EP1454685B1 - Procédé pour former une pièce - Google Patents

Procédé pour former une pièce Download PDF

Info

Publication number
EP1454685B1
EP1454685B1 EP20040002972 EP04002972A EP1454685B1 EP 1454685 B1 EP1454685 B1 EP 1454685B1 EP 20040002972 EP20040002972 EP 20040002972 EP 04002972 A EP04002972 A EP 04002972A EP 1454685 B1 EP1454685 B1 EP 1454685B1
Authority
EP
European Patent Office
Prior art keywords
rollers
rotation
axes
relative position
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20040002972
Other languages
German (de)
English (en)
Other versions
EP1454685A3 (fr
EP1454685A2 (fr
Inventor
Günther Hofmann
Stelios Katsibardis
Siegfried Hausdörfer
Henry Zwilling
Günther Vogler
Herbert Rüger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Langenstein and Schemann GmbH
Original Assignee
Langenstein and Schemann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10316249A external-priority patent/DE10316249B4/de
Application filed by Langenstein and Schemann GmbH filed Critical Langenstein and Schemann GmbH
Priority to EP07004135.5A priority Critical patent/EP1782896B1/fr
Publication of EP1454685A2 publication Critical patent/EP1454685A2/fr
Publication of EP1454685A3 publication Critical patent/EP1454685A3/fr
Application granted granted Critical
Publication of EP1454685B1 publication Critical patent/EP1454685B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/18Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution

Definitions

  • the invention relates to a method for forming a workpiece.
  • longitudinal rolling the workpiece is moved perpendicular to the axes of rotation of the rollers in a translatory movement and usually without rotation through the gap between the rollers (nip).
  • transverse rolling the workpiece does not translate with respect to the rollers or their axes of rotation, but rotates only about its own axis, which is usually a main axis of inertia, in particular the axis of symmetry in a rotationally symmetrical workpiece.
  • the rollers are usually at an angle to each other and to the workpiece, which is translationally and rotationally moved.
  • Profile transverse rolling machines in which two rollers with wedge-shaped profile tools arranged on the outer circumference rotate in the same direction about axes of rotation parallel to one another, are sometimes referred to as transverse wedge rolling.
  • the tools have a wedge-shaped or triangular in cross-section geometry and can increase along the circumference in its axial dimension in one direction and / or extend obliquely to the axis of rotation of the rollers.
  • cross wedge or cross-profile rollers allow a variety of forming workpieces in high precision or dimensional accuracy.
  • the wedge-shaped tools can create circumferential grooves and other tapers in the rotating workpiece.
  • the outer diameter of the tool wedges when passing around the axis of rotation can be generated in combination with the oblique arrangement axially extending slopes and continuous transitions between two tapers of different diameters in the workpiece.
  • the wedge shape of the tools allows the production of fine structures through the wedge outer edges or outer surfaces.
  • Particularly suitable are cross wedge rollers for producing elongate, rotationally symmetrical workpieces with constrictions or elevations such as cams or ribs.
  • the forming pressure and the forming temperature depend on the material of which the workpiece is made, as well as the dimensional accuracy and surface quality requirements after forming.
  • the forming is usually carried out at elevated temperatures during rolling in order to achieve the formability or flowability of the material required for forming.
  • These temperatures, in particular occurring during forging, can be in the range of room temperature in the case of so-called cold forming, or between 550 ° C. and 750 ° C. in the case of warm forging, and above 900 ° C. in the case of so-called hot forming.
  • Cross wedge rolling machines are known, in which the workpieces at the beginning of the rolling process by means of a positioning device comprising two positioning supports (so-called guide rulers), in an initial position between the two rollers, which usually corresponds to the geometric center or the center of the nip , positioned.
  • the position of the rollers and their distance from each other are fixed in advance.
  • the positioning carriers of the positioning pulled back so that the workpiece rotates freely between the rollers and is kneaded between the tools in the desired shape.
  • the workpiece is detected and ejected via a recess in the rotating rolling tool.
  • Out DE 1 477 088 C is a cross wedge rolling machine for the transverse rolling of bodies of revolution or flat workpieces with two rotating in the same direction of rotation work rolls on the roll surfaces wedge tools are arranged interchangeable.
  • the wedge tools each have a wedge-shaped or triangular, rising from the roll shell to the workpiece to be produceddonnendlage rising, roughened or otherwise roughened reduction strips and extending at the same distance from the roll shell, wedge-shaped smooth form surfaces with calibration effect.
  • the wedge tools are formed as deformation segments and extend only over a partial circumference of the associated roll surface.
  • the mutually facing surfaces and tools of the two work rolls move in opposite directions or in opposite directions to each other.
  • the EP 1 256 399 A1 discloses a cross rolling machine with two parallel operated modules of two rollers rotating in the same direction of rotation, the half-shell-shaped tools having radially projecting tool wedges on its peripheral surface, wherein the deformation of a workpiece requires only the rotation of half the circumference of a pair of rollers. All four rollers are driven by only one drive motor via an interposed gear unit and drive shaft.
  • the RU 2106223 C1 and the associated Derwent Abstract disclose a rolling machine in which the distance between two drive shafts of the rollers is regulated to a predetermined value.
  • the US 3,358,485 discloses a control of the distance between an upper roll and a lower roll of a rolling machine during the rolling process.
  • a rolling machine in which, during a rolling operation, the rolling distance is adjusted according to a predetermined program to produce tapers in the workpiece. After a number of workpieces, a calibration measurement is made at which the rollers are brought into contact, whereby the roller spacing becomes zero, and the output of a transducer distance measuring transducer is recalibrated to match the zero roller gap.
  • the JP 03151133 A and the related Patent Abstract of Japan disclose a rolling system for rolling leaf springs in which, depending on a measured longitudinal position, the distance between the rolls is adjusted according to a predetermined control program. The roll distance is not measured and thus not regulated.
  • the US 4,020,664 discloses a cross wedge rolling machine in which an angular distance between the two rolls is adjusted by means of a gear transmission. The distance between the roll surfaces can be adjusted mechanically. A measurement of the roll spacing is not disclosed.
  • the US 4,186,583 discloses a cross wedge rolling machine with guide bars in the central axis to keep the workpiece centered in the nip of the two rolls. To change the diameter of the rolled workpiece, the roll spacing between the rolls is changed by means of a plug drive. A measurement or regulation of the roll spacing is not disclosed.
  • the DE 23 54 036 A1 discloses a rolling process for continuously maintaining the thickness of a rolled product to a desired level, in which based on the change of the rolling pull force resulting nip width based function curve is recorded, the rolling pressure force is continuously measured and the functional curve, the corresponding nip width is determined and when the roll gap width deviates from a distance dimension of the rolls specified for the respective rolling process, these changes are determined on the basis of the function curve and corrected accordingly.
  • the US 2001/0039820 A1 discloses a cross rolling machine for producing screws, driving pinions, shafts, pipes and the like means of a linear scale, the distance between the tool drive blocks is measured, which corresponds directly to the gap distance between the tools, so that the rolling distance can be determined during the rolling process and an expansion between The tools can be corrected by an actuator.
  • the US 2001/0039820 A1 is currently considered as the closest prior art with reference to the alternative of claim 1, according to which the workpiece is formed during a forming phase between tools of at least two rollers rotating about a rotation axis, respectively.
  • the invention is based on the object of specifying a new method for forming workpieces.
  • forming is understood here as any conversion of the shape of a workpiece into another form, as also described above, including preforming and finish forming.
  • the axes of rotation of the rollers are to be understood as geometric or mathematical axes in the (Euclidean, three-dimensional) space around which the rollers rotate. Power transmitting or mechanical axes are referred to in this application, however, as waves.
  • the invention is based on the consideration to make an automatic or automatic (or: automatic) adjustment of the relative position of the axes of rotation of the rolls of the rolling machine, wherein generally at least one actuator is used. It is thus carried out according to the invention, in particular a control, regulation or correction whose control, control or correction variable is the relative position of the axes of rotation of the rollers.
  • rollers or tools it is not the rotational position of the rollers or tools about their axes of rotation, which is relevant for the deformation of the workpiece, influenced, but the spatial position of the rollers or tools, which can be defined by the position of the axes of rotation of the rollers or a stationary or translationally invariant spatial point ,
  • the relative position of the roller rotation axes also determines the position of the rollers or the tools relative to the workpiece at predetermined rotational positions of the rollers.
  • the invention is also based on the recognition that during the forming process of a workpiece or a process with several successive forming processes when machining multiple workpieces expansions or contractions within the rolling machine, especially in the support means of the rollers or within the rollers and tools themselves occur.
  • These changes in shape and volume are caused in particular by the forces acting during forming (mechanical Expansion or contraction) and by introducing the workpiece at relatively high temperatures during hot or hot working and the associated temporal and spatial temperature changes which result in thermal expansion or contraction.
  • These changes in shape or volume in the rolling machine are thus disturbances of the process and adversely affect the optimal or preset relative positions of the rolls or tools for the forming process.
  • the compensation (or compensation or correction) of said thermal and mechanical shape or volume changes determines (or: determines) the relative position of the rollers or tools in space relative to each other , and adapted in an adjustment or correction step, if impermissible or intolerable deviations from a predetermined or optimal for the forming process or relative position of the rotational axes occur.
  • the method according to claim 1 further comprises the step of determining the relative position of the axes of rotation of the rolls during the forming phase, namely at a predetermined angular position of at least one of the rolls and / or a predetermined force load of the roll (s) or forming force.
  • a rotation angle sensor device for determining the roll rotation angle and / or a force sensor device for determining the deformation force can then be provided.
  • certain actual position of the relative position of the roll rotation axes only after or before the forming and / or after ejection of the workpiece from the space between the tools or the Rolling and / or corrected in a formertruckentlasteten condition of the rollers to a desired relative position.
  • the desired relative position is then optionally adjusted to a desired position in the loaded state or during the forming phase. It can then be omitted during the forming phase, a change in the relative position by the at least one actuator.
  • the relative position is controlled according to a predetermined control course or algorithm without feedback or relative position determination, generally on the basis of preset manipulated variable values as setpoint values for the actuator.
  • the rolling machine preferably also contains at least one means for determining the relative position of the axes of rotation of the rollers relative to one another during control or correction in addition to the forming rollers, the rotary drive (s) and the at least one actuator, in particular during the forming phase, and at least a control device, which is connected to the means for determining the relative position of the axes of rotation and with each actuator or is operatively connected to correct the relative position of the axes of rotation to a desired relative position by means of the one or more actuators (s).
  • control device compares the determined values or signals to the relative position of the axes of rotation with the desired relative position and changed upon detection of an impermissible deviation from the desired relative position, the relative position of the roller rotation axes via the actuator or (e) until the deviation again within a permissible tolerance range.
  • the rollers are generally rotatable or rotatably mounted in two storage facilities.
  • the positions of the axes of rotation of both rollers for correcting or changing the relative position of their axes of rotation are adjustable or variable and can be regulated or corrected to associated desired positions. It can now be either independent of each other, ie without a coupling of their movement, with its own actuators or dependent on each other, ie be adjusted or adjusted with a control technology or mechanical coupling, the rollers.
  • the movements and positions of the axes of rotation of the two rollers can be coupled to one another in such a way that the axes of rotation of both rollers are simultaneously movable, preferably also at the same speed, to a reference position lying between the rollers, preferably the central axis, to or away from said rollers or be moved.
  • Such a synchronous movement can be realized in particular with independent actuators by a common control or by a mechanical coupling with gear (s).
  • each determined distance can be compared for itself with an associated desired distance and corrected for a deviation from the desired distance outside a predetermined tolerance range to the desired distance.
  • the central axis (or: geometric center, central position) in the intermediate space between the rollers or tools provided for receiving the workpiece can be defined in particular by a positioning device for positioning the workpiece between the rollers, the central axis being movable relative to one another within a movement plane or on a movement axis of two Positioning parts of the positioning for holding the workpiece between the two positioning parts can be.
  • This determination of the roll positions or of the roll spacing relative to the workpiece has the advantage that a reliable reference position is established by the positioning device that is stationary in relation to the workpiece, which position defines the position of the workpiece.
  • the distances between the axes of rotation to the central axis are also in clear relation to the distances of the axes of rotation to each other.
  • the determination of the relative position of the axes of rotation to each other can thus take place in only one dimension or projection on a coordinate direction (spatial direction) or in two or even three dimensions or coordinate directions.
  • the rolling machine In order to measure the position (s) or the distance (s) between the axes of rotation of the rolls, the rolling machine generally comprises a measuring device, in particular at least one non-contact sensor, in particular an ultrasonic sensor and / or an optical sensor and / or an inductive sensor and / or a magnetic sensor, and / or a contacting sensor, for example a cable driver.
  • a measuring device in particular at least one non-contact sensor, in particular an ultrasonic sensor and / or an optical sensor and / or an inductive sensor and / or a magnetic sensor, and / or a contacting sensor, for example a cable driver.
  • the distances between the storage devices and the positioning device can be measured, whereby the sensors can be attached to their outer sides.
  • one of the two bearing devices or both bearing devices of at least one roller is moved via at least one actuator in an advantageous embodiment.
  • the adjustable roller (s) or their bearing device (s) for correcting or adjusting the relative position to the desired relative position or for adjusting the position (s) of its axis of rotation (s) or the distance of the axes of rotation Rolls moved linearly (or: straight, translationally).
  • a linear, purely translatory movement is easy to implement in terms of drive technology.
  • the direction of movement of the linear movement or displacement of the roller (s) is preferably directed substantially perpendicularly (or orthogonally) to the axes of rotation of the rollers. Further, the movement may be particularly in a vertical direction, i. parallel to the gravitational force, done.
  • Another type of movement for the rolls may also be advantageous, especially in the case of asymmetrical thermal or mechanical changes in shape or volume in the rolling machine, such as a rotational or tilting movement or a compound composed of translational and rotational movement or along a predetermined, non-rectilinear trajectory (or : Movement path) taking place movement of the rotary axes.
  • the movement of the axes of rotation of the rollers can thus be done with one, two or even three degrees of freedom of movement.
  • an axis of rotation to be adjusted is preferably moved in two points of attack outside the roller, which can lie in particular in storage facilities of the roller.
  • the axes of rotation of the rollers are generally set to an at least approximately parallel position to each other and are usually also main axes of inertia of the rollers, in particular cylinder or central axes in cylindrical rolls.
  • the rollers and their axes of rotation viewed in the direction of gravity, are arranged one above the other or vertically relative to one another. But it is also a horizontal or oblique arrangement of the rollers and their axes of rotation possible.
  • the desired relative position, desired position (s) or desired distances of the axes of rotation of the rollers are dependent on the material and / or shape (or: geometry) of the workpiece to be reshaped or of the desired shape or desired Dimensions of the workpiece adjusted after forming.
  • shape of the current workpiece can be measured before the forming phase.
  • parameters of a workpiece can also be entered in advance by means of a pattern.
  • the forming process performed by the method according to the invention is a hot forming process or a hot forming process.
  • the correction of the roll positions according to the invention to compensate for or compensate for thermal changes is particularly advantageous.
  • the material of the workpiece may be ferrous, such as iron itself or a steel, or may be a non-ferrous metal material, such as aluminum or an aluminum alloy.
  • the rolling machine is designed as a profile transverse machine or cross wedge rolling machine whose basic structure has been described in the introduction.
  • the rollers have corresponding profile or wedge tools and rotate in the same direction with each other, wherein the workpiece rotates only about its own axis and is not transported translationally by the rollers.
  • the tools on the rollers are in particular wedge-shaped or triangular in cross-section and increase in their radial dimension in one direction along the circumference and / or extend obliquely to the axis of rotation of the associated roller.
  • the invention is also applicable to longitudinal rolling methods and machines, for example for stretch rolling, except in the case of cross rolling methods and machines.
  • At least one actuator can now be a hydraulic drive.
  • at least one or each actuator is an electric motor drive, in particular a spindle drive.
  • the accuracy of the adjusting movement of the actuators is preferably in the range of a few tenths of mm or even a few hundredths of a mm, preferably at least 0.1 mm, and / or one-thousandth of Verstellweges or -hubs.
  • the tolerance range for the correction or deviation of the relative position of the axes of rotation can be selected to the desired relative position in this order of magnitude.
  • a fixed, not mitrot Schlierende with the rollers or not mitrotierbare support means is provided on which the or the actuator (s) is mounted or carried or are.
  • two respective holding devices which can be connected or connected to the roller with end faces of the roller and rotatable or co-rotating with the roller are provided for each roller.
  • the connection of the holding means with the rollers is preferably releasable to allow or facilitate a change of the tools or the rollers.
  • a bearing device in which the holding device is rotatably mounted is provided for each holding device.
  • the bearing devices with the retaining devices of at least one roller mounted in them are coupled or couplable to the actuator (s) associated with this roller and can be moved via the actuator (s) to change the position of the axis of rotation of the associated roller.
  • each bearing device is connected to an actuator and the control device controls the actuators of both storage facilities of a roller according to the desired movement of the axis of rotation of the roller.
  • the carrier device has guide regions for guiding the bearing devices during their movement.
  • the leadership of the storage facilities can be supported by plain bearings or bearings.
  • the rollers with the associated rotary drives each form a unit which is adjustable together by the actuators.
  • the relative arrangement or position of the rotary drive associated with the roller with respect to the roller thus remains unchanged or translationally invariant.
  • the non-rotating or rotatable parts of the associated rotary drive for rotating this roller are attached to one of the bearing devices of each roller and the co-rotating or mitrotierbaren drive parts of the rotary drive are rotatably mounted on or in the bearing device.
  • the carrier device comprises in a special structural design four carrier elements, wherein between two of the four carrier elements one of the bearing means of a first of the two rollers and one of the bearing means of the second of the two rollers and between the other two of the four support elements, the other bearing means of the first roller and the arranged other bearing means of the second roller and are preferably guided movably.
  • the actuators for the rollers are generally arranged on opposite sides of the rollers in order to leave space between the rollers and laterally for the workpieces and other machine parts.
  • the illustrated rolling machine according to 1 to 5 is designed as a cross wedge roller or cross wedge rolling machine and comprises a first work roll 2, which is rotatable or rotating about a rotation axis A, and a second work roll 3, which is rotatable about a rotation axis B or rotating.
  • the sense of rotation of both work rolls 2 and 3 is illustrated and the same with the arrows shown.
  • the rotation axes A and B are arranged substantially parallel to each other and perpendicular to the direction of gravity or gravitational force (gravitational force) indicated by the arrow so that the work rolls 2 and 3 are stacked.
  • the work rolls have a substantially cylindrical outer surface.
  • the distance W between the two axes of rotation A and B of the work rolls 2 and 3 is referred to below as the roll spacing.
  • the distance between the cylindrical outer surfaces of the two work rolls 2 and 3 is clearly linked to the distance W via the roll diameter.
  • a center axis (or center position) running parallel to the axes of rotation A and B between the two work rolls 2 and 3 and defining the geometric center is denoted by M.
  • M In symmetrical position of the two axes of rotation A and B to the central axis M, the distance between the two axes of rotation A and B to the central axis M is equal to W / 2.
  • wedge-shaped tools 20 and 21 or 30 and 31 are respectively fixed in cross-section, in particular braced or screwed.
  • the tools 20 and 21 of the first work roll 2 and the tools 30 and 31 of the second work roll 3 are each arranged obliquely and at an angle to the respective rotation axis A and B, wherein the tools 20 and 21 of the work roll 2 with respect to the central axis M axially in are arranged in substantially the same positions.
  • FIG. 2 shown position of the work rolls 2 and 3 are the tools 20 and 21 or 30 and 31 closer to each other on the inside facing each other than on the opposite outer side.
  • the tools 20 and 21 and 30 and 31 also increase in cross-section as viewed in the circumferential direction, with the increase in cross-section in the tools 20 and 21 being in the same direction of rotation or orientation and opposite in the tools 30 and 31 of the second working roller 3 or in the opposite direction to that of the tools 20 and 21 of the first work roll 2.
  • Each of the two work rolls 2 and 3 is now rotatably supported at its two front ends via a respective shaft extension in two storage devices 16 and 17 or 18 and 19 about the respective axis of rotation A and B.
  • Distance sensors are arranged on the bearing devices, specifically a first distance sensor 51 for measuring the distance w1 substantially between the bearing device 16 and the center axis M (or else one arranged in the region of the center axis M) FIG. 1 not shown positioning means for positioning the workpiece), a second distance sensor 52 for measuring the distance w2 substantially between the bearing means 17 and the central axis M, a third distance sensor 53 for measuring the distance w3 substantially between the bearing means 18 and the central axis M and a Fourth distance sensor 54 for measuring the distance w4 substantially between the bearing means 19 and the center axis M.
  • the distance sensors 51 to 54 may be in particular ultrasonic sensors, optical, magnetic or inductive sensors or other known distance sensors.
  • the storage facilities 16 to 19 are also each adjustable in position or position and that the storage device 16 of an associated Actuator 22, the bearing device 17 of an associated actuator 23, the bearing means 18 of an associated actuator 32 and the bearing means 19 of an associated actuator 33.
  • By adjusting the position (s) of the storage device (s) 16 and / or 17 or 18 and / or 19 is now the axis of rotation A or B of the work roll 2 and 3 adjusted in position.
  • the axis of rotation A is moved parallel.
  • the distances w1 and w2 thus both increase by the same amount.
  • control device 55 is provided, which is connected via, preferably electrical, control lines to the actuators 22, 23, 32 and 33 and via, generally electrical, measuring lines for transmitting the measurement signals or measured values with the distance sensors 51, 52, 53 and 54 is connected.
  • the control device 55 now holds the axes of rotation A and B of the work rolls 2 and 3 in a predetermined relative position to each other, in particular the parallel position at the predetermined distance W, by the measured distances w1 to w4 with predetermined target intervals, preferably all equal to a common Desired distance are, compares and regulates to the desired distances or corrected by driving the actuators 22, 23, 32 and / or 34.
  • the control device 55 preferably includes at least one digital microprocessor or signal processor and at least one memory with a stored control or regulating algorithm for the Processor as well as stored or re-storable setpoints or command values for the control or regulation.
  • FIGS. 2 to 5 show an embodiment of a rolling machine 1 in various representations.
  • the FIG. 2 shows a longitudinal section along a cutting plane containing the longitudinal direction of the rolling machine and the direction of gravity.
  • the FIG. 3 and 4 show side views of the rolling machine on the two front or narrow sides.
  • the cut of the FIG. 5 is in FIG. 2 . 3 and 4 marked with the arrows VV.
  • Each work roll 2 and 3 is detachably held between two holding devices 12A and 12B and 13A and 13B arranged axially to the respective rotation axis A and B, respectively, and can be taken out of the holding devices 12A and 12B or 13A and 13B in their unlocked state for exchanging the tools 20 and 21 or 30 and 31 or the entire work rolls 2 and 3 with the tools 20 and 21 or 30 and 31.
  • the holding device 12A in the storage device sixteenth and the holding means 12B are rotatably supported in the bearing means 17 about the rotation axis A of the first work roll 2, respectively, and the holding means 13A in the bearing means 18 and the holding means 13B are rotatably supported in the bearing means 19 about the rotation axis B of the second work roll 3, respectively.
  • a first rotary drive 42 for the first work roll 2 and a second, independent of the first rotary drive 42 rotary drive 43 for the second work roll 3 are provided.
  • Each rotary drive 42 and 43 includes an associated rotary drive motor 44 and 45 and a - not shown - rotary drive gear 46 and 47, for example, one, in particular three-stage, gear transmission, for transmitting the torque of the rotary drive motor 44 and 45 to the associated work roll 2 and 3.
  • the rotation axis C of the output shaft of the rotation drive motor 44 of the first rotation drive 42 and the rotation axis D of the output shaft of the rotation drive motor 45 of the second rotation drive 43 are orthogonal to the rotation axes A and B of the respective work rolls 2 and 3.
  • left arranged holding means 12A for the upper work roll 2 and 13A for the lower work roll 3 are each as solid waves (or hollow shafts) axially to the axes of rotation A and B through the associated storage facilities 16 and 18 continued and are with the - not closer shown - rotary drive gears 46 and 47 of the associated rotary drives 42 and 43 coupled or engaged.
  • An operation of the rotary drive motors 44 and 45 thus leads to the transmission of a rotational movement via the rotary drive gear 46 and 47 on the holding device 12A and 13A and thus on the work roll 2 and 3 and the co-rotating second holding means 12B and 13B.
  • the rotary drive motors 44 and 45 are preferably permanent magnet motors, in particular so-called torque motors.
  • the high dynamics or rotational acceleration and the high torque of the torque motor allows a very dynamic control or regulation of the rotational speed of the rotating work rolls 2 and 3 in adaptation to the rolling process.
  • Each of the permanent magnet motors 44 and 45 is controlled electronically, in particular via a converter.
  • the rolling machine 1 further comprises a support means (or a rolling stand or frame) 6.
  • the support means 6 comprises four columnar support members 6A to 6D arranged in a rectangular arrangement and on a common floor panel 6E supported on the floor 50 , mounted or attached.
  • the support members 6A to 6D extend vertically or vertically in a longitudinal direction, i. parallel to the gravitational force G.
  • an associated tie rod 7A to 7B is vertically arranged in the longitudinal direction of the respective support member which is fixed to the bottom of the support plate 6E and is biased at the top by means of an associated locknut, not specified, preferably a hydraulically operated locknut ,
  • an associated locknut not specified, preferably a hydraulically operated locknut
  • a split Unterlagsringsegment is preferably placed under the hydraulic nut when the hydraulic nut is in the pressurized state, and then pressed by relaxing the hydraulic pressure, the nut on the Unterlagsringsegment.
  • the support members 6A to 6D can be under a certain Tension is set and stiffened. This leads to a stiffening of the roll stand of the rolling machine. 1
  • the bearing device 16 is height-adjustable via a drive spindle (or adjusting spindle) 26 from a first actuator 22 disposed above along a vertical, i.
  • the axis E is parallel to the direction of gravity G and the bearing device 17 is height-adjustable via a drive spindle 27 from a second actuator 23 arranged above a vertical axis F.
  • the bearing device 18 is vertically adjustable via a drive spindle 36 from a third actuator 32 disposed below Axis E and the bearing device 19 is height-adjustable via a drive spindle 37 from a below arranged fourth actuator 33 along the vertical axis F.
  • Each actuator 22, 23, 32, 33 includes a drive motor 24, 25, 34, 35, via a drive shaft 28, 29, 38, 39 and an unspecified check gear with high reduction the drive spindle 26, 27, 36, 37 and so that the bearing device 16, 17, 18, 19 drives.
  • the maximum adjustment or Verstellhübe the actuators 22, 23, 32, 33 are typically 50 mm to 150 mm, the adjustment accuracy or Verstell suitse are typically in adaptation to the thermal expansion in the rolling machine some 1/100 mm.
  • the drive motors 24, 25, 34, 35 may be geared motors and / or three-phase asynchronous motors or synchronous motors and / or permanent magnet motors (e.g., servomotors) with an electronic drive and are applied only with current pulses in the millisecond range for the high adjustment accuracy when adjusting.
  • asynchronous motors or synchronous motors and / or permanent magnet motors e.g., servomotors
  • the two storage devices 16 and 18 are guided vertically for their adjustment via guides 8B of the support member 6B and 8C of the support member 6C in or on the two support members 6B and 6C.
  • the two further bearing devices 17 and 19 are guided vertically for their adjustment via guides 8A of the support member 6A and 8D of the support member 6D in or on the two support members 6A and 6D.
  • working units each consisting of a work roll 2 or 3, two holding devices 12A and 12B or 13A and 13B, two storage devices 16 and 17 or 18 and 19 and a rotary drive 42 and 43 formed on each of two on the support means 6 fastened actuators 22 and 23 or 32 and 33 are suspended in height adjustable and are movable towards one another or away from each other and in or on the support means 6.
  • the bearing means 16 and 17 - and thus the entire working unit including the associated work roll 2 - by means of the actuators 22 and 23 in the same direction and by the same amount, ie simultaneously by the same stroke up or simultaneously by the same stroke down, the axis of rotation A of the first work roll 2 is moved parallel up or down.
  • the bearing means 18 and 19 and associated work unit with work roll 3 via the actuators 32 and 33 in the same direction and by the same amount the axis of rotation B of the second work roll 3 is moved parallel up or down.
  • the roll spacing W between the axes of rotation A and B of the two work rolls 2 and 3 or the tool spacing w can be varied.
  • the three process phases form a work cycle.
  • a plurality of such work cycles are usually carried out in succession.
  • the workpiece 10 is positioned between the rollers 2 and 3.
  • the workpiece 10 is according to FIG. 4 by means of two guide rulers or positioning parts 61 and 62 one only in FIG. 4
  • Positioning device 60 shown brought into a position on the central axis M between the work rolls 2 and 3.
  • the two positioning parts 61 and 62 are movable along a positioning axis P perpendicular to the central axis M, as indicated by the double arrows, in particular by means of rollers.
  • the positioning parts 61 and 62 can be moved back in a long guide so that the work roll 2 and / or 3 can be changed without the positioning parts 61 and 62 must be dismantled.
  • the workpiece 10 is detected by the tools of the work rolls 2 and 3 and formed between the rotating tools of the rolls.
  • the distances w1, w2, w3 and w4 are measured as a measure of the distances between the axes of rotation A and B and the center axis M.
  • the formed workpiece is removed from the space between the rollers or ejected.
  • the distances w1 and w2 as well as w3 and w4 are now compared in particular with a common setpoint distance, so that a parallel position of the rotation axes A and B is therefore desired. If too great a deviation of one of the distances w1 to w4 from the nominal distance, the axes of rotation A and B are changed in their position as described until the deviation is eliminated or within a tolerance range.
  • the distances w1, w2, w3 and w4 can also be varied during the forming phase in a targeted manner according to a predetermined or temporal progression depending on the angular position of the roll (n) in order to influence the deformation of the workpiece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Automatic Control Of Machine Tools (AREA)

Claims (23)

  1. Procédé permettant le formage à chaud ou à très haute température d'une pièce (10) à partir d'un matériau métallique,
    a) dans lequel la pièce (10) est formée pendant une phase de formage entre des surfaces ou des outils (20, 21, 30, 31) d'au moins deux cylindres (2, 3) tournant chacun autour d'un axe de rotation, et
    b) dans lequel la position relative des axes de rotation (A, B) des cylindres (2, 3) entre eux est commandée, réglée ou corrigée à une position relative de consigne, en particulier au moyen d'au moins un dispositif de contrôle (55) et d'au moins une commande d'actionnement (22, 23, 32, 33) associée à au moins un des cylindres et commandée par le dispositif de contrôle,
    c) des variations de forme ou de volume thermiques et/ou mécaniques, qui se produisent en particulier pendant la phase de formage, dans les cylindres (2, 3) ou leurs outils (20, 21, 30, 31) ou dans d'autres zones d'une machine de laminage (1) comportant les cylindres, en particulier des dispositifs d'appui pour les cylindres et des dispositifs de support pour les dispositifs d'appui (16, 17, 18, 19), étant sensiblement compensées par une correction de la position relative des axes de rotation (A, B) des cylindres (2, 3), du fait que
    c1) la position relative des axes de rotation (A, B) des cylindres (2, 3) entre eux est déterminée pendant la phase de formage dans le cas d'une position d'angle de rotation prédéfinie d'au moins un des cylindres et/ou dans le cas d'une sollicitation de force prédéfinie du/des cylindre(s),
    c2) la position relative déterminée des axes de rotation (A, B) est comparée à la position relative de consigne et il est constaté s'il existe une divergence, située en dehors d'une zone de tolérance prédéfinie, entre la position relative déterminée des axes de rotation (A, B) et la position relative de consigne,
    c3) et, lorsqu'une telle divergence, située en dehors de la zone de tolérance, entre la position relative déterminée des axes de rotation (A, B) et la position relative de consigne est constatée, la position relative des axes de rotation (A, B) des cylindres (2, 3) est modifiée, en particulier au moyen de ladite au moins une commande d'actionnement (22, 23, 32, 33), avant ou après la phase de formage ou après l'éjection de la pièce hors de l'espace intermédiaire entre les outils (20, 21, 30, 31) ou les cylindres (2, 3) ou dans une situation de décharge des forces de formage des cylindres, de telle sorte que la divergence se situe à nouveau à l'intérieur de la zone de tolérance.
  2. Procédé selon la revendication 1, dans lequel
    a) pour commander, régler ou corriger la position relative des axes de rotation (A, B) des cylindres (2, 3),
    b) au moins une position d'au moins un des axes de rotation des cylindres
    b1) est commandée, réglée ou corrigée à la position de consigne constante ou variable correspondante,
    et/ou
    b2) est déterminée et est comparée respectivement à une position de consigne constante ou variable correspondante et, en cas de divergence avec la position de consigne en dehors d'une zone de tolérance prédéfinie, est corrigée à la position de consigne,
    c) éventuellement, la/les position(s) des axes de rotation (A, B) des autres cylindres (2, 3) restant ou étant supposée(s) inchangée(s) ou fixe(s) par rapport à l'environnement.
  3. Procédé selon la revendication 1, dans lequel
    a) pour commander, régler ou corriger la position relative des axes de rotation des cylindres,
    b) au moins une distance (W) entre les axes de rotation (A, B) d'au moins deux cylindres (2, 3) ou entre l'axe de rotation d'au moins un cylindre et un axe médian prédéfini dans l'espace intermédiaire, prévu pour recevoir la pièce, entre les cylindres ou les outils,
    b1) est commandée, réglée ou corrigée à une distance de consigne constante ou variable correspondante
    et/ou
    b2) est déterminée et est comparée respectivement à une distance de consigne constante ou variable correspondante et, en cas de divergence avec la distance de consigne en dehors d'une zone de tolérance prédéfinie, est corrigée à la distance de consigne.
  4. Machine de production selon la revendication 3, dans lequel pour commander, régler ou corriger la position relative des axes de rotation (A, B) des cylindres (2, 3), il est tenu compte dans chaque cas d'au moins deux distances entre les axes de rotation de deux cylindres ou entre l'axe de rotation (A, B) d'au moins un cylindre et l'axe médian (M), d'une part, et des distances de consigne correspondantes, d'autre part, lesdites distances étant prévues ou déterminées sur des côtés opposés des cylindres (2, 3), par référence à la direction des axes de rotation (A, B) respectifs.
  5. Procédé selon la revendication 3 ou la revendication 4, dans lequel l'axe médian (M) est situé à l'intérieur d'un plan de déplacement ou sur un axe de déplacement de deux parties mobiles l'une par rapport à l'autre d'un dispositif de positionnement destiné à positionner la pièce (10), ou définit l'axe sur lequel sera positionnée la pièce (10).
  6. Procédé selon une ou plusieurs des revendications précédentes, dans lequel
    a) plusieurs pièces sont formées les unes après les autres, dans des phases de formage successives, entre les surfaces ou les outils (20, 21, 30, 31) des cylindres (2, 3), et après la phase de formage correspondante, chaque pièce (10) est éjectée hors de l'espace intermédiaire entre les cylindres (2, 3) ou les outils (20, 21, 30, 31), et
    b) la position relative des axes de rotation (A, B) des cylindres (2, 3) est déterminée dans chaque phase de formage ou dans chaque phase de formage consécutive à un nombre prédéfini de phases de formage,
    c) les positions relatives déterminées des axes de rotation des cylindres (2, 3) sont réglées ou corrigées à la position relative de consigne après chaque phase de formage ou un nombre prédéfini de phases de formage ou après l'éjection de la pièce concernée.
  7. Procédé selon une ou plusieurs des revendications précédentes, dans lequel les cylindres (2, 3) sont montés de manière rotative ou de manière à pouvoir tourner dans respectivement deux dispositifs d'appui (16, 17, 18, 19), et pour le réglage de la position relative des axes de rotation des cylindres entre eux, un des deux dispositifs d'appui ou les deux dispositifs d'appui d'au moins un cylindre est/sont déplacé(s) par l'intermédiaire d'au moins une commande d'actionnement (22, 23, 32, 33).
  8. Procédé selon une ou plusieurs des revendications précédentes, dans laquelle les axes de rotation (A, B) des cylindres (2, 3) ou le/les dispositif(s) d'appui (16, 17, 18, 19) du/des cylindre(s) est ou sont déplacé(s) linéairement au moins en partie dans un sens de déplacement prédéfini en vue de la commande, du réglage ou de la correction de la position relative à la position relative de consigne, le sens de déplacement du mouvement linéaire étant dirigé de préférence sensiblement perpendiculairement aux axes de rotation des cylindres (2, 3) et/ou sensiblement parallèlement à la force de gravité (G), et/ou est ou sont au moins en partie tourné(s) ou basculé(s).
  9. Procédé selon une ou plusieurs des revendications précédentes, dans lequel la pièce (10) est réalisée à partir d'un matériau métallique ferreux ou d'un matériau métallique non ferreux.
  10. Procédé selon une ou plusieurs des revendications précédentes, dans lequel la position relative de consigne ou la/les position(s) de consigne ou la distance de consigne/les distances de consigne des axes de rotation (A, B) des cylindres (2, 3) est ou sont réglée(s) ou choisie(s) en fonction du matériau et/ou de la forme de la pièce (10) à former ou de la forme souhaitée ou des dimensions souhaitées de la pièce formée, de préférence la forme de la pièce (10) avant la phase de formage étant mesurée et la position relative de consigne, la/les position(s) de consigne ou la distance de consigne/les distances de consigne étant réglée(s) en conséquence.
  11. Procédé selon l'une quelconque des revendications précédentes, lequel est mis en oeuvre avec une machine de laminage (10), qui comporte
    a) au moins deux cylindres (2, 3) aptes à tourner ou tournant chacun autour d'un axe de rotation, pouvant être équipés ou étant équipés d'outils (20, 21, 30, 31), ainsi que
    b) au moins un mécanisme de rotation (42, 43) pour entraîner les cylindres (2, 3) en rotation autour de leur axe de rotation, au moins pendant une phase de formage destinée au formage d'une pièce à agencer ou agencée entre les cylindres (2, 3),
    c) au moins une commande d'actionnement (22, 23, 32, 33) destinée à régler la/les position(s) de l'axe de rotation ou des axes de rotation (A, B) de l'un des cylindres ou des deux cylindres, et
    d) un dispositif de contrôle (55), en liaison fonctionnelle avec chaque commande d'actionnement, afin de commander, régler ou corriger la position relative des axes de rotation des cylindres à une position relative de consigne constante ou variable au moyen de la commande d'actionnement ou des commandes d'actionnement.
  12. Procédé selon la revendication 11, dans lequel la machine de laminage (1) comporte un dispositif de positionnement (60) avec deux parties de positionnement (61, 62), mobiles l'une par rapport à l'autre, destinées à positionner la pièce (10) dans la zone d'un axe médian (M) prédéfini entre les deux cylindres (2, 3).
  13. Procédé selon la revendication 11 ou la revendication 12, dans lequel à chaque cylindre (2, 3) de la machine de laminage (1) est associée au moins une commande d'actionnement (22, 23, 32, 33) correspondante pour le réglage indépendant des positions des axes de rotation (A, B) des cylindres, les commandes d'actionnement étant disposées de préférence sur des côtés, détournés l'un de l'autre, des cylindres.
  14. Procédé selon la revendication 11 ou la revendication 12, dans lequel aux cylindres (2, 3) de la machine de laminage est associée une commande d'actionnement commune, qui peut être couplée ou qui est couplée à chacun des cylindres par l'intermédiaire de respectivement un engrenage, lesdits engrenages étant réalisés de préférence de telle sorte que les axes de rotation (A, B) des deux cylindres (2, 3), au moment de l'entraînement par la commande d'actionnement commune, peuvent être déplacés simultanément, de préférence aussi avec la même vitesse, vers une position de référence, de préférence l'axe médian (M), située entre les cylindres ou en s'écartant de ladite position de référence.
  15. Procédé selon l'une quelconque des revendications 11 à 14, dans lequel la machine de laminage comporte
    a) pour chaque cylindre (2, 3) respectivement deux dispositifs de retenue (12A, 12B, 13A, 13B), qui peuvent être reliés ou sont reliés, de préférence de manière amovible, au cylindre et qui peuvent être entraînés en rotation ou sont entraînés en rotation avec le cylindre, et
    b) pour chaque dispositif de retenue respectivement un dispositif d'appui (16, 17, 18, 19), dans lequel le dispositif de retenue est monté de manière rotative,
    c) les dispositifs d'appui, conjointement avec les dispositifs de retenue montés dans ceux-ci, pour au moins un cylindre étant couplés ou pouvant être couplés avec la/les commande(s) d'actionnement associée(s) à ce cylindre ou à ces cylindres, et pouvant être déplacés ou étant déplacés par l'intermédiaire de la ou des commande(s) d'actionnement afin de modifier la position des axes de rotation (A, B) des cylindres (2, 3) correspondants, chaque dispositif d'appui étant relié de préférence respectivement à une commande d'actionnement (22, 23, 32, 33) correspondante.
  16. Procédé selon une ou plusieurs des revendications 11 à 15, dans lequel les axes de rotation (A, B) des cylindres (2, 3) dans la position relative de consigne sont dirigés sensiblement parallèlement entre eux et/ou, par référence à la direction de la force de gravité, sont disposés sensiblement l'un au-dessus de l'autre et/ou sont disposés sensiblement perpendiculairement à la direction de la force de gravité.
  17. Procédé selon une ou plusieurs des revendications 11 à 15, dans lequel au moins une commande d'actionnement de la machine de laminage (1) comporte au moins un moteur électrique et un dispositif de transmission de force, qui peut être couplé ou est couplé au moteur (24, 25, 34, 35) de la commande d'actionnement, d'une part, et au cylindre correspondant, d'autre part, et qui comporte en particulier au moins une broche d'entraînement et/ou un engrenage à vis sans fin pour transmettre la force d'entraînement ou le couple de rotation d'entraînement du moteur de la commande d'actionnement en vue du déplacement des cylindres.
  18. Procédé selon une ou plusieurs des revendications 11 à 17, dans lequel la machine de laminage (1) comporte un dispositif de support, qui n'est pas entraîné en rotation ou n'est pas apte à être entraîné en rotation avec les cylindres (2, 3) et sur lequel ou par lequel la ou les commande(s) d'actionnement est ou sont portée(s) ou mise(s) en appui, ledit dispositif de support comportant de préférence des zones de guidage pour guider les cylindres ou les dispositifs d'appui pendant leur déplacement.
  19. Procédé selon la revendication 18, dans lequel le dispositif de support comporte quatre éléments de support (6A, 6B, 6C, 6D), en particulier en forme de colonnes, un des dispositifs d'appui (16, 17, 18, 19) d'un premier des deux cylindres et un des dispositifs d'appui du deuxième des deux cylindres (2, 3) étant disposés et de préférence guidés de manière mobile entre deux des quatre éléments de support, et l'autre dispositif d'appui du premier cylindre et l'autre dispositif d'appui du deuxième cylindre étant disposés et de préférence guidés de manière mobile entre les deux autres des quatre éléments de support, lesdits éléments de support étant précontraints en particulier au moyen de tirants d'ancrage (7A, 7B, 7C, 7D) et d'écrous, de préférence hydrauliques.
  20. Procédé selon une ou plusieurs des revendications 11 à 19, dans lequel la machine de laminage (1)
    a) comporte un dispositif destiné à déterminer la position relative des axes de rotation (A, B) des cylindres (2, 3) entre eux pendant la phase de formage,
    b) le dispositif de contrôle (55) étant en liaison fonctionnelle avec le dispositif destiné à déterminer la position relative des axes de rotation, et
    b1) la position relative des axes de rotation déterminée par ledit dispositif étant comparée à la position relative de consigne,
    b2) constate s'il existe une divergence, située en dehors de la zone de tolérance, entre la position relative déterminée des axes de rotation et la position relative de consigne,
    b3) et, lorsqu'il existe une telle divergence, située en dehors de la zone de tolérance, entre la position relative déterminée des axes de rotation et la position relative de consigne, la position relative des axes de rotation (A, B) des cylindres (2, 3) est modifiée en particulier au moyen de ladite au moins une commande d'actionnement (22, 23, 32, 33), de telle sorte que la divergence se situe à nouveau à l'intérieur de la zone de tolérance.
  21. Procédé selon la revendication 20, dans lequel le dispositif destiné à déterminer la position relative des axes de rotation (A, B) des cylindres (2, 3) entre eux comporte au moins deux capteurs de distance (51, 52, 53, 54) pour mesurer les distances entre les axes de rotation des cylindres ou respectivement par rapport à l'axe médian (M) ou les distances entre les dispositifs d'appui (16, 17, 18, 19) et l'axe médian (M) ou le dispositif de positionnement en tant que critère pour la/les position(s) ou la distance entre les axes de rotation (A, B) des cylindres.
  22. Procédé selon la revendication 20 ou la revendication 21, dans lequel le dispositif destiné à déterminer la position relative des axes de rotation (A, B) des cylindres (2, 3) entre eux comporte au moins un capteur sans contact et/ou un capteur à ultrasons et/ou un capteur optique et/ou un capteur inductif et/ou un capteur magnétique.
  23. Procédé selon l'une quelconque des revendications 11 à 22, dans lequel la machine de laminage (1) est réalisée sous forme de machine de laminage croisé des profilés ou de machine de laminage transversal ou dans lequel les outils (20, 21, 30, 31) sur les cylindres (2, 3) de la machine de laminage (1) comportent, sur une coupe transversale, des profils ou des formes coniques ou triangulaires et augmentent dans une direction le long de la périphérie dans leur dimension radiale et/ou s'étendent en oblique par rapport à l'axe de rotation du cylindre correspondant.
EP20040002972 2003-03-04 2004-02-11 Procédé pour former une pièce Expired - Lifetime EP1454685B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07004135.5A EP1782896B1 (fr) 2003-03-04 2004-02-11 Procédé pour le formage d' une pièce et machine de laminage

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10309536 2003-03-04
DE10309536 2003-03-04
DE10316249 2003-04-08
DE10316249A DE10316249B4 (de) 2003-03-04 2003-04-08 Verfahren zum Umformen eines Werkstückes und Walzmaschine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP07004135.5A Division EP1782896B1 (fr) 2003-03-04 2004-02-11 Procédé pour le formage d' une pièce et machine de laminage
EP07004135.5A Division-Into EP1782896B1 (fr) 2003-03-04 2004-02-11 Procédé pour le formage d' une pièce et machine de laminage

Publications (3)

Publication Number Publication Date
EP1454685A2 EP1454685A2 (fr) 2004-09-08
EP1454685A3 EP1454685A3 (fr) 2005-07-13
EP1454685B1 true EP1454685B1 (fr) 2014-08-13

Family

ID=32826204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040002972 Expired - Lifetime EP1454685B1 (fr) 2003-03-04 2004-02-11 Procédé pour former une pièce

Country Status (1)

Country Link
EP (1) EP1454685B1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2186546T3 (pl) * 2008-10-07 2011-02-28 Amrona Ag Instalacja do gaszenia pożaru gazem obojętnym do zmniejszania ryzyka i do gaszenia pożarów w pomieszczeniu chronionym
CN113787159B (zh) * 2021-07-26 2022-10-04 北京科技大学 一种铁道车辆车轴的楔横轧组合模具及其成形方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3358485A (en) * 1965-02-15 1967-12-19 United States Steel Corp Measuring and controlling gap between rolls
JPS5310023B2 (fr) * 1975-01-10 1978-04-11
US4044580A (en) * 1975-07-02 1977-08-30 Marotta Scientific Controls, Inc. Rolling mill gap sensor
US4186583A (en) * 1978-05-08 1980-02-05 Vyzkumny Ustav Tvarecich Stroju A Technologie Tvareni Apparatus for cross wedge rolling
GB8914011D0 (en) * 1989-06-19 1989-08-09 Davy Mckee Sheffield A rolling of metalwork pieces
JPH0671636B2 (ja) * 1989-11-09 1994-09-14 日本発条株式会社 板ばねの製造装置および板ばねの製造方法
RU2106223C1 (ru) * 1996-03-15 1998-03-10 Анатолий Федорович Косов Вакуумный стан поперечно-клиновой прокатки
DE69932765T2 (de) * 1998-04-02 2007-09-13 Nissei Co. Ltd., Ohtsuki Rundbacken-Formwalzvorrichtung

Also Published As

Publication number Publication date
EP1454685A3 (fr) 2005-07-13
EP1454685A2 (fr) 2004-09-08

Similar Documents

Publication Publication Date Title
DE69934251T2 (de) Nc-werkzeugmaschine und verfahren zur steuerung der nc-werkzeugmaschine
EP1782896B1 (fr) Procédé pour le formage d' une pièce et machine de laminage
DE2818011C2 (de) Regelungsvorrichtung für ein Walzgerüst
DE69932765T2 (de) Rundbacken-Formwalzvorrichtung
EP0454619B1 (fr) Machine de cintrage d'une tôle en forme de cylindre
DE3519382A1 (de) Walzenbiegevorrichtung
DE69936407T2 (de) Verfahren zur Werkzeugeinstellung in einer Blechherstellungsmaschine
DE602004010293T2 (de) Verfahren zur erhöhung der steuergenauigkeit des weges eines produkts in einer richtmaschine mit ineinandergreifenden walzen und zur durchführung desselben verwendete richtanlage
DE10011755A1 (de) Verfahren und Vorrichtung zum Herstellen von Bauteilen mit über der Länsachse veränderlichen Querschnitten
DE102013109218A1 (de) Kaltpilgerwalzanlage und Verfahren zum Umformen einer Luppe zu einem Rohr
EP1454684B1 (fr) Procédé pour le formage d' une pièce et machine de laminage
DE2856525C2 (de) Steuereinrichtung in einer Vorrichtung zur Herstellung langer Stäbe oder Stangen
DE212016000100U1 (de) NC-Blechbiegemaschine mit zwei mit unterschiedlichen Geschwindigkeiten und variabler Krümmung betriebenen Walzen
DE10058367B4 (de) Walzvorrichtung mit Einspannmitteln zum Greifen eines Stahlstreifens
EP0275876A2 (fr) Procédé et appareil de dressage d'une pièce
DE3211489A1 (de) Verfahren und vorrichtung zur korrektur von sollform-abweichungen platisch verformbarer gegenstaende
DE19952941B4 (de) Preßmaschine und Verfahren zum Herstellen gepreßter Produkte
DE3805364A1 (de) Fertigwalzverfahren fuer profile
DE102004040257A1 (de) Vorrichtung zum Walzprofilieren von Kaltprofilen
EP2817110B1 (fr) Procédé de planage comprenant le positionnement du matériau à planer
WO2002038305A1 (fr) Procede de fabrication d'un produit de depart en forme de bande, notamment en metal, profile par sections successives, et dispositif y relatif
EP1454685B1 (fr) Procédé pour former une pièce
EP1985387A1 (fr) Machine à profiler avec plusieurs postes de formage successive et bâti pour une telle machine à profiler
EP2489445B1 (fr) Dispositif doté d'une multitude d'installations de laminage à froid
DE69921911T2 (de) Rollenlagerung mit Dreiachsenfreiheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060105

AKX Designation fees paid

Designated state(s): CZ DE FR IT

17Q First examination report despatched

Effective date: 20090528

RIC1 Information provided on ipc code assigned before grant

Ipc: B21H 1/00 20060101AFI20131018BHEP

Ipc: B21B 37/58 20060101ALI20131018BHEP

Ipc: B21H 1/18 20060101ALI20131018BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140603

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014693

Country of ref document: DE

Effective date: 20140925

RIN2 Information on inventor provided after grant (corrected)

Inventor name: RUEGER, HERBERT

Inventor name: KATSIBARDIS, STELIOS

Inventor name: HOFMANN, GUENTHER

Inventor name: VOGLER, GUENTHER

Inventor name: ZWILLING, HENRY

Inventor name: HAUSDOERFER, SIEGFRIED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014693

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230223

Year of fee payment: 20

Ref country code: CZ

Payment date: 20230213

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230220

Year of fee payment: 20

Ref country code: DE

Payment date: 20230227

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004014693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240211