EP1446614A1 - Chambre de combustion annulaire pour turbine a gaz - Google Patents
Chambre de combustion annulaire pour turbine a gazInfo
- Publication number
- EP1446614A1 EP1446614A1 EP02802992A EP02802992A EP1446614A1 EP 1446614 A1 EP1446614 A1 EP 1446614A1 EP 02802992 A EP02802992 A EP 02802992A EP 02802992 A EP02802992 A EP 02802992A EP 1446614 A1 EP1446614 A1 EP 1446614A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- liner
- annular combustion
- chamber according
- annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/50—Combustion chambers comprising an annular flame tube within an annular casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/60—Support structures; Attaching or mounting means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Definitions
- the invention relates to an annular combustion chamber for a gas turbine with at least one inlet opening for a burner and an outlet opening into a turbine space.
- the invention further relates to a gas turbine with such an annular combustion chamber.
- gas turbines are widely used in power plant technology.
- a fuel / air mixture is ignited and burns in the combustion chamber.
- the resulting hot combustion gases expand in
- Air cooling thus enables higher performance / efficiency and lower NO x emissions than, for example, open air cooling.
- open air cooling the "cold cooling air is mixed with the heating gas stream downstream of the combustion (lower gas turbine efficiency, higher pollutant values).
- closed air cooling is clearly superior to open air cooling.
- known ring combustion chambers from the prior art are provided with an inner lining, usually made of a number of thermally stable, for example ceramic, elements, an annular space between the inner lining and the actual ring combustion chamber housing for the passage of the cooling medium is left.
- This structure proves to be complicated on the one hand because it involves a large number of parts, and on the other hand it is not suitable for the formation of a closed air cooling because of the gaps existing between the individual lining segments.
- a task of the present invention is therefore an annular combustion chamber for a gas turbine of the type mentioned Specify the type, which is simple and suitable for the liner of a closed cooling.
- the invention proposes an annular combustion chamber for a gas turbine with at least one inlet opening for a burner and an outlet opening into a turbine space, in which the annular combustion chamber has an outer wall delimiting an annular space and an annular liner arranged in the annular space Leading hot gas from the at least one inlet opening to the outlet, wherein an annular space is left between the liner and the outer wall for the flow of a cooling medium.
- the annular combustion chamber constructed according to the invention is characterized by a simple and functional design with a small number of parts.
- the hot gas-carrying interior cladding is usually made up of many temperature-resistant elements. Although these elements can move freely thermally, they have the disadvantage of "leakage”: the cooling air escapes through the many gaps directly into the hot gas without any use - on the contrary, the hot working gas is cooled unnecessarily ("open cooling" with the above disadvantages).
- the RBK according to the invention has a coherent, gas-tight liner for guiding hot gas.
- the proposed metallic liner construction combines the following advantages:
- the efficient closed air cooling can be realized because the liner is gas and air impermeable.
- the cooling air can be used 100% for combustion; their absorbed heat is fed into the process.
- the thermal stresses / temperature gradients are limited with the thin-walled design of the liner, so that the component life is sufficiently long.
- the design is simple and includes very few parts.
- the liner is formed from a metal sheet of low thickness.
- a dimensionally stable, heat-elastic liner construction with an optimal course of the wall thickness is proposed, which consists of several ring segments welded to one another in a cost and production-friendly manner.
- efficient impingement cooling there are high cooling efficiencies at a low voltage level with sufficient stability against internal and external pressure as well as against vibration excitation from the hot gas side.
- the liner is fixed at the transition from the annular combustion chamber to the turbine space relative to the outer wall and is otherwise fixed rests along its surface, resilient suspensions movable relative to the outer wall on this.
- the liner is additionally provided with elastic holding elements so that it can be freely moved and tension-free on the surrounding cold and rigid RBK housing.
- the elastic suspensions preferably consist of prestressed compression springs / tension bolts in such a way that tensile forces hold the liner evenly and symmetrically in every operating state.
- the suspensions preferably have friction damping, so that vibration excitation is minimized.
- stiffening structures preferably stiffening beads, running in its circumferential direction.
- the arrangement of the stiffening structures or the elastic suspensions can be formed at intervals varying in the longitudinal direction of the liner, depending on the static or dynamic stiffening requirements.
- the complete burner can be (dis) assembled from the outside using appropriately designed RBK housings / burner contours.
- a piston ring seal is proposed according to an advantageous development of the invention.
- Such a piston ring seal is excellently suited for sealing the outer area through which cooling air flows from the inner area of the liner in which the hot gas is guided.
- the cooling air is directed through an arrangement of through openings directly onto the outer surface of the liner, where it impacts it and causes an intensive cooling effect. Since there are different cooling requirements due to the speed and temperature distribution of the hot gas flow conducted inside the liner, it is advantageous if the liner is cooled differently in zones divided according to the cooling requirements. According to an advantageous development of the invention, impingement cooling segments are arranged in the region of an entry zone in which the hot gas from the burner enters the combustion chamber, in the space left between the outer wall and the liner.
- the invention proposes to design this housing with a small wall thickness and stiffening ribs in the circumferential direction.
- a labyrinth seal is advantageously proposed according to the invention for sealing the burner bushing through the outer housing.
- Such a labyrinth seal offers a simple and low-leak seal between the one in the space between the liner and the outer housing
- the first row of guide vanes of the turbine is firmly connected to the annular combustion chamber.
- the first row of guide vanes is coupled to a guide vane carrier and suspended in an "oscillating" manner, since large thermal differential paths occur at this point.
- the large thermal differential paths are avoided at this point by the inventive integration of the first guide vane row into the annular combustion chamber
- the two main hot parts, the liner and the ring, are coupled to the cold RBK housing at just one axial fixed point with the first turbine guide vane row, and the entire component assembly is supported on the fixed shaft guard.
- Fig. 1 shows schematically in longitudinal section an inventive
- FIG. 2 schematically shows an enlarged cross section through an annular combustion chamber according to the invention according to the upper section from FIG. 1,
- FIG. 3 shows a perspective view of a liner of the ring combustion chamber according to the invention
- FIG. 4a a partially sectioned view of a section of the inlet zone of the liner of an annular combustion chamber according to the invention
- FIG. 4b in detail a connecting flange between an inner segment and an outer segment of the liner
- FIG. 5 shows an enlarged representation of a cross section through a reinforcing bead formed in the liner of an annular combustion chamber according to the invention
- Fig. 6 shows the structure of an elastic suspension of the liner on the outer wall of the annular combustion chamber according to the invention.
- Fig. 1 is a schematic representation of a longitudinal section through an annular combustion chamber 1 according to the invention and its location in relation to other components of the turbine.
- the RBK housing 1.3 is supported on the fixed shaft guard 53 and is articulated to the pressure-resistant outer housing 2; the RBK housing is in three parts: it consists of the inner hub housing 1, the outer outer shell housing 3 and the connecting burner housing 33.
- the "torus" formed by the elements 1,3,33 contains the liner, consisting of the outer liner 41 and the inner liner 4.
- FIG. 1 shows that the “RBK torus” is inclined with respect to the machine axis MA and that the shaft guard 53 with the rotor 6 is guided through the RBK center.
- FIG. 2 the upper section of the sectional illustration through the annular combustion chamber 1 according to the invention shown in FIG. 1 is shown in FIG. 2.
- the liner consists of the inner liner 4 and the outer liner 41, both of which are airtight via a support flange.
- the RBK housing consists of the hub housing 1, the
- Fig. 2 also shows in a schematic manner the elastic suspensions 10 with which the liner 4,41 is suspended on the RBK housing 1,3 freely movable. .
- the liner 4 which is constructed from a thin-walled metal sheet, it has stiffening beads 45 running along its circumference.
- the stiffening beads 45 together with the elastic suspensions 10, prevent bulging and ovalization of the liner 4.
- the inside of the liner 4 is coated with a coating 46, preferably a thermal barrier coating or at least one anti-oxi dation layer provided.
- a thermal barrier coating can be applied as a so-called APS (atmospheric plasma spray).
- APS atmospheric plasma spray
- baffle cooling segments 14 are arranged in the annular space 7 formed between the outer wall 3 and the liner 4.
- the impingement cooling segments are designed as metallic hollow boxes. Cooling air is fed separately to these impingement cooling segments 14 and they have a shower head-like opening pattern on their surface facing the liner 4, through which cooling air is directed specifically to the surface of the liner 4 in this area.
- a central section 12 and an outlet zone 13 adjoin the inlet zone 11.
- the liner 4 is impact-cooled by means of cooling air directed through the opening arrangement in the outer wall 3 onto the liner 4.
- the outlet zone 13 is also impact-cooled.
- the cooling air flow is divided into two parts, a first part m k ⁇ by those formed in the outer wall 3
- Openings are used for impingement cooling of the central section 12 or the outlet zone 13, a second part m k2 is fed directly to the impingement cooling segments 14 and is used for impingement cooling of the inlet zone 11.
- the entire cooling air of the cooling air flows m k ⁇ and m k2 are fed together as cooling air flow m k to the burner and are used there completely as combustion air. In this way, closed air cooling is achieved, which enables the gas turbine to be highly efficient. The heat absorbed by the cooling air is returned to the system, so it is not lost.
- FIG. 3 shows a perspective view of the liner 4 of the annular combustion chamber 1 according to the invention.
- the reinforcement beads 45 running along the circumference, one can see 45 starting points 48 for elastic suspensions 10.
- uniformly distributed burner openings 47 can be seen, into which the torches arranged in a ring are located
- the liner 4 is constructed from individual, ring-shaped sheet metal segments, which are connected to one another via weld seams 49 (FIG. 4 a), preferably UP weld seams. This structure enables inexpensive and simple manufac development of a liner 4 for an annular combustion chamber according to the invention.
- FIG. 4b shows a detailed view of the flange 43 for connecting the inner segment 42 and the outer segment 41 of the liner 4. It can be seen that the inner segment 42 and the outer segment 41 meet at this point, the flange 43 ending at the end of a slim section in a bead-like stiffening ring 410. This prevents the outer segment 41 from denting. Along the narrow area of the flange 43, the inner segment 42 that meets there and the outer segment 41 are provided on the outside with a local outer coating 412 to even out the metal temperatures. In the interior of the stiffening ring 410, which is partly formed by the inner segment 42 and partly by the outer segment 41 of the liner 4, a sealing plate 411 is inserted into a cavity to seal the flange 43.
- H s is the height of the bead, which in the exemplary embodiment shown is selected to be a bead radius r s .
- the bead spacing designated with b s like the bead width e and the bead height h s, is selected in accordance with the mechanical stiffening requirements; the geometry of the bead can be chosen to vary over the length of the liner 4.
- FIG. 6 shows in detail an elastic suspension 10 between the liner 4 and the outer wall 3.
- a tension bolt 101 is screwed to a liner point 48 of the liner 4.
- the tension bolt 101 penetrates the outer wall 3 and projects into the outer wall at this point.
- a piston 103 is inserted into the housing 102 and sealed from the housing 102 by means of seals 104.
- a coil spring 105 is inserted between the housing 102 and the piston 104. The coil spring exerts one directed away from the housing 102
- the tension bolt 101 is connected to the piston 103 by means of an adjusting nut 106, the surface of the adjusting nut 106 abutting the piston 103 being convex and the associated surface of the piston 103 being concave. In this way, a ball seat is formed between the adjusting nut and the piston 103.
- a lock nut 107 is clamped against the adjusting nut 106.
- the piston 103 can move in the housing 102 in the longitudinal direction of the tension bolt 101.
- the helical spring 105 continuously exerts a tensile force on the draw bolt 101 in the direction of the outer wall 3, and the liner 4 is prestressed. In order to prevent vibrations of the liner 4, the adjusting nut 106 is inserted into a slot
- Friction damping element 108 is used, which opens into a corrugated structure in a slot in the housing 102 which extends in the direction of extension of the tension bolt 101.
- the wave-like design of the friction damping element 108 in this area results in high friction forces between the housing 102 and the friction damping element 108 in this area, which dampen relative movements between the liner 4 and the outer wall 3 and thus dampen corresponding vibrations.
- ⁇ n indicates a relative thermal expansion of the liner 4, which is compensated for by the elastic suspensions.
- annular combustion chamber is specified, which is simple and made up of a few parts and which particularly suitable for cooling by means of closed air cooling.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
La présente invention concerne une chambre de combustion annulaire (RBK) pour une turbine à gaz, qui permet un refroidissement à air en circuit fermé, de façon à obtenir de hautes puissances et des rendements élevés, avec de faibles émissions de Nox. Le boîtier en deux parties (1, 3) de la chambre de combustion annulaire entoure une gaine scellée à parois minces (4, 41) qui guide de manière étanche le gaz chaud provenant du brûleur (5) jusqu'à l'entrée de la turbine (8). Un espace annulaire variable (7) se trouve entre la gaine et le boîtier (1, 3) de la chambre de combustion annulaire. De l'air de refroidissement s'écoulant dans le sens inverse du gaz chaud est collecté dans cet espace annulaire et est apporté aux brûleurs (5) (« refroidissement à air en circuit fermé »). La surface de la gaine (4, 41) est refroidie de manière variable avec des dispositifs de refroidissement par impact (14) et des modèles perforés de refroidissement par impact en (1, 3). La gaine thermo-élastique, constituée d'anneaux soudés par soudage à l'arc sous flux en poudre, n'est fixée axialement que sur le rebord (36) et présente des moulures périphériques de renfort. La gaine (4, 41) à extension libre est suspendue de manière concentrique sur le boîtier (1, 3) de la chambre de combustion annulaire par des éléments de tension élastiques (10). Cette construction efficace, économique et simple offre en outre un avantage important au niveau du service, de par les mesures de construction suivantes : - les brûleurs (5) peuvent être complètement (dé)montés depuis l'extérieur, sans ouvrir le boîtier. - la gaine (4, 41) et un anneau qui intègre la première série d'aubes directrices de la turbine dans la chambre de combustion annulaire peuvent être retirés sous forme de pièces de service, c'est-à-dire sans ouvrir le boîtier de la turbine et du compresseur et sans retirer le rotor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02802992A EP1446614A1 (fr) | 2001-11-15 | 2002-11-07 | Chambre de combustion annulaire pour turbine a gaz |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01127137 | 2001-11-15 | ||
EP01127137A EP1312865A1 (fr) | 2001-11-15 | 2001-11-15 | Chambre de combustion annulaire de turbine à gaz |
EP02802992A EP1446614A1 (fr) | 2001-11-15 | 2002-11-07 | Chambre de combustion annulaire pour turbine a gaz |
PCT/EP2002/012448 WO2003042597A1 (fr) | 2001-11-15 | 2002-11-07 | Chambre de combustion annulaire pour turbine a gaz |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1446614A1 true EP1446614A1 (fr) | 2004-08-18 |
Family
ID=8179243
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01127137A Withdrawn EP1312865A1 (fr) | 2001-11-15 | 2001-11-15 | Chambre de combustion annulaire de turbine à gaz |
EP02802992A Withdrawn EP1446614A1 (fr) | 2001-11-15 | 2002-11-07 | Chambre de combustion annulaire pour turbine a gaz |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01127137A Withdrawn EP1312865A1 (fr) | 2001-11-15 | 2001-11-15 | Chambre de combustion annulaire de turbine à gaz |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040250549A1 (fr) |
EP (2) | EP1312865A1 (fr) |
JP (1) | JP2005509827A (fr) |
WO (1) | WO2003042597A1 (fr) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1482246A1 (fr) * | 2003-05-30 | 2004-12-01 | Siemens Aktiengesellschaft | Chambre de combustion |
EP1724526A1 (fr) * | 2005-05-13 | 2006-11-22 | Siemens Aktiengesellschaft | Coquille de turbine à gaz, turbine à gaz et procédé de démarrage et d'arrêt d'une turbine à gaz |
US7493771B2 (en) * | 2005-11-30 | 2009-02-24 | General Electric Company | Methods and apparatuses for assembling a gas turbine engine |
FR2897923B1 (fr) * | 2006-02-27 | 2008-06-06 | Snecma Sa | Chambre de combustion annulaire a fond amovible |
FR2920524B1 (fr) | 2007-08-30 | 2013-11-01 | Snecma | Turbomachine a chambre annulaire de combustion |
EP2039998A1 (fr) | 2007-09-24 | 2009-03-25 | ALSTOM Technology Ltd | Turbine à gaz avec segments de chemise soudés |
DE102009035550A1 (de) | 2009-07-31 | 2011-02-03 | Man Diesel & Turbo Se | Gasturbinenbrennkammer |
EP2487417B1 (fr) * | 2011-02-09 | 2015-07-15 | Siemens Aktiengesellschaft | Boîtier de chambre de combustion |
DE102011076473A1 (de) * | 2011-05-25 | 2012-11-29 | Rolls-Royce Deutschland Ltd & Co Kg | Segmentbauteil aus Hochtemperaturgussmaterial für eine Ringbrennkammer, Ringbrennkammer für ein Flugzeugtriebwerk, Flugzeugtriebwerk und Verfahren zur Herstellung einer Ringbrennkammer |
US8695352B2 (en) | 2012-07-12 | 2014-04-15 | Solar Turbines Inc. | Baffle assembly for bleed air system of gas turbine engine |
FR2996289B1 (fr) * | 2012-10-01 | 2018-10-12 | Turbomeca | Chambre de combustion comprenant un tube a flamme fixe au moyen de trois elements de centrage. |
US20140223919A1 (en) * | 2013-02-14 | 2014-08-14 | United Technologies Corporation | Flexible liner hanger |
US10281152B2 (en) * | 2013-12-19 | 2019-05-07 | United Technologies Corporation | Thermal mechanical dimple array for a combustor wall assembly |
US9890953B2 (en) * | 2014-01-10 | 2018-02-13 | United Technologies Corporation | Attachment of ceramic matrix composite panel to liner |
US10281140B2 (en) | 2014-07-15 | 2019-05-07 | Chevron U.S.A. Inc. | Low NOx combustion method and apparatus |
EP3002519B1 (fr) | 2014-09-30 | 2020-05-27 | Ansaldo Energia Switzerland AG | Agencement de chambre de combustion avec système de fixation pour pièces de chambre de combustion |
DE102014226707A1 (de) * | 2014-12-19 | 2016-06-23 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenbrennkammer mit veränderter Wandstärke |
US10465907B2 (en) * | 2015-09-09 | 2019-11-05 | General Electric Company | System and method having annular flow path architecture |
EP3252378A1 (fr) * | 2016-05-31 | 2017-12-06 | Siemens Aktiengesellschaft | Agencement de chambre de combustion annulaire de turbine à gaz |
US20180306120A1 (en) | 2017-04-21 | 2018-10-25 | General Electric Company | Pressure regulated piston seal for a gas turbine combustor liner |
CN109098860A (zh) * | 2017-06-21 | 2018-12-28 | 杨航 | 一种动力装置 |
DE102017212575A1 (de) * | 2017-07-21 | 2019-01-24 | Siemens Aktiengesellschaft | Verfahren zur Erhöhung der Leistung einer Gasturbine |
US10801469B2 (en) * | 2017-11-07 | 2020-10-13 | General Electric Company | Wind blade joints with floating connectors |
JP2023183452A (ja) * | 2022-06-16 | 2023-12-28 | 川崎重工業株式会社 | ガスタービンの燃焼器 |
Family Cites Families (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE489359A (fr) * | 1944-10-05 | |||
US3031844A (en) * | 1960-08-12 | 1962-05-01 | William A Tomolonius | Split combustion liner |
US3169367A (en) * | 1963-07-18 | 1965-02-16 | Westinghouse Electric Corp | Combustion apparatus |
US3702058A (en) * | 1971-01-13 | 1972-11-07 | Westinghouse Electric Corp | Double wall combustion chamber |
US4480436A (en) * | 1972-12-19 | 1984-11-06 | General Electric Company | Combustion chamber construction |
US4555901A (en) * | 1972-12-19 | 1985-12-03 | General Electric Company | Combustion chamber construction |
US4912922A (en) * | 1972-12-19 | 1990-04-03 | General Electric Company | Combustion chamber construction |
US3879940A (en) * | 1973-07-30 | 1975-04-29 | Gen Electric | Gas turbine engine fuel delivery tube assembly |
US3899882A (en) * | 1974-03-27 | 1975-08-19 | Westinghouse Electric Corp | Gas turbine combustor basket cooling |
US4198815A (en) * | 1975-12-24 | 1980-04-22 | General Electric Company | Central injection fuel carburetor |
US4151713A (en) * | 1977-03-15 | 1979-05-01 | United Technologies Corporation | Burner for gas turbine engine |
US4112676A (en) * | 1977-04-05 | 1978-09-12 | Westinghouse Electric Corp. | Hybrid combustor with staged injection of pre-mixed fuel |
US4168609A (en) * | 1977-12-01 | 1979-09-25 | United Technologies Corporation | Folded-over pilot burner |
US4195475A (en) * | 1977-12-21 | 1980-04-01 | General Motors Corporation | Ring connection for porous combustor wall panels |
CH633347A5 (de) * | 1978-08-03 | 1982-11-30 | Bbc Brown Boveri & Cie | Gasturbine. |
JPS5554636A (en) * | 1978-10-16 | 1980-04-22 | Hitachi Ltd | Combustor of gas turbine |
GB2044912B (en) * | 1979-03-22 | 1983-02-23 | Rolls Royce | Gas turbine combustion chamber |
US4232527A (en) * | 1979-04-13 | 1980-11-11 | General Motors Corporation | Combustor liner joints |
JPS56124834A (en) * | 1980-03-05 | 1981-09-30 | Hitachi Ltd | Gas-turbine combustor |
GB2087065B (en) * | 1980-11-08 | 1984-11-07 | Rolls Royce | Wall structure for a combustion chamber |
US4413477A (en) * | 1980-12-29 | 1983-11-08 | General Electric Company | Liner assembly for gas turbine combustor |
US4819438A (en) * | 1982-12-23 | 1989-04-11 | United States Of America | Steam cooled rich-burn combustor liner |
US4466239A (en) * | 1983-02-22 | 1984-08-21 | General Electric Company | Gas turbine engine with improved air cooling circuit |
JPS59229114A (ja) * | 1983-06-08 | 1984-12-22 | Hitachi Ltd | ガスタ−ビン用燃焼器 |
US4719748A (en) * | 1985-05-14 | 1988-01-19 | General Electric Company | Impingement cooled transition duct |
FR2599821B1 (fr) * | 1986-06-04 | 1988-09-02 | Snecma | Chambre de combustion pour turbomachines a orifices de melange assurant le positionnement de la paroi chaude sur la paroi froide |
US4815272A (en) * | 1987-05-05 | 1989-03-28 | United Technologies Corporation | Turbine cooling and thermal control |
FR2624953B1 (fr) * | 1987-12-16 | 1990-04-20 | Snecma | Chambre de combustion, pour turbomachines, possedant un convergent a doubles parois |
US5083422A (en) * | 1988-03-25 | 1992-01-28 | General Electric Company | Method of breach cooling |
US4944151A (en) * | 1988-09-26 | 1990-07-31 | Avco Corporation | Segmented combustor panel |
US5003773A (en) * | 1989-06-23 | 1991-04-02 | United Technologies Corporation | Bypass conduit for gas turbine engine |
US5329773A (en) * | 1989-08-31 | 1994-07-19 | Alliedsignal Inc. | Turbine combustor cooling system |
US5174108A (en) * | 1989-12-11 | 1992-12-29 | Sundstrand Corporation | Turbine engine combustor without air film cooling |
FR2661714B1 (fr) * | 1990-05-03 | 1994-06-17 | Snecma | Dispositif d'alimentation en comburant d'une turbine a gaz. |
GB9018014D0 (en) * | 1990-08-16 | 1990-10-03 | Rolls Royce Plc | Gas turbine engine combustor |
GB9018013D0 (en) * | 1990-08-16 | 1990-10-03 | Rolls Royce Plc | Gas turbine engine combustor |
GB2247522B (en) * | 1990-09-01 | 1993-11-10 | Rolls Royce Plc | Gas turbine engine combustor |
FR2668246B1 (fr) * | 1990-10-17 | 1994-12-09 | Snecma | Chambre de combustion munie d'un dispositif de refroidissement de sa paroi. |
US5181377A (en) * | 1991-04-16 | 1993-01-26 | General Electric Company | Damped combustor cowl structure |
FR2679010B1 (fr) * | 1991-07-10 | 1993-09-24 | Snecma | Chambre de combustion de turbomachine a bols de prevaporisation demontables. |
US5553162A (en) * | 1991-09-23 | 1996-09-03 | Eastman Kodak Company | Method for detecting ink jet or dot matrix printing |
CA2089272C (fr) * | 1992-03-23 | 2002-09-03 | James Norman Reinhold, Jr. | Chambre de combustion presentant une resistance aux chocs |
US5237813A (en) * | 1992-08-21 | 1993-08-24 | Allied-Signal Inc. | Annular combustor with outer transition liner cooling |
US5335502A (en) * | 1992-09-09 | 1994-08-09 | General Electric Company | Arched combustor |
IT1255613B (it) * | 1992-09-24 | 1995-11-09 | Eniricerche Spa | Sistema di combustione a basse emissioni inquinanti per turbine a gas |
US5363643A (en) * | 1993-02-08 | 1994-11-15 | General Electric Company | Segmented combustor |
FR2710968B1 (fr) * | 1993-10-06 | 1995-11-03 | Snecma | Chambre de combustion à double paroi. |
US5461866A (en) * | 1994-12-15 | 1995-10-31 | United Technologies Corporation | Gas turbine engine combustion liner float wall cooling arrangement |
US5924288A (en) * | 1994-12-22 | 1999-07-20 | General Electric Company | One-piece combustor cowl |
US5704208A (en) * | 1995-12-05 | 1998-01-06 | Brewer; Keith S. | Serviceable liner for gas turbine engine |
DE19547703C2 (de) * | 1995-12-20 | 1999-02-18 | Mtu Muenchen Gmbh | Brennkammer, insbesondere Ringbrennkammer, für Gasturbinentriebwerke |
GB2328011A (en) * | 1997-08-05 | 1999-02-10 | Europ Gas Turbines Ltd | Combustor for gas or liquid fuelled turbine |
US5974805A (en) * | 1997-10-28 | 1999-11-02 | Rolls-Royce Plc | Heat shielding for a turbine combustor |
DE19751299C2 (de) * | 1997-11-19 | 1999-09-09 | Siemens Ag | Brennkammer sowie Verfahren zur Dampfkühlung einer Brennkammer |
WO1999047874A1 (fr) * | 1998-03-19 | 1999-09-23 | Siemens Aktiengesellschaft | Segment de paroi pour une chambre de combustion, et chambre de combustion |
US6098397A (en) * | 1998-06-08 | 2000-08-08 | Caterpillar Inc. | Combustor for a low-emissions gas turbine engine |
US6260359B1 (en) * | 1999-11-01 | 2001-07-17 | General Electric Company | Offset dilution combustor liner |
US6438958B1 (en) * | 2000-02-28 | 2002-08-27 | General Electric Company | Apparatus for reducing heat load in combustor panels |
US6497104B1 (en) * | 2000-10-30 | 2002-12-24 | General Electric Company | Damped combustion cowl structure |
US6526756B2 (en) * | 2001-02-14 | 2003-03-04 | General Electric Company | Method and apparatus for enhancing heat transfer in a combustor liner for a gas turbine |
US6606861B2 (en) * | 2001-02-26 | 2003-08-19 | United Technologies Corporation | Low emissions combustor for a gas turbine engine |
US6449952B1 (en) * | 2001-04-17 | 2002-09-17 | General Electric Company | Removable cowl for gas turbine combustor |
WO2002088601A1 (fr) * | 2001-04-27 | 2002-11-07 | Siemens Aktiengesellschaft | Chambre de combustion, en particulier d'une turbine a gaz |
US6530227B1 (en) * | 2001-04-27 | 2003-03-11 | General Electric Co. | Methods and apparatus for cooling gas turbine engine combustors |
US6675582B2 (en) * | 2001-05-23 | 2004-01-13 | General Electric Company | Slot cooled combustor line |
FR2825784B1 (fr) * | 2001-06-06 | 2003-08-29 | Snecma Moteurs | Accrochage de chambre de combustion cmc de turbomachine utilisant les trous de dilution |
FR2825783B1 (fr) * | 2001-06-06 | 2003-11-07 | Snecma Moteurs | Accrochage de chambre de combustion cmc de turbomachine par pattes brasees |
FR2825787B1 (fr) * | 2001-06-06 | 2004-08-27 | Snecma Moteurs | Montage de chambre de combustion cmc de turbomachine par viroles de liaison souples |
US6513331B1 (en) * | 2001-08-21 | 2003-02-04 | General Electric Company | Preferential multihole combustor liner |
US6530225B1 (en) * | 2001-09-21 | 2003-03-11 | Honeywell International, Inc. | Waffle cooling |
US6735956B2 (en) * | 2001-10-26 | 2004-05-18 | Pratt & Whitney Canada Corp. | High pressure turbine blade cooling scoop |
US6701714B2 (en) * | 2001-12-05 | 2004-03-09 | United Technologies Corporation | Gas turbine combustor |
US6640546B2 (en) * | 2001-12-20 | 2003-11-04 | General Electric Company | Foil formed cooling area enhancement |
US6651437B2 (en) * | 2001-12-21 | 2003-11-25 | General Electric Company | Combustor liner and method for making thereof |
GB2384046B (en) * | 2002-01-15 | 2005-07-06 | Rolls Royce Plc | A double wall combuster tile arrangement |
US6865889B2 (en) * | 2002-02-01 | 2005-03-15 | General Electric Company | Method and apparatus to decrease combustor emissions |
US6715279B2 (en) * | 2002-03-04 | 2004-04-06 | General Electric Company | Apparatus for positioning an igniter within a liner port of a gas turbine engine |
US6655147B2 (en) * | 2002-04-10 | 2003-12-02 | General Electric Company | Annular one-piece corrugated liner for combustor of a gas turbine engine |
US6751961B2 (en) * | 2002-05-14 | 2004-06-22 | United Technologies Corporation | Bulkhead panel for use in a combustion chamber of a gas turbine engine |
US6834505B2 (en) * | 2002-10-07 | 2004-12-28 | General Electric Company | Hybrid swirler |
US6826913B2 (en) * | 2002-10-31 | 2004-12-07 | Honeywell International Inc. | Airflow modulation technique for low emissions combustors |
US7003959B2 (en) * | 2002-12-31 | 2006-02-28 | General Electric Company | High temperature splash plate for temperature reduction by optical reflection and process for manufacturing |
US6925811B2 (en) * | 2002-12-31 | 2005-08-09 | General Electric Company | High temperature combustor wall for temperature reduction by optical reflection and process for manufacturing |
US6986253B2 (en) * | 2003-07-16 | 2006-01-17 | General Electric Company | Methods and apparatus for cooling gas turbine engine combustors |
US6976363B2 (en) * | 2003-08-11 | 2005-12-20 | General Electric Company | Combustor dome assembly of a gas turbine engine having a contoured swirler |
US7043921B2 (en) * | 2003-08-26 | 2006-05-16 | Honeywell International, Inc. | Tube cooled combustor |
US7007481B2 (en) * | 2003-09-10 | 2006-03-07 | General Electric Company | Thick coated combustor liner |
-
2001
- 2001-11-15 EP EP01127137A patent/EP1312865A1/fr not_active Withdrawn
-
2002
- 2002-11-07 US US10/495,832 patent/US20040250549A1/en not_active Abandoned
- 2002-11-07 JP JP2003544390A patent/JP2005509827A/ja not_active Abandoned
- 2002-11-07 WO PCT/EP2002/012448 patent/WO2003042597A1/fr active Application Filing
- 2002-11-07 EP EP02802992A patent/EP1446614A1/fr not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO03042597A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20040250549A1 (en) | 2004-12-16 |
EP1312865A1 (fr) | 2003-05-21 |
JP2005509827A (ja) | 2005-04-14 |
WO2003042597A1 (fr) | 2003-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1446614A1 (fr) | Chambre de combustion annulaire pour turbine a gaz | |
EP1636526B1 (fr) | Chambre a combustion | |
DE69818376T2 (de) | Gasturbinenbrennkammer | |
DE69123707T2 (de) | Filmgekühlte Brennkammerwand für Gasturbine | |
DE69210118T2 (de) | Aufbau eines Brennkammerdomes | |
DE2907769C2 (de) | Turbinenschaufel-Mantelhalterung | |
DE602005001682T2 (de) | Helmholtzresonator für eine Brennkammer eines Gasturbinentriebwerks | |
EP0244693B1 (fr) | Dispositif protecteur contre le surchauffage à gaz chaud pour les propulseurs à turbine à gaz | |
EP1182398B1 (fr) | Procédé pour accroítre la stabilité fluidique d'un brûleur de prémélange ainsi que brûleur de prémélange pour mettre en oeuvre le procédé | |
DE112007002152T5 (de) | Prallplattenkuppelanordnung für einen Turbinenmotor | |
EP2340397B1 (fr) | Pièce du brûleur pour une chambre de combustion d'une turbine à gaz et turbine à gaz | |
JP3833297B2 (ja) | ガス又は液体燃料タービンのための燃焼器及びタービン操作方法 | |
DE2012949A1 (de) | Wandkonstruktion und Luftzufuhrlöcher für ein Gasturbinentriebwerk | |
DE874680C (de) | Duesenkasten fuer Gasturbinentriebwerke | |
CH697920A2 (de) | Turbinentriebwerk mit einer Brennkammerauskleidung mit wirbelluftgekühltem hinterem Ende und Kühlverfahren. | |
CA2062923A1 (fr) | Methode et appareil d'injection d'air de dilution | |
DE102005025823A1 (de) | Verfahren und Vorrichtung zum Kühlen einer Brennkammerauskleidung und eines Übergangsteils einer Gasturbine | |
EP2184445A1 (fr) | Support d'aubes statorique axialement segmenté d'une turbine à gaz | |
DE102008016931A1 (de) | System zur Reduktion der Brennkammerdynamik | |
DE19538746A1 (de) | Segmentierter Mittelkörper für eine Doppelring-Brennkammer | |
DE69306290T2 (de) | Geteilter Mittelkörper für eine Ringbrennkammer | |
WO2001065074A1 (fr) | Turbine | |
DE2414376A1 (de) | Kuehlschlitzanordnung fuer einen brennkammereinsatz | |
DE4446611A1 (de) | Brennkammer | |
EP1588102B1 (fr) | Element de bouclier thermique, chambre de combustion et turbine a gaz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040413 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080601 |