat, der mit einem Ventilschließkörper (26) in Antriebsverbindung steht.
  9. Dosierpumpe (1) nach Anspruch 8, dadurch gekennzeichnet, dass zumindest eine der Blattfedern (23,24) der Hubanker-Führung in Schließrichtung des fremdbetätigten Ventiles (15) vorgespannt ist.
  10. Dosierpumpe (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass außer einem fremdbetätigten wenigstens ein vom Fördermedium betätigbares Ventil (15) insbesondere mit einer elastischen Ventilscheibe (17) ausgebildet ist, die in Schließstellung mit einer Flachseite auf dem einen Ventilsitz bildenden Öffnungsrand (20) eines Zuströmkanals (21) aufliegt und dass auf der dem Zuströmkanal (21) abgewandten Seite der Ventilscheibe innerhalb der Projektionsverlängerung des Zuströmkanals (21) ein zumindest in Ventil-Öffnungsstellung die Ventilscheibe (17) abstützendes, stegartiges Widerlager (22) vorgesehen ist.
  11. Dosierpumpe (1) nach Anspruch 10, dadurch gekennzeichnet, dass das vom Fördermedium betätigbare Ventil (15) eine komplette, auswechselbare Einheit bildet und als Ventileinsatz (21) mit einer das Widerlager (28) und einen Abströmkanal (31) aufweisenden Widerlagerplatte (18), einer Ventilaufnahmeplatte (18) sowie der Ventilscheibe (17) ausgebildet ist und dass vorzugsweise die Widerlagerplatte (16) und die Ventilaufnahmeplatte (18) ineinandergreifende Randanformungen aufweisen und in Montagestellung insbesondere miteinander verschweißt, verklebt oder dergleichen verbunden sind.
  12. Dosierpumpe (1) nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Ausgangslage der Arbeitsmembrane (6) oder dergleichen zu Beginn und am Ende einer Dosierung jeweils gleich und vorzugsweise die untere Totpunktlage ist.
  13. Dosierpumpe (1) nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Anzahl der Arbeitshübe der Arbeitsmembrane (6) oder dergleichen pro Zeiteinheit und/oder die Antriebsgeschwindigkeit verstellbar sind.
  14. Dosierpumpe (1) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Pumpenantrieb (2) als Antriebs- und Positioniermotor (12) einen gesteuerten oder einen geregelten Motor, insbesondere einen Schrittmotor oder einen in einem Regelkreis arbeitenden Motor, beispielsweise einen Servo-Gleichstrommotor oder dergleichen aufweist.
  15. Dosierpumpe (1) nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass als Positionsgeber (32) ein berührungsloser, beispielsweise optoelektronischer oder magnetischer Positionsgeber (32) vorgesehen ist, der mit dem Positioniermotor (12) oder einem von diesem angetriebenen Teil zusammenarbeitet und mit der Ansteuerelektronik (7) verbunden ist.
  16. Dosierpumpe (1) nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die elektronische Steuerung (7) zur Einstellung einer ungleichförmigen Antriebsgeschwindigkeit des Antriebsmotors ausgebildet ist, insbesondere für einen schnellen Saughub und einen demgegenüber langsameren Dosierhub.
  17. Dosierpumpe nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die beiden Ventile fremdgesteuert und wahlweise als Einlassventil oder Auslassventil für eine Förderrichtungsumkehrung umsteuerbar sind.
EP02782831A 2001-12-20 2002-10-04 Dosierpumpe Expired - Lifetime EP1456539B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10162773A DE10162773A1 (de) 2001-12-20 2001-12-20 Dosierpumpe
DE10162773 2001-12-20
PCT/EP2002/011151 WO2003054392A1 (de) 2001-12-20 2002-10-04 Dosierpumpe

Publications (2)

Publication Number Publication Date
EP1456539A1 EP1456539A1 (de) 2004-09-15
EP1456539B1 true EP1456539B1 (de) 2007-10-31

Family

ID=7710050

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782831A Expired - Lifetime EP1456539B1 (de) 2001-12-20 2002-10-04 Dosierpumpe

Country Status (6)

Country Link
US (1) US20040234377A1 (de)
EP (1) EP1456539B1 (de)
JP (1) JP4060273B2 (de)
AT (1) ATE377149T1 (de)
DE (2) DE10162773A1 (de)
WO (1) WO2003054392A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335003B2 (en) * 2004-07-09 2008-02-26 Saint-Gobain Performance Plastics Corporation Precision dispense pump
DE102005024363B4 (de) * 2005-05-27 2012-09-20 Fresenius Medical Care Deutschland Gmbh Vorrichtung und Verfahren zur Förderung von Flüssigkeiten
DE102005039772A1 (de) 2005-08-22 2007-03-08 Prominent Dosiertechnik Gmbh Magnetdosierpumpe
US7819642B2 (en) * 2006-08-24 2010-10-26 N.A.H. Zabar Ltd. Reciprocatory fluid pump
JP4425253B2 (ja) * 2006-08-30 2010-03-03 ダイキン工業株式会社 油圧ユニットおよび油圧ユニットにおけるモータの速度制御方法
DE102006045450B4 (de) * 2006-09-19 2008-07-10 Lechler Gmbh Spritzvorrichtung zum Versprühen von Spritzmitteln sowie Verfahren zum Betreiben einer solchen Spritzvorrichtung
US8479784B2 (en) 2007-03-15 2013-07-09 The Coca-Cola Company Multiple stream filling system
US9394153B2 (en) 2007-03-15 2016-07-19 The Coca-Cola Company Multiple stream filling system
EP2252542B1 (de) 2008-02-04 2015-09-30 The Coca-Cola Company Verfahren zur erzeugung von angepassten getränkeprodukten
DE102008031049A1 (de) * 2008-06-30 2009-12-31 Lewa Gmbh Vorrichtung zum Portionieren förderbarer Medien
CH702437A1 (fr) * 2009-12-23 2011-06-30 Jean-Denis Rochat Pompe volumetrique alternative a membrane pour usage medical.
EP2531729B1 (de) * 2010-02-02 2020-03-04 Dajustco Ip Holdings Inc. Membranpumpe mit hydraulikflüssigkeits-steuersystem
EP2362100B2 (de) * 2010-02-18 2020-07-08 Grundfos Management A/S Dosierpumpenaggregat sowie Verfahren zur Steuerung eines Dosierpumpenaggregates
DE102010003218A1 (de) * 2010-03-24 2011-09-29 Prominent Dosiertechnik Gmbh Verfahren zum Steuern und/oder Regeln einer Dosierpumpe
KR20130087390A (ko) * 2010-05-18 2013-08-06 아크티에볼라겟트 에렉트로룩스 배터리 동력형 주입 장치
CA2756607A1 (en) * 2010-11-02 2012-05-02 Bogdan Pawlak Radial diaphragm pump
MX339953B (es) * 2011-07-28 2016-06-20 Ecolab Inc Bomba de diafragma para la dosificacion de un fluido y metodo adecuado.
DE102016109318A1 (de) * 2016-05-20 2017-11-23 Max Wild Gmbh Kolbenpumpe
KR20240111015A (ko) 2017-04-28 2024-07-16 아지노모토 가부시키가이샤 가용성 단백질에 대한 친화성 물질, 절단성 부분 및 반응성기를 갖는 화합물 또는 이의 염
DE102017112975B3 (de) 2017-06-13 2018-10-25 KNF Micro AG Membranpumpe
FR3074544B1 (fr) * 2017-12-05 2021-10-22 Ams R&D Sas Circulateur a membrane ondulante pilotee
CN108374780A (zh) * 2018-05-10 2018-08-07 无锡市天利流体科技有限公司 高精度智能蠕动泵
EP3981984B1 (de) * 2018-07-06 2024-04-17 Grundfos Holding A/S Dosierpumpe und verfahren zur steuerung einer dosierpumpe
DE102018212985A1 (de) * 2018-08-03 2020-02-06 Robert Bosch Gmbh Pumpe und Verfahren zu ihrem Betrieb sowie zum Ermitteln eines oberen und/oder unteren Totpunkts
US11480163B2 (en) * 2018-08-27 2022-10-25 Saudi Arabian Oil Company Pumping system with control features for controlling stroke duration and injection volume
DE102021205735A1 (de) 2021-06-08 2022-12-08 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Ansteuern einer Pumpe, Verfahren zum Trainieren eines neurona-len Netzes und Fluid-Versorgungssystem

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525557A1 (de) * 1995-07-13 1997-01-16 Knf Flodos Ag Dosierpumpe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2113315B (en) * 1982-01-11 1986-05-21 Hewlett Packard Co An improved high pressure meter pump
FR2624919B1 (fr) * 1987-12-17 1990-04-27 Milton Roy Dosapro Dispositif de reglage du debit d'une pompe doseuse alternative
DE3801157A1 (de) * 1988-01-16 1989-08-03 Hagen W Dieter Elektronisch gesteuerte kolbendosierpumpe bzw. maschine
US4950134A (en) * 1988-12-27 1990-08-21 Cybor Corporation Precision liquid dispenser
US5314164A (en) * 1992-07-17 1994-05-24 Mks Instruments, Inc. Pivotal diaphragm, flow control valve
DE19961852A1 (de) * 1999-12-22 2001-06-28 Continental Teves Ag & Co Ohg Pumpe mit geregeltem Ventil
EP1132616A1 (de) * 2000-03-10 2001-09-12 BMO Treuhand und Verwaltung AG Dosierpumpe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525557A1 (de) * 1995-07-13 1997-01-16 Knf Flodos Ag Dosierpumpe

Also Published As

Publication number Publication date
JP2005513340A (ja) 2005-05-12
WO2003054392A1 (de) 2003-07-03
DE50211149D1 (de) 2007-12-13
US20040234377A1 (en) 2004-11-25
EP1456539A1 (de) 2004-09-15
JP4060273B2 (ja) 2008-03-12
ATE377149T1 (de) 2007-11-15
DE10162773A1 (de) 2003-07-10

Similar Documents

Publication Publication Date Title
EP1456539B1 (de) Dosierpumpe
DE3850688T2 (de) Flüssigkeitsversorgungssystem mit Kompensation des Flussdefizits.
DE3785207T2 (de) Pumpvorrichtung zur abgabe von fluessigkeit bei hohem druck.
EP1754891B1 (de) Motordosierpumpe
DE60214935T2 (de) Kraftübertragungssteuerung zur Vermeidung eines Motorabwürgens in Nutzfahrzeugen
DE102008045524A1 (de) Verfahren zur autonomen Steuerung eines Chemikalien-Einspritzsystems für Öl- und Gas-Bohrlöcher
DE3239190A1 (de) Schrittmotor-steuervorgang fuer die quasi kontinuierliche stroemungsmittelinfusion variabler menge
DE3243349C2 (de)
DE3706338A1 (de) Membranpumpvorrichtung
DE2649539A1 (de) Fluessigkeitschromatographie-system
DE10109144A1 (de) Drahstellglied mit Dämpfungsmechanismus
DE102010003218A1 (de) Verfahren zum Steuern und/oder Regeln einer Dosierpumpe
DE3503471A1 (de) Foerdermengen-steuervorrichtung fuer einen kuehlmittelverdichter mit foerdermengen-einstellvorrichtung
DE2649592A1 (de) Fluessigkeitschromatographiesystem
DE2731102B2 (de) Pipettiergerät
DE102008046562A1 (de) Hydraulischer Linearantrieb
EP1114958B1 (de) Elektromotorisch ansteuerbare Ventileinrichtung
DE3204067C2 (de)
DE102013008793A1 (de) Elektrohydraulische Pumpenverstellung für eine Verstellpumpe im offenen Hydraulikkreislauf
DE2161218A1 (de) Vorrichtung zur Umwandlung einer Drehbewegung in eine Hin- und Herbewegung
DE2129588C3 (de) Dosierpumpe
WO2009083179A1 (de) Fluidikvorrichtung für kontrolliertes handhaben von flüssigkeiten und fluidiksystem mit einer fluidikvorrichtung
DE102019114743A1 (de) Vorrichtung zum mischen von zwei oder mehr komponenten sowie verfahren zur kalibrierung einer solchen
DE3729898C2 (de)
DE4027899C2 (de) Hydraulisches Servosystem für den Linearantrieb eines Kolbens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030625

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20070117

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 43/02 20060101AFI20070614BHEP

Ipc: F04B 13/00 20060101ALI20070614BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50211149

Country of ref document: DE

Date of ref document: 20071213

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080207

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080211

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080331

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080131

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

BERE Be: lapsed

Owner name: KNF FLODOS A.G.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140827

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141017

Year of fee payment: 13

Ref country code: CH

Payment date: 20141031

Year of fee payment: 13

Ref country code: DE

Payment date: 20141021

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211149

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151004

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160503

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151102