EP1443807B1 - Circuit et méthode d'allumage et de commande du fonctionnement des lampes à décharges - Google Patents

Circuit et méthode d'allumage et de commande du fonctionnement des lampes à décharges Download PDF

Info

Publication number
EP1443807B1
EP1443807B1 EP03029436A EP03029436A EP1443807B1 EP 1443807 B1 EP1443807 B1 EP 1443807B1 EP 03029436 A EP03029436 A EP 03029436A EP 03029436 A EP03029436 A EP 03029436A EP 1443807 B1 EP1443807 B1 EP 1443807B1
Authority
EP
European Patent Office
Prior art keywords
pumping
inverter
circuit arrangement
arrangement according
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03029436A
Other languages
German (de)
English (en)
Other versions
EP1443807A3 (fr
EP1443807A2 (fr
Inventor
Bernd Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1443807A2 publication Critical patent/EP1443807A2/fr
Publication of EP1443807A3 publication Critical patent/EP1443807A3/fr
Application granted granted Critical
Publication of EP1443807B1 publication Critical patent/EP1443807B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a circuit arrangement according to the preamble of claim 1. It is in particular a circuit arrangement for the operation of discharge lamps, the so-called. Charge pumps for reducing mains harmonics.
  • Circuit arrangements for starting and operating discharge lamps are used in electronic control gear for discharge lamps.
  • the start of the discharge lamp is understood below to mean at least the ignition during an ignition phase. However, preheating of electrode filaments during a preheating phase of the ignition phase may also precede.
  • the operating devices are operated at a mains voltage, they are subject to relevant regulations regarding mains harmonics, eg. Eg IEC 1000-3-2. To comply with these regulations, circuit measures are required to reduce line harmonics.
  • One such measure is the installation of so-called charge pumps.
  • the advantage of charge pumps is the low circuit complexity, which is necessary for their realization.
  • the topology of a charge pump includes that the rectifier is coupled to the main energy storage via an electronic pump switch. This creates a pump node between the rectifier and the electronic pump switch.
  • the pump node is coupled to the changer output via a pump network.
  • the pump network may include components that can be assigned to the matching network at the same time.
  • the principle of the charge pump is that energy is taken from the mains voltage via the pump node during a period of use of the variable frequency converter and intermediately stored in the pump network. In the following half-period of the inverter frequency, the cached energy is supplied to the main energy storage via the electronic pump switch.
  • the mains voltage is therefore taken from energy in time with the inverter frequency.
  • the electronic ballast includes filter circuits that suppress spectral components of the mains current that are at or above the inverter frequency.
  • the charge pump can be designed so that the harmonics of the mains current are so low that said regulations are met.
  • Document EP 0 621 743 (Mattas) describes a circuit arrangement for operating a discharge lamp which contains a charge pump. In addition, it has a controller which effects a modulation of the inverter frequency with twice the mains frequency. Thus, the problem is solved to improve the crest factor of the lamp current, which is applied to the discharge lamp. This increases the life of the lamps.
  • the o. G. Matching network includes a resonant circuit, which essentially contains a resonant capacitor and a lamp choke.
  • the resonant circuit has a resonant frequency which is at a natural frequency of the resonant circuit without attenuation of the resonant circuit.
  • the inverter To ignite the discharge lamp, the inverter is first operated at an inverter frequency that is above the natural frequency. In an ignition phase, the inverter frequency is lowered until, in the vicinity of the natural frequency, the resonant circuit generates a high voltage on the discharge lamp and ignites the discharge lamp.
  • Prior art EP 0 621 743 (Mattas) describes a regulator which has a first regulator input. This first regulator input is supplied with an electrical quantity which corresponds to a first operating variable of a discharge lamp operated on lamp terminals.
  • the controller has a second regulator input.
  • the second regulator input is supplied with a second electrical quantity that corresponds to a second operating variable, which is a measure of the reactive energy oscillating in the resonant circuit.
  • the second electrical variable is supplied to the second regulator input via a threshold value switch. In the event that the value of the second electrical quantity exceeds the threshold value of the threshold value, the inverter frequency is increased.
  • resistors are denoted by the letter R, transistors by the letter T, coils by the letter L, amplifiers by the letter A, diodes by the letter D, node potentials by the letter N and capacitors by the letter C respectively followed by a number , Also, the same reference numerals are used throughout for the same and equivalent elements of the various embodiments.
  • FIG. 1 shows a block diagram of a circuit arrangement according to the invention for starting and operating discharge lamps.
  • a mains voltage from a mains voltage source of the circuit arrangement can be supplied.
  • the mains voltage is first fed into a block FR.
  • this block contains known means for filtering disturbances.
  • this block contains a rectifier, which rectifies the mains voltage, which is an AC voltage.
  • a full-wave rectifier is used in bridge circuit for this purpose.
  • Important for the function of a charge pump realized in the circuit arrangement is the property of the rectifier that it does not allow any current that allows a flow of energy from the circuit arrangement to the mains voltage source.
  • the rectified mains voltage is supplied to an electronic pump switch UNI, wherein at the Verbindutigsstelle between rectifier FR and electronic pump switch UNI a pump node N1 is formed.
  • the electronic pump switch UNI consists of a pumping diode, which allows only one current flow, which flows from the pump node N1 to the pumping diode. But it is also possible any electronic switch, such. As a MOSFET to use for the electronic pump switch UNI, which fulfills the function of the pump diode.
  • Most of the main energy storage STO is designed as an electrolytic capacitor. However, other types of capacitors are possible. In principle, the form of energy storage that is dual to the capacitor is also possible. In the dual case, the main energy storage STO is designed as a coil. Because of the lower cost and better efficiency, a capacitor is preferred as the main energy storage STO.
  • the main energy storage STO provides its energy to an inverter INV.
  • the inverter INV generates a variable, usually an AC voltage, which is supplied to a block designated MN and PN.
  • MN denotes the function of the block as a matching network.
  • the block MN / PN can be connected to a discharge lamp L.
  • PN denotes the function of the block as a pumping network.
  • the block MN / PN is connected to the pump node N1.
  • the connecting line between the pump node N1 and the block MN / PN is provided in Figure 1 at both ends with an arrow. This is intended to indicate that energy flows alternately from the pump node N1 to the block MN / PN and back.
  • the functions of the matching network and the pump network are summarized in the block MN / PN because embodiments of the invention are possible in which individual components can be assigned to both the one and the other function.
  • a controller CONT acts on the inverter INV via a manipulated variable.
  • This is a parameter of the output from the inverter change size, eg. As the operating frequency or the pulse width, so changed that a change of the first operating variable is counteracted.
  • the first operating variable is supplied to a first input of the regulator via the connection B 1.
  • the first operating size is a quantity that determines the operation of the lamp. Therefore, in FIG. 1, the connection B1 originates from the block for the discharge lamp L.
  • the first operating quantity is the lamp current or the lamp power.
  • the controller CONT has a second input.
  • a second operating variable is supplied to the second input via a threshold value switch TH.
  • the second operating variable according to the invention is a measure of the reactive energy oscillating in a resonant circuit contained in the block MN / PN.
  • the tap The second operating variable by means of the connection B2 therefore takes place at the block MN / PN. But it is also possible a measure of the said reactive energy from lamp operating variables, such. B. to win the lamp voltage.
  • the reactive energy provides information about the energy imbalance of the charge pump and the load on components. If the second operating variable exceeds the threshold of the threshold switch, according to the invention the inverter CONT is influenced in such a way that the reactive energy does not increase any further. This can be done by raising the operating frequency of the inverter INV.
  • the controller CONT may include an adder which adds the signals applied to the controller inputs. It must be ensured that the signal at the first controller input does not jam the signal at the second controller input. If the signal at the second controller input exceeds the signal at the first controller input, the signal at the second controller input must be the relevant controller signal.
  • FIG. 2 shows an exemplary embodiment of a switching gear arrangement according to the invention for starting and operating discharge lamps.
  • a mains voltage can be connected at the terminals J 1 and J2 .
  • the mains voltage Via a filter consisting of two capacitors C1, C2 and two coils L1, L2, the mains voltage is fed to a full-bridge rectifier consisting of the diodes D1, D2, D3, D4.
  • the full-bridge rectifier provides at its positive output, a node N21, the rectified mains voltage with respect to a reference node N0.
  • the rectified mains voltage is fed to two pump nodes N22 and N23.
  • the embodiment in Figure 2 therefore has two pump branches. In order to decouple the pump branches against each other, the diodes D5 and D6 are necessary. With only one pump branch, a pump node can be connected directly to the rectifier output, node 21. It should be noted, however, that the diodes used in the rectifier can switch fast enough to follow the inverter frequency. If this is not the case, must even with only one pump branch, a fast diode can be connected between rectifier output and pump node. In the exemplary embodiment in FIG. 2, the pump nodes are coupled to the positive output of the rectifier.
  • the literature also discloses charge pump topologies in which pump nodes are coupled to the negative output of the rectifier.
  • an electronic pump switch which are implemented as diodes D7 and D8, respectively, leads to the node N24.
  • the main energy storage which is designed as an electrolytic capacitor C3, connected.
  • C3 feeds the inverter, which is designed as a half-bridge.
  • B. flyback converter or full bridge used.
  • a half-bridge is used for lamp powers between 5W and 300W, as it represents the most cost-effective topology.
  • the half-bridge consists of a series connection of two half-bridge transistors T1 and T2 and a series connection of two coupling capacitors C4 and C5. Both Scrienscrien are connected in parallel to C3.
  • a connection node N25 of the half-bridge transistors and a connection node N26 of the coupling capacitors form the inverter output to which a rectangular wave converter voltage with an inverter frequency is applied.
  • a lamp inductor L3 is connected between N25 and a lamp voltage node N27.
  • the terminal J3 is connected, to which in the exemplary embodiment, the series connection of two discharge lamps Lp1 and Lp2 is connected.
  • the present invention is also practicable with one or more lamps.
  • the current through the discharge lamps Lp1 and Lp2 flows through a terminal J8 through a winding W1 of a measuring transformer to the node N26.
  • the inverter voltage is thus applied to a series connection of two discharge lamps Lp 1, Lp 2 and the lamp inductor L 3.
  • the current fed in J3 flows not only by the gas discharge of the discharge lamps Lp1, Lp2 but also by an outer coil of the first discharge lamp Lp1 to a port J4. From there, continue through a winding W4 of a heating transformer, further through a variable resistor R 1, further through a winding W3 of the measuring transformer to the terminal J7. At terminal J7, an outer coil of the second discharge lamp Lp2 is connected, the other end of which leads to terminal J8. Two inner coils of the discharge lamps Lp1 and Lp2 are connected to the winding W5 of the heating transformer through the terminals J5 and J6, respectively.
  • the inverter voltage causes not only a current through the gas discharge of the discharge lamps Lp1, Lp2 but also a heating current through the outer coils and via the heating transformer also a heating current through the inner coils of the discharge lamps Lp1, Lp2. If only one discharge lamp is to be operated, then the heating transformer can be dispensed with.
  • the heating current is essentially required before the ignition of the discharge lamps Lp1, Lp2 during a preheating as preheating current for the preheating of the helices.
  • the value of the heating current is essentially determined by the variable resistor R1.
  • R1 is implemented by a so-called PTC or PTC thermistor. This is a resistor which has a low resistance when cold. The heating current heats the PTC thermistor, increasing its resistance.
  • R1 can also be realized by an electronic switch, which is closed in the preheat phase and then opened. In series with this switch, a resistor with a constant resistance value can be switched. This allows a quick transition from the preheating phase to the ignition phase.
  • the resonant frequency of a resonant circuit described in the next section is lower than its natural frequency during the preheating phase due to damping.
  • an inverter frequency is chosen during the preheating phase, which is below the natural frequency is located, so that there is a high heating current and thus a short preheating.
  • the lamp voltage node N27 is connected to the pump node N23 via a first resonance capacitor C6. Between N23 and N0 a second resonant capacitor C7 is connected. C6 and C7 form a resonant circuit with the lamp inductor L3. To determine the natural frequency of the resonant circuit, C6 and C7 are considered connected in series. The effective capacitance value of C6 and C7 with respect to the natural frequency is thus the quotient of the product and the sum of the capacitance values of C6 and C7. If the resonant circuit is excited near its natural frequency, an ignition voltage is produced across the lamps which leads to the ignition of the discharge lamps. After ignition, L3 acts together with C6 and C7 as a matching network, which transforms an output impedance of the inverter into an impedance necessary to operate the discharge lamps.
  • the combination of L3, C6, and C7 not only acts as a resonant circuit and matching network, but also as a pumping network. If the potential at N23 is lower than the instantaneous mains voltage, the pumping network L3, C6, C7 draws energy from the mains voltage. If the potential at N23 exceeds the voltage at the main memory C3, the power absorbed by the mains voltage is output at C3.
  • the ratio of the capacitance values of C6 and C7 the effect of network L3, C6, C7 as pumping network can be adjusted. The larger the capacitance value of C7, the lower the effect of the network L3, C6, C7 as the pump network.
  • C8 Another pumping action starts from a capacitor C8, which is connected between N23 and the connection node N25 of the half-bridge transistors T1, T2.
  • C8 not only acts as a pump network, but also fulfills the role of a snubber capacitor.
  • Snubber capacitors are commonly known as a measure of switch relieving in inverters.
  • the pumping network for the second pump branch consists of the series connection of a pumping inductor L4 and a pumping capacitor C9. This pump network is connected between the connection node N25 of the half-bridge transistors T1, T2 and the pump node N22.
  • two pump branches are used to divide the pumped energy among several components. For a more cost-effective dimensioning of the components is possible. This also gives a degree of freedom in the design of the dependence of the pumped energy on the operating parameters of the discharge lamps. However, the invention can also be realized with only one pump branch.
  • the half-bridge transistors T1, T2 are designed as a MOSFET. Other electronic switches can be used for this purpose.
  • an integrated circuit IC1 is provided in the exemplary embodiment.
  • IC1 in the present example is a circuit of International Rectifier type IR2153. Alternative circuits of this type are also available on the market; z. B. L6571 the company STM.
  • the circuit IR2153 contains a so-called high-side driver with which the half-bridge transistor T1 can also be driven, although it has no connection at the reference potential N0. This requires a diode D10 and a capacitor C10.
  • a voltage source VCC is provided between terminal 1 of the IC1 and N0.
  • this voltage source VCC can be realized.
  • the IC can be supplied via a resistor from the rectified mains voltage.
  • the IC1 includes an oscillator whose oscillation frequency can be adjusted via the terminals 2 and 3.
  • the oscillation frequency of the oscillator corresponds to the inverter frequency.
  • a frequency-determining resistor R3 is connected between the terminals 2 and 3.
  • the series connection of a frequency-determining capacitor C11 and the emitter-collector path of a bipolar transistor T3 is connected between terminal 3 and N0.
  • Parallel to the emitter-collector path of T3 is a diode D9 switched to allow C11 to be charged and discharged.
  • a voltage between the base terminal of T3 and N0 can be used to set the inverter frequency and thus form a control loop variable.
  • the base terminal of T3 is connected to a manipulated variable node N28.
  • T3, ICl and their wiring can thus be understood as a regulator.
  • the functions of the IC 1 and its wiring can also be realized by any voltage or current controlled oscillator, which accomplishes the driving of the half-bridge transistors via driver circuits.
  • the control loop in the embodiment detects the controlled current as the flow through the gas discharge of the discharge lamps Lp1, Lp2.
  • the measuring transformer has a winding W2.
  • the winding sense in the measuring transformer is designed in such a way that the heating current in winding W3 is subtracted from a total current in winding W1, so that a current flows in winding W2 which is proportional to the current through the gas discharge of the discharge lamps Lp1, Lp2.
  • a Vollmaschinenglcichriclter formed by diodes D11, D12, D13 and D 14 rectifies the current through winding W2 and leads him via a low-impedance measuring resistor R4 to NO.
  • the voltage drop across R4 is thus a measure of the current through the gas discharge of the discharge lamps Lp1, Lp2. Via a low pass for averaging, which is formed by a resistor R5 and a capacitor C13, the voltage drop at R4 reaches the input of a non-inverting measuring amplifier.
  • the measuring amplifier is realized in a known manner by an operational amplifier AMP and the resistors R6, R7 and R8. In the exemplary embodiment, a gain of the measuring amplifier of about 10 is set. In the event that the voltage drop at R4 has values that can be used directly as a manipulated variable, the amplifier can be omitted or by an impedance converter, such. As an emitter follower to be replaced.
  • the output of the measuring amplifier is connected via a diode D15 to the Stcllgr Obercnknoten N28.
  • Diode D15 is necessary so that the potential of N28 can be increased to a value that is above the value specified by the measuring amplifier.
  • the anode of D15 represents a first regulator input.
  • the threshold value switch according to the invention is implemented in FIG. 2 by a varistor MOV. It is connected in series with a capacitor C12, a resistor R2 and a diode D17, which connects the lamp voltage node N27 to the manipulated variable node N28.
  • the anode of D17 represents a second regulator input.
  • N28 is connected to N0 via the parallel connection of a resistor R9 and a capacitor C14.
  • N27 there is a voltage opposite N0, which is a measure of the reactive energy oscillating in the resonant circuit formed by L3, C6 and C7. If this voltage exceeds the threshold voltage of the varistor MOV, a current flows through R9 and C14 is charged. This raises the voltage at the manipulated variable node N28. This causes an increase in the Wechsehichterfrequenz and the resonant circuit oscillating reactive energy is reduced because the Wechsclrichterfrequenz further from the natural frequency of the resonant circuit.
  • diode D16 is connected between N0 and the junction of R2 and D17. This is used in conjunction with C12 to N28, the sum of positive and negative amplitude of the voltage applied, which allows the varistor MOV.
  • the varistor MOV can find any other threshold value use, as it is z. B. can be constructed by zener diodes or suppressor diodes.
  • the threshold value of the varistor MOV is 250Veff in the application example. A higher value allows more reactive energy in the resonant circuit, which leads to a higher ignition voltage at the discharge lamps Lp1, Lp2, but also to a higher load on components. A desired optimum can thus be set via the threshold value of the varistor MOV.
  • the value of the resistor R2 influences the strength of the effect of the intervention according to the invention on the control loop at the manipulated variable node N28. It is also advantageous a non-linear relationship between the voltage at the manipulated variable node N28 and the inverter frequency. This non-linear relationship is realized in the application example by the non-linear characteristic of T3. In addition, it is influenced by the dependence of the frequency of the oscillator in IC1 on the voltage at terminal 3 of the ICl. A strong increase in the voltage at N27 leads to a disproportionate increase in the inverter frequency due to the non-linearity, whereby an overload of components such. B. the voltage load of C3 or the current load of T 1 and T2, is prevented.

Claims (16)

  1. Montage pour amorcer et faire fonctionner des lampes (L, Lp1, Lp2) à décharge, ayant les caractéristiques suivantes :
    • une première et une deuxième bornes (J1, J2) de réseau pour la connexion d'une tension de réseau,
    • un redresseur (D1, D2, D3, D4), dont l'entrée est couplée aux bornes de réseau et à la sortie (N21) duquel s'applique la tension de réseau redressée,
    • la sortie (N21) du redresseur est couplée à un commutateur (UNI, D7, D8) électronique de pompage, un premier noeud (N1, N23) de pompage étant ainsi formé sur le commutateur (UNI, D7, D8) électronique de pompage,
    • le côté du commutateur électronique de pompage, qui est éloigné de la sortie (N21) du redresseur, est couplé à un accumulateur (C3) d'énergie principal,
    • l'accumulateur (C3) d'énergie principal fournit de l'énergie à un onduleur (INV) qui cède à une sortie (N25, N26) d'onduleur une tension d'onduleur qui a une fréquence d'onduleur sensiblement plus haute que la fréquence de la tension du réseau,
    • la sortie (N25) de l'onduleur est couplée au premier noeud (N1, N23) de pompage par un réseau (PN, L3, C6, C7) de pompage,
    • à la sortie (N25) de l'onduleur peuvent être reliées des lampes (L, Lp1, Lp2) à décharge par des bornes (J3 à J6) de lampes par l'intermédiaire d'un réseau (Mn, L3, C6, C7) d'adaptation, qui a un circuit (L3, C6, C7) de résonance ayant une fréquence propre,
    • un régulateur (CONT), dont la sortie émet un signal de réglage, la sortie du régulateur étant couplée à l'onduleur (INV) de façon que le signal de réglage influe sur la fréquence de l'onduleur,
    • une première entrée (B1) de régulateur, dans laquelle est injectée une première grandeur électrique qui correspond à une première grandeur de fonctionnement,
    caractérisé en ce que
    le régulateur a une deuxième entrée, dans laquelle est injectée par un commutateur (TH, MOV) à valeur de seuil une deuxième grandeur électrique, qui correspond à une deuxième grandeur (B2) de fonctionnement, qui est une mesure de l'énergie réactive qui oscille dans le circuit (L3, C6, C7) de résonance,
    la valeur de la deuxième grandeur électrique faisant que, lorsque la valeur de seuil du commutateur (TH, MOV) à valeur de seuil est dépassée, la fréquence de l'onduleur prend une valeur plus grande.
  2. Montage suivant la revendication 1,
    caractérisé en ce que
    le régulateur comprend un additionneur qui additionne les grandeurs électriques de la première et de la deuxième entrée du régulateur.
  3. Montage suivant la revendication 1,
    caractérisé en ce que
    le commutateur (UNI) électronique de pompage est réalisé par une première diode (D7) de pompage, qui est polarisée de façon à ce que, par la première diode (D7) de pompage, de l'énergie peut être apportée à l'accumulateur (C3) principal d'énergie.
  4. Montage suivant la revendication 3,
    caractérisé en ce que
    la sortie (N21) du redresseur est reliée par une deuxième diode (D5) de pompage au premier noeud (N23) de pompage, la deuxième diode (D5) de pompage étant polarisée de façon à ce que, par la deuxième diode de pompage, de l'énergie puisse être prélevée du redresseur.
  5. Montage suivant la revendication 4,
    caractérisé en ce que
    la sortie (N21) du redresseur est couplée par le circuit série constitué d'une troisième (D6) et d'une quatrième (D8) diodes de pompage à l'accumulateur (C3) principal d'énergie avec formation au point de liaison de la troisième (D6) et de la quatrième (D8) diode de pompage d'un deuxième noeud (N22) de pompage, dans lequel est injectée une partie de l'énergie que la sortie (N25) de l'onduleur cède.
  6. Montage suivant la revendication 1 ou 5,
    caractérisé en ce que
    le premier (N23) ou le deuxième (N22) noeud de pompage est relié par un circuit série constitué d'une bobine (L4) de pompage et d'un condensateur (C9) de pompage à la sortie (N25) de l'onduleur.
  7. Montage suivant la revendication 1 ou 5,
    caractérisé en ce que
    la sortie (N25) de l'onduleur est reliée à une borne (J3) pour une lampe (Lp1) de décharge par une bobine (L3) de lampe de manière à former à cette borne un noeud (N27) de tension de lampe, qui est relié par un condensateur (C6) de résonance au premier (N23) ou au deuxième (N22) noeud de pompage.
  8. Montage suivant la revendication 1 ou 5,
    caractérisé en ce que
    le courant est injecté dans une lampe de décharge dans le premier ou le deuxième noeuds de pompage.
  9. Montage suivant la revendication 1,
    caractérisé en ce que
    la sortie (N25) de l'onduleur est reliée par une bobine (L3) de lampe à une borne pour une lampe (J3) de décharge de manière à former sur cette borne un noeud (N27) de tension de lampe où la deuxième grandeur (B2) électrique de fonctionnement est prélevée.
  10. Montage suivant la revendication 9,
    caractérisé en ce que
    le commutateur (TH) à valeur de seuil est réalisé par une varistance (MOV) et est monté en série avec un condensateur (C12) et avec une résistance (R2).
  11. Montage suivant la revendication 1,
    caractérisé en ce que
    la première grandeur (B1) électrique de fonctionnement est le courant passant dans une lampe (Lp1, Lp2) à décharges en fonctionnement.
  12. Montage suivant la revendication 11,
    caractérisé en ce que
    une résistance (R1) variable ferme un circuit de courant de chauffage qui donne un courant de chauffage, dû à la tension de l'onduleur, dans les filaments d'électrode d'une lampe (Lp1, Lp2) à décharges raccordée.
  13. Montage suivant la revendication 12,
    caractérisé en ce que
    la résistance (R1) variable est une résistance à froid.
  14. Montage suivant la revendication 12,
    caractérisé en ce que
    la résistance (R1) variable est un commutateur électronique.
  15. Montage suivant la revendication 1,
    caractérisé en ce que
    le régulateur a une caractéristique non linéaire.
  16. Procédé pour amorcer et faire fonctionner des lampes à décharge par un montage suivant la revendication 1, caractérisé par des stades suivants :
    • amortissement du circuit (L3, C6, C7) de résonance par des filaments de lampes à décharge raccordées,
    • réglage d'une fréquence d'onduleur qui est inférieure à la fréquence propre,
    • reprise de l'amortissement du circuit de résonance,
    • relevé de la deuxième grandeur (B2) de fonctionnement,
    • comparaison de la deuxième grandeur (B2) de fonctionnement à une valeur de seuil prescrite,
    • augmentation de la fréquence de l'onduleur dans le cas où la deuxième grandeur (B2) de fonctionnement dépasse la valeur de seuil.
EP03029436A 2003-01-28 2003-12-19 Circuit et méthode d'allumage et de commande du fonctionnement des lampes à décharges Expired - Lifetime EP1443807B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10303276A DE10303276A1 (de) 2003-01-28 2003-01-28 Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen
DE10303276 2003-01-28

Publications (3)

Publication Number Publication Date
EP1443807A2 EP1443807A2 (fr) 2004-08-04
EP1443807A3 EP1443807A3 (fr) 2005-10-26
EP1443807B1 true EP1443807B1 (fr) 2007-01-24

Family

ID=32602994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03029436A Expired - Lifetime EP1443807B1 (fr) 2003-01-28 2003-12-19 Circuit et méthode d'allumage et de commande du fonctionnement des lampes à décharges

Country Status (8)

Country Link
US (1) US6933681B2 (fr)
EP (1) EP1443807B1 (fr)
KR (1) KR101010164B1 (fr)
CN (1) CN1558705B (fr)
AT (1) ATE352976T1 (fr)
CA (1) CA2456371A1 (fr)
DE (2) DE10303276A1 (fr)
TW (1) TWI340608B (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025774A1 (de) 2004-05-26 2005-12-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorschaltgerät für Entladungslampe mit Dauerbetriebs-Regelschaltung
DE102004044180A1 (de) 2004-09-13 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
DE102005007346A1 (de) * 2005-02-17 2006-08-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betreiben von Gasentladungslampen
DE102005008483A1 (de) * 2005-02-24 2006-08-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH EVG für Hochdruckentladungslampe mit Strommesseinrichtung
DE102005058484A1 (de) * 2005-12-07 2007-06-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betreiben mindestens einer LED
US8736189B2 (en) * 2006-12-23 2014-05-27 Fulham Company Limited Electronic ballasts with high-frequency-current blocking component or positive current feedback
CO6530147A1 (es) * 2011-09-23 2012-09-28 Panacea Quantum Leap Technology Llc Balaso electrónico
GB2499020B (en) * 2012-02-03 2016-04-20 Tridonic Gmbh & Co Kg Lamp ballast
DE102013201438A1 (de) * 2013-01-29 2014-07-31 Osram Gmbh Schaltungsanordnung und Verfahren zum Betreiben und Dimmen mindestens einer LED
DE102014114954A1 (de) * 2014-10-15 2016-04-21 Beckhoff Automation Gmbh Halbbrücke mit zwei Halbleiterschaltern zum Betreiben einer Last

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404082A (en) * 1993-04-23 1995-04-04 North American Philips Corporation High frequency inverter with power-line-controlled frequency modulation
US5410221A (en) * 1993-04-23 1995-04-25 Philips Electronics North America Corporation Lamp ballast with frequency modulated lamp frequency
EP0621743B1 (fr) * 1993-04-23 1998-09-09 Koninklijke Philips Electronics N.V. Circuit pour améliorer le facteur de puissance
EP0677982B1 (fr) * 1994-04-15 2000-02-09 Knobel Ag Lichttechnische Komponenten Procédé pour commander un ballast de lampes à décharge
US5612597A (en) * 1994-12-29 1997-03-18 International Rectifier Corporation Oscillating driver circuit with power factor correction, electronic lamp ballast employing same and driver method
US5604411A (en) * 1995-03-31 1997-02-18 Philips Electronics North America Corporation Electronic ballast having a triac dimming filter with preconditioner offset control
US5742134A (en) * 1996-05-03 1998-04-21 Philips Electronics North America Corp. Inverter driving scheme
US5747942A (en) * 1996-07-10 1998-05-05 Enersol Systems, Inc. Inverter for an electronic ballast having independent start-up and operational output voltages
US6144169A (en) * 1998-12-29 2000-11-07 Philips Electronics North America Corporation Triac dimmable electronic ballast with single stage feedback power factor inverter
JP2001015289A (ja) * 1999-04-28 2001-01-19 Mitsubishi Electric Corp 放電灯点灯装置

Also Published As

Publication number Publication date
EP1443807A3 (fr) 2005-10-26
KR20040069290A (ko) 2004-08-05
US6933681B2 (en) 2005-08-23
CA2456371A1 (fr) 2004-07-28
EP1443807A2 (fr) 2004-08-04
TWI340608B (en) 2011-04-11
ATE352976T1 (de) 2007-02-15
KR101010164B1 (ko) 2011-01-20
CN1558705A (zh) 2004-12-29
TW200501830A (en) 2005-01-01
CN1558705B (zh) 2010-05-12
DE50306367D1 (de) 2007-03-15
DE10303276A1 (de) 2004-07-29
US20040150349A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
EP0852454B1 (fr) Circuit pour alimenter une lampe à décharge basse pression sans électrodes
DE102005058484A1 (de) Schaltungsanordnung und Verfahren zum Betreiben mindestens einer LED
EP0781077A2 (fr) Circuit pour alimenter une lampe
EP0372303B1 (fr) Circuit pour le fonctionnement d'une lampe de décharge à basse pression
EP1443807B1 (fr) Circuit et méthode d'allumage et de commande du fonctionnement des lampes à décharges
US6194840B1 (en) Self-oscillating resonant converter with passive filter regulator
DE19849738C2 (de) Impulsgenerator
EP1397029B1 (fr) Circuit pour opérer une lampe de décharge
EP1443808B1 (fr) Circuit et méthode d'allumage et de commande du fonctionnement des lampes à décharge de gaz avec filaments de préchauffage
DE19914505A1 (de) Schaltung zur Korrektur des Leistungsfaktors
EP1553810B1 (fr) Dispositif d'alimentation de sources lumineuses avec correction du facteur de puissance
DE4137207A1 (de) Schaltungsanordnung zum betrieb von entladungslampen
EP1635620A1 (fr) Ballast électronique de pompe a charge pour lampes a décharge avec électrodes de préchauffage
EP0389847B1 (fr) Circuit
DE10254408A1 (de) Ladungsgepumpte Gleichsignal-Vorspannungsversorgung
DE10200049A1 (de) Betriebsgerät für Gasentladungslampen
EP3487055B1 (fr) Alimentation en tension auxiliaire
DE102005025154A1 (de) Schaltungsanordnung zum Betrieb einer Entladungslampe mit Temperaturausgleich
EP0276460A1 (fr) Disposition de circuit pour mettre en oeuvre une lampe à décharge basse pression
DE10259069B4 (de) Resonanzkonverter und Verfahren zum Treiben von veränderlichen Lasten
EP1263267A2 (fr) Méthode d'amorçage d'une lampe à décharge
DE10220471A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen
DE2648758A1 (de) Sinusleistungsgenerator
EP0585727B1 (fr) Onduleur avec deux capacités de filtrage en série
EP1553811A2 (fr) Dispositif d'alimentation de sources lumineuses avec correction du facteur de puissance

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50306367

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101203

Year of fee payment: 8

Ref country code: SE

Payment date: 20101207

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306367

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 352976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306367

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306367

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131220

Year of fee payment: 11

Ref country code: GB

Payment date: 20131219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306367

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231