EP1451452B1 - Verfahren und anordnung zur regeneration von dieselpartikelfiltern - Google Patents

Verfahren und anordnung zur regeneration von dieselpartikelfiltern Download PDF

Info

Publication number
EP1451452B1
EP1451452B1 EP02776866A EP02776866A EP1451452B1 EP 1451452 B1 EP1451452 B1 EP 1451452B1 EP 02776866 A EP02776866 A EP 02776866A EP 02776866 A EP02776866 A EP 02776866A EP 1451452 B1 EP1451452 B1 EP 1451452B1
Authority
EP
European Patent Office
Prior art keywords
diesel particulate
particulate filter
exhaust
exhaust gas
recirculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02776866A
Other languages
English (en)
French (fr)
Other versions
EP1451452A1 (de
Inventor
Dietmar Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1451452A1 publication Critical patent/EP1451452A1/de
Application granted granted Critical
Publication of EP1451452B1 publication Critical patent/EP1451452B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a method and a Arrangement for the regeneration of diesel particulate filters after the preamble of claim 1 and the preamble of claim 8.
  • Particulate limit values of the Euro IV emission standard may be used of heavy vehicles only with diesel particulate filters (DPF). Cut DPF systems typically 90-95% of the emitted particles. The As a result, particles stored in the filter increase the level Exhaust back pressure, which is why the diesel particulate filter in Intervals between 200-500 km must be regenerated. The Regeneration takes place by burning (oxidation) of the embedded particles. For this, the particles must typically heated to about 600 ° C. Appropriately, the heating of the particles takes place via convective heat input through the exhaust gas flow. The Temperature of the exhaust stream consumption optimized However, diesel engines (TDI, CDI) only exceed a few Operating points 300 ° C.
  • the exhaust gas must therefore during the regeneration be reheated. This can be electric or with Help a burner done. As the residual oxygen content of the exhaust gas varies between 3 and 18%, is the use a diesel burner in the direct exhaust flow without additional Fresh air blower problematic, because not everyone Time enough oxygen for the combustion of the fuel is available.
  • the ignition temperature the particles by adding the diesel fuel with Iron or cerium compounds to lower to about 300 ° C. It should be noted, however, that such additives are inorganic Leave ashes in the particle filter, which too a continuous increase in the through the diesel particulate filter generated counterpressure, causing premature Replacement of the filter may be necessary.
  • FIG. 1 Another possible partial flow system is shown in FIG. You can see two parallel connected Diesel Particulate Filter 1, 2.
  • a flap 4 introduced by means of the exhaust gas in the supply line 3 optionally via a supply line 3a in the diesel particulate filter 1, or via a supply line 3b in the diesel particulate filter 2 is inserted.
  • the Diesel particulate filters 1, 2 are each equipped with electric heaters 1a, 2a formed.
  • About a fan 5 is fresh air into the supply lines 3a, 3b can be introduced. From the diesel particulate filters 1, 2 exiting exhaust gas is discharged via discharge lines 6a and 6b, which open into a conduit 6, dissipated.
  • diesel particulate filters expediently individually undergone regeneration.
  • the diesel particulate filter 1 by means of the flap mechanism 4 of the majority (For example, 90%) of the exhaust gas flow through the diesel particulate filter 2 headed.
  • the remaining residual current becomes electric, or also fossil, heated and heated the diesel particulate filter. 1 and the diesel soot stored therein. If the residual oxygen content the exhaust stream is too low, can by the Blower 5 fresh air to be supplied.
  • the maximum pressure build-up of the blower typically up to 150 hPa however, its use on relatively small overpressures in the exhaust tract.
  • the size of the partial flow can be adjusted or be dimensioned that the diesel particulate filter 1 in short time with the maximum realizable electrical Heating power brought about the ignition temperature of the diesel soot becomes.
  • the diesel particulate filter 2 can then be regenerated become. It is also possible between regeneration provide the individual diesel particulate filter phases, in which both diesel particulate filter according to a Normal operation are applied uniformly with exhaust gas.
  • the aim of the invention is a regeneration of diesel particulate filters in a simple and inexpensive way perform. This goal is achieved through a process with the features of claim 1 and an arrangement with the features of claim 7.
  • the regeneration in at least one partially closed, hereinafter referred to as circulating air circulation perform designated circulation circuit, allows regeneration essentially independent of the size of the exhaust stream, the residual oxygen content and the pressure level. Characterized in that the exhaust gas by means of the circulating air circulation several times through the diesel particulate filter is carried out, the heating time is greatly shortened, thereby Energy can be saved.
  • Method is a detection of the as part of the regeneration of the least produced a diesel particulate filter Rußabbrandes about a difference oxygen measurement at the Inlet or outlet side of the diesel particulate filter.
  • This measuring method proves to be very reliable in practice.
  • inventive arrangement are as appropriate means, for example, in front and behind The diesel particulate filter positionable oxygen sensors intended.
  • Method or the inventive arrangement is acting on a two parallel diesel particulate filter Exhaust flow diverted so that a first Diesel particulate filter substantially with the complete Exhaust gas flow is applied and simultaneously with respect to the second diesel particulate filter a closed air circulation is produced.
  • a substantially complete exhaust gas stream in particular shares between 80 and 100% of the total exhaust gas flow.
  • the flap 27 can guarantee, in a first position, that the Discharge lines 26a, 26b in a common discharge line 26 lead. In a second position, the flap 27 adjustable so that the lines 26a or 26b flowing gas (exhaust gas) via a line 30 a Flap 28, in a line 32, a fan 25 and the Flap 24 back into the respective diesel particulate filter 21, 22 can be performed.
  • the first phase of an example is shown by way of example Regeneration of the lower diesel particulate filter 22 shown.
  • the flaps 24 and 27 are set that the entire incoming via the supply line 23 Exhaust gas flow to the upper diesel particulate filter 21, and of this is passed into the discharge line 6. This stream is illustrated by the dashed arrows.
  • the fan 25 must be only a relative promote small mass flow, namely the mass flow, the at the time of the mentioned setting of the flaps 24, 27th and 28 within the diesel particulate filter 22 and the closed conduit system (lines 23b, 26b, 30, 32nd and 31).
  • the maximum to be promoted mass flow here at about 20 kg / h, whereby the pressure drop over the filled with soot Diesel particulate filter 22 is relatively small, typically maximum 50 hPa.
  • the electric heater 22a which expediently as electric heating coil is formed, heats the Diesel particulate filter 22 via radiation injection as well convective via the circulating air flow. There is no air at first exits the system, the heating takes place, as mentioned, very fast.
  • the diesel particulate filter 22 becomes in this mode of operation continue until reaching the ignition temperature of the warmed up soot.
  • the "Durchzünden" of the Diesel soot can be measured by measuring the oxygen consumption due to oxidation within the diesel particulate filter 22 are performed. For this it turns out to be expedient, input side and output side of the Diesel particulate filter 22 lambda sensors 40, 41 provided. It is also possible via appropriate input and output pressure measurements the pressure drop within of the diesel particulate filter. The finding of "Durchzündens" of the diesel soot is finally with a Output-side temperature measurement possible.
  • the temperature of the diesel particulate filter 22 can by Control of the heating power of the electric heater 22a or the delivery volume of the blower 25 controlled become. Furthermore, over the controlled Frischluftzu thanks (by controlling the flap 28) of the Oxygen content of the circulating air and thus the speed the Rußabbrandes be controlled. With these measures can effectively overheat and damage the Diesel particulate filter 22 by the burning of the Diesel soot released combustion enthalpy prevented become.
  • the regeneration of the diesel particulate filter takes place in at least partially closed recirculation independently from the height of the exhaust stream and from Residual oxygen content and pressure level of the exhaust gas stream.
  • One used blower only has the back pressure or the Overcome pressure drop of a diesel particulate filter.
  • the heating time for a diesel particulate filter can be strong be shortened, whereby energy is saved. By the small mass flow in the circulating air circuit as well as the limited Frischluftzutul can despite low electrical Heating power high temperatures in the diesel particulate filter be achieved. This allows the diesel particulate filter also without additive of the diesel fuel be regenerated.

Description

Stand der Technik
Die vorliegende Erfindung betrifft ein Verfahren und eine Anordnung zur Regeneration von Dieselpartikelfiltern nach dem Oberbegriff des Patentanspruchs 1 bzw. dem Oberbegriff des Patentanspruchs 8.
Partikelgrenzwerte der Euro-IV-Abgasnorm (0,05 g/km) können von schweren Fahrzeugen nur noch mit Dieselpartikelfiltern (DPF) eingehalten werden. DPF-Systeme schneiden typischerweise 90-95 % der emittierten Partikel ab. Die hierdurch im Filter eingelagerten Partikel erhöhen den Abgasgegendruck, weshalb der Dieselpartikelfilter in Intervallen zwischen 200-500 km regeneriert werden muß. Die Regeneration erfolgt durch Abbrand (Oxidation) der eingelagerten Partikel. Hierzu müssen die Partikel typischerweise auf etwa 600 °C erhitzt werden. Zweckmäßigerweise erfolgt die Erwärmung der Partikel über konvektiven Wärmeeintrag durch den Abgasstrom. Die Temperatur des Abgasstroms verbrauchsoptimierter Dieselmotoren (TDI, CDI) überschreitet jedoch nur in wenigen Betriebspunkten 300 °C. Das Abgas muss daher während der Regeneration nachgeheizt werden. Dies kann elektrisch oder mit Hilfe eines Brenners erfolgen. Da der Restsauerstoffgehalt des Abgases zwischen 3 und 18 % schwankt, ist der Einsatz eines Diesel-Brenners im direkten Abgasstrom ohne zusätzliches Frischluftgebläse problematisch, da nicht zu jedem Zeitpunkt genügend Sauerstoff für die Verbrennung des Kraftstoffes zur Verfügung steht.
Aus der DE 197 48 561 ist bekannt, die Entflammtemperatur der Partikel durch Additivierung des Dieselkraftstoffes mit Eisen- oder Cer-Verbindungen bis auf etwa 300 °C zu senken. Hierbei ist jedoch zu beachten, dass derartige Additive anorganische Aschen im Partikelfilter zurücklassen, welche zu einem kontinuierlichen Anstieg des durch den Dieselpartikelfilter erzeugten Gegendrucks führen, wodurch ein vorzeitiger Austausch des Filters notwendig werden kann.
Aus der DE 197 48 561 ist ferner bekannt, insbesondere elektrisch beheizbare Dieselpartikelfilter einzusetzen. Bei Vollstromsystemen wird bei der Regeneration der gesamte Abgasstrom durch den Dieselpartikelfilter geleitet und elektrisch erwärmt. Derartige Vollstromsysteme verzichten auf schaltbare Klappen und sind relativ preiswert und kompakt herstellbar. Nachteilig bei derartigen Lösungen ist jedoch, dass der vollständige Abgasmassenstrom über die Entflammtemperatur des Dieselrußes erwärmt werden muss. Als Beispiel sei von einem Hubvolumen von 2,5 Litern, einer Motordrehzahl von 2000 U/min und einem Ladedruck von 1,4 bar ausgegangen. Dies ergibt einen Abgasstrom von 250 kg/h. Für eine Erwärmung dieses typischerweise erhaltenen Massenstroms um 400 K beträgt die Mindestheizleistung unter Vernachlässigung von Verlusten 33 kW. Da bei einem 12 Volt-Bordnetz maximal 2-2,5 kW elektrische Heizleistung realisierbar sind, werden in der Regel Teilstromlösungen bevorzugt.
Aus der JP 2000 13 67 13 ist eine Abgasnachbehandlungsanordnung mit zwei parallel geschalteten beheizbaren Filtern bekannt.
Ein anderes mögliches Teilstromsystem ist in Figur 1 dargestellt. Man erkennt zwei parallel zueinander geschaltete Dieselpartikelfilter 1, 2. In die Abgaszuleitung 3 dieser Dieselpartikelfilter ist eine Klappe 4 eingebracht, mittels der das Abgas in der Zuleitung 3 wahlweise über eine Zuleitung 3a in den Dieselpartikelfilter 1, bzw. über eine Zuleitung 3b in den Dieselpartikelfilter 2 einführbar ist. Die Dieselpartikelfilter 1, 2 sind jeweils mit elektrischen Heizungen 1a, 2a ausgebildet. Über ein Gebläse 5 ist Frischluft in die Zuleitungen 3a, 3b einbringbar. Aus den Dieselpartikelfiltern 1, 2 austretendes Abgas wird über Abführleitungen 6a bzw. 6b, welche in einer Leitung 6 münden, abgeführt. Bei einer derartigen Anordnung werden die Dieselpartikelfilter zweckmäßigerweise einzeln einer Regeneration unterzogen. Beispielsweise wird während der Regeneration des Dieselpartikelfilters 1 mittels des Klappenmechanismus 4 der Großteil (bspw. 90 %) des Abgasstromes durch den Dieselpartikelfilter 2 geleitet. Der verbleibende Reststrom wird elektrisch, oder auch fossil, beheizt und erwärmt den Dieselpartikelfilter 1 sowie den hierin eingelagerten Dieselruß. Falls der Restsauerstoffgehalt des Abgasstromes zu gering ist, kann durch das Gebläse 5 Frischluft zugeführt werden. Der maximale Druckaufbau des Gebläses, typischerweise bis zu 150 hPa, beschränkt dessen Einsatz jedoch auf relativ kleine Überdrücke im Abgastrakt. Die Größe des Teilstromes kann so eingestellt bzw. bemessen werden, dass der Dieselpartikelfilter 1 in kurzer Zeit mit der maximal realisierbaren elektrischen Heizleistung über die Entflammtemperatur des Dieselrußes gebracht wird. Nach dem Ende der Regeneration des Dieselpartikelfilters 1 kann dann der Dieselpartikelfilter 2 regeneriert werden. Es ist ebenfalls möglich, zwischen der Regeneration der einzelnen Dieselpartikelfilter Phasen vorzusehen, in denen beide Dieselpartikelfilter entsprechend einem Normalbetrieb gleichmäßig mit Abgas beaufschlagt werden. Ziel der Erfindung ist es, eine Regeneration von Dieselpartikelfiltern in möglichst einfacher und unaufwendiger Weise durchzuführen. Dieses Ziel wird erreicht durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 sowie eine Anordnung mit den Merkmalen des Patentanspruchs 7.
Die erfindungsgemäße Maßnahme, die Regeneration in einem wenigstens teilweise geschlossenen, im Folgenden als Umluftkreislauf bezeichneten Zirkulationskreislauf durchzuführen, ermöglicht eine Regeneration im wesentlichen unabhängig von der Größe des Abgasstromes, des Restsauerstoffgehaltes und des Druckniveaus. Dadurch, dass das Abgas mittels des Umluftkreislaufs mehrfach durch den Dieselpartikelfilter durchgeführt wird, ist die Aufheizzeit stark verkürzt, wodurch Energie eingespart werden kann.
Dabei ist vorgesehen, dem Umluftkreislauf Umgebungsluft beizumischen. Durch den erfindungsgemäß realisierbaren kleinen Massenstrom im Umluftkreislauf sowie eine derartige beschränkte Frischluftzumessung können trotz geringer elektrischer Heizleistung hohe Temperaturen im Dieselpartikelfilter sehr schnell realisiert werden. Hierdurch ist es möglich, den Dieselpartikelfilter auch ohne Additivierung eines Dieselkraftstoffes wirksam zu regenerieren, so dass auch eine Aschebildung im Dieselpartikelfilter durch anorganische Additivrückstände vermieden werden kann. Die kontrollierte Frischluft- bzw. Sauerstoffbeimischung zum Umluftstrom stellt neben der Größe des Umluftstromes, welche durch eine Gebläsedrehzahl regelbar ist, sowie der elektrischen Heizleistung einen weiteren Parameter zur Temperaturregelung des Dieselpartikelfilters während des "Durchzündens" des Rußes dar. Durch eine entsprechende Regelung dieser Parameter können örtliche und zeitliche Temperaturspitzen im Dieselpartikelfilter vermieden werden, wodurch sich dessen Lebenserwartung verlängert.
Vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Vorrichtung sind Gegenstand der Unteransprüche.
Zweckmäßigerweise ist es möglich, parallel zu der Einführung von Frischluft in den im wesentlichen geschlossenen Kreislauf die Ausblasung von Umluft aus dem Kreislauf vorzusehen.
Gemäß einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens erfolgt eine Detektion des im Rahmen der Regeneration des wenigsten einen Dieselpartikelfilters erzeugten Russabbrandes über eine Differenzsauerstoffmessung an der Eintritts- bzw. Austrittsseite des Dieselpartikelfilters. Dieses Messverfahren erweist sich in der Praxis als sehr zuverlässig. Im Rahmen der erfindungsgemäßen Anordnung sind als hierfür geeignete Mittel beispielsweise vor und hinter dem Dieselpartikelfilter positionierbare Sauerstoffsensoren vorgesehen.
Es erweist sich als vorteilhaft, wenn die Menge zugeführter Frischluft der Menge ausgeblasener Umluft entspricht.
Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Anordnung wird ein zwei parallel geschaltete Dieselpartikelfilter beaufschlagender Abgasstrom derart umgeleitet, dass ein erster Dieselpartikelfilter im wesentlichen mit dem vollständigen Abgasstrom beaufschlagt wird und gleichzeitig bezüglich des zweiten Dieselpartikelfilters ein geschlossener Umluftkreislauf erzeugt wird. Als im wesentlichen vollständiger Abgasstrom werden hierbei insbesondere Anteile zwischen 80 und 100 % des Gesamtabgasstromes bezeichnet.
Die Erfindung wird nun anhand der beigefügten Zeichnung weiter erläutert. In dieser zeigt
  • Figur 1, wie bereits erwähnt, ein Blockschaltbild zur Erläuterung einer elektrischen Regeneration von Dieselpartikelfiltern,
  • Figur 2 ein Blockschaltbild einer bevorzugten Ausführungsform einer erfindungsgemäßen Anordnung zur Regeneration von zwei Dieselpartikelfiltern,
  • Figur 3 das Blockschaltbild gemäß Figur 2, wobei zur Darstellung einer ersten Phase einer bevorzugten Ausführungsform des erfindungsgemäßen Regenerationsverfahrens die hierbei auftretenden Abgas- bzw. Gasströme dargestellt sind, und
  • Figur 4 das Blockschaltbild gemäß Figur 2, wobei zur Darstellung einer zweiten Phase einer bevorzugten Ausführungsform des erfindungsgemäßen Regenerationsverfahrens die hierbei auftretenden Abgas- bzw. Gasströme dargestellt sind.
  • In Figur 2 erkennt man, daß die dargestellte bevorzugte Ausführungsform der erfindungsgemäßen Anordnung analog zu der bereits beschriebenen Anordnung gemäß dem Stand der Technik zwei Dieselpartikelfilter 21, 22 mit jeweils zugeordneter elektrischer Heizung 21a, 22a aufweist. Den Dieselpartikelfiltern 21, 22 ist über eine Abgaszuleitung 23 Abgas zuführbar. Die Leitung 23 ist über eine Klappe 24 mit einer ersten Abgaszuleitung 23a, welche mit dem Dieselpartikelfilter 21, und einer einer zweiten Abgaszuleitung 23b, welche mit dem Dieselpartikel 22 verbunden ist, in Verbindung bringbar. Durch entsprechende Stellung der Klappe 24 ist es möglich, den durch die Abgaszuleitung 23 strömenden Abgasstrom in beliebiger Weise auf die Dieselpartikelfilter 21 bzw. 22 zu verteilen.
    Man erkennt ferner, daß Abführleitungen 26a bzw. 26b, welche aus den jeweiligen Dieselpartikelfiltern herausführen, eine Klappe 27 beaufschlagen. Die Klappe 27 kann in einer ersten Stellung gewährleisten, daß die Abführleitungen 26a, 26b in einer gemeinsamen Abführleitung 26 münden. In einer zweiten Stellung ist die Klappe 27 derart einstellbar, daß die Leitungen 26a oder 26b durchströmendes Gas (Abgas) über eine Leitung 30 eine Klappe 28, in eine Leitung 32, ein Gebläse 25 und die Klappe 24 zurück in die jeweiligen Dieselpartikelfilter 21, 22 geführt werden kann.
    Über die Klappe 28 ist mittels einer Zuführleitung 29 Frischluft in den Abgasstrom einführbar.
    Durch entsprechende Einstellung der Klappen 24, 27 und 28 ist es in einfacher Weise möglich, die Gasströme zur Realisierung des erfindungsgemäßen Verfahrens zu leiten. Dies wird im folgenden anhand der Figuren 3 und 4 erläutert.
    In Figur 3 ist beispielhaft die erste Phase einer Regeneration des unteren Dieselpartikelfilters 22 dargestellt. Die Klappen 24 und 27 sind derart eingestellt, daß der gesamte über die Zuführleitung 23 einströmende Abgasstrom auf den oberen Dieselpartikelfilter 21, und von diesem in die Abführleitung 6 geleitet wird. Dieser Strom ist mittels der gestrichelten Pfeile veranschaulicht. Diese Einstellung der Klappen 24 und 27, und eine zusätzliche geschlossene Stellung der Klappe 28 bewirkt, daß gleichzeitig bezüglich des unteren Dieselpartikelfilters 22 ein geschlossenes Leitungssystem erzeugt wird. Durch Einschaltung des Gebläses 25 ist es somit möglich, den Dieselpartikelfilter 22 im Umluftmodus mit Abgas zu beaufschlagen. Das Gebläse 25 muß hierbei nur einen relativ kleinen Massenstrom fördern, nämlich den Massenstrom, der zum Zeitpunkt der erwähnten Einstellung der Klappen 24, 27 und 28 sich innerhalb des Dieselpartikelfilters 22 und des geschlossenen Leitungssystems (Leitungen 23b, 26b, 30, 32 und 31) befindet. Bei typischen Dimensionierungen von Regenerationssystemen ist davon auszugehen, daß der maximal zu fördernde Massenstrom hier bei etwa 20 kg/h beträgt, wodurch der Druckabfall über den mit Ruß gefüllten Dieselpartikelfilter 22 relativ klein ist, typischerweise maximal 50 hPa.
    Durch Einschaltung der elektrischen Heizung 22a des Dieselpartikelfilters 22 ist es nun möglich, daß den Dieselpartikelfilter im Umluftmodus durchströmende Abgas wirksam zu erwärmen.
    Die elektrische Heizung 22a, welche zweckmäßigerweise als elektrische Heizspirale ausgebildet ist, erwärmt den Dieselpartikelfilter 22 über Strahlungseinkopplung sowie konvektiv über den Umluftstrom. Da zunächst keine Luft aus dem System austritt, erfolgt die Aufheizung, wie erwähnt, sehr schnell.
    Die Strömungswege zur Realisierung des Umluftmodus sind in Figur 3 mittels der durchgezogenen Pfeile veranschaulicht.
    Bei Erreichen einer für das Gebläse maximal zulässigen Temperatur, bspw. 300 °C, öffnet die Klappe 28 und mischt dem Umluftkreislauf kontrolliert Frischluft zu. Durch entsprechendes Öffnen der Klappe 27 wird gleichzeitig Umluft aus dem geschlossenen Kreislauf in den Abgastrakt (Abführleitung 6) ausgeblasen, wobei zweckmäßigerweise ein Gleichgewicht zwischen angesaugter Frischluft und ausgestoßener Umluft eingestellt wird. Die Position der Klappe 28 wird hierbei derart angesteuert, daß die maximal zulässige Temperatur für das Gebläse 25 zu keinem Zeitpunkt überschritten wird. Dieser Zustand ist in Fig. 4 dargestellt, wobei der Frischluftstrom und der Ausblasstrom mittels punktierten Pfeilen veranschaulicht sind.
    Der Dieselpartikelfilter 22 wird in diesem Betriebsmodus weiter bis zum Erreichen der Entflammtemperatur des eingelagerten Rußes erwärmt. Das "Durchzünden" des Dieselrußes kann durch Messung des Sauerstoffverbrauchs aufgrund der Oxidation innerhalb des Dieselpartikelfilters 22 durchgeführt werden. Hierzu erweist es sich als zweckmäßig, eingangsseitig und ausgangsseitig von dem Dieselpartikelfilter 22 Lambdasonden 40, 41 vorzusehen. Es ist ebenfalls möglich, über entsprechende eingangs- und ausgangsseitige Druckmessungen den Druckabfall innerhalb des Dieselpartikelfilters zu messen. Die Feststellung des "Durchzündens" des Dieselrußes ist schließlich mit einer ausgangsseitigen Temperaturmessung möglich. Eine entsprechende Temperaturmesseinrichtung, mittels der ein das "Durchzünden" charakterisierender steiler Temperaturanstieg feststellbar ist, ist in Figur 3 schematisch mit 42 bezeichnet.
    Die Temperatur des Dieselpartikelfilters 22 kann durch Ansteuerung der Heizleistung der elektrischen Heizung 22a oder des Fördervolumens des Gebläses 25 kontrolliert werden. Ferner kann über die kontrollierte Frischluftzumessung (durch Ansteuerung der Klappe 28) der Sauerstoffgehalt der Umluft und damit die Geschwindigkeit des Rußabbrandes gesteuert werden. Mit diesen Maßnahmen kann wirkungsvoll ein Überhitzen und eine Beschädigung des Dieselpartikelfilters 22 durch die beim Abbrand des Dieselrußes frei werdende Verbrennungsenthalpie verhindert werden.
    Durch entsprechendes Umstellen der Klappen 24 und 27 ist es anschließend möglich, den aus der Zuleitung 23 zugeführten Abgasstrom im wesentlichen vollständig über den Dieselpartikelfilter 22 abzuführen und einen geschlossenen Umluftkreislauf bezüglich des Dieseslpartikelfilters 21 zu erzeugen. Das Umstellen der Klappen 24 und 27 kann unmittelbar nach Beendigung des Regenerationsverfahrens für den Dieselpartikelfilter 22 erfolgen. Es ist ebenfalls möglich, nach der Regeneration des Dieselpartikelfilters 22 zunächst beide Dieselpartikelfilter mit Abgas zu beaufschlagen und die entsprechende Regeneration des Dieselpartikelfilters 21 erst zu einem späteren Zeitpunkt einzuleiten. Selbstverständlich ist es möglich, für den Dieselpartikelfilter 21 analog zum Dieselpartikelfilter 22 Lambdasonden und/oder eine Temperaturmesseinrichtung vorzusehen, welche jedoch in Figur 3 aus Gründen der Übersichtlichkeit nicht im einzelnen dargestellt sind.
    Die sich erfindungsgemäß ergebenden Vorteile seien abschließend noch einmal wie folgt zusammengefaßt:
    Die Regeneration der Dieselpartikelfilter erfolgt im wenigstens teilweise geschlossenen Umluftkreis unabhängig von der Höhe des Abgasstromes sowie vom Restsauerstoffgehalt und Druckniveau des Abgasstromes. Ein eingesetztes Gebläse muß lediglich den Gegendruck bzw. den Druckabfall eines Dieselpartikelfilters überwinden. Ferner kann die Aufheizzeit für einen Dieselpartikelfilter stark verkürzt werden, wodurch Energie eingespart wird. Durch den kleinen Massenstrom im Umluftkreis sowie die beschränkte Frischluftzumessung können trotz geringer elektrischer Heizleistung hohe Temperaturen im Dieselpartikelfilter erreicht werden. Hierdurch kann der Dieselpartikelfilter auch ohne Additivierung des Dieselkraftstoffes wirksam regeneriert werden.
    Die kontrollierte Frischluft- bzw. Sauerstoffbeimengung zum Umluftstrom stellt neben der Größe des Umluftstromes, welche durch die Gebläsedrehzahl einstellbar ist, sowie der elektrischen Heizleistung ein weiteres Stellglied zur Temperaturregelung des Dieselpartikelfilters während des "Durchzündens" des Rußes dar. Hierdurch können örtliche und zeitliche Temperaturspitzen in einem Dieselpartikelfilter vermieden werden, wodurch sich dessen Lebenserwartung deutlich verlängert.

    Claims (10)

    1. Verfahren zur Regeneration wenigstens eines Dieselpartikelfilters (21; 22), bei welchem Abgas über eine Zuleitung (23, 23a, 23b) in den wenigstens einen Dieselpartikelfilter (21; 22) eingebracht, und über eine Abführleitung (26, 26a, 26b) aus diesem abgeführt wird, wobei eine Erwärmung des den wenigstens einen Dieselpartikelfilter (21; 22) durchströmenden Abgases erfolgt, gekennzeichnet durch die Schaffung eines schließbaren Umluftkreislaufes, über den aus dem wenigstens einen Dieselpartikelfilter (21; 22) austretendes Abgas erneut in diesen einbringbar ist, wobei dem Umluftkreislauf Umgebungsluft hinzugefügt werden kann.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in dem Umluftkreislauf zirkulierende Umluft geregelt bzw. gesteuert aus diesem ausblasbar ist.
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Menge zugeführter Frischluft der Menge ausgeblasener Umluft entspricht.
    4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein im Rahmen der Regeneration des wenigstens einen Dieselpartikelfilters (21; 22) erzeugter Russabbrand über eine Differenzsauerstoffmessung an der Eintritts- und Austrittsseite des wenigstens einen Dieselpartikelfilters (21; 22) durchgeführt wird.
    5. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch wenigstens zwei parallel geschaltete Dieselpartikelfilter (21; 22), wobei ein beide Dieselpartikelfilter beaufschlagender Abgasstrom wahlweise derart umgeleitet wird, dass der im wesentlichen vollständige Abgasstrom über den ersten Dieselpartikelfilter (21) geleitet wird, und bezüglich des zweiten Dieselpartikelfilters (22) ein geschlossener Umluftkreislauf bereitgestellt wird.
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Umleitung der Abgasströme durch in die Zuleitung bzw. Ableitung des Abgasstromes eingebrachte Klappen (24, 27) bewerkstelligt wird.
    7. Anordnung zur Regeneration wenigstens eines Dieselpartikelfilters (21; 22), welcher mit einer Zuleitung (23, 23a; 23, 23b) zur Zufuhr von Abgas, und einer Abführleitung (26a, 26; 26, 26b, 26) zum Abführen von Abgas in Verbindung steht, wobei Mittel (21a; 21b) zur Erwärmung des wenigstens einen Dieselpartikelfilters durchströmenden Abgases vorgesehen sind, gekennzeichnet durch Mittel (24, 23a, 26a, 27, 30, 28, 32, 25, 31; 24, 23b, 26b, 27, 30, 28, 32, 25, 31) zur Schaffung eines schließbaren Umluftkreislaufes, über den aus dem wenigstens einen Dieselpartikelfilter (21; 22) austretendes Abgas erneut in diesen einbringbar ist, wobei Mittel (28, 29) zur Hinzufügung von Umgebungsluft in den Umluftkreislauf vorgesehen sind.
    8. Anordnung nach Anspruch 7, gekennzeichnet durch Mittel (27) zum geregelten bzw. gesteuerten Ausblasen von Abgas aus dem Umluftkreislauf.
    9. Anordnung nach einem der Ansprüche 7 oder 8, gekennzeichnet durch Mittel (40, 41) zur Differenzsauerstoffmessung an der Eintritts- und Austrittsseite des wenigstens einen Dieselpartikelfilters (21; 22).
    10. Anordnung nach einem der Ansprüche 7 bis 9, bei welcher zwei parallel geschaltete Dieselpartikelfilter (21, 22) derart mit einem Abgasstrom beaufschlagbar sind, dass der im wesentlichen vollständige Abgasstrom über einen ersten Dieselpartikelfilter leitbar ist, und bezüglich des zweiten Dieselpartikelfilters ein geschlossener Umluftkreislauf bereitstellbar ist, wobei als Mittel zur entsprechenden Umleitung der Abgasströme in die Zuleitung bzw. Abführleitung einbringbare Klappen (24, 27) vorgesehen sind.
    EP02776866A 2001-11-29 2002-11-06 Verfahren und anordnung zur regeneration von dieselpartikelfiltern Expired - Lifetime EP1451452B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10158569A DE10158569A1 (de) 2001-11-29 2001-11-29 Verfahren und Anordnung zur Regeneration von Dieselpartikelfiltern
    DE10158569 2001-11-29
    PCT/DE2002/004102 WO2003048535A1 (de) 2001-11-29 2002-11-06 Verfahren und anordnung zur regeneration von dieselpartikelfiltern

    Publications (2)

    Publication Number Publication Date
    EP1451452A1 EP1451452A1 (de) 2004-09-01
    EP1451452B1 true EP1451452B1 (de) 2005-06-29

    Family

    ID=7707374

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02776866A Expired - Lifetime EP1451452B1 (de) 2001-11-29 2002-11-06 Verfahren und anordnung zur regeneration von dieselpartikelfiltern

    Country Status (5)

    Country Link
    US (1) US7160355B2 (de)
    EP (1) EP1451452B1 (de)
    JP (1) JP2005511944A (de)
    DE (2) DE10158569A1 (de)
    WO (1) WO2003048535A1 (de)

    Families Citing this family (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10350485A1 (de) 2003-10-29 2005-06-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
    FR2862547B1 (fr) * 2003-11-25 2006-12-01 Renault Sas Dispositif pour le traitement thermique d'un filtre a particules ou d'un piege a oxydes d'azote
    US7410529B2 (en) 2004-10-05 2008-08-12 Caterpillar Inc. Filter service system and method
    US20060070360A1 (en) * 2004-10-05 2006-04-06 Caterpillar Inc. Filter service system and method
    US7419532B2 (en) * 2004-10-05 2008-09-02 Caterpillar Inc. Deposition system and method
    US7384455B2 (en) * 2004-10-05 2008-06-10 Caterpillar Inc. Filter service system and method
    US7462222B2 (en) * 2004-10-05 2008-12-09 Caterpillar Inc. Filter service system
    US7390338B2 (en) * 2005-01-25 2008-06-24 Pollution Control Products Co. Method and apparatus for regenerating engine exhaust filters
    US7410521B2 (en) * 2005-02-28 2008-08-12 Caterpillar Inc. Filter service system and method
    US20060191412A1 (en) * 2005-02-28 2006-08-31 Caterpillar Inc. Filter service system and method
    US8157897B2 (en) * 2007-06-29 2012-04-17 Caterpillar Inc. Filter purge system utilizing impact wave generating device and vacuum source
    US8142552B2 (en) * 2007-06-29 2012-03-27 Caterpillar Inc. Filter purge system utilizing a reactive propellant
    US9032710B2 (en) * 2007-08-20 2015-05-19 Parker-Hannifin Corporation Diesel dosing system for active diesel particulate filter regeneration
    US8635865B2 (en) * 2007-09-18 2014-01-28 Thermo King Corporation Diesel particulate filter including a heat exchanger
    US8444729B2 (en) * 2007-11-26 2013-05-21 Caterpillar Inc. Electrically regenerated exhaust particulate filter having non-axial regeneration flame propagation
    WO2012015505A1 (en) * 2010-07-26 2012-02-02 International Engine Intellectual Property Company, Llc Aftertreatment burner air supply system
    DE102010037650B4 (de) * 2010-09-20 2016-02-11 Denso Corporation O2-Regelungssystem für einen Verbrennungsmotor und Verfahren zur Regelung der O2-Konzentration
    US9273649B2 (en) 2014-05-30 2016-03-01 Cnh Industrial America Llc System and method for controlling an electric aspirator of an air intake system for a work vehicle
    FI20145653A (fi) * 2014-07-07 2016-01-08 Valmet Technologies Oy Järjestely ja menetelmä
    US10392123B2 (en) 2016-04-20 2019-08-27 Carleton Life Support Systems, Inc. On-board inert gas generating air separation module recovery apparatus and method
    CN105885957B (zh) * 2016-05-24 2020-03-31 河南龙成煤高效技术应用有限公司 一种高温脱尘过滤设备、高温脱尘过滤系统及连续脱尘过滤的方法
    CN111852619B (zh) * 2020-07-17 2023-11-07 浙江天地环保科技股份有限公司 一种船舶尾气颗粒物捕集装置节能再生系统及方法

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4217757A (en) * 1978-10-10 1980-08-19 Texaco Inc. Exhaust gas recycling system
    US4558565A (en) * 1982-03-16 1985-12-17 Nippon Soken, Inc. Exhaust gas cleaning device for internal combustion engine
    US4671059A (en) * 1986-06-30 1987-06-09 Ontario Research Foundation Diesel particulate traps
    DE3722970A1 (de) * 1986-08-06 1988-02-11 Volkswagen Ag Verfahren und einrichtung zum reinigen eines partikelfilters, insbesondere eines russfilters
    DE3717140A1 (de) 1987-05-21 1988-12-08 Webasto Ag Fahrzeugtechnik Russfilteranlage im abgastrakt einer diesel-brennkraftmaschine
    US4867768A (en) * 1987-08-21 1989-09-19 Donaldson Company, Inc. Muffler apparatus with filter trap and method of use
    JPH01159029A (ja) * 1987-12-16 1989-06-22 Toyota Motor Corp ディーゼルエンジンの排気浄化装置
    DE3832790C2 (de) * 1988-09-27 1997-12-11 Pattas Konstantin N Verfahren und Einrichtung zum Regenerieren eines Rußfilters
    US5194078A (en) * 1990-02-23 1993-03-16 Matsushita Electric Industrial Co., Ltd. Exhaust filter element and exhaust gas-treating apparatus
    DE19807203A1 (de) * 1998-02-20 1999-08-26 Volkswagen Ag Stickoxidbehandlung bei einem Mager-Otto-Motor
    US6675572B2 (en) * 2000-09-14 2004-01-13 Siemens Automotive Inc. Valve including a recirculation chamber

    Also Published As

    Publication number Publication date
    WO2003048535A1 (de) 2003-06-12
    JP2005511944A (ja) 2005-04-28
    DE10158569A1 (de) 2003-06-12
    US20040112218A1 (en) 2004-06-17
    DE50203531D1 (de) 2005-08-04
    US7160355B2 (en) 2007-01-09
    EP1451452A1 (de) 2004-09-01

    Similar Documents

    Publication Publication Date Title
    EP1451452B1 (de) Verfahren und anordnung zur regeneration von dieselpartikelfiltern
    EP1643094B1 (de) Abgasanlage für eine Brennkraftmaschine und zugehöriges Betriebsverfahren
    DE69924459T2 (de) Brennkraftmaschine mit NOx-Katalysator für Magergemischverbrennung
    EP0532031B1 (de) Vorrichtung zur thermischen Regeneration von Partikelfiltern für Dieselmotorenabgas
    EP1845579B1 (de) Brennstoffzellensystem und zugehöriges Betriebsverfahren
    DE19925915B4 (de) Fahrzeugheizgerät mit Brenner
    DE10256769B4 (de) Kraftfahrzeug mit einem Diesel-Antriebsmotor
    DE112011104731T5 (de) Miniaturregenerationseinheit
    DE102008019383A1 (de) Verfahren zum erneuten Öffnen von mit Verbrennungsrückständen gefüllten Kanälen in Dieselfeinstofffiltern
    EP2004962A1 (de) Vorrichtung und verfahren zur erzeugung von heissgas, dieselpartikelfiltersystem, elektronisches gerät und computerprogrammprodukt
    DE102005057449A1 (de) Verfahren und System zum Steuern des in Abgasen enthaltenen Kraftstoffes zur Unterstützung der Regeneration eines Partikelfilters
    DE102005057450A1 (de) Verfahren und System zum Bestimmen von Temperatur-Sollwerten in Systemen einschließlich von Partikelfiltern mit Regenerationsfähigkeiten
    EP1752632B1 (de) Vorrichtung und Verfahren zur Reinigung von Abgasen
    DE3730121C2 (de) Heizungsanlage für ein Kraftfahrzeug
    DE102005058023A1 (de) Verfahren und System zum Regenerieren eines Partikelfilters
    DE102019206085A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors, Verbrennungsmotor
    DE102004048335B4 (de) Abgasanlage für eine Brennkraftmaschine und zugehöriges Betriebsverfahren
    EP2166204A1 (de) Flammglühkerze
    WO2010070100A1 (de) Abgasreinigungsanlage sowie verfahren zum betrieb einer abgasreinigungsanlage
    DE102019005155A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
    EP1431529B1 (de) Verfahren zur Anhebung oder Absenkung der Abgastemperatur bei Dieselmotoren
    DE10137050A1 (de) Vorrichtung und Verfahren zur Abgasbehandlung einer Brennkraftmaschine
    DE102008024470B4 (de) Verfahren zum Regenerieren eines Abgasreinigungsfilters sowie Verdampfer
    DE3726164C2 (de)
    EP1517011A2 (de) Abgasanlage mit Partikelfilter sowie zugehörige Heizeinrichtung und zugehöriges Regenerationsverfahren

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20040629

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    17Q First examination report despatched

    Effective date: 20040928

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RBV Designated contracting states (corrected)

    Designated state(s): DE FR GB

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50203531

    Country of ref document: DE

    Date of ref document: 20050804

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20051007

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060330

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20131122

    Year of fee payment: 12

    Ref country code: FR

    Payment date: 20131119

    Year of fee payment: 12

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20141106

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20150731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141201

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170126

    Year of fee payment: 15

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50203531

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180602