US3702058A - Double wall combustion chamber - Google Patents

Double wall combustion chamber Download PDF

Info

Publication number
US3702058A
US3702058A US106041A US3702058DA US3702058A US 3702058 A US3702058 A US 3702058A US 106041 A US106041 A US 106041A US 3702058D A US3702058D A US 3702058DA US 3702058 A US3702058 A US 3702058A
Authority
US
United States
Prior art keywords
serpentinous
smooth
wall members
wall
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US106041A
Inventor
Serafino M De Corso
Carl W Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3702058A publication Critical patent/US3702058A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • F23R3/08Arrangement of apertures along the flame tube between annular flame tube sections, e.g. flame tubes with telescopic sections

Definitions

  • ABSTRACT A combustion chamber for a gas turbine power plant of the step-liner type including a plurality of annular double wall step-liner portions.
  • the portions are of various sizes and are arranged concentrically and in order of increasing size from the upstream end toward the downstream end of the chamber.
  • Each double wall liner portion includes an alternating smooth wall member and a serpentinous wall member.
  • the smooth wall member is the radially inner wall and an overlapping portion of the serpentinous wall member is the radially outer wall.
  • the serpentinous wall member is the radially inner wall and an overlapping portion of a larger diameter smooth wall member is the radially outer wall. The effect of this construction is to provide a combustion chamber capable of withstanding higher burning temperatures.
  • the following disclosure relates to a combustion chamber structure for a gas turbine and more particularly to an improved apparatus of this type.
  • gas turbine power plant has a compressor section, in which is disposed at least one combustor or combustion chamber, and a turbine section.
  • the combustion chamber is of the step-liner type and is comprised of a plurality of double wall portions.
  • the double wall portions are of stepped configuration, each of the portions being of greater diameter than the preceding portion frorn'the upstream to the downstream end of the combustor.
  • Each liner portion includes altemating smooth wall member and a serpentinous or corrusated Wa membe In one step or portion, the axially extending smooth wall forms the radially inner wall and a partially telescoping or overlapping serpentinous wall member forms the radially outer wall.
  • serpentinous member overlaps approximately half of the smaller diameter smooth member and approximately one-half of the serpentinous member extends in a downstream axial direction.
  • a second larger diameter smooth wall member overlaps the extending half of the adjacent serpentinous member, to cooperatively form a second double wall portion.
  • the adjacent ends of the alternating smooth members .of the wall portions are approximately aligned in a radial direction relative to the axial centerline of the combustor.
  • the alternating serpentinous members are also radially aligned at their adjacent ends.
  • Each serpentinous member partially forms an annular array of convoluted axially extending passageways to provide fluid communication between the compressor section and the chamber within the combustor.
  • Compressor air used to cool the combustor walls enters the convoluted passageways from the compressor, and the air flow throughthese passageways cools the outer surface of the radially inner wall of the smooth member of the double wall stepped liner, by convection. After flowing through the convoluted passageways, thereby cooling aportion of the radially inner double wall step-liner, the air flows along the inner surface of the larger diameter upstream smooth wall member to provide a ,cool film of air to thereby insulate the smooth wall from the hot combustion gases.
  • the double wall construction enables the cooling air to provide multiple functions: (a) to cool each double wallportion of the step-liners by convective cooling and (b) to cool each double wall portion by providing a cool film or air to insulate the inner wall surface from the hot combustion gases.
  • a greater cooling effect is achieved when compared to present temperatures of combustion chambers, or, in the alternative where higher combustion chamber temperatures must be handled, the construction permits a more efficient utilization of available cooling air to enable operation at the higher temperatures.
  • One US. Patent disclosing dual/cooling in a combustion chamber is No. 3,545,202.
  • FIG. 1 is an axial sectional view of a portion of the upper-half of a gas turbine'power plant provided with combustion apparatus incorporating the invention
  • FIG. 2. is an enlarged sectional view of the combustion apparatus illustrated in FIG. 1;
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2;
  • FIG. 4 is a view in perspective of a portion of the combustion apparatus illustrated in FIG. 2.
  • FIG. 1 there is shown a portion of a gas turbine power plant having combustion apparatus generally designated 11.
  • the combustion apparatus may be employed with any suitable type of gas turbine power plant.
  • the power plant 10 includes an axial flow air compressor 12 for directing air to the combustion apparatus 11 and a gas turbine 14 connected to the combustion apparatus 10 and receiving hot products of combustion therefrom for motivating the power plant.
  • the air compressor 12 includes, as well known in the art, a multi-stage bladed rotor structure 15 cooperatively associated with a stator structure having an equal number of multi-stage stationary blades 16 for compressing the airdirected therethrough to a suitable pressure value for combustion in the combustion apparatus 11.
  • the outlet of the compressor 12 is directed through an annulardiffusion member 17 forming an intake for the plenum'chamber l8, partially defined by a housing structure 19.
  • the housing 19 includes a shell member of circular cross-section, and as shown of cylindrical shape, parallel with the axis of rotation RR of the power plant 10, a forward dome-shaped wall member 21 connected to the external casing of the compressor 12 and a rearward annular wall member 22 connected to the outer casing of the turbine 14.
  • the turbine 14 is of the axial flow type and includes a plurality of expansion stages formed by a plurality of rows of stationary blades 24 cooperatively associated with an equal plurality of rotating blades 25 mounted on the turbine rotor 26.
  • the turbine rotor 26 is drivingly connected to the compressor rotor 15 by a tubular connecting shaft member 27, and a tubular lineror fairing member 28 is suitably supported in' encompassing stationary relation with the connecting shaft portion 27 to provide a smooth air flow surface for the air entering the plenum chamber 18 from the compressor diffuser l7.
  • combustion chambers or combustors 30 Disposed within the housing 19 are a plurality of tubular elongated combustion chambers or combustors 30 of the telescopic step-liner type.
  • the combustion chambers 30 are disposed in an annular mutually spaced array concentric with the centerline of the power plant and are equally spaced from each'other in the housing 19.
  • the chambers 30 are arranged in such a mannerthat their axes are substantially parallel to the outer casing 19 and with the centerline RR of the power plant 10. It is pointed out that this invention is applicable to other types of combustors such as the single annular basket type, shown'and described in the Miller patent, previously cited or the can-annular type having composite features of the canister and annular types.
  • each combustor 30 is comprised of three sections: an upstream primary portion 32, an intermediate secondary portion 33 and a downstream transition portion 34.
  • the forward wall 21 of the combustion apparatus 1 1 is provided with a central opening 36 through which a fuel injector 37 extends.
  • the fuel injector 37 is supplied with fuel by a suitable conduit 38 connected to any suitable fuel supply (not shown) and may be of the well known atomizing type formed in a manner to provide a substantially conical spray of fuel within the primary portion 32 of the combustion chamber 30.
  • a suitable electrical igniter 39 is provided for igniting the fuel and air mixture in the combustor 30.
  • the liner portions 42 are cylindrical.
  • the portions 32 are of stepped construction, each of the portions having a circular section of greater circumference or diameter than the preceding portion from the upstream to the downstream end of the combustor to permit telescopic insertion of the portions.
  • Some portions .42 have an annular array of apertures 44 for admitting primary air from within the plenum chamber 18 into the primary portion 32 of the combustor to support combustion of fuel injected therein by the fuel injector 37.
  • the combustor furtherincludes the intermediate portion 33 which is provided with a plurality of annular rows of apertures 46 for admitting secondary-air from the plenum chamber 18 into the combustor 30 during operation, to cool the hot gaseous products and make it adaptable to the turbine blades 24'and 25.
  • the transition portion 34 is provided with a forward portion 48 of cylindrical shape disposed in encompassing and slightly overlapping relation with the intermediate portion 33 as shown by the locking spring structure 47 (FIG. 2).
  • the transition portion 34 is also provided with a rearward tubular portion 49 that progressively changes in contour from circular crosssection at the jointure with the cylindrical portion 48 to arcuate cross-section at its outlet end portion 50.
  • the arcuate extentof the outlet 50 is such that, jointly with the outlets of the other combustors 30, a complete annulus is provided for admitting the hot products of combustion from the combustors to the blades 24 and 25 of the turbine 14, thereby to provide full peripheral admission of the motivating gases to the turbine 14.
  • the liner portions 42 of the combustor 30 are substantially comprised of a plurality of double walled portions 52 (for example five). Each of the portions 52 have a circular cross-section of greater diameter than the preceding portion, from the upstream to the downstream end of the combustor relative to the flow of air therethrough.
  • the double wall construction of the liner portions 42, as shown, is confined to the primary portion of the combustor 30 although it is not limited thereto.
  • each of the portions includes alternating smooth and corrugated or serpentinous wall members 54 and 56, respectively, which overlap each other approximately to the center of each respective member.
  • the resulting plurality of the double wall portions form the primary portion of the combustor 30.
  • each double wall portion 52 includes an alternating smooth wall member 54 and a serpentinous or corrugated wall member 56.
  • the smooth wall member 54 shown is an elongated tubular or cylindrical member (FIGS. 2 and 3) and each serpentinous member 56 is in the form of circumferentially corrugated rings comprised of generally trapezoidal shaped elements 57 (FIG. 3).
  • the double wall portion 52 is comprised of an axially extending smooth wall member 54, which forms the radially inner wall of the double wall 52, and a larger diameter telescoping serpentinous wall member 56 which overlaps approximately one-half of the smooth wall member 54. Approximately one-half of the serpen- .of the half of the serpentinous member 56 which extends beyond the step 42a in an axial direction.
  • a second larger diameter smooth wall member 54 overlaps the axially extending serpentinous wall member 56.
  • the second larger diameter smooth wall member 54 overlaps approximately one-half of the serpentinous member 56 and approximately one-half of the smooth member extends in a downstream axial direction. Therefore, the second double wall portion 52 is comprised of a radially inner wall of a serpentinous member 56 and a radially outer wall of a smooth member 54 to cooperatively form the second step liner portion 42 b.
  • the adjacent downstream end 61 of the first corrugated member 56 and the adjacentupstream end 62 of the second corrugated member 56 are substantially aligned in a radial direction relative to the axial centerline of the combustor 30 and do not overlap in the preferred embodiment. Furthermore, the adjacent downstream end 63 of the first smooth member 54 and the adjacent upstream end 64 of the second smooth member 54 are also substantially radially aligned at their adjacent ends and do not overlap.
  • the subsequent larger diameter downstream liner portions 42 are substantially similar to the first two liner portions 42a and 42b previously described.
  • Each liner portion includes an alternating smooth wall member 54 an alternating serpentinous wall member 56 with one part of the serpentinous member overlapping approximately half of the smaller diameter smooth member and the other half extending in a downstream axial direction.
  • the larger diameter smooth wall member overlaps approximately one-half of the upstream adjacent serpentinous member to cooperatively form another double wall portion 52.
  • the adjacent ends of the alternating smooth members are substantially radially aligned and the adjacent ends of the serpentinous members are also substantially radially aligned.
  • the trapezoidal shaped elements 57 of the serpentinous member 56 have inwardly depressed portions 66, which contact the smaller diameter smooth wall member 54, and outwardly depressed portions 67, which are in spaced relation with the inner wall member or smooth member 54.
  • the outwardly projecting portions 67 contact the outer or smooth wall member 54 and the inwardly depressed portions 66 are in spaced relation therefrom and form the inner wall of the double wall portion 52.
  • the serpentinous members 56 are securely fastened tov the smaller diameter smooth wall member 54 by any suitable means 69, preferably by spot welding at a plurality of points of contact.
  • the larger diameter smooth wall members 54 are in turn securely fastened by any suitable means 70, preferably by spot welding at a plurality of points of contact to the smaller diameter serpentinous member 56 along the outwardly depressed portions 67, which are substantially flattened to receive a more rigid spot weld. Only one annular row of spot welds are used to allow for thermal expansion of the members 54 and 56 in an axial direction.
  • a second plurality of axial passageways 74 are jointly defined by the outer smooth wall member 54 and the inwardly depressed portions 66 of the serpentinous member 56. These passageways 74 also provide for entry of cooling air indicated by arrows G from the plenum chamber 18 into the combustion chamber 30.
  • each aperture 44 is wholly formed in the smooth member 54 as indicated by 44a and partially formed in the serpentinous members 56 as indicated in 44b. Furthermore, each aperture 44 is in registry with one of the passageways 72, so that a portion of the air from the plenum chamber entering the combustor through aperture 44 is also directed through axial passageway 72 for cooling P rposes.
  • air is compressed in the compressor 12 (FIG. 1) and flows into the plenum chamber 18 within the casing 19.
  • a portion of the pressurized air enters through the primary air apertures 44 where it is mixed with fuel to form a combustible mixture.
  • the hot products of combustion then move to the intermediate portion 33 of the combustor 11 where secondary air enters the air inlet apertures 46 to cool the gaseous products.
  • the air then is directed through the transition portion 34 through the outlet.50 to turn the turbine rotor structure 26, the shaft 27 and compressor rotor structure 15.
  • the cooling of the combustor is as follows.
  • the compressor airfrom the plenum chamber 18 enters the convoluted axial passageways 72 in a first step-liner portion 42a because of the pressure drop between the plenum chamber and the combustor.
  • the air convectively cools the inner smooth wall member 54 (or the downstream half) and also convectively cools the outer serpentinous wall member 52 (or the upstream half) as indicated by the arrows E in FIG; 2.
  • step-liner portion 42b The air then continues to flow into the second step-liner portion 42b, where it film cools the serpentinous inner wall member 56 (or the downstream half) and the air continues to flow to the adjacent downstream portion to provide an insulating film'cooling blanket for the smooth radially inner wall member 54 (or the downstream half).
  • This multiple cooling technique is similar in subsequent step-liner portions 42 as indicated by cooling air represented by arrows F entering convoluted axially extending passageways 72 and convectively cooling the radially inner smooth 'wall 54, the outer serpentinous vwall member 56 and then continuing to provide film cooling for the serpentinous member and the subsequent downstream smooth wall member 54 of the double wall portions 52.
  • Additional cooling air represented by arrows G (best seen in FIGS. 2 and 4) enters the axially extending passageways 74 in the second step 421: to provide convective cooling for the larger diameter smooth wall member 54 and the inner serpentinous member 56 and film cooling for the downstream smooth wall member 54.
  • This multiple cooling function is similar in sub sequent step-liner portions.
  • combustor wall portions it is not uncommon for combustor wall portions to reach .1 ,900F. while burning heavy residual fuels.
  • the wall temperature of the combustors can be kept within present operating temperatures and have useful lives equal to that of conventional combustors.
  • An additional advantage of the double wall combustor is thatsince the combustor walls are cooler, the pressurized air within the plenum chamber is also kept cooler resulting in a cooler outer casing structure.
  • a double wall combustor that'provides multiple cooling functions: (a) convec tively cools each double wall portion, and (b) film cools each double. wall portion.
  • the double wall combustor runs substantially cooler when compared to present temperatures of combustors or in the alternative can operate at substantially higher temperatures without having a corresponding decrease in combustor life.
  • the combustor When operated at normal conditions, the combustor has an increase of useful life of five times that of present combustors, with substantially no increase in construction cost associated therewith.
  • the temperature distribution pattern of the hot combustion gases are not affected by the double wall construction.
  • an elongated tubular wall structure of a step-liner construction incrementally increasing in cross sectional area in downstream direction and having a double wall
  • said double wall comprising, serpentinous wall members and smooth wall members, said smooth wall members being disposed adjacent each other in such a manner that upstream smooth wall members are circumferentially smaller than adjacent downstream smooth wall members and a serpentinous wall member overlaps adjacent smooth wall members to form said tubular double wall structure, said serpentinous and smooth wall members being so disposed that an upstream portion of each of said serpentinous members enwraps and fastens to a downstream portion of a smooth wall member and telescopes within and fastens to an upstream portion of an adjacent smooth wall member, whereby said combustion chamber has a double wall throughout said elongated tubular step liner structure.
  • serpentinous wall members partially define an array of first passageways, generally extending in the axial direction, to permit cooling fluid to convectively cool the enwrapped smooth wall member and gaseous products within the combustion chamber and the adjacent downstream smooth wall members.
  • cooling fluid also convectively cools the portion of the serpentinous wall members enwrapping the downstream portion of the smooth wall members.
  • cooling fluid further film cools the adjacent serpentinous wall members telescoping in the upstream portion of the smooth wall members.
  • serpentinous wall members partially define an array of second passageways generally extending in the axial direction to permit cooling fluid to convectively cool the serpentinous wall members and the enwrapped smooth wall member, and furthermore to allow cooling fluid to provide a cooling film of fluid adjacent the downstream portion of the smooth wall members.
  • each of the apertures is wholly formed in a smooth wall member and partially formed in adjacent serpentinous wall members.
  • serpentinous wall members are tubular and are comprised of elements having a substantially trapezoidal shaped cross-section.
  • casing structure at least partially defining a pressurized plenum chamber
  • each of said combustion chambers having a tubular double wall structure of step-liner construction, incrementally increasing in cross sectional area in downstream direction,
  • said double wall structure comprising serpentine wall members and smooth wall members
  • said smooth wall members being disposed adjacent each other in such a manner that upstream smooth wall members are circumferentially smaller than adjacent downstream smooth wall members and a serpentinous wall member overlaps adjacent smooth wall members to form said tubular double wall structure, said serpentinous and smooth wall members being so disposed that an upstream portion of each of said serpentinous members enwraps and fastens to a downstream portion of a smooth wall member and telescopes within and fastens to an upstream portion of an adjacent smooth wall member, whereby said combustion chamber has a double wall throughout said tubular step liner structure.
  • serpentinous members have ends which are sub stantially radially aligned.
  • said first passageways permitting cooling fluid to convectively cool the enwrapped smooth wall member and the enwrapping serpentinous member
  • said passageways being arranged to permit said cooling fluid to provide a fluid film between hot combustion gases within the combustion chamber and the adjacent serpentinous wall members telescoped within the smooth wall member and to produce a fluid film between the hot combustion gases and the enwrapped smooth wall members.
  • serpentinous wall members partially defines a second array of passageways extending generally in an axial direction
  • cooling fluid to provide a film of cooling fluid adjacent the enwrapped smooth wall members.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A combustion chamber for a gas turbine power plant of the stepliner type including a plurality of annular double wall stepliner portions. The portions are of various sizes and are arranged concentrically and in order of increasing size from the upstream end toward the downstream end of the chamber. Each double wall liner portion includes an alternating smooth wall member and a serpentinous wall member. In one step, the smooth wall member is the radially inner wall and an overlapping portion of the serpentinous wall member is the radially outer wall. In the adjacent larger step, the serpentinous wall member is the radially inner wall and an overlapping portion of a larger diameter smooth wall member is the radially outer wall. The effect of this construction is to provide a combustion chamber capable of withstanding higher burning temperatures.

Description

United States Patent De Corso et al.
[451 Nov. 7, 1972 [72] Inventors: Serafino M. De Corso, Media; Carl W. Carlson, Holmes, both of Pa.
[73] Assignee: Westinghouse Electric Corporation,
Pittsburgh, Pa.
22] Filed: Jan. 13,1971
211 Appl.No.: 106,041
[52] US. Cl. ..60/39.65, 60/3931, 60/3937, 1 60/3966 [51] Int. Cl ..F02g 3/00 [58] Field of Search....60/39.65, 39.66, 39.32, 39.31, 60/3937; 431/352 [56] References Cited UNITED STATES PATENTS 2,610,467 9/1952 Miller ..60/39.65 3,169,367 2/1965 I-Iussey ..60/39.65 3,545,202 12/1970 Batt ..60/39.65
FOREIGN PATENTS OR APPLICATIONS 229,934 2/1944 Switzerland ..60/ 39.65
Great Britain ..60/39.65 Great Britain ..60/ 39.65
Primary Examiner-Douglas I-lart Att0rneyA. T. Stratton, F. P. Lyle and F. Cristiano, Jr.
[5 7] ABSTRACT A combustion chamber for a gas turbine power plant of the step-liner type including a plurality of annular double wall step-liner portions. The portions are of various sizes and are arranged concentrically and in order of increasing size from the upstream end toward the downstream end of the chamber. .Each double wall liner portion includes an alternating smooth wall member and a serpentinous wall member. In one step, the smooth wall member is the radially inner wall and an overlapping portion of the serpentinous wall member is the radially outer wall. In the adjacent larger step, the serpentinous wall member is the radially inner wall and an overlapping portion of a larger diameter smooth wall member is the radially outer wall. The effect of this construction is to provide a combustion chamber capable of withstanding higher burning temperatures.
20 Claims, 4 Drawing Figures PATENTEDnnv 1 I972 SHEET 1 BF 2 II INVENTORS Serofino M. DeCorso Cori W Carlson WITNESSES PATENTED 7 SHEEI 2 OF 2 N V CE vm mm mm mm mm BACKGROUND OF THE INVENTION One serious problem in gas turbine power plants is reliable combustion chambers or combustors, capable of withstanding high temperatures for extended of time. I v
Historically, a substantial step forward was taken when the step-liner type combustion chamber having corrugated spacer members between adjacent liners was disclosed by E. F. Miller, US. Pat. No. 2,610,467, issued on Sept. 16, 1952, and assigned to the present assignee. In this now'well known construction, cooling air is admitted from the plenum chamber through axially extending spaces in the corrugated members, to provide a flow of relatively cool air to insulate the inner surface of the combustion chamber wall from the hot combustion gases. Other improvements on this construction are disclosed in the following patents: S. Way, U.S. Pat. NO. 2,448,561 patented on Sept. 7, 1948; W. L. Christensen, U.S. Pat. No. 2,537,033, patented Jan. 9, 1951; R. A. Sforzine, US. Pat. No. 2,549,858, patented Apr. 24, 1951; and E. A. DeZubay et al., U.S. Pat. No. 2,573,694, patented Nov. 6, 1951, all of the preceding patents being assigned to the present assignee.
Of course, the higher the temperature of the combustion chamber walls during normal operation, the more subject the chambers are to thermal stress and strain. This requires constant maintenance programs whereby combustion chambers must be periodically inspected to ensure their operating reliabilities. More recently, because of the advent of larger gas turbine power plants, it has become desirable to operate the plants at higher and higher temperatures. Furthermore, because of the economy involved, it is more desirable to burn heavy residual fuels, which are high in contaminants, rather than the purer fuels, such as No. 2 distillate fuel. However, residual fuels radiate substantially more heat to the combustor walls, so that combustor life and reliability is substantially reduced.
One such solution to enable combustion chambers to operate at higher temperatures is the refractory or ceramic combustion chamber. But as of now, thehigh velocities and violent pulsations in the combustion chambers have prevented the use of refractories in combustors in commercial applications.
Another such solution is to introduce more cooling air to the combustor walls. However, this decreases the overall efficiency of the turbine and has an adverse effect on the temperature distribution pattern of the gases when it is introduced to the turbine blades since there is a large temperature differential between the blade tips where the cooler air is and the blade centers causing serious thermal stress and strain.
It would be desirable, then, to design a combustion chamber which would operate at higher temperatures for extended periods of time, or in the alternative operate at cooler temperatures than present combustors operating at normal conditions, so that it would be subjected to fewer thermal stress and strains than present combustors. This in turn would require less periodic inspections since its reliability would be substantially increased. It would further be desirable to design a combustor that would be economical to construct and easy to assemble.
SUMMARY OF THE INVENTION The following disclosure relates to a combustion chamber structure for a gas turbine and more particularly to an improved apparatus of this type.
gas turbine power plant has a compressor section, in which is disposed at least one combustor or combustion chamber, and a turbine section. The combustion chamber is of the step-liner type and is comprised of a plurality of double wall portions. The double wall portions are of stepped configuration, each of the portions being of greater diameter than the preceding portion frorn'the upstream to the downstream end of the combustor. Each liner portion includes altemating smooth wall member and a serpentinous or corrusated Wa membe In one step or portion, the axially extending smooth wall forms the radially inner wall and a partially telescoping or overlapping serpentinous wall member forms the radially outer wall. One part of the serpentinous member overlaps approximately half of the smaller diameter smooth member and approximately one-half of the serpentinous member extends in a downstream axial direction. A second larger diameter smooth wall member, in turn overlaps the extending half of the adjacent serpentinous member, to cooperatively form a second double wall portion.
The adjacent ends of the alternating smooth members .of the wall portions are approximately aligned in a radial direction relative to the axial centerline of the combustor. The alternating serpentinous members are also radially aligned at their adjacent ends.
Each serpentinous member partially forms an annular array of convoluted axially extending passageways to provide fluid communication between the compressor section and the chamber within the combustor.
Compressor air used to cool the combustor walls enters the convoluted passageways from the compressor, and the air flow throughthese passageways cools the outer surface of the radially inner wall of the smooth member of the double wall stepped liner, by convection. After flowing through the convoluted passageways, thereby cooling aportion of the radially inner double wall step-liner, the air flows along the inner surface of the larger diameter upstream smooth wall member to provide a ,cool film of air to thereby insulate the smooth wall from the hot combustion gases.
The double wall construction enables the cooling air to provide multiple functions: (a) to cool each double wallportion of the step-liners by convective cooling and (b) to cool each double wall portion by providing a cool film or air to insulate the inner wall surface from the hot combustion gases. A greater cooling effect is achieved when compared to present temperatures of combustion chambers, or, in the alternative where higher combustion chamber temperatures must be handled, the construction permits a more efficient utilization of available cooling air to enable operation at the higher temperatures. One US. Patent disclosing dual/cooling in a combustion chamber is No. 3,545,202.
Further advantages of this combustion chamber construction is that approximately the same man-hours are required for constructing this combustor relative to prior combustors, and there is substantially, no increase in the cost associated therewith. A
DESCRIPTION or THE DRAWINGS FIG. 1 is an axial sectional view of a portion of the upper-half of a gas turbine'power plant provided with combustion apparatus incorporating the invention;
FIG. 2.is an enlarged sectional view of the combustion apparatus illustrated in FIG. 1;
FIG. 3 is a sectional view taken along line III-III in FIG. 2; and
FIG. 4 is a view in perspective of a portion of the combustion apparatus illustrated in FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings in detailand especially to FIG. 1, there is shown a portion of a gas turbine power plant having combustion apparatus generally designated 11. However, ,the combustion apparatus may be employed with any suitable type of gas turbine power plant. The power plant 10 includes an axial flow air compressor 12 for directing air to the combustion apparatus 11 and a gas turbine 14 connected to the combustion apparatus 10 and receiving hot products of combustion therefrom for motivating the power plant.
Only the upper half of the power plant and combustion apparatus has been illustrated, since the lower ,half, may be substantially identical and symmetrical about the centerline or axis of rotation RR of the power plant.
The air compressor 12 includes, as well known in the art, a multi-stage bladed rotor structure 15 cooperatively associated with a stator structure having an equal number of multi-stage stationary blades 16 for compressing the airdirected therethrough to a suitable pressure value for combustion in the combustion apparatus 11. The outlet of the compressor 12 is directed through an annulardiffusion member 17 forming an intake for the plenum'chamber l8, partially defined by a housing structure 19. The housing 19 includes a shell member of circular cross-section, and as shown of cylindrical shape, parallel with the axis of rotation RR of the power plant 10, a forward dome-shaped wall member 21 connected to the external casing of the compressor 12 and a rearward annular wall member 22 connected to the outer casing of the turbine 14.
The turbine 14, as mentioned above, is of the axial flow type and includes a plurality of expansion stages formed by a plurality of rows of stationary blades 24 cooperatively associated with an equal plurality of rotating blades 25 mounted on the turbine rotor 26. The turbine rotor 26 is drivingly connected to the compressor rotor 15 by a tubular connecting shaft member 27, and a tubular lineror fairing member 28 is suitably supported in' encompassing stationary relation with the connecting shaft portion 27 to provide a smooth air flow surface for the air entering the plenum chamber 18 from the compressor diffuser l7.
Disposed within the housing 19 are a plurality of tubular elongated combustion chambers or combustors 30 of the telescopic step-liner type. The combustion chambers 30 are disposed in an annular mutually spaced array concentric with the centerline of the power plant and are equally spaced from each'other in the housing 19. The chambers 30 are arranged in such a mannerthat their axes are substantially parallel to the outer casing 19 and with the centerline RR of the power plant 10. It is pointed out that this invention is applicable to other types of combustors such as the single annular basket type, shown'and described in the Miller patent, previously cited or the can-annular type having composite features of the canister and annular types.
Since thecornbustors 30 may be substantially identical, only one will be described. As shown in FIG. 1, each combustor 30 is comprised of three sections: an upstream primary portion 32, an intermediate secondary portion 33 and a downstream transition portion 34.
The forward wall 21 of the combustion apparatus 1 1 is provided with a central opening 36 through which a fuel injector 37 extends. The fuel injector 37 is supplied with fuel by a suitable conduit 38 connected to any suitable fuel supply (not shown) and may be of the well known atomizing type formed in a manner to provide a substantially conical spray of fuel within the primary portion 32 of the combustion chamber 30. A suitable electrical igniter 39 is provided for igniting the fuel and air mixture in the combustor 30.
In the primary portion 32 of the combustor 30 are a plurality of liner portions 42 of circularcross-section and in the example shown, the liner portions are cylindrical. The portions 32 are of stepped construction, each of the portions having a circular section of greater circumference or diameter than the preceding portion from the upstream to the downstream end of the combustor to permit telescopic insertion of the portions. Some portions .42 have an annular array of apertures 44 for admitting primary air from within the plenum chamber 18 into the primary portion 32 of the combustor to support combustion of fuel injected therein by the fuel injector 37. The combustor furtherincludes the intermediate portion 33 which is provided with a plurality of annular rows of apertures 46 for admitting secondary-air from the plenum chamber 18 into the combustor 30 during operation, to cool the hot gaseous products and make it adaptable to the turbine blades 24'and 25. The transition portion 34 is provided with a forward portion 48 of cylindrical shape disposed in encompassing and slightly overlapping relation with the intermediate portion 33 as shown by the locking spring structure 47 (FIG. 2). The transition portion 34 is also provided with a rearward tubular portion 49 that progressively changes in contour from circular crosssection at the jointure with the cylindrical portion 48 to arcuate cross-section at its outlet end portion 50. The arcuate extentof the outlet 50 is such that, jointly with the outlets of the other combustors 30, a complete annulus is provided for admitting the hot products of combustion from the combustors to the blades 24 and 25 of the turbine 14, thereby to provide full peripheral admission of the motivating gases to the turbine 14.
In accordance with the invention, the liner portions 42 of the combustor 30 are substantially comprised of a plurality of double walled portions 52 (for example five). Each of the portions 52 have a circular cross-section of greater diameter than the preceding portion, from the upstream to the downstream end of the combustor relative to the flow of air therethrough. The double wall construction of the liner portions 42, as shown, is confined to the primary portion of the combustor 30 although it is not limited thereto.
Another way of viewing the double wall portions 52 is that each of the portions includes alternating smooth and corrugated or serpentinous wall members 54 and 56, respectively, which overlap each other approximately to the center of each respective member. The resulting plurality of the double wall portions form the primary portion of the combustor 30.
As best seen in FIGS. 2 and 4, each double wall portion 52 includes an alternating smooth wall member 54 and a serpentinous or corrugated wall member 56. The smooth wall member 54 shown is an elongated tubular or cylindrical member (FIGS. 2 and 3) and each serpentinous member 56 is in the form of circumferentially corrugated rings comprised of generally trapezoidal shaped elements 57 (FIG. 3).
Referring to one of the first upstream step-liners 42a, the double wall portion 52 is comprised of an axially extending smooth wall member 54, which forms the radially inner wall of the double wall 52, and a larger diameter telescoping serpentinous wall member 56 which overlaps approximately one-half of the smooth wall member 54. Approximately one-half of the serpen- .of the half of the serpentinous member 56 which extends beyond the step 42a in an axial direction. A second larger diameter smooth wall member 54 overlaps the axially extending serpentinous wall member 56. The second larger diameter smooth wall member 54 overlaps approximately one-half of the serpentinous member 56 and approximately one-half of the smooth member extends in a downstream axial direction. Therefore, the second double wall portion 52 is comprised of a radially inner wall of a serpentinous member 56 and a radially outer wall of a smooth member 54 to cooperatively form the second step liner portion 42 b.
The adjacent downstream end 61 of the first corrugated member 56 and the adjacentupstream end 62 of the second corrugated member 56 are substantially aligned in a radial direction relative to the axial centerline of the combustor 30 and do not overlap in the preferred embodiment. Furthermore, the adjacent downstream end 63 of the first smooth member 54 and the adjacent upstream end 64 of the second smooth member 54 are also substantially radially aligned at their adjacent ends and do not overlap.
The subsequent larger diameter downstream liner portions 42 are substantially similar to the first two liner portions 42a and 42b previously described. Each liner portion includes an alternating smooth wall member 54 an alternating serpentinous wall member 56 with one part of the serpentinous member overlapping approximately half of the smaller diameter smooth member and the other half extending in a downstream axial direction. In the alternate step, the larger diameter smooth wall member overlaps approximately one-half of the upstream adjacent serpentinous member to cooperatively form another double wall portion 52. In the subsequent step portions 42 the adjacent ends of the alternating smooth members are substantially radially aligned and the adjacent ends of the serpentinous members are also substantially radially aligned. I
As best seen in FIGS. 3 and 4, the trapezoidal shaped elements 57 of the serpentinous member 56 have inwardly depressed portions 66, which contact the smaller diameter smooth wall member 54, and outwardly depressed portions 67, which are in spaced relation with the inner wall member or smooth member 54. In the second step-liner portion 42b (FIG. 2) the outwardly projecting portions 67 contact the outer or smooth wall member 54 and the inwardly depressed portions 66 are in spaced relation therefrom and form the inner wall of the double wall portion 52.
As best seen in FIG. 4, the serpentinous members 56 are securely fastened tov the smaller diameter smooth wall member 54 by any suitable means 69, preferably by spot welding at a plurality of points of contact. The larger diameter smooth wall members 54 are in turn securely fastened by any suitable means 70, preferably by spot welding at a plurality of points of contact to the smaller diameter serpentinous member 56 along the outwardly depressed portions 67, which are substantially flattened to receive a more rigid spot weld. Only one annular row of spot welds are used to allow for thermal expansion of the members 54 and 56 in an axial direction.
The outwardly depressed portions 67 in the serpentinous member 56 cooperatively with the smooth wall portion 54 in the first step-liner portion 42a, form a plurality of axial passageways 72 to provide for entry of cooling air indicated by arrow E in FIGS. 2 and 4 from the plenum chamber 18 (FIG. 1) into the combustion chamber 30.
Referring to the second step-liner portion 42b, a second plurality of axial passageways 74 are jointly defined by the outer smooth wall member 54 and the inwardly depressed portions 66 of the serpentinous member 56. These passageways 74 also provide for entry of cooling air indicated by arrows G from the plenum chamber 18 into the combustion chamber 30.
As previously described, a plurality of apertures 44 are provided within the primary portion 32 of the combustor 30. As best shown in FIGS. 2 and 4, the apertures 44 are partially formed in both the smooth and serpentinous wall members 54 and 56, respectively. In the preferred embodiment, each aperture 44 is wholly formed in the smooth member 54 as indicated by 44a and partially formed in the serpentinous members 56 as indicated in 44b. Furthermore, each aperture 44 is in registry with one of the passageways 72, so that a portion of the air from the plenum chamber entering the combustor through aperture 44 is also directed through axial passageway 72 for cooling P rposes.
In operation, air is compressed in the compressor 12 (FIG. 1) and flows into the plenum chamber 18 within the casing 19. A portion of the pressurized air enters through the primary air apertures 44 where it is mixed with fuel to form a combustible mixture. The hot products of combustion then move to the intermediate portion 33 of the combustor 11 where secondary air enters the air inlet apertures 46 to cool the gaseous products. The air then is directed through the transition portion 34 through the outlet.50 to turn the turbine rotor structure 26, the shaft 27 and compressor rotor structure 15.
As previously mentioned under Background Of The Invention, one of the most serious problems with the combustors is to design them to withstand high temperatures for extended periods of time. The cooling of the combustor is as follows. The compressor airfrom the plenum chamber 18 (FIG. 1) enters the convoluted axial passageways 72 in a first step-liner portion 42a because of the pressure drop between the plenum chamber and the combustor. As the air flows through the passageways 72 the air convectively cools the inner smooth wall member 54 (or the downstream half) and also convectively cools the outer serpentinous wall member 52 (or the upstream half) as indicated by the arrows E in FIG; 2. The air then continues to flow into the second step-liner portion 42b, where it film cools the serpentinous inner wall member 56 (or the downstream half) and the air continues to flow to the adjacent downstream portion to provide an insulating film'cooling blanket for the smooth radially inner wall member 54 (or the downstream half). This multiple cooling technique is similar in subsequent step-liner portions 42 as indicated by cooling air represented by arrows F entering convoluted axially extending passageways 72 and convectively cooling the radially inner smooth 'wall 54, the outer serpentinous vwall member 56 and then continuing to provide film cooling for the serpentinous member and the subsequent downstream smooth wall member 54 of the double wall portions 52.
Additional cooling air represented by arrows G (best seen in FIGS. 2 and 4) enters the axially extending passageways 74 in the second step 421: to provide convective cooling for the larger diameter smooth wall member 54 and the inner serpentinous member 56 and film cooling for the downstream smooth wall member 54. This multiple cooling function is similar in sub sequent step-liner portions.
In large commercial gas turbines, typical testshave indicated that combustors burning No. 2 distillate fuel had an average temperature in the primary portionof approximately 1,600F. Laboratory tests have indicated using the double wall combustor disclosed herein, that the average temperature in the same primary portion were approximately 1,000F. under similar testing conditions. This means that the double wall combustor during actual operating conditions runs at approximately 600F. cooler than present combustors which represents a decrease of about 36% percent when compared to present combustors.
Furthermore, this reduction in temperature of 600F. is estimated to extend the useful operating life .of the combustors of approximately five times when compared to conventional combustors, while the increase in cost involved in building the double wall combustor relative to the conventional combustor is almost negligible.
As previously mentioned, it is more economical to switch toheavy fuels (those with high hydrocarbon contents and impurities) rather than burn conventional No. 2 distillate fuel. However, since heavy residual fuels radiate substantially more heat than No. 2 distillate fuel, combustor walls become hotter and combustor life is correspondingly. substantially reduced. Asv
an example, it is not uncommon for combustor wall portions to reach .1 ,900F. while burning heavy residual fuels. Using the double wall combustor construction, the wall temperature of the combustors can be kept within present operating temperatures and have useful lives equal to that of conventional combustors.
' Another advantage to the double wall combustor, is that no additional cooling air is needed to cool the walls and the temperature distribution pattern of the gases introduced to the turbine blades arenot effected thereby. Alternately, to maintain the same temperature of the combustor walls, the amount of compressorair could be substantially reduced thereby increasing the overall efficiency of the turbine because of the reduction in back work.
' An additional advantage of the double wall combustor is thatsince the combustor walls are cooler, the pressurized air within the plenum chamber is also kept cooler resulting in a cooler outer casing structure.
What is disclosed then, is a double wall combustor that'provides multiple cooling functions: (a) convec tively cools each double wall portion, and (b) film cools each double. wall portion. The double wall combustor runs substantially cooler when compared to present temperatures of combustors or in the alternative can operate at substantially higher temperatures without having a corresponding decrease in combustor life. When operated at normal conditions, the combustor has an increase of useful life of five times that of present combustors, with substantially no increase in construction cost associated therewith. Finally, the temperature distribution pattern of the hot combustion gases are not affected by the double wall construction.
Since numerous changes may be made in the abovedescribed construction, and different embodiments of the invention may be made without departing from the spirit and .scope thereof, it is intended that all the matter contained in the foregoing description or shown in the accompanying drawings, shall be interpreted as illustrative and not in a limiting sense.
We claim as our invention:
1; In a combustion chamber arranged for admission of fuel to the upstream end thereof and discharge of hot gaseous products from the downstream end thereof, an elongated tubular wall structure of a step-liner construction incrementally increasing in cross sectional area in downstream direction and having a double wall, said double wall comprising, serpentinous wall members and smooth wall members, said smooth wall members being disposed adjacent each other in such a manner that upstream smooth wall members are circumferentially smaller than adjacent downstream smooth wall members and a serpentinous wall member overlaps adjacent smooth wall members to form said tubular double wall structure, said serpentinous and smooth wall members being so disposed that an upstream portion of each of said serpentinous members enwraps and fastens to a downstream portion of a smooth wall member and telescopes within and fastens to an upstream portion of an adjacent smooth wall member, whereby said combustion chamber has a double wall throughout said elongated tubular step liner structure.
2. The structure recited in claim 1, wherein the adjacent smooth members have ends which are substantially radially aligned.
3. The structure recited in claim 1, wherein the serpentinous members have ends which are substantially radially aligned.
4. The structure recited in claim 1, wherein the serpentinous wall members partially define an array of first passageways, generally extending in the axial direction, to permit cooling fluid to convectively cool the enwrapped smooth wall member and gaseous products within the combustion chamber and the adjacent downstream smooth wall members.
5. The structure recited in claim 4, wherein the cooling fluid also convectively cools the portion of the serpentinous wall members enwrapping the downstream portion of the smooth wall members.
6. The structure recited in claim 4, wherein the cooling fluid further film cools the adjacent serpentinous wall members telescoping in the upstream portion of the smooth wall members.
7. The structure recited in claim 4, wherein the serpentinous wall members partially define an array of second passageways generally extending in the axial direction to permit cooling fluid to convectively cool the serpentinous wall members and the enwrapped smooth wall member, and furthermore to allow cooling fluid to provide a cooling film of fluid adjacent the downstream portion of the smooth wall members.
8. The structure recited in claim 1 wherein there is no substantial overlap between adjacent smooth wall members.
9. The structure recited in claim 1 wherein there is no substantial overlap between adjacent serpentinous wall members.
10. The structure recited in claim 1, having a primary combustion zone adjacent the downstream end thereof.
11. The structure recited in claim 10, and further comprising an array of primary air inlet apertures disposed in the primary combustion zone.
12. The structure recited in claim 1 and further comprising an array of apertures disposed adjacent the upstream end of the combustion chamber for admitting air thereto, said apparatus being formed jointly in the smooth and serpentinous member.
13. The structure recited in claim 12, wherein each of the apertures is wholly formed in a smooth wall member and partially formed in adjacent serpentinous wall members.
14. The structure recited in claim 1, wherein the serpentinous wall members are tubular and are comprised of elements having a substantially trapezoidal shaped cross-section.
casing structure at least partially defining a pressurized plenum chamber,
a plurality of combustion chambers disposed in an annular array within said casing structure, the centers of said chambers being equidistant from each other in an annular direction each of said combustion chambers having a tubular double wall structure of step-liner construction, incrementally increasing in cross sectional area in downstream direction,
said double wall structure comprising serpentine wall members and smooth wall members,
said smooth wall members being disposed adjacent each other in such a manner that upstream smooth wall members are circumferentially smaller than adjacent downstream smooth wall members and a serpentinous wall member overlaps adjacent smooth wall members to form said tubular double wall structure, said serpentinous and smooth wall members being so disposed that an upstream portion of each of said serpentinous members enwraps and fastens to a downstream portion of a smooth wall member and telescopes within and fastens to an upstream portion of an adjacent smooth wall member, whereby said combustion chamber has a double wall throughout said tubular step liner structure.
17. The structure recited in claim 16, wherein the adjacent smooth members have ends which are substantially radially aligned.
18. The structure recited in claim 16, wherein the serpentinous members have ends which are sub stantially radially aligned.
19. The structure recited in claim 16, wherein the serpentinous wall members partially defines a first array of passageways extending generally in an axial direction to provide fluid communication between the plenum chamber and the combustion chamber,
said first passageways permitting cooling fluid to convectively cool the enwrapped smooth wall member and the enwrapping serpentinous member,
and said passageways being arranged to permit said cooling fluid to provide a fluid film between hot combustion gases within the combustion chamber and the adjacent serpentinous wall members telescoped within the smooth wall member and to produce a fluid film between the hot combustion gases and the enwrapped smooth wall members.
20. The structure recited in claim 19, wherein the serpentinous wall members partially defines a second array of passageways extending generally in an axial direction,
said passageways permitting cooling fluid to convectively cool the serpentinous wall members and telescoped with the smooth wall members,
and furthermore, to allow the cooling fluid to provide a film of cooling fluid adjacent the enwrapped smooth wall members.

Claims (20)

1. In a combustion chamber arranged for admission of fuel to the upstream end thereof and discharge of hot gaseous products from the downstream end thereof, an elongated tubular wall structure of a step-liner construction incrementally increasing in cross sectional area in downstream direction and having a double wall, said double wall comprising, serpentinous wall members and smooth wall members, said smooth wall members being disposed adjacent each other in such a manner that upstream smooth wall members are circumferentially smaller than adjacent downstream smooth wall members and a serpentinous wall member overlaps adjacent smooth wall members to form said tubular double wall structure, said serpentinous and smooth wall members being so disposed that an upstream portion of each of said serpentinous members enwraps and fastens to a downstream portion of a smooth wall member and telescopes within and fastens to an Upstream portion of an adjacent smooth wall member, whereby said combustion chamber has a double wall throughout said elongated tubular step liner structure.
2. The structure recited in claim 1, wherein the adjacent smooth members have ends which are substantially radially aligned.
3. The structure recited in claim 1, wherein the serpentinous members have ends which are substantially radially aligned.
4. The structure recited in claim 1, wherein the serpentinous wall members partially define an array of first passageways, generally extending in the axial direction, to permit cooling fluid to convectively cool the enwrapped smooth wall member and gaseous products within the combustion chamber and the adjacent downstream smooth wall members.
5. The structure recited in claim 4, wherein the cooling fluid also convectively cools the portion of the serpentinous wall members enwrapping the downstream portion of the smooth wall members.
6. The structure recited in claim 4, wherein the cooling fluid further film cools the adjacent serpentinous wall members telescoping in the upstream portion of the smooth wall members.
7. The structure recited in claim 4, wherein the serpentinous wall members partially define an array of second passageways generally extending in the axial direction to permit cooling fluid to convectively cool the serpentinous wall members and the enwrapped smooth wall member, and furthermore to allow cooling fluid to provide a cooling film of fluid adjacent the downstream portion of the smooth wall members.
8. The structure recited in claim 1 wherein there is no substantial overlap between adjacent smooth wall members.
9. The structure recited in claim 1 wherein there is no substantial overlap between adjacent serpentinous wall members.
10. The structure recited in claim 1, having a primary combustion zone adjacent the downstream end thereof.
11. The structure recited in claim 10, and further comprising an array of primary air inlet apertures disposed in the primary combustion zone.
12. The structure recited in claim 1 and further comprising an array of apertures disposed adjacent the upstream end of the combustion chamber for admitting air thereto, said apparatus being formed jointly in the smooth and serpentinous member.
13. The structure recited in claim 12, wherein each of the apertures is wholly formed in a smooth wall member and partially formed in adjacent serpentinous wall members.
14. The structure recited in claim 1, wherein the serpentinous wall members are tubular and are comprised of elements having a substantially trapezoidal shaped cross-section.
15. The structure recited in claim 14, wherein the trapezoidal shaped elements jointly define inwardly and outwardly depressed portions the outer surfaces of which contacts the adjacent smooth wall members.
16. In a gas turbine power plant comprising combustion apparatus having an outer casing structure, said casing structure at least partially defining a pressurized plenum chamber, a plurality of combustion chambers disposed in an annular array within said casing structure, the centers of said chambers being equidistant from each other in an annular direction, each of said combustion chambers having a tubular double wall structure of step-liner construction, incrementally increasing in cross sectional area in downstream direction, said double wall structure comprising serpentine wall members and smooth wall members, said smooth wall members being disposed adjacent each other in such a manner that upstream smooth wall members are circumferentially smaller than adjacent downstream smooth wall members and a serpentinous wall member overlaps adjacent smooth wall members to form said tubular double wall structure, said serpentinous and smooth wall members being so disposed that an upstream portion of each of said serpentinous members enwraps and fastens to a downstream portion of a smooth wall member and telescopes within and fastens to an upstream poRtion of an adjacent smooth wall member, whereby said combustion chamber has a double wall throughout said tubular step liner structure.
17. The structure recited in claim 16, wherein the adjacent smooth members have ends which are substantially radially aligned.
18. The structure recited in claim 16, wherein the serpentinous members have ends which are substantially radially aligned.
19. The structure recited in claim 16, wherein the serpentinous wall members partially defines a first array of passageways extending generally in an axial direction to provide fluid communication between the plenum chamber and the combustion chamber, said first passageways permitting cooling fluid to convectively cool the enwrapped smooth wall member and the enwrapping serpentinous member, and said passageways being arranged to permit said cooling fluid to provide a fluid film between hot combustion gases within the combustion chamber and the adjacent serpentinous wall members telescoped within the smooth wall member and to produce a fluid film between the hot combustion gases and the enwrapped smooth wall members.
20. The structure recited in claim 19, wherein the serpentinous wall members partially defines a second array of passageways extending generally in an axial direction, said passageways permitting cooling fluid to convectively cool the serpentinous wall members and telescoped with the smooth wall members, and furthermore, to allow the cooling fluid to provide a film of cooling fluid adjacent the enwrapped smooth wall members.
US106041A 1971-01-13 1971-01-13 Double wall combustion chamber Expired - Lifetime US3702058A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10604171A 1971-01-13 1971-01-13

Publications (1)

Publication Number Publication Date
US3702058A true US3702058A (en) 1972-11-07

Family

ID=22309157

Family Applications (1)

Application Number Title Priority Date Filing Date
US106041A Expired - Lifetime US3702058A (en) 1971-01-13 1971-01-13 Double wall combustion chamber

Country Status (8)

Country Link
US (1) US3702058A (en)
CA (1) CA942513A (en)
CH (1) CH547996A (en)
DE (1) DE2161644A1 (en)
FR (1) FR2121779B1 (en)
GB (1) GB1312907A (en)
IT (1) IT946524B (en)
NL (1) NL7118118A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174608A (en) * 1972-08-15 1979-11-20 Stal-Laval Turbin Ab Combustion chamber for a gas turbine
US4262487A (en) * 1979-02-01 1981-04-21 Westinghouse Electric Corp. Double wall combustion chamber for a combustion turbine
US4292810A (en) * 1979-02-01 1981-10-06 Westinghouse Electric Corp. Gas turbine combustion chamber
US4407205A (en) * 1982-04-30 1983-10-04 Beaufrere Albert H Regeneratively cooled coal combustor/gasifier with integral dry ash removal
US4413477A (en) * 1980-12-29 1983-11-08 General Electric Company Liner assembly for gas turbine combustor
US4413470A (en) * 1981-03-05 1983-11-08 Electric Power Research Institute, Inc. Catalytic combustion system for a stationary combustion turbine having a transition duct mounted catalytic element
US4845940A (en) * 1981-02-27 1989-07-11 Westinghouse Electric Corp. Low NOx rich-lean combustor especially useful in gas turbines
US4887432A (en) * 1988-10-07 1989-12-19 Westinghouse Electric Corp. Gas turbine combustion chamber with air scoops
US5302795A (en) * 1990-09-13 1994-04-12 Hitachi, Ltd. Welding equipment for fabricating a combustion liner
US5327727A (en) * 1993-04-05 1994-07-12 General Electric Company Micro-grooved heat transfer combustor wall
US6018950A (en) * 1997-06-13 2000-02-01 Siemens Westinghouse Power Corporation Combustion turbine modular cooling panel
US20030033794A1 (en) * 2001-08-14 2003-02-20 Peter Tiemann Combustion chamber arrangement for gas turbines
US20040250549A1 (en) * 2001-11-15 2004-12-16 Roland Liebe Annular combustion chamber for a gas turbine
US20060242964A1 (en) * 2005-04-28 2006-11-02 Siemens Westinghouse Power Corp. Gas turbine combustor barrier structures for spring clips
JP2009250242A (en) * 2008-04-10 2009-10-29 General Electric Co <Ge> Combustor seal having multiple cooling fluid pathways
US20100170259A1 (en) * 2009-01-07 2010-07-08 Huffman Marcus B Method and apparatus to enhance transition duct cooling in a gas turbine engine
US20120234009A1 (en) * 2011-03-15 2012-09-20 Boettcher Andreas Gas turbine combustion chamber
US8667801B2 (en) 2010-09-08 2014-03-11 Siemens Energy, Inc. Combustor liner assembly with enhanced cooling system
US20140223914A1 (en) * 2013-02-14 2014-08-14 Rajesh Rajaram Flow sleeve inlet assembly in a gas turbine engine
US20220018541A1 (en) * 2020-07-16 2022-01-20 Raytheon Technologies Corporation Article and method for manufacturing an expanded combustor liner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2340453A1 (en) * 1976-02-06 1977-09-02 Snecma COMBUSTION CHAMBER BODY, ESPECIALLY FOR TURBOREACTORS
US4132066A (en) * 1977-09-23 1979-01-02 United Technologies Corporation Combustor liner for gas turbine engine
US4642993A (en) * 1985-04-29 1987-02-17 Avco Corporation Combustor liner wall
DE4244303A1 (en) * 1992-12-28 1994-06-30 Abb Research Ltd Impact cooling system for cooling surface e.g. of combustion chamber wall
JP3415663B2 (en) * 1992-12-28 2003-06-09 アルストム Equipment for cooling the cooling surface in an impact manner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH229934A (en) * 1942-10-06 1943-11-30 Bbc Brown Boveri & Cie Gas turbine plant.
US2610467A (en) * 1946-04-03 1952-09-16 Westinghouse Electric Corp Combustion chamber having telescoping walls and corrugated spacers
GB759489A (en) * 1953-02-26 1956-10-17 Rolls Royce Improvements in or relating to gas-turbine engine combustion equipment
US3169367A (en) * 1963-07-18 1965-02-16 Westinghouse Electric Corp Combustion apparatus
GB998755A (en) * 1964-05-07 1965-07-21 Rolls Royce Improvements in or relating to combustion equipment
US3545202A (en) * 1969-04-02 1970-12-08 United Aircraft Corp Wall structure and combustion holes for a gas turbine engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR945486A (en) * 1946-04-03 1949-05-05 Westinghouse Electric Corp Improvements to combustion devices for gas turbines
US3572031A (en) * 1969-07-11 1971-03-23 United Aircraft Corp Variable area cooling passages for gas turbine burners

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH229934A (en) * 1942-10-06 1943-11-30 Bbc Brown Boveri & Cie Gas turbine plant.
US2610467A (en) * 1946-04-03 1952-09-16 Westinghouse Electric Corp Combustion chamber having telescoping walls and corrugated spacers
GB759489A (en) * 1953-02-26 1956-10-17 Rolls Royce Improvements in or relating to gas-turbine engine combustion equipment
US3169367A (en) * 1963-07-18 1965-02-16 Westinghouse Electric Corp Combustion apparatus
GB998755A (en) * 1964-05-07 1965-07-21 Rolls Royce Improvements in or relating to combustion equipment
US3545202A (en) * 1969-04-02 1970-12-08 United Aircraft Corp Wall structure and combustion holes for a gas turbine engine

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4174608A (en) * 1972-08-15 1979-11-20 Stal-Laval Turbin Ab Combustion chamber for a gas turbine
US4262487A (en) * 1979-02-01 1981-04-21 Westinghouse Electric Corp. Double wall combustion chamber for a combustion turbine
US4292810A (en) * 1979-02-01 1981-10-06 Westinghouse Electric Corp. Gas turbine combustion chamber
US4413477A (en) * 1980-12-29 1983-11-08 General Electric Company Liner assembly for gas turbine combustor
US4845940A (en) * 1981-02-27 1989-07-11 Westinghouse Electric Corp. Low NOx rich-lean combustor especially useful in gas turbines
US4413470A (en) * 1981-03-05 1983-11-08 Electric Power Research Institute, Inc. Catalytic combustion system for a stationary combustion turbine having a transition duct mounted catalytic element
US4407205A (en) * 1982-04-30 1983-10-04 Beaufrere Albert H Regeneratively cooled coal combustor/gasifier with integral dry ash removal
US4887432A (en) * 1988-10-07 1989-12-19 Westinghouse Electric Corp. Gas turbine combustion chamber with air scoops
US5302795A (en) * 1990-09-13 1994-04-12 Hitachi, Ltd. Welding equipment for fabricating a combustion liner
US5327727A (en) * 1993-04-05 1994-07-12 General Electric Company Micro-grooved heat transfer combustor wall
US6018950A (en) * 1997-06-13 2000-02-01 Siemens Westinghouse Power Corporation Combustion turbine modular cooling panel
US6684620B2 (en) * 2001-08-14 2004-02-03 Siemens Aktiengesellschaft Combustion chamber arrangement for gas turbines
US20030033794A1 (en) * 2001-08-14 2003-02-20 Peter Tiemann Combustion chamber arrangement for gas turbines
US20040250549A1 (en) * 2001-11-15 2004-12-16 Roland Liebe Annular combustion chamber for a gas turbine
US20060242964A1 (en) * 2005-04-28 2006-11-02 Siemens Westinghouse Power Corp. Gas turbine combustor barrier structures for spring clips
WO2006118655A1 (en) * 2005-04-28 2006-11-09 Siemens Power Generation, Inc. Gas turbine combustor barrier structures for spring clips
US7377116B2 (en) 2005-04-28 2008-05-27 Siemens Power Generation, Inc. Gas turbine combustor barrier structures for spring clips
JP2009250242A (en) * 2008-04-10 2009-10-29 General Electric Co <Ge> Combustor seal having multiple cooling fluid pathways
US20100170259A1 (en) * 2009-01-07 2010-07-08 Huffman Marcus B Method and apparatus to enhance transition duct cooling in a gas turbine engine
US8549861B2 (en) * 2009-01-07 2013-10-08 General Electric Company Method and apparatus to enhance transition duct cooling in a gas turbine engine
US8667801B2 (en) 2010-09-08 2014-03-11 Siemens Energy, Inc. Combustor liner assembly with enhanced cooling system
US20120234009A1 (en) * 2011-03-15 2012-09-20 Boettcher Andreas Gas turbine combustion chamber
US8464536B2 (en) * 2011-03-15 2013-06-18 Siemens Aktiengesellschaft Gas turbine combustion chamber
US20140223914A1 (en) * 2013-02-14 2014-08-14 Rajesh Rajaram Flow sleeve inlet assembly in a gas turbine engine
US9366438B2 (en) * 2013-02-14 2016-06-14 Siemens Aktiengesellschaft Flow sleeve inlet assembly in a gas turbine engine
US20220018541A1 (en) * 2020-07-16 2022-01-20 Raytheon Technologies Corporation Article and method for manufacturing an expanded combustor liner

Also Published As

Publication number Publication date
CA942513A (en) 1974-02-26
GB1312907A (en) 1973-04-11
FR2121779B1 (en) 1974-11-08
NL7118118A (en) 1972-07-17
FR2121779A1 (en) 1972-08-25
IT946524B (en) 1973-05-21
DE2161644A1 (en) 1972-07-20
CH547996A (en) 1974-04-11

Similar Documents

Publication Publication Date Title
US3702058A (en) Double wall combustion chamber
US3899882A (en) Gas turbine combustor basket cooling
US4887432A (en) Gas turbine combustion chamber with air scoops
US3657883A (en) Combustion chamber clustering structure
US2547619A (en) Combustor with sectional housing and liner
US2795108A (en) Combustion apparatus
US9140454B2 (en) Bundled multi-tube nozzle for a turbomachine
US8015817B2 (en) Cooling structure for gas turbine transition duct
EP2481983B1 (en) Turbulated Aft-End liner assembly and cooling method for gas turbine combustor
US9291103B2 (en) Fuel nozzle for a combustor of a gas turbine engine
US7984615B2 (en) Combustors for use in turbine engine assemblies
US9273868B2 (en) System for supporting bundled tube segments within a combustor
US20170138267A1 (en) Bundled Tube Fuel Nozzle Assembly With Liquid Fuel Capability
US3656297A (en) Combustion chamber air inlet
CN1487237B (en) Combustor radome for combustion gas worm gear engine
RU2707355C2 (en) Combustion chamber spacer ring with controlled air passage
US9528702B2 (en) System having a combustor cap
US20180355799A1 (en) Transition structure
US2628067A (en) Gas turbine and like engine
US5398509A (en) Gas turbine engine combustor
US6220015B1 (en) Gas-turbine engine combustion system
US3238718A (en) Gas turbine engine
US3422620A (en) Combustion apparatus
US2813397A (en) Thermal expansion means for combustion chambers
ITMI20012584A1 (en) SEPARATION STRUCTURE OF HIGH AND LOW TURBO EXPANSION OF A GAS TURBINE