EP1451607A2 - Measuring device for contactless distance measurement - Google Patents

Measuring device for contactless distance measurement

Info

Publication number
EP1451607A2
EP1451607A2 EP02782714A EP02782714A EP1451607A2 EP 1451607 A2 EP1451607 A2 EP 1451607A2 EP 02782714 A EP02782714 A EP 02782714A EP 02782714 A EP02782714 A EP 02782714A EP 1451607 A2 EP1451607 A2 EP 1451607A2
Authority
EP
European Patent Office
Prior art keywords
optical
measuring device
transmission
path
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02782714A
Other languages
German (de)
French (fr)
Inventor
Joerg Stierle
Peter Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1451607A2 publication Critical patent/EP1451607A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Definitions

  • the invention relates to a flow device for non-contact distance measurement, in particular a hand-held device, according to the preamble of claim 1.
  • Such a V screenêt designed as a handheld device also called a distance measuring device, is known for example from DE 198 04 051 A1 or DE 196 52 438 C2.
  • the measuring device works according to the principle of running time measurement, in that a light signal or light pulses are emitted from the transmission path to the appropriate object, which is reflected on the object and is picked up again by the measuring device via the reception path, and the transit time of the light signal or the light pulse , that is the time span between transmission time and reception time, is measured. This period is a measure of that
  • the transit time can be determined, for example, by correlating the transmit and receive signals.
  • the measuring device for contactless distance measurement has the advantage that the components is achieved by the inventive placement that displayed over the entire temperature range of the light spot generated by the optical transmission path • at an appropriate object in the optical receive path is thus seen.
  • a temperature-related curvature of the device module carrying the components does not influence the measurement process, and the maximum possible light intensity of the one emitted via the optical transmission path is always transmitted via the optical reception path
  • the transmission and reception paths are optically folded in such a way that the transmitter and receiver lie together on a flat fastening surface fixed in the device module.
  • the receiving optics can be shorter on the one hand, but on the other hand without the need for additional optical components, such as light guides, transmitters and receivers that significantly reduce the efficiency of the receiving optics, can be installed in the common mounting surface. If the device module bends due to temperature, then the fastening surface fixed to it bends, and the light spot generated by the transmitter on the measurement object and the field of view of the receiver on the measurement object migrate in the same way. The light triangle and field of vision thus remain congruent even when the temperature changes.
  • the device module has an optics carrier and a printed circuit board which is fixedly connected to the optics carrier and forms the fastening surface for the optical transmitter and the optical receiver.
  • the optical folding of the transmission and reception path is carried out by means of deflecting mirrors arranged in the optics carrier.
  • housing the transmitter and receiver, including their electronic components, on a common printed circuit board makes it possible to make contact with the transmitter and receiver and their components that is simple in terms of production technology, and at the same time simple shielding from the outside from the environment is feasible, in particular if, according to an advantageous embodiment of the invention the electronic components are arranged on the underside of the circuit board facing the optics carrier.
  • a shielding can then be easily implemented by a shielding layer in the preferably multilayer printed circuit board, which is connected in an electrically conductive manner to the optics carrier at at least one point.
  • the printed circuit board extends as parallel as possible to a plane running through the optical axes of the transmission and reception path.
  • the deflection mirrors are designed as optical filters in order to limit the bandwidth of the light reflected on the appropriate object and picked up by the optical receiver.
  • the transmission and reception paths are separated from one another by chambers and channels formed in the optics carrier, so that, on the one hand, no light from the transmission beam hits the Receiver arrives and on the other hand, the electrical crosstalk of the signals on the transmitting and receiving side is significantly reduced by electrical shielding.
  • a closable window is provided in a partition wall of the optics carrier that separates the channel for the transmission path from the channel for the reception path.
  • a deflection element is arranged in the channel for the transmission path, which can be pivoted into the transmission path in such a way that a transmission light beam falling on the deflection element is introduced through the window into the reception path.
  • the deflection element preferably closes the window in the partition between the two channels in its position pivoted out of the transmission path.
  • Fig. 1 is a bottom perspective view of a device module with the
  • Fig. 2 shows a section along the line II - !! in Fig. 1,
  • FIG. 3 shows a section along the line III-lil in FIG. 2,
  • the device module 11 seen in perspective in bottom view in FIG. 1 and in different sectional views in FIGS. 2-4, which is enclosed by a housing after the measuring device has been completely assembled, carries the
  • the device module 11 has an optics carrier 14 and a circuit board 15 fastened on the optics carrier 14 by means of screws 16 (FIGS. 3 and 4).
  • the circuit board 15 is arranged on the optics carrier 14 as parallel as possible to a plane which runs through the optical axes 121 and 131 (FIG. 2) of the transmission path 12 and reception path 13 and coincides with the leaf plane in FIG. 2.
  • the transmission and reception paths 12, 13 are separated from one another by channels and chambers 18-21 formed in the optics carrier 14, in FIG. 3 the transmission channel 18 and the transmission chamber 19, which is oriented at right angles to the transmission channel 18, and in FIG. 4 the reception channel 20 and to see the receiving chamber 21, which is also oriented at right angles to the receiving channel 20.
  • the arrangement of the transmission channel 18 and reception channel 20 in the optics carrier 14 can be seen in the sectional view in FIG. 2.
  • the components of the optical transmission path 12 include an optical one
  • Transmitter 22 which is designed as a collimator 24 with a laser diode 25 and a collimator lens 26 (FIG. 3), a glass cover plate 27, which closes the transmission channel 18 at the front, and a deflection mirror 28 arranged at the other end of the transmission channel 18, which can be adjusted on the optics carrier 14 is held.
  • the optical axis 121 of the transmission path 131 can be adjusted via the deflection mirror 28.
  • the components of the optical reception path 13 comprise a receiver optics 29 and a receiver 30 arranged downstream thereof, which here is designed as a light detector 31 (FIG. 4).
  • the receiver optics 29 consist of a receiver lens with a large end that closes the reception channel 20 on the front Focal length and a deflection mirror 33 placed at the other end of the receiving channel 20, which is held adjustable in the optics carrier 14. Both the focal point and the direction of the optical axis 131 of the reception path 13 can be changed and adjusted via the deflection mirror 33.
  • Both the collimator 24 and the light detector 31 are fastened to the printed circuit board 15, specifically on the underside facing the optics carrier 14 and are there with further electronic components, not shown here, of the transmitter 22 and receiver 30, which are also on the underside of the printed circuit board 15 are arranged, contacted.
  • the transmitter 22 and receiver 30 and the electronic components are shielded from the outside by a shielding layer (not shown here) in the multilayer printed circuit board 15, which is electrically conductively connected to the optics carrier 14 at at least one point.
  • Transmitter 22 and receiver 30 are arranged closely next to one another at a distance transversely to the optical axis 121, 131, the collimator 24 protruding into the detection chamber 19 and the light detector 31 into the receiving chamber 21, so that the transmitter 22 and receiver 30 are optically and electrically shielded from one another ,
  • This placement of the transmitter 22 and receiver 30 ensures that a deformation of the optics carrier 14 taking place by the connection of the circuit board 15 and optics carrier 14 at a temperature change, which leads to a curvature of the optics carrier 14 in the direction of the optical axes 121, 131, the optical Axes 121, 131 of transmission path 12 and reception path 13 are deflected in the same direction by the same amount.
  • the measurement spot generated by the transmission path 12 is always fully imaged on the light detector 31 in the reception path 13 ′′ on an appropriate object, so that the curvature of the optics carrier 14 does not increase affects the measuring accuracy of the device.
  • a deflecting element 36 is pivotally arranged so that it can be pivoted into the beam path in the transmitting channel 18, that is to say in the transmitting path 12, and out of the beam path in the transmitting channel 18, that is to say out of the transmitting path 12. In the pivoted-in position, the deflecting element 36 directs a light beam coming from the deflecting mirror 28 through the window 35 into the

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Disclosed is a measuring device for contactless distance measurement, comprising an optical transmission path (12) with an optical transmitter (22) and an optical reception path (13) with a receiver lens system (29) and an optical receiver (30), in addition to a device module (11) receiving components from the transmission and reception paths (12, 13). In order to maintain high measurement accuracy for the entire temperature range, the components of the transmission and reception path .(12, 13) are placed in such a way that when the temperature causes the device module (11) to curve in the direction of the optical axes (121, 131) of the transmission and reception path (12, 13), the optical axes (121, 131) are shifted by an equal amount in the same direction. Preferably, the transmission and reception paths (12, 13) are folded in such a way that the transmitter (22) and receiver (30) are jointly disposed on a planar fixing surface, preferably a printed circuit board (15) for receiving electronic components, which is secured in the device module (11).

Description

Meßgerät zur berührunqslosen AbstandsmessungMeasuring device for non-contact distance measurement
Stand der TechnikState of the art
Die Erfindung betrifft ein IVießgerät zur berührungslosen Abstandsmessung, insbesondere Handgerät, nach dem Oberbegriff des Anspruchs 1.The invention relates to a flow device for non-contact distance measurement, in particular a hand-held device, according to the preamble of claim 1.
Ein solches, als Handgerät konzipiertes IVießgerät, auch als Entfernungsmeßgerät bezeichnet, ist beispielsweise aus der DE 198 04 051 A1 oder DE 196 52 438 C2 bekannt. Das Meßgerät arbeitet nach dem Prinzip der Lauf∑eitenmessung, indem vom Sendepfad ein Lichtsignal oder Lichtimpuis zu dem angemessenen Objekt ausgesandt wird, das oder der am Objekt reflektiert und über dem Empfangspfad von dem Meßgerät wieder aufgenommen wird, und die Laufzeit des Lichtsignals oder des Lichtimpulses, das ist die Zeitspanne zwischen Sendezeitpunkt und Empfangszeitpunkt, gemessen wird. Diese Zeitspanne ist ein Maß für dieSuch a Vießgerät designed as a handheld device, also called a distance measuring device, is known for example from DE 198 04 051 A1 or DE 196 52 438 C2. The measuring device works according to the principle of running time measurement, in that a light signal or light pulses are emitted from the transmission path to the appropriate object, which is reflected on the object and is picked up again by the measuring device via the reception path, and the transit time of the light signal or the light pulse , that is the time span between transmission time and reception time, is measured. This period is a measure of that
Entfernung, die unter Berücksichtigung der Lichtgeschwindigkeit berechnet und auf einem Display angezeigt wird. Die Laufzeit läßt sich beispielsweise durch Korrelation von Sende- und Empfangssignal bestimmen. Vorteile der ErfindungDistance that is calculated taking the speed of light into account and shown on a display. The transit time can be determined, for example, by correlating the transmit and receive signals. Advantages of the invention
Das erfindungsgemäße Meßgerät zur berührungslosen Abstandsmessung hat den Vorteil, daß durch die erfindungsgemäße Plazierung der Komponenten erreicht wird, daß über den gesamten Temperaturbereich der vom optischen Sendepfad auf einem angemessenen Objekt erzeugte Lichtfleck im optischen Empfangspfad abgebildet, also gesehen wird. Damit beeinflußt eine temperaturbedingte Krümmung des die Komponenten tragenden Gerätemoduls nicht den Meßvorgang, und über den optischen Empfangspfad wird immer die maximal mögliche Lichtintensität des über den optischen Sendepfad ausgesandtenThe measuring device according to the invention for contactless distance measurement has the advantage that the components is achieved by the inventive placement that displayed over the entire temperature range of the light spot generated by the optical transmission path at an appropriate object in the optical receive path is thus seen. Thus, a temperature-related curvature of the device module carrying the components does not influence the measurement process, and the maximum possible light intensity of the one emitted via the optical transmission path is always transmitted via the optical reception path
Lichtstrahls aufgenommen, so daß auch die Meßempfindlichkeit des Meßgeräts über den gesamten Temperaturbereich erhalten bleibt.Light beam recorded so that the measuring sensitivity of the measuring device is maintained over the entire temperature range.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildung und Verbesserungen des im Anspruch 1 angegebenen Meßgeräts möglich.Advantageous further developments and improvements of the measuring device specified in claim 1 are possible through the measures listed in the further claims.
Gemäß einer bevorzugten Ausführungsform der Erfindung sind Sende- und Empfangspfad optisch derart gefaltet, daß Sender und Empfänger gemeinsam auf einer ebenen, im Gerätemodul fixierten Befestigungsfläche liegen. Durch die Faltung der beiden optischen Pfade kann zum einen die Empfangsoptik kürzer sein, zum anderen aber ohne zusätzliche optische Bauteile,, wie z.B. den Wirkungsgrad der Empfangsoptik deutlich verringernde Lichtleiter, Sender und Empfänger in die gemeinsame Befestigungsfläche verlegt werden. Krümmt sich das Gerätemodul temperaturbedingt, so krümmt sich auch die an diesem fixierte Befestigungsfläche, und der vom Sender erzeugte Lichtfleck auf dem Meßobjekt und das Gesichtsfeld des Empfängers am Meßobjekt wandern in gleicher Weise aus. Lichtfieck und Gesichtsfeld bleiben somit auch bei Temperaturveränderung deckungsgleich. . Gemäß einer vorteilhaften Ausführungsform der Erfindung weist das Gerätemodul einen Optikträger und eine fest mit dem Optikträger verbundene Leiterplatte auf, die die Befestigungsfläche für den optischen Sender und den optischen Empfänger bildet. Die optische Faltung von Sende- und Empfangspfad wird mittels im Optikträger angeordneter Umlenkspeigel vorgenommen. Durch dieAccording to a preferred embodiment of the invention, the transmission and reception paths are optically folded in such a way that the transmitter and receiver lie together on a flat fastening surface fixed in the device module. By folding the two optical paths, the receiving optics can be shorter on the one hand, but on the other hand without the need for additional optical components, such as light guides, transmitters and receivers that significantly reduce the efficiency of the receiving optics, can be installed in the common mounting surface. If the device module bends due to temperature, then the fastening surface fixed to it bends, and the light spot generated by the transmitter on the measurement object and the field of view of the receiver on the measurement object migrate in the same way. The light triangle and field of vision thus remain congruent even when the temperature changes. , According to an advantageous embodiment of the invention, the device module has an optics carrier and a printed circuit board which is fixedly connected to the optics carrier and forms the fastening surface for the optical transmitter and the optical receiver. The optical folding of the transmission and reception path is carried out by means of deflecting mirrors arranged in the optics carrier. Through the
Unterbringung von Sender und Empfänger einschließlich ihrer elektronischen Bauteile auf einer gemeinsamen Leiterplatte ist eine fertigungstechnisch einfache, automatisierbare Kontaktierung von Sender und Empfänger und deren Bauteile möglich und zugleich eine einfache Schirmung nach außen gegenüber der Umwelt machbar, insbesondere dann, wenn gemäß einer vorteilhaften Ausführungsform der Erfindung die elektronischen Bauteile auf der dem Optikträger zugekehrten Unterseite der Leiterplatte angeordnet werden. Dann läßt sich eine solche Schirmung durch eine Abschirmschicht in der vorzugsweise mehrlagig ausgebildeten Leiterplatte einfach realisieren, die an mindestens einer Stelle elektrisch leitend mit dem Optikträger verbunden wird.Housing the transmitter and receiver, including their electronic components, on a common printed circuit board makes it possible to make contact with the transmitter and receiver and their components that is simple in terms of production technology, and at the same time simple shielding from the outside from the environment is feasible, in particular if, according to an advantageous embodiment of the invention the electronic components are arranged on the underside of the circuit board facing the optics carrier. Such a shielding can then be easily implemented by a shielding layer in the preferably multilayer printed circuit board, which is connected in an electrically conductive manner to the optics carrier at at least one point.
Gemäß einer bevorzugten Ausführungsform der Erfindung erstreckt sich die Leiterplatte möglichst parallel zu einer durch die optischen Achsen von Sende- und Empfangspfad verlaufenden Ebene. Hierdurch wird der im Gerätemodul vorhandene Bauraum optimal ausgenutzt und die freie Rückseite der Leiterplatte kann zur Unterbringung von Bedienelementen und Anzeigen herangezogen werden.According to a preferred embodiment of the invention, the printed circuit board extends as parallel as possible to a plane running through the optical axes of the transmission and reception path. As a result, the space available in the device module is optimally used and the free back of the circuit board can be used to accommodate controls and displays.
Gemäß einer vorteilhaften Ausführungsform der Erfindung sind die Umlenkspiegel als optische Filter ausgelegt, um so die Bandbreite des am angemessenen Objekt reflektierten und vom optischen Empfänger aufgenommenen Lichts zu begrenzen.According to an advantageous embodiment of the invention, the deflection mirrors are designed as optical filters in order to limit the bandwidth of the light reflected on the appropriate object and picked up by the optical receiver.
Gemäß einer vorteilhaften Ausführungsform der Erfindung sind Sende- und Empfangspfad durch im Optikträger ausgebildete Kammern und Kanäle voneinander getrennt, so daß einerseits kein Licht des Sendestrahls auf den Empfänger gelangt und andererseits durch eine elektrische Schirmung das Übersprechen der Signale sende- und empfangsseitig deutlich verringert wird.According to an advantageous embodiment of the invention, the transmission and reception paths are separated from one another by chambers and channels formed in the optics carrier, so that, on the one hand, no light from the transmission beam hits the Receiver arrives and on the other hand, the electrical crosstalk of the signals on the transmitting and receiving side is significantly reduced by electrical shielding.
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist in einer den Kanal für den Sendepfad von dem Kanal für den Empfangspfad trennenden Trennwand des Optikträgers ein verschließbares Fenster vorgesehen. Zudem ist in den Kanal für den Sendepfad ein Ablenkelement angeordnet, das derart in den Sendepfad einschwenkbar ist, daß ein auf das Ablenkelement fallender Sendelichtstrahl durch das Fenster hindurch in den Empfangspfad eingeleitet wird. Bevorzugst verschließt das Ablenkelement in seiner aus dem Sendepfad ausgeschwenkten Stellung das Fenster in der Trennwand zwischen den beiden Kanälen. Dieser Mechanismus ist für Zwecke einer Referenzmessung vorgesehen, um daß Meßgerät entsprechend kalibrieren zu können.According to an advantageous embodiment of the invention, a closable window is provided in a partition wall of the optics carrier that separates the channel for the transmission path from the channel for the reception path. In addition, a deflection element is arranged in the channel for the transmission path, which can be pivoted into the transmission path in such a way that a transmission light beam falling on the deflection element is introduced through the window into the reception path. The deflection element preferably closes the window in the partition between the two channels in its position pivoted out of the transmission path. This mechanism is intended for the purpose of a reference measurement in order to be able to calibrate the measuring device accordingly.
Zeichnungdrawing
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Es zeigen:The invention is explained in more detail in the following description with reference to an embodiment shown in the drawing. Show it:
Fig. 1 eine perspektivische Unteransicht eines Gerätemoduls mit denFig. 1 is a bottom perspective view of a device module with the
Komponenten von Sende- und Empfangspfad eines Entfernungsmeßgeräts,Components of the transmission and reception path of a distance measuring device,
Fig. 2 einen Schnitt längs der Linie II - !! in Fig. 1 ,Fig. 2 shows a section along the line II - !! in Fig. 1,
Fig. 3 einen Schnitt längs der Linie III - lil in Fig. 2,3 shows a section along the line III-lil in FIG. 2,
Fig. 4 einen Schnitt längs der Linie IV - IV in Fig. 2. Beschreibung des Ausführungsbeispiels4 shows a section along the line IV-IV in FIG. 2. Description of the embodiment
Das in Fig. 1 perspektivisch in Unteransicht und in Fig. 2 - 4 in verschiedenen Schnittdarstellungen zu sehende Gerätemodul 11 , das nach vollständiger Montage des Meßgeräts von einem Gehäuse umschlossen ist, trägt dieThe device module 11, seen in perspective in bottom view in FIG. 1 and in different sectional views in FIGS. 2-4, which is enclosed by a housing after the measuring device has been completely assembled, carries the
Komponenten zur Ausbildung eines optischen Seπdepfads 12 und eines optischen Empfangspfads 13. Das Gerätemodul 11 weist einen Optikträger 14 und eine auf dem Optikträger 14 mittels Schrauben 16 (Fig. 3 und 4) befestigte Leiterplatte 15 auf. Die Leiterplatte 15 ist am Optikträger 14 möglichst parallel zu einer Ebene angeordnet, die durch die optischen Achsen 121 und 131 (Fig. 2) von Sendepfad 12 und Empfangspfad 13 verläuft und in Fig. 2 mit der Blattebene zusammenfällt. Sende- und Empfangspfad 12, 13 sind durch im Optikträger 14 ausgebildete Kanäle und Kammern 18 - 21 voneinander getrennt, in Fig. 3 ist der Sendekanal 18 und die Sendekammer 19, die rechtwinklig zum Sendekanal 18 ausgerichtet ist, und in Fig. 4 der Empfangskanal 20 und die Empfaπgskarnmer 21 zu sehen, die ebenfalls rechtwinklig zum Empfangskanal 20 ausgerichtet ist. in der Schnittdarstellung der Fig. 2 ist die Anordnung von Sendekanal 18 und Empfangskanal 20 im Optikträger 14 zu erkennen.Components for forming an optical path 12 and an optical reception path 13. The device module 11 has an optics carrier 14 and a circuit board 15 fastened on the optics carrier 14 by means of screws 16 (FIGS. 3 and 4). The circuit board 15 is arranged on the optics carrier 14 as parallel as possible to a plane which runs through the optical axes 121 and 131 (FIG. 2) of the transmission path 12 and reception path 13 and coincides with the leaf plane in FIG. 2. The transmission and reception paths 12, 13 are separated from one another by channels and chambers 18-21 formed in the optics carrier 14, in FIG. 3 the transmission channel 18 and the transmission chamber 19, which is oriented at right angles to the transmission channel 18, and in FIG. 4 the reception channel 20 and to see the receiving chamber 21, which is also oriented at right angles to the receiving channel 20. The arrangement of the transmission channel 18 and reception channel 20 in the optics carrier 14 can be seen in the sectional view in FIG. 2.
Die Komponenten des optischen Sendepfads 12 umfassen einen optischenThe components of the optical transmission path 12 include an optical one
Sender 22 der als Kollimator 24 mit einer Laserdiode 25 und einer Kollimatorlinse 26 (Fig, 3) ausgebildet ist, eine den Sendekanal 18 frontseitig abschließende Abdeckscheibe 27 aus Glas und einen am anderen Ende des Sendekanals 18 angeordneten Umlenkspiegel 28, der justierbar an dem Optikträger 14 gehalten ist. Über den Umlenkspiegel 28 läßt sich die optische Achse 121 des Sendepfads 131 justieren.Transmitter 22, which is designed as a collimator 24 with a laser diode 25 and a collimator lens 26 (FIG. 3), a glass cover plate 27, which closes the transmission channel 18 at the front, and a deflection mirror 28 arranged at the other end of the transmission channel 18, which can be adjusted on the optics carrier 14 is held. The optical axis 121 of the transmission path 131 can be adjusted via the deflection mirror 28.
Die Komponenten des optischen Empfangspfads 13 umfassen eine Empfängeroptik 29 und einen dieser nachgeordneten Empfänger 30, der hier als Lichtdetektor 31 ausgebildet ist (Fig. 4). Die Empfängeroptik 29 besteht aus einer den Empfangskanal 20 frontseitig abschließenden Empfängerlinse mit großer Brennweite und einem am anderen Ende des Empfangskanais 20 plazierten Umlenkspiegel 33, der justierbar im Optikträger 14 gehalten ist. Über den Umlenkspiegel 33 läßt sich sowohl der Brennpunkt als auch die Richtung der optischen Achse 131 des Empfangspfads 13 verändern und justieren.The components of the optical reception path 13 comprise a receiver optics 29 and a receiver 30 arranged downstream thereof, which here is designed as a light detector 31 (FIG. 4). The receiver optics 29 consist of a receiver lens with a large end that closes the reception channel 20 on the front Focal length and a deflection mirror 33 placed at the other end of the receiving channel 20, which is held adjustable in the optics carrier 14. Both the focal point and the direction of the optical axis 131 of the reception path 13 can be changed and adjusted via the deflection mirror 33.
Sowohl der Kollimator 24 als auch der Lichtdetektor 31 sind an der Leiterplatte 15 befestigt, und zwar auf der dem Optikträger 14 zugekehrten Unterseite und sind dort mit weiteren, hier nicht dargestellten elektronischen Bauteilen von Sender 22 und Empfänger 30, die ebenfalls auf der Unterseite der Leiterplatte 15 angeordnet sind, kontaktiert. Die Schirmung von Sender 22 und Empfänger 30 und der elektronischen Bauteile nach außen erfolgt durch eine hier nicht dargestellte Abschirmschicht in der mehrlagig ausgebildeten Leiterplatte 15, die an mindestens einer Stelle mit dem Optikträger 14 elektrisch leitend verbunden ist. Sender 22 und Empfänger 30 sind quer zu den optischen Achse 121 , 131 dicht nebeneinander mit Abstand angeordnet, wobei der Kollimator 24 in die Seπdekammer 19 und der Lichtdetektor 31 in die Empfangskammer 21 hineinragt und so Sender 22 und Empfänger 30 optisch und elektrisch voneinander abgeschirmt sind. Durch diese Plazierung von Sender 22 und Empfänger 30 wird erreicht, daß eine durch die Verbindung von Leiterplatte 15 und Optikträger 14 stattfindende Deformation des Optikträgers 14 bei Temperaturgang, die zu einer Krümmung des Optikträgers 14 in Richtung der optischen Achsen 121, 131 führt, die optischen Achsen 121, 131 von Sendepfad 12 und Empfangspfad 13 um den gleichen Betrag in die gleiche Richtung ausgelenkt werden. Dadurch bleiben nach einmaliger Justierung von Sendepfad 12 und Empfangspfad 13 mittels der Umlenkspiegel 28, 33 der von dem Sendepfad 12 erzeugte Meßfleck auf einem angemessenen Objekt immer voll auf dem Lichtdetektor 31 im Empfangspfad 13"abgebildet, so daß sich die Krümmung des Optikträgers 14 nicht auf die Meßgenauigkeit des Gerätes auswirkt.Both the collimator 24 and the light detector 31 are fastened to the printed circuit board 15, specifically on the underside facing the optics carrier 14 and are there with further electronic components, not shown here, of the transmitter 22 and receiver 30, which are also on the underside of the printed circuit board 15 are arranged, contacted. The transmitter 22 and receiver 30 and the electronic components are shielded from the outside by a shielding layer (not shown here) in the multilayer printed circuit board 15, which is electrically conductively connected to the optics carrier 14 at at least one point. Transmitter 22 and receiver 30 are arranged closely next to one another at a distance transversely to the optical axis 121, 131, the collimator 24 protruding into the detection chamber 19 and the light detector 31 into the receiving chamber 21, so that the transmitter 22 and receiver 30 are optically and electrically shielded from one another , This placement of the transmitter 22 and receiver 30 ensures that a deformation of the optics carrier 14 taking place by the connection of the circuit board 15 and optics carrier 14 at a temperature change, which leads to a curvature of the optics carrier 14 in the direction of the optical axes 121, 131, the optical Axes 121, 131 of transmission path 12 and reception path 13 are deflected in the same direction by the same amount. As a result, once the transmission path 12 and reception path 13 have been adjusted by means of the deflection mirrors 28, 33, the measurement spot generated by the transmission path 12 is always fully imaged on the light detector 31 in the reception path 13 on an appropriate object, so that the curvature of the optics carrier 14 does not increase affects the measuring accuracy of the device.
Wie in Fig. 2 und 3 zu sehen ist, ist in einer den Sendekanal 18 von demAs can be seen in FIGS. 2 and 3, in one is the transmission channel 18 of the
Empfangskanal 20 trennende Trennwand 34 ein Fenster 35 vorgesehen und im Sendekanal 18 ein Ablenkelement 36 schwenkbar so angeordnet, daß es in den Strahlengang im Sendekanal 18, also in den Sendepfad 12, hinein- und aus dem Strahlengang im Sendekanal 18, also aus dem Sendepfad 12, herausgeschwenkt werden kann. In der Einschwenkstellung lenkt das Ablenkelement 36 einen vom Umlenkspiegel 28 kommenden Lichtstrahl durch das Fenster 35 in denReceiving channel 20 separating partition 34 provided a window 35 and in Transmitting channel 18 a deflecting element 36 is pivotally arranged so that it can be pivoted into the beam path in the transmitting channel 18, that is to say in the transmitting path 12, and out of the beam path in the transmitting channel 18, that is to say out of the transmitting path 12. In the pivoted-in position, the deflecting element 36 directs a light beam coming from the deflecting mirror 28 through the window 35 into the
Empfangskanal 20, wo er über einen Reflektor 37 (Fig. 2) und den Umlenkspiegel 33 auf den Lichtdetektor 31 trifft. In der Ausschwenkstellung verschließt das Ablenkelement 36 das Fenster 35. Diese Schwenkmechanik des Ablenkelements 36 dient zur Durchführung einer Referenzmessung, um das Meßgerät zu kalibrieren. Receiving channel 20, where it strikes the light detector 31 via a reflector 37 (FIG. 2) and the deflecting mirror 33. In the swiveled-out position, the deflection element 36 closes the window 35. This swivel mechanism of the deflection element 36 is used to carry out a reference measurement in order to calibrate the measuring device.

Claims

Ansprüche Expectations
1. Meßgerät zur berührungslosen Abstandsmessung, insbesondere1. Measuring device for non-contact distance measurement, in particular
Handgerät, mit einem eine optische Achse (121) aufweisenden optischen Sendepfad (12), der als Komponente einen optischen Sender (22) aufweist, mit einem eine optische Achse (131) aufweisenden optischen Empfangspfad (13), der als Komponenten eine Empfängeroptik (29) und einen optischen Empfänger (30) aufweist, und mit einem die Komponenten von Sende- und Empfangspfad (12, 13) aufnehmenden Gerätemodul (11), gekennzeichnet durch eine solche Plazierung der Komponenten von Sendepfad (12) und Empfangspfad (13), daß bei einer temperaturbedingten Krümmung des Gerätemoduls (11) in Richtung der optischen Achsen (121, 131) von Sende- und Empfangspfad (12, 13) die optischen Achsen (121,Hand-held device, with an optical transmission path (12) having an optical axis (121), which has an optical transmitter (22) as a component, with an optical reception path (13) having an optical axis (131), which has a receiver optics (29 ) and an optical receiver (30), and with a device module (11) receiving the components of the transmission and reception path (12, 13), characterized by such a placement of the components of the transmission path (12) and reception path (13) that in the event of a temperature-related curvature of the device module (11) in the direction of the optical axes (121, 131) of the transmission and reception path (12, 13), the optical axes (121,
131) um den gleichen Betrag in die gleiche Richtung ausgelenkt werden.131) are deflected in the same direction by the same amount.
2. Meßgerät nach Anspruch 1 , dadurch gekennzeichnet, daß Sende- und Empfangspfad optisch derart gefaltet sind, daß Sender (22) und Empfänger (30) gemeinsam auf einer ebenen, im Gerätemodul (11) fixierten2. Measuring device according to claim 1, characterized in that the transmission and reception path are optically folded such that the transmitter (22) and receiver (30) fixed together on a level, in the device module (11)
Befestigungsfläche liegen.Fastening surface.
3. Meßgerät nach Anspruch 2, dadurch gekennzeichnet, daß das Gerätemodui (11) einen Optikträger (14) und eine fest mit dem Optikträger (14) verbundene Leiterplatte (15) aufweist, die die Befestigungsfläche für den optischen Sender (22) und den optischen Empfänger (30) bildet, und daß zur optischen Faltung von Sende- und Empfangspfad (12, 13) jeweils ein Umlenkspiegel (28, 33) im Optikträger (14) angeordnet ist.3. Measuring device according to claim 2, characterized in that the device module (11) has an optics carrier (14) and a fixed to the optics carrier (14) connected circuit board (15) which has the mounting surface for the optical transmitter (22) and the optical Forms receiver (30), and that a deflection mirror (28, 33) is arranged in the optics carrier (14) for the optical folding of the transmission and reception path (12, 13).
4. Meßgerät nach Anspruch 3, dadurch gekennzeichnet, daß die Leiterplatte (15) möglichst parallel zu einer durch die optischen Achsen (121, 131) von4. Measuring device according to claim 3, characterized in that the circuit board (15) as parallel as possible to one through the optical axes (121, 131) of
Sende- und Empfangspfad (12, 13) verlaufenden Ebene ausgerichtet ist.Sending and receiving path (12, 13) extending plane is aligned.
5. Meßgerät nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß der optische Sender (22) und der optische Empfänger (30) auf der dem Optikträger (14) zugekehrten Innenseite der Leiterplatte (15) quer zu den optischen Achsen (121, 131) von Sende- und Empfangspfad (12, 13) voneinander beabstandet angeordnet sind.5. Measuring device according to claim 3 or 4, characterized in that the optical transmitter (22) and the optical receiver (30) on the optics carrier (14) facing the inside of the circuit board (15) transverse to the optical axes (121, 131) of transmission and reception path (12, 13) are arranged spaced apart.
6. Meßgerät nach einem der Ansprüche 3 - 5, dadurch gekennzeichnet, daß die Umlenkspiegel (28, 33) als optische Filter ausgebildet sind.6. Measuring device according to one of claims 3-5, characterized in that the deflecting mirrors (28, 33) are designed as optical filters.
7. Meßgerät nach einem der Ansprüche 3 - 6, dadurch gekennzeichnet, daß der optische Sender (22) und der optische Empfänger (30) elektronische Bauteile aufweisen, die auf der dem Optikträger (14) zugekehrten Unterseite der Leiterplatte (15) angeordnet sind, und daß die Leiterplatte7. Measuring device according to one of claims 3-6, characterized in that the optical transmitter (22) and the optical receiver (30) have electronic components which are arranged on the underside of the printed circuit board (15) facing the optics carrier (14), and that the circuit board
(15) mindestens eine Abschirmschicht zur elektrischen Schirmung nach außen aufweist(15) has at least one shielding layer for electrical shielding to the outside
8. Meßgerät nach Anspruch 7, dadurch gekennzeichnet, daß die Leiterplatte (15) mit ihrer Abschirmschicht an mindestens einer Stelle mit dem8. Measuring device according to claim 7, characterized in that the circuit board (15) with its shielding layer at least at one point with the
Optikträger (14) elektrisch leitend verbunden ist.Optics carrier (14) is electrically conductively connected.
9. Meßgerät nach einem der Ansprüche 3 - 8, dadurch gekennzeichnet, daß Sender- und Empfangspfad (12, 13) durch im Optikträger (14) ausgebildete Kanäle (18, 20) und Kammern (19, 21) voneinander getrennt sind. 9. Measuring device according to one of claims 3 - 8, characterized in that the transmitter and receive path (12, 13) through channels (18, 20) and chambers (19, 21) formed in the optics carrier (14) are separated from one another.
10. Meßgerät nach Anspruch 9, dadurch gekennzeichnet, daß die Achsen der Kanäle (18, 20) möglichst parallel zu den optischen Achsen (121 , 131) von Sende- und Empfangspfad (12, 13) ausgerichtet sind.10. Measuring device according to claim 9, characterized in that the axes of the channels (18, 20) are aligned as parallel as possible to the optical axes (121, 131) of the transmission and reception path (12, 13).
11. Meßgerät nach Anspruch 10, dadurch gekennzeichnet, daß die Kanäle (18, 20) endseitig jeweils durch eine optisch transparentes Element (27, 32) abgeschlossen sind.11. Measuring device according to claim 10, characterized in that the channels (18, 20) are each terminated by an optically transparent element (27, 32).
12. Meßgerät nach einem der Ansprüche 9 - 11 , dadurch gekennzeichnet, daß in einer den Kanal ( 8) für den Sendepfad (12) von den Kanal (20) für den12. Measuring device according to one of claims 9 - 11, characterized in that in a channel (8) for the transmission path (12) of the channel (20) for the
Empfangspfad (13) trennenden Trennwand (34) des Optikträgers (14) ein verschließbares Fenster (35) vorgesehen und in dem Kanal (18) für den Sendepfad (12) ein Ablenkelement (36) angeordnet ist, das derart in den Sendepfad (12) einschwenkbar ist, daß ein auf das Ablenkelement (36) fallender Sendelichtstrahl durch das Fenster (35) hindurch in denA separable window (35) is provided in the dividing wall (34) separating the reception path (13) of the optics carrier (14) and a deflection element (36) is arranged in the channel (18) for the transmission path (12) and is thus arranged in the transmission path (12). can be pivoted in that a beam of light falling on the deflecting element (36) passes through the window (35) into the
Empfangspfad (13) eingeleitet wird.Reception path (13) is initiated.
13. Meßgerät nach Anspruch 12, dadurch gekennzeichnet, daß das Ablenkelement (36) in seiner aus dem Sendepfad (12) ausgeschwenkten Stellung das Fenster (35) in der Trennwand (34) verschließt.13. Measuring device according to claim 12, characterized in that the deflecting element (36) in its position pivoted out of the transmission path (12) closes the window (35) in the partition (34).
14. Meßgerät nach einem der Ansprüche 1 -13, dadurch gekennzeichnet, daß der optische Sender (22) ein Kollimator (24) mit einer Laserdiode (25) und einer Kollimatoriinse (26) ist.14. Measuring device according to one of claims 1-13, characterized in that the optical transmitter (22) is a collimator (24) with a laser diode (25) and a collimator lens (26).
15. Meßgerät nach einem der Ansprüche 1 - 14, dadurch gekennzeichnet, daß der optische Empfänger (30) einen Lichtdetektor (31) aufweist. 15. Measuring device according to one of claims 1-14, characterized in that the optical receiver (30) has a light detector (31).
EP02782714A 2001-11-22 2002-10-11 Measuring device for contactless distance measurement Withdrawn EP1451607A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10157378 2001-11-22
DE10157378A DE10157378B4 (en) 2001-11-22 2001-11-22 Measuring device for non-contact distance measurement
PCT/DE2002/003872 WO2003046604A2 (en) 2001-11-22 2002-10-11 Measuring device for contactless distance measurement

Publications (1)

Publication Number Publication Date
EP1451607A2 true EP1451607A2 (en) 2004-09-01

Family

ID=7706635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782714A Withdrawn EP1451607A2 (en) 2001-11-22 2002-10-11 Measuring device for contactless distance measurement

Country Status (6)

Country Link
US (1) US7142288B2 (en)
EP (1) EP1451607A2 (en)
JP (1) JP2005510739A (en)
CN (1) CN100442079C (en)
DE (1) DE10157378B4 (en)
WO (1) WO2003046604A2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314772A1 (en) * 2003-03-31 2004-10-14 Robert Bosch Gmbh Device for adjusting an optical mirror
DE102005036033A1 (en) * 2005-08-01 2007-02-08 Robert Bosch Gmbh Distance measuring Equipment
DE102005037253A1 (en) * 2005-08-08 2007-02-15 Robert Bosch Gmbh gauge
EP1752788A1 (en) * 2005-08-08 2007-02-14 Leica Geosystems AG Electro-optical range finder
DE102005041980B4 (en) * 2005-09-05 2015-01-15 Robert Bosch Gmbh Electro-optical measuring device
DE102007005725A1 (en) * 2007-01-31 2008-08-07 Robert Bosch Gmbh Distance measuring Equipment
DE102007017631B3 (en) * 2007-04-13 2008-07-10 Sick Ag Optoelectronic sensor, has transmission line for differential transmission of electrical transmission pattern, which is designed with multiple single conductors and two external single conductors differentially transfers signal with sign
EP2051102B1 (en) * 2007-10-18 2012-12-05 Leica Geosystems AG Adjustable electro-optical measuring device
DE202008013691U1 (en) 2007-10-18 2009-01-29 Leica Geosystems Ag Electro-optical measuring device
DE102010010097A1 (en) 2010-03-01 2011-09-01 Esw Gmbh Compact laser rangefinder
DE102010062161A1 (en) 2010-11-30 2012-05-31 Hilti Aktiengesellschaft Distance measuring device and surveying system
DE102010062172A1 (en) 2010-11-30 2012-05-31 Hilti Aktiengesellschaft Distance measuring device and surveying system
US20120206714A1 (en) * 2011-02-10 2012-08-16 DIRAmed Shutter Assembly with Calibration Material
DE102011107594A1 (en) * 2011-07-16 2013-01-17 Valeo Schalter Und Sensoren Gmbh Optical measuring device for a vehicle, driver assistance device with such a measuring device and vehicle with a corresponding measuring device
DE102011107585A1 (en) * 2011-07-16 2013-01-17 Valeo Schalter Und Sensoren Gmbh Optical measuring device for a vehicle, driver assistance device with such a measuring device and vehicle with a corresponding measuring device
EP2607924A1 (en) * 2011-12-23 2013-06-26 Leica Geosystems AG Distance sensor adjustment
DE102013102741A1 (en) * 2013-03-18 2014-09-18 Leuze Electronic Gmbh & Co. Kg Optical sensor
CN104597437A (en) * 2015-02-03 2015-05-06 金华马卡科技有限公司 Handheld type distance measuring instrument
CN108572357B (en) * 2017-03-13 2022-07-22 信泰光学(深圳)有限公司 Laser range finder and prism and optical transmitter module thereof
JP6946921B2 (en) 2017-10-17 2021-10-13 株式会社デンソー Housing of light emitting / receiving device
US10788321B2 (en) 2018-02-23 2020-09-29 Phillip Honea Laser measuring device
EP3623843B1 (en) 2018-09-11 2021-01-13 Leica Geosystems AG Hand-held laser range finder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1773535B2 (en) * 1968-05-31 1973-10-04 Franke & Co. Optik-Gmbh, 6300 Giessen Theodolite with a device for electro-optical distance measurement
AU615382B2 (en) * 1989-03-31 1991-09-26 Sokkisha Co., Ltd. Surveying apparatus
CN2080164U (en) * 1990-11-10 1991-07-03 第一汽车制造厂车身装备厂 Laser contactless scanning detecting head
US5488468A (en) * 1991-12-26 1996-01-30 Sharp Kabushiki Kaisha Optical distance measuring apparatus having semiconductor position sensitive photodetector
US5767953A (en) * 1993-04-12 1998-06-16 The Regents Of The University Of California Light beam range finder
DE4316348A1 (en) 1993-05-15 1994-11-17 Wild Heerbrugg Ag Distance measuring device
US5517297A (en) * 1994-10-13 1996-05-14 Hughes Aircraft Company Rangefinder with transmitter, receiver, and viewfinder on a single common optical axis
DE19652438C2 (en) * 1996-12-17 1999-06-17 Leica Geosystems Ag Measuring stop device for a hand-held distance measuring device
FR2761151B1 (en) * 1997-03-21 1999-07-16 Samuel Bucourt OPTRONIC SYSTEM FOR NON-CONTACT DISTANCE MEASUREMENT OF A LIGHT SOURCE BY ANALYSIS OF THE WAVE POINT CURVATURE FROM IT
DE19804051B4 (en) 1998-02-03 2004-10-28 Robert Bosch Gmbh distance measuring
DE19804059B4 (en) * 1998-02-03 2006-02-09 Robert Bosch Gmbh Device for optical distance measurement
JP3723721B2 (en) * 2000-05-09 2005-12-07 ペンタックス株式会社 Lightwave distance finder and lightwave distance finder with AF function

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03046604A2 *

Also Published As

Publication number Publication date
DE10157378A1 (en) 2003-06-05
CN1636148A (en) 2005-07-06
WO2003046604A3 (en) 2003-08-14
US20040263825A1 (en) 2004-12-30
US7142288B2 (en) 2006-11-28
CN100442079C (en) 2008-12-10
DE10157378B4 (en) 2012-10-25
JP2005510739A (en) 2005-04-21
WO2003046604A2 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
WO2003046604A2 (en) Measuring device for contactless distance measurement
EP1913416B1 (en) Electro-optical range finder
DE102005041980B4 (en) Electro-optical measuring device
DE69834347T2 (en) COMPACT HUMIDITY SENSOR WITH EFFECTIVELY VERY CROPPED OPTICS
DE102007030880B4 (en) Device for detecting an object scene
EP2312919A1 (en) Optoelectronic sensor
DE102019114624A1 (en) CHIP SCALE LIDAR WITH SINGLE MEMS MIRROR
DE102005041998B4 (en) Method for adjusting an imaging element and measuring device adjusted according to such a method
DE19834090A1 (en) Optoelectronic transmitter and receiver unit
DE102006028622B4 (en) Rear vision system
EP2157449B1 (en) Light grid
DE19804059A1 (en) Device for optical distance measurement
EP1403657A1 (en) Optoelectronic detecting device
EP2040097B1 (en) Optoelectronic sensor
WO2005108920A1 (en) Target acquisition device
DE19804050B4 (en) Device for optical distance measurement
EP0169444A2 (en) Roughness probe
DE102004022408B4 (en) Optical sensor
DE102020112091B4 (en) Optoelectronic sensor
EP1102086A2 (en) Opto-electronic device
DE19934870C1 (en) Fixing device for optical sensor beam alignment device has carrier provided with arm supporting beam and second arm clamped to side wall of sensor housing
DE3924185C1 (en) Fibre=optic pressure sensor - has three=way coupler splitting incoming light for distribution to reference and sensor fibres for pressure diaphragm
DE202011003692U1 (en) Optical sensor
EP1929328B1 (en) Apparatus for increasing the measurement accuracy and range for a scanning laser rangefinder
DE202020102514U1 (en) Photoelectric sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040622

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20041004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110503