EP1443807B1 - Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen - Google Patents

Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen Download PDF

Info

Publication number
EP1443807B1
EP1443807B1 EP03029436A EP03029436A EP1443807B1 EP 1443807 B1 EP1443807 B1 EP 1443807B1 EP 03029436 A EP03029436 A EP 03029436A EP 03029436 A EP03029436 A EP 03029436A EP 1443807 B1 EP1443807 B1 EP 1443807B1
Authority
EP
European Patent Office
Prior art keywords
pumping
inverter
circuit arrangement
arrangement according
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03029436A
Other languages
English (en)
French (fr)
Other versions
EP1443807A2 (de
EP1443807A3 (de
Inventor
Bernd Rudolph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1443807A2 publication Critical patent/EP1443807A2/de
Publication of EP1443807A3 publication Critical patent/EP1443807A3/de
Application granted granted Critical
Publication of EP1443807B1 publication Critical patent/EP1443807B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/05Starting and operating circuit for fluorescent lamp
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/07Starting and control circuits for gas discharge lamp using transistors

Definitions

  • the invention relates to a circuit arrangement according to the preamble of claim 1. It is in particular a circuit arrangement for the operation of discharge lamps, the so-called. Charge pumps for reducing mains harmonics.
  • Circuit arrangements for starting and operating discharge lamps are used in electronic control gear for discharge lamps.
  • the start of the discharge lamp is understood below to mean at least the ignition during an ignition phase. However, preheating of electrode filaments during a preheating phase of the ignition phase may also precede.
  • the operating devices are operated at a mains voltage, they are subject to relevant regulations regarding mains harmonics, eg. Eg IEC 1000-3-2. To comply with these regulations, circuit measures are required to reduce line harmonics.
  • One such measure is the installation of so-called charge pumps.
  • the advantage of charge pumps is the low circuit complexity, which is necessary for their realization.
  • the topology of a charge pump includes that the rectifier is coupled to the main energy storage via an electronic pump switch. This creates a pump node between the rectifier and the electronic pump switch.
  • the pump node is coupled to the changer output via a pump network.
  • the pump network may include components that can be assigned to the matching network at the same time.
  • the principle of the charge pump is that energy is taken from the mains voltage via the pump node during a period of use of the variable frequency converter and intermediately stored in the pump network. In the following half-period of the inverter frequency, the cached energy is supplied to the main energy storage via the electronic pump switch.
  • the mains voltage is therefore taken from energy in time with the inverter frequency.
  • the electronic ballast includes filter circuits that suppress spectral components of the mains current that are at or above the inverter frequency.
  • the charge pump can be designed so that the harmonics of the mains current are so low that said regulations are met.
  • Document EP 0 621 743 (Mattas) describes a circuit arrangement for operating a discharge lamp which contains a charge pump. In addition, it has a controller which effects a modulation of the inverter frequency with twice the mains frequency. Thus, the problem is solved to improve the crest factor of the lamp current, which is applied to the discharge lamp. This increases the life of the lamps.
  • the o. G. Matching network includes a resonant circuit, which essentially contains a resonant capacitor and a lamp choke.
  • the resonant circuit has a resonant frequency which is at a natural frequency of the resonant circuit without attenuation of the resonant circuit.
  • the inverter To ignite the discharge lamp, the inverter is first operated at an inverter frequency that is above the natural frequency. In an ignition phase, the inverter frequency is lowered until, in the vicinity of the natural frequency, the resonant circuit generates a high voltage on the discharge lamp and ignites the discharge lamp.
  • Prior art EP 0 621 743 (Mattas) describes a regulator which has a first regulator input. This first regulator input is supplied with an electrical quantity which corresponds to a first operating variable of a discharge lamp operated on lamp terminals.
  • the controller has a second regulator input.
  • the second regulator input is supplied with a second electrical quantity that corresponds to a second operating variable, which is a measure of the reactive energy oscillating in the resonant circuit.
  • the second electrical variable is supplied to the second regulator input via a threshold value switch. In the event that the value of the second electrical quantity exceeds the threshold value of the threshold value, the inverter frequency is increased.
  • resistors are denoted by the letter R, transistors by the letter T, coils by the letter L, amplifiers by the letter A, diodes by the letter D, node potentials by the letter N and capacitors by the letter C respectively followed by a number , Also, the same reference numerals are used throughout for the same and equivalent elements of the various embodiments.
  • FIG. 1 shows a block diagram of a circuit arrangement according to the invention for starting and operating discharge lamps.
  • a mains voltage from a mains voltage source of the circuit arrangement can be supplied.
  • the mains voltage is first fed into a block FR.
  • this block contains known means for filtering disturbances.
  • this block contains a rectifier, which rectifies the mains voltage, which is an AC voltage.
  • a full-wave rectifier is used in bridge circuit for this purpose.
  • Important for the function of a charge pump realized in the circuit arrangement is the property of the rectifier that it does not allow any current that allows a flow of energy from the circuit arrangement to the mains voltage source.
  • the rectified mains voltage is supplied to an electronic pump switch UNI, wherein at the Verbindutigsstelle between rectifier FR and electronic pump switch UNI a pump node N1 is formed.
  • the electronic pump switch UNI consists of a pumping diode, which allows only one current flow, which flows from the pump node N1 to the pumping diode. But it is also possible any electronic switch, such. As a MOSFET to use for the electronic pump switch UNI, which fulfills the function of the pump diode.
  • Most of the main energy storage STO is designed as an electrolytic capacitor. However, other types of capacitors are possible. In principle, the form of energy storage that is dual to the capacitor is also possible. In the dual case, the main energy storage STO is designed as a coil. Because of the lower cost and better efficiency, a capacitor is preferred as the main energy storage STO.
  • the main energy storage STO provides its energy to an inverter INV.
  • the inverter INV generates a variable, usually an AC voltage, which is supplied to a block designated MN and PN.
  • MN denotes the function of the block as a matching network.
  • the block MN / PN can be connected to a discharge lamp L.
  • PN denotes the function of the block as a pumping network.
  • the block MN / PN is connected to the pump node N1.
  • the connecting line between the pump node N1 and the block MN / PN is provided in Figure 1 at both ends with an arrow. This is intended to indicate that energy flows alternately from the pump node N1 to the block MN / PN and back.
  • the functions of the matching network and the pump network are summarized in the block MN / PN because embodiments of the invention are possible in which individual components can be assigned to both the one and the other function.
  • a controller CONT acts on the inverter INV via a manipulated variable.
  • This is a parameter of the output from the inverter change size, eg. As the operating frequency or the pulse width, so changed that a change of the first operating variable is counteracted.
  • the first operating variable is supplied to a first input of the regulator via the connection B 1.
  • the first operating size is a quantity that determines the operation of the lamp. Therefore, in FIG. 1, the connection B1 originates from the block for the discharge lamp L.
  • the first operating quantity is the lamp current or the lamp power.
  • the controller CONT has a second input.
  • a second operating variable is supplied to the second input via a threshold value switch TH.
  • the second operating variable according to the invention is a measure of the reactive energy oscillating in a resonant circuit contained in the block MN / PN.
  • the tap The second operating variable by means of the connection B2 therefore takes place at the block MN / PN. But it is also possible a measure of the said reactive energy from lamp operating variables, such. B. to win the lamp voltage.
  • the reactive energy provides information about the energy imbalance of the charge pump and the load on components. If the second operating variable exceeds the threshold of the threshold switch, according to the invention the inverter CONT is influenced in such a way that the reactive energy does not increase any further. This can be done by raising the operating frequency of the inverter INV.
  • the controller CONT may include an adder which adds the signals applied to the controller inputs. It must be ensured that the signal at the first controller input does not jam the signal at the second controller input. If the signal at the second controller input exceeds the signal at the first controller input, the signal at the second controller input must be the relevant controller signal.
  • FIG. 2 shows an exemplary embodiment of a switching gear arrangement according to the invention for starting and operating discharge lamps.
  • a mains voltage can be connected at the terminals J 1 and J2 .
  • the mains voltage Via a filter consisting of two capacitors C1, C2 and two coils L1, L2, the mains voltage is fed to a full-bridge rectifier consisting of the diodes D1, D2, D3, D4.
  • the full-bridge rectifier provides at its positive output, a node N21, the rectified mains voltage with respect to a reference node N0.
  • the rectified mains voltage is fed to two pump nodes N22 and N23.
  • the embodiment in Figure 2 therefore has two pump branches. In order to decouple the pump branches against each other, the diodes D5 and D6 are necessary. With only one pump branch, a pump node can be connected directly to the rectifier output, node 21. It should be noted, however, that the diodes used in the rectifier can switch fast enough to follow the inverter frequency. If this is not the case, must even with only one pump branch, a fast diode can be connected between rectifier output and pump node. In the exemplary embodiment in FIG. 2, the pump nodes are coupled to the positive output of the rectifier.
  • the literature also discloses charge pump topologies in which pump nodes are coupled to the negative output of the rectifier.
  • an electronic pump switch which are implemented as diodes D7 and D8, respectively, leads to the node N24.
  • the main energy storage which is designed as an electrolytic capacitor C3, connected.
  • C3 feeds the inverter, which is designed as a half-bridge.
  • B. flyback converter or full bridge used.
  • a half-bridge is used for lamp powers between 5W and 300W, as it represents the most cost-effective topology.
  • the half-bridge consists of a series connection of two half-bridge transistors T1 and T2 and a series connection of two coupling capacitors C4 and C5. Both Scrienscrien are connected in parallel to C3.
  • a connection node N25 of the half-bridge transistors and a connection node N26 of the coupling capacitors form the inverter output to which a rectangular wave converter voltage with an inverter frequency is applied.
  • a lamp inductor L3 is connected between N25 and a lamp voltage node N27.
  • the terminal J3 is connected, to which in the exemplary embodiment, the series connection of two discharge lamps Lp1 and Lp2 is connected.
  • the present invention is also practicable with one or more lamps.
  • the current through the discharge lamps Lp1 and Lp2 flows through a terminal J8 through a winding W1 of a measuring transformer to the node N26.
  • the inverter voltage is thus applied to a series connection of two discharge lamps Lp 1, Lp 2 and the lamp inductor L 3.
  • the current fed in J3 flows not only by the gas discharge of the discharge lamps Lp1, Lp2 but also by an outer coil of the first discharge lamp Lp1 to a port J4. From there, continue through a winding W4 of a heating transformer, further through a variable resistor R 1, further through a winding W3 of the measuring transformer to the terminal J7. At terminal J7, an outer coil of the second discharge lamp Lp2 is connected, the other end of which leads to terminal J8. Two inner coils of the discharge lamps Lp1 and Lp2 are connected to the winding W5 of the heating transformer through the terminals J5 and J6, respectively.
  • the inverter voltage causes not only a current through the gas discharge of the discharge lamps Lp1, Lp2 but also a heating current through the outer coils and via the heating transformer also a heating current through the inner coils of the discharge lamps Lp1, Lp2. If only one discharge lamp is to be operated, then the heating transformer can be dispensed with.
  • the heating current is essentially required before the ignition of the discharge lamps Lp1, Lp2 during a preheating as preheating current for the preheating of the helices.
  • the value of the heating current is essentially determined by the variable resistor R1.
  • R1 is implemented by a so-called PTC or PTC thermistor. This is a resistor which has a low resistance when cold. The heating current heats the PTC thermistor, increasing its resistance.
  • R1 can also be realized by an electronic switch, which is closed in the preheat phase and then opened. In series with this switch, a resistor with a constant resistance value can be switched. This allows a quick transition from the preheating phase to the ignition phase.
  • the resonant frequency of a resonant circuit described in the next section is lower than its natural frequency during the preheating phase due to damping.
  • an inverter frequency is chosen during the preheating phase, which is below the natural frequency is located, so that there is a high heating current and thus a short preheating.
  • the lamp voltage node N27 is connected to the pump node N23 via a first resonance capacitor C6. Between N23 and N0 a second resonant capacitor C7 is connected. C6 and C7 form a resonant circuit with the lamp inductor L3. To determine the natural frequency of the resonant circuit, C6 and C7 are considered connected in series. The effective capacitance value of C6 and C7 with respect to the natural frequency is thus the quotient of the product and the sum of the capacitance values of C6 and C7. If the resonant circuit is excited near its natural frequency, an ignition voltage is produced across the lamps which leads to the ignition of the discharge lamps. After ignition, L3 acts together with C6 and C7 as a matching network, which transforms an output impedance of the inverter into an impedance necessary to operate the discharge lamps.
  • the combination of L3, C6, and C7 not only acts as a resonant circuit and matching network, but also as a pumping network. If the potential at N23 is lower than the instantaneous mains voltage, the pumping network L3, C6, C7 draws energy from the mains voltage. If the potential at N23 exceeds the voltage at the main memory C3, the power absorbed by the mains voltage is output at C3.
  • the ratio of the capacitance values of C6 and C7 the effect of network L3, C6, C7 as pumping network can be adjusted. The larger the capacitance value of C7, the lower the effect of the network L3, C6, C7 as the pump network.
  • C8 Another pumping action starts from a capacitor C8, which is connected between N23 and the connection node N25 of the half-bridge transistors T1, T2.
  • C8 not only acts as a pump network, but also fulfills the role of a snubber capacitor.
  • Snubber capacitors are commonly known as a measure of switch relieving in inverters.
  • the pumping network for the second pump branch consists of the series connection of a pumping inductor L4 and a pumping capacitor C9. This pump network is connected between the connection node N25 of the half-bridge transistors T1, T2 and the pump node N22.
  • two pump branches are used to divide the pumped energy among several components. For a more cost-effective dimensioning of the components is possible. This also gives a degree of freedom in the design of the dependence of the pumped energy on the operating parameters of the discharge lamps. However, the invention can also be realized with only one pump branch.
  • the half-bridge transistors T1, T2 are designed as a MOSFET. Other electronic switches can be used for this purpose.
  • an integrated circuit IC1 is provided in the exemplary embodiment.
  • IC1 in the present example is a circuit of International Rectifier type IR2153. Alternative circuits of this type are also available on the market; z. B. L6571 the company STM.
  • the circuit IR2153 contains a so-called high-side driver with which the half-bridge transistor T1 can also be driven, although it has no connection at the reference potential N0. This requires a diode D10 and a capacitor C10.
  • a voltage source VCC is provided between terminal 1 of the IC1 and N0.
  • this voltage source VCC can be realized.
  • the IC can be supplied via a resistor from the rectified mains voltage.
  • the IC1 includes an oscillator whose oscillation frequency can be adjusted via the terminals 2 and 3.
  • the oscillation frequency of the oscillator corresponds to the inverter frequency.
  • a frequency-determining resistor R3 is connected between the terminals 2 and 3.
  • the series connection of a frequency-determining capacitor C11 and the emitter-collector path of a bipolar transistor T3 is connected between terminal 3 and N0.
  • Parallel to the emitter-collector path of T3 is a diode D9 switched to allow C11 to be charged and discharged.
  • a voltage between the base terminal of T3 and N0 can be used to set the inverter frequency and thus form a control loop variable.
  • the base terminal of T3 is connected to a manipulated variable node N28.
  • T3, ICl and their wiring can thus be understood as a regulator.
  • the functions of the IC 1 and its wiring can also be realized by any voltage or current controlled oscillator, which accomplishes the driving of the half-bridge transistors via driver circuits.
  • the control loop in the embodiment detects the controlled current as the flow through the gas discharge of the discharge lamps Lp1, Lp2.
  • the measuring transformer has a winding W2.
  • the winding sense in the measuring transformer is designed in such a way that the heating current in winding W3 is subtracted from a total current in winding W1, so that a current flows in winding W2 which is proportional to the current through the gas discharge of the discharge lamps Lp1, Lp2.
  • a Vollmaschinenglcichriclter formed by diodes D11, D12, D13 and D 14 rectifies the current through winding W2 and leads him via a low-impedance measuring resistor R4 to NO.
  • the voltage drop across R4 is thus a measure of the current through the gas discharge of the discharge lamps Lp1, Lp2. Via a low pass for averaging, which is formed by a resistor R5 and a capacitor C13, the voltage drop at R4 reaches the input of a non-inverting measuring amplifier.
  • the measuring amplifier is realized in a known manner by an operational amplifier AMP and the resistors R6, R7 and R8. In the exemplary embodiment, a gain of the measuring amplifier of about 10 is set. In the event that the voltage drop at R4 has values that can be used directly as a manipulated variable, the amplifier can be omitted or by an impedance converter, such. As an emitter follower to be replaced.
  • the output of the measuring amplifier is connected via a diode D15 to the Stcllgr Obercnknoten N28.
  • Diode D15 is necessary so that the potential of N28 can be increased to a value that is above the value specified by the measuring amplifier.
  • the anode of D15 represents a first regulator input.
  • the threshold value switch according to the invention is implemented in FIG. 2 by a varistor MOV. It is connected in series with a capacitor C12, a resistor R2 and a diode D17, which connects the lamp voltage node N27 to the manipulated variable node N28.
  • the anode of D17 represents a second regulator input.
  • N28 is connected to N0 via the parallel connection of a resistor R9 and a capacitor C14.
  • N27 there is a voltage opposite N0, which is a measure of the reactive energy oscillating in the resonant circuit formed by L3, C6 and C7. If this voltage exceeds the threshold voltage of the varistor MOV, a current flows through R9 and C14 is charged. This raises the voltage at the manipulated variable node N28. This causes an increase in the Wechsehichterfrequenz and the resonant circuit oscillating reactive energy is reduced because the Wechsclrichterfrequenz further from the natural frequency of the resonant circuit.
  • diode D16 is connected between N0 and the junction of R2 and D17. This is used in conjunction with C12 to N28, the sum of positive and negative amplitude of the voltage applied, which allows the varistor MOV.
  • the varistor MOV can find any other threshold value use, as it is z. B. can be constructed by zener diodes or suppressor diodes.
  • the threshold value of the varistor MOV is 250Veff in the application example. A higher value allows more reactive energy in the resonant circuit, which leads to a higher ignition voltage at the discharge lamps Lp1, Lp2, but also to a higher load on components. A desired optimum can thus be set via the threshold value of the varistor MOV.
  • the value of the resistor R2 influences the strength of the effect of the intervention according to the invention on the control loop at the manipulated variable node N28. It is also advantageous a non-linear relationship between the voltage at the manipulated variable node N28 and the inverter frequency. This non-linear relationship is realized in the application example by the non-linear characteristic of T3. In addition, it is influenced by the dependence of the frequency of the oscillator in IC1 on the voltage at terminal 3 of the ICl. A strong increase in the voltage at N27 leads to a disproportionate increase in the inverter frequency due to the non-linearity, whereby an overload of components such. B. the voltage load of C3 or the current load of T 1 and T2, is prevented.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Dc-Dc Converters (AREA)

Description

    Technisches Gebiet
  • Die Erfindung geht aus von einer Schaltungsanordnung gemäß dem Oberbegriff des Anspruchs 1. Es handelt sich dabei insbesondere um eine Schaltungsanordnung zum Betrieb von Entladungslampen, die sog. Ladungspumpen zur Reduzierung von Netzstrom-Oberschwingungen.
  • Stand der Technik
  • Schaltungsanordnungen zum Start und Betrieb von Entladungslampen kommen in elektronischen Betriebsgeräten für Entladungslampen zum Einsatz. Unter dem Start der Entladungslampe wird im folgenden zumindest die Zündung während einer Zündphase verstanden. Es kann aber auch eine Vorheizung von Elektrodenwendeln während einer Vorheizphase der Zündphase vorangehen. Falls die Betriebsgeräte an einer Netzspannung betrieben werden, unterliegen sie einschlägigen Vorschriften bezüglich Netzstrom-Oberschwingungen, z. B. IEC 1000-3-2. Damit diese Vorschriften eingehalten werden, sind schaltungstechnische Maßnahmen zur Reduzierung von Netzstrom-Oberschwingungen nötig. Eine derartige Maßnahme ist der Einbau sog. Ladungspumpen. Der Vorteil von Ladungspumpen besteht im geringen schaltungstechnischen Aufwand, der für deren Realisierung nötig ist.
  • Schaltungsanordnungen zum Betrieb von Entladungslampen, die an einer Netzspannung betrieben werden enthalten im allgemeinen folgende Elemente:
    • einen Gleichrichter zur Gleichrichtung der Netzspannung
    • einen Hauptenergiespeicher
    • einen Wechselrichter, der Energie aus dem Hauptenergiespeicher bezieht und an einem Wechselrichterausgang eine Wechselrichterspannung zur Verfügung stellt, die eine Wechselrichterfrequenz aufweist, die wesentlich höher ist als die Netzfrequenz
    • ein Anpassnetzwerk, über das Entladungslampen mit dem Wechselrichterausgang gekoppelt werden können
  • Wird der Hauptenergiespeicher direkt aus dem Gleichrichter geladen, so entstehen Ladestromspitzen, die zu einer Verletzung der besagten Vorschriften führen.
  • Die Topologie einer Ladungspumpe beinhaltet, dass der Gleichrichter über einen elektronischen Pumpschalter mit dem Hauptenergiespeicher gekoppelt ist. Dadurch entsteht zwischen dem Gleichrichter und dem elektronischen Pumpschalter ein Pumpknoten. Der Pumpknoten ist über ein Pumpnetzwerk mit dem Wechsclrichterausgang gekoppelt. Das Pumpnetzwerk kann Bauteile enthalten, die zugleich dem Anpassnetzwerk zugeordnet werden können. Das Prinzip der Ladungspumpe besteht darin, dass während einer Hatbperiode der Wechsclrichterfrequenz über den Pumpknoten Energie der Netzspannung entnommen und im Pumpnetzwerk zwischengespcichert wird. In der darauf folgenden Halbperiode der Wechselrichterfrequenz wird die zwischengespeicherte Energie über den elektronischen Pumpschalter dem Hauptenergiespeicher zugeführt.
  • Der Netzspannung wird demnach Energie im Takt der Wechselrichterfrequenz entnommen. Im allgemeinen enthält das elektronische Betriebsgerät Filterschaltungen, die Spektralanteile des Netzstroms unterdrücken, die bei der Wechselrichterfrequenz oder darüber liegen. Die Ladungspumpe kann so ausgelegt werden, dass die Oberschwingungen des Netzstroms so gering sind, dass besagte Vorschriften eingehalten werden. Folgende Schriften beschreiben ausführlich Ladungspumpen für elektronische Betriebsgeräte für Entladungslampen:
  • Qian J., Lee F.C., Yamauchi T.:"Analysis, Design and Experiments of a High-Power-Factor Electronic Ballast", IEEE Transactions on Industry Applications, Vol. 34, No. 3, May/June 1998
  • Qian J., Lee F.C., Yamauchi T.:"New Continuous Current Charge Pump Power-Factor-Corretion Electronic Ballast", IEEE Transactions on Industry Applications, Vol. 35, No. 2, March/April 1999
  • In der Schrift US-A-5 747 942 (Ranganath) ist ein Wechselrichter zum Betrieb einer Entladungslampe beschrieben. Zur Zündung der Entladungslampe wird nicht der Resonanzkreis benutzt, der zum Ankoppeln der Entladungslampe an den Wechselrichter dient. Vielmehr enthält der Wechselrichter einen Transformator, der die Ausgangsspannung des Wechselrichters auf einen Wert transformiert, der zur Zündung der Entladungslampe genügt. Die Spannung an der Lampe vor der Zündung ist beim beschriebenen Wechselrichter unabhängig von der Wechselrichterfrequenz.
  • In der Schrift EP 0 621 743 (Mattas) ist eine Schaltungsanordnung zum Betrieb einer Entladungslampe beschrieben, die eine Ladungspumpe enthält. Sie weist zusätzlich einen Regler auf, der eine Modulation der Wechselrichterfrequenz mit der doppelten Netzfrequenz bewerkstelligt. Damit wird die Aufgabe gelöst, den Crest-Faktor des Lampenstroms, mit dem die Entladungslampe beaufschlagt wird, zu verbessern. Damit wird die Lebensdauer der Lampen erhöht.
  • Das o. g. Anpassnetzwerk enthält einen Resonanzkreis, der im wesentlichen einen Resonanzkondensator und eine Lampendrossel enthält. Der Resonanzkreis weist eine Resonanzfrequenz auf, die ohne Dämpfung des Resonanzkreises bei einer Eigenfrequenz des Resonanzkreises liegt.
  • Zur Zündung der Entladungslampe wird der Wechselrichter zunächst bei einer Wechselrichterfrequenz betrieben, die über der Eigenfrequenz liegt. In einer Zündphase wird die Wechselrichterfrequenz abgesenkt, bis in der Nähe der Eigenfrequenz der Resonanzkreis eine hohe Spannung an der Entladungslampe erzeugt und die Entladungslampe zündet.
  • Dabei tritt folgendes Problem auf: Vor der Zündung der Entladungslampe gibt es einerseits in der Schaltungsanordnung keinen wesentlichen Energieverbraucher. Anderseits arbeitet die Ladungspumpe und deponiert laufend Energie im Hauptenergiespeicher. Dadurch entsteht ein Ungleichgewicht zwischen aufgenommener und abgegebener Energie der Schaltungsanordnung. Falls die Entladungslampe nicht rechtzeitig zündet, führt dies entweder zur Zerstörung des Hauptenergiespeichers oder zur Abschaltung der Schaltungsanordnung, falls dafür Abschaltmittel bereitgestellt werden.
  • Im Stand der Technik führt dies zu einem Optimierungsproblem für die Wahl der Wechselrichterfrequenz während der Zündphase: Auf der einen Seite soll die Zeit, in der das besagte Energieungleichgewicht herrscht kurz sein. Dies erreicht eine hohe Zündspannung, die eine Wechselrichterfrequenz nahe der Eigenfrequenz verlangt. Auf der anderen Seite soll das Energieungleichgewicht möglichst gering sein, damit die Zeit bis zur Überlastung des Hauptenergiespeichers und damit die Zündphase möglichst lange sein kann. Dies ist für eine zuverlässige Zündung der Entladungslampe wünschenswert, verlangt aber eine Wechselrichterfrequenz, die möglichst weit über der Eigenfrequenz liegt. Die Optimierungsaufgabe wird dadurch erschwert, dass äußere Umstände, wie z. B. die Zündeigenschaften der Entladungslampe, Umgebungstemperatur und Bauteiletoleranzen, Einfluss darauf haben.
  • Im Stand der Technik gibt es zwei Lösungen für das Problem: Entweder wird eine unzuverlässige Zündung der Entladungslampe in Kauf genommen, oder Bauelemente wie Hauptenergiespeicher und Lampendrossel werden überdimensioniert und damit teuer und voluminös.
  • Darstellung der Erfindung
  • Es ist Aufgabe der vorliegenden Erfindung, eine Schaltungsanordnung zum Start und Betrieb von Entladungslampen gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, die eine zuverlässige und kostengünstige Zündung der Lampe bewerkstelligt.
  • Diese Aufgabe wird durch eine Schaltungsanordnung zum Start und Betrieb von Entladungslampen mit den Merkmalen des Oberbegriffs des Anspruchs 1 durch die Merkmale des kennzeichnenden Teils des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
  • Im Stand der Technik EP 0 621 743 (Mattas) ist ein Regler beschrieben der einen ersten Reglereingang aufweist. Diesem ersten Reglereingang wird eine elektrische Größe zugeführt, die einer ersten Betriebsgröße einer an Lampenklemmen betriebenen Entladungslampe entspricht.
  • Erfindungsgemäß besitzt der Regler einen zweiten Reglereingang. Dem zweiten Reglereingang wird eine zweite elektrische Größe zugeführt, die einer zweiten Betriebsgröße entspricht, die ein Maß für die Blindenergie ist, die im Resonanzkreis schwingt. Erfindungsgemäß wird die zweite elektrische Größe dem zweiten Reglereingang über einen Schwellwertschalter zugeführt. Für den Fall, dass der Wert der zweiten elektrischen Größe den Schwellwert des Schwellwertschalter überschreitet, wird die Wechselrichterfrequenz erhöht.
  • Durch die Wahl des Schwellwerts und der Frequenzerhöhung kann eingestellt werden wie groß das Energieungleichgewicht in der Ladungspumpe maximal werden kann. Erfindungsgemäß kann damit bei optimaler Ausnutzung der Bauelemente eine maximale Zündspannung erreicht werden. Damit ist eine zuverlässige Zündung von Entladungslampen auch mit kostengünstigen Bauelementen möglich.
  • Kurze Beschreibung der Zeichnungen
  • Im folgenden soll die Erfindung anhand von Ausführungsbcispiclen unter Bezugnahme auf Zeichnungen näher erläutert werden. Es zeigen:
  • Figur 1
    ein Blockschaltbild für eine crfindungsgcmäßc Schaltungsanordnung zum Start und Betrieb von Entladtingslampen,
    Figur 2
    ein Ausführungsbeispiel für eine erfindungsgemäße Schaltungsanordnung zum Start und Betrieb von Entladungslampen.
  • Im folgenden werden Widerstände durch den Buchstaben R, Transistoren durch den Buchstaben T, Spulen durch den Buchstaben L, Verstärker durch den Buchstaben A, Dioden durch den Buchstaben D, Knotenpotenziale durch den Buchstaben N und Kondensatoren durch den Buchstaben C jeweils gefolgt von einer Zahl bezeichnet. Auch werden im folgenden für gleiche und gleichwirkende Elemente der verschiedenen Ausführungsbeispiele durchweg gleiche Bezugszeichen verwendet.
  • Bevorzugte Ausführung der Erfindung
  • In Figur 1 ist ein Blockschaltbild für eine erfindungsgemäße Schaltungsanordnung zum Start und Betrieb von Entladungslampen dargestellt. An Anschlussklemmen J kann eine Netzspannung aus einer Netzspannungsquelle der Schaltungsanordnung zugeführt werden. Die Netzspannung wird zunächst in einen Block FR eingespeist. Zum einen enthält dieser Block bekannte Mittel zum Filtern von Störungen. Zum anderen enthält dieser Block einen Gleichrichter, der die Netzspannung, die eine Wechselspannung ist, gleichrichtet. Üblicherweise wird dafür ein Vollweggleichrichter in Brückenschaltung verwendet. Wichtig für die Funktion einer in der Schaltungsanordnung realisierten Ladungspumpe ist die Eigenschaft des Gleichrichters, dass er keinen Strom zulässt, der einen Energiefluss von der Schaltungsanordnung zur Netzspannungsquelle zulässt.
  • Die gleichgerichtete Netzspannung wird einem elektronischen Pumpschalter UNI zugeführt, wobei an der Verbindutigsstelle zwischen Gleichrichter FR und elektronischem Pumpschalter UNI ein Pumpknoten N1 entsteht. Im einfachsten Fall besteht der elektronische Pumpschalter UNI aus einer Pumpdiode, die nur einen Stromfluss erlaubt, der vom PumpknotenN1 zur Pumpdiode fließt. Es ist aber auch möglich einen beliebigen elektronischen Schalter, wie z. B. einen MOSFET, für den elektronischen Pumpschalter UNI einzusetzen, der die Funktion der Pumpdiode erfüllt.
  • Der Strom, den der elektronische Pumpschalter UNI durchlässt, speist einen Hauptcnergiespeicher STO. Meist ist der Hauptenergiespeicher STO als Elektrolytkondensator ausgeführt. Es sind jedoch auch andere Arten von Kondensatoren möglich. Prinzipiell ist auch die zum Kondensator duale Form der Energiespeicherung möglich. Im dualen Fall ist der Hauptenergiespeicher STO als Spule ausgeführt. Wegen der geringeren Kosten und des besseren Wirkungsgrads wird ein Kondensator als Hauptenergiespeicher STO bevorzugt.
  • Es gibt auch Ausführungen von Ladungspumpen mit mehreren sog. Pumpzweigen. Dabei werden mehrere, elektronische Pumpschalter UNI, parallel geschaltet. Dadurch entstehen mehrere Pumpknoten N1. Zur gegenseitigen Entkopplung der Pumpknoten, ist jeweils zwischen Gleichrichter und Pumpknoten eine Diode geschaltet. Ein Ausführungsbeispiel mit zwei Pumpzweigen ist in Figur 2 dargestellt.
  • Der Hauptenergiespeicher STO stellt seine Energie einem Wechselrichter INV zur Verfügung. Der Wechselrichter INV erzeugt eine Wechselgröße, meist eine Wechselspannung, die einem Block zugeführt wird, der mit MN und PN bezeichnet ist. MN bezeichnet die Funktion des Blocks als Anpassnetzwerk. Bezüglich dieser Funktion ist der Block MN/PN mit einer Entladungslampe L verbindbar. PN bezeichnet die Funktion des Blocks als Pumpnetzwerks. Bezüglich dieser Funktion ist der Block MN/PN mit dem Pumpknoten N1 verbunden. Die Verbindungslinie zwischen dem Pumpknoten N1 und dem Block MN/PN ist in Figur 1 auf beiden Enden mit einem Pfeil versehen. Dadurch soll angedeutet werden, dass Energie abwechselnd vom Pumpknoten N1 zum Block MN/PN und zurück fließt. Die Funktionen des Anpassnetzwerks und des Pumpnetzwerks sind im Block MN/PN zusammengefasst weil Ausführungsformen der Erfindung möglich sind, bei denen einzelne Bauteile sowohl der einen als auch der anderen Funktion zugeordnet werden können.
  • Zur Regelung einer gewünschten ersten Betriebsgröße ist ein Regler CONT vorgesehen der über eine Stellgröße auf den Wechselrichter INV einwirkt. Damit wird ein Parameter der vom Wechselrichter abgegebenen Wechselgröße, z. B. die Betriebsfrequenz oder die Pulsweite, so verändert, dass einer Veränderung der ersten Betriebsgröße entgegengewirkt wird. Die erste Betriebsgröße wird einem ersten Eingang des Reglers über die Verbindung B 1 zugeführt. Bei der ersten Betriebsgröße handelt es sich um eine Größe, die den Betrieb der Lampe bestimmt. Deshalb entspringt in Figur 1 die Verbindung B1 dem Block für die Entladungslampe L. Beispielsweise handelt es sich bei der ersten Betriebsgröße um den Lampenstrom oder die Lampenleistung. Diese Größen müssen nicht direkt an der Entladungslampe L erfasst werde, sondern können auch dem Block MN/PN entnommen werden.
  • Erfindungsgemäß besitzt der Regler CONT einen zweiten Eingang. Über einen Schwellwertschalter TH wird dem zweiten Eingang eine zweite Betriebsgröße zugeführt. Die zweite Betriebsgröße ist erfindungsgemäß ein Maß für die Blindenergie die in einem Resonanzkreis schwingt, der im Block MN/PN enthalten ist. Der Abgriff der zweiten Betriebsgröße mittels der Verbindung B2 erfolgt deshalb am Block MN/PN. Es ist aber auch möglich ein Maß für die besagte Blindenergie aus Lampenbetriebsgrößen, wie z. B. der Lampenspannung zu gewinnen.
  • Zum Zünden der Entladungslampe L wird im Resonanzkreis Blindenergie aufgebaut. Die Blindenergie gibt Auskunft über das Energieungleichgewicht der Ladungspumpe und die Belastung von Bauteilen. Überschreitet die zweite Betriebsgröße die Schwelle des Schwellwertschalters, so wird erfindungsgemäß über den Regler CONT der Wechselrichter derart beeinflusst, dass die Blindenergie nicht weiter steigt. Dies kann dadurch geschehen, dass die Betriebsfrequenz des Wechselrichters INV angehoben wird. Der Regler CONT kann einen Addierer enthalten, der die an den Reglereingaingen anliegenden Signale addiert. Es muss sicher gestellt sein, dass das Signal am ersten Regelereingang das Signal am zweiten Reglereingang nicht klemmt. Übersteigt das Signal am zweiten Reglereingang das Signal am ersten Regelereingang, so muss das Signal am zweiten Reglereingang das maßgebliche Reglersignal sein.
  • In Figur 2 ist ein Ausführungsbcispicl für eine erfindungsgemäße Schaltwigsanordnung zum Start und Betrieb von Entladungslampen dargestellt.
  • An den Anschlüssen J 1 und J2 ist eine Netzspannung anschließbar. Über ein Filter, bestehend aus zwei Kondensatoren C1, C2 und zwei Spulen L1, L2, wird die Netzspannung einem Vollbrückengleichrichter bestehend aus den Dioden D1, D2, D3, D4 zugeführt. Der Vollbrückcnglcichrichter stellt an seinem positiven Ausgang, einem Knoten N21, bezüglich einem Bezugsknoten N0 die gleichgerichtete Netzspannung bereit.
  • Über die Dioden D5 und D6 wird die gleichgerichtete Netzspannung zwei Pumpknotcn N22 und N23 zugeführt. Das Ausführungsbeispiel in Figur 2 besitzt demnach zwei Pumpzweige. Um die Pumpzweige gegeneinander zu entkoppeln sind die Dioden D5 und D6 nötig. Bei nur einem Pumpzweig kann ein Pumpknoten direkt mit dem Gleichrichterausgang, dem Knoten 21, verbunden werden. Dabei ist jedoch zu beachten, dass die im Gleichrichter verwendeten Dioden schnell genug schalten können, um der Wechselrichterfrequenz zu folgen. Falls dies nicht der Fall ist, muss auch bei nur einem Pumpzweig eine schnelle Diode zwischen Gleichrichterausgang und Pumpknoten geschaltet werden. Im Ausführungsbeispiel in Figur 2 sind die Pumpknoten mit dem positiven Ausgang des Gleichrichters gekoppelt. Aus der Literatur sind auch Ladungspumpen-Topologien bekannt, bei denen Pumpknoten mit dem negativen Ausgang des Gleichrichters gekoppelt sind.
  • Von den Pumpknoten N22 und N23 führt jeweils ein elektronischer Pumpschalter, die als Dioden D7 und D8 ausgeführt sind, zum Knoten N24. Zwischen N24 und N0 ist der Hauptenergiespeicher, der als Elektrolytkondensator C3 ausgeführt ist, geschaltet.
  • C3 speist den Wechselrichter, der als Halbbrücke ausgeführt ist. Es sind jedoch auch andere Wandlertopologien wie z. B. Sperrwandler oder Vollbrücke einsetzbar. Vorteilhaft wird für Lampenleistungen zwischen 5W und 300W eine Halbbrücke eingesetzt, da sie die kostengünstigste Topologie darstellt.
  • Im wesentlichen besteht die Halbbrücke aus einer Serienschaltung zweier Halbbrückentransistoren T1 und T2 und einer Serienschaltung zweier Koppelkondensatoren C4 und C5. Beide Scrienschaltungen sind parallel zu C3 geschaltet. Ein Verbindungsknoten N25 der Halbbrückentransistoren und ein Verbindungsknoten N26 der Koppelkondensatoren bilden den Wechselrichterausgang an dem eine rechteckförmige Wechaelrichterspannung mit einer Wechselrichterfrequenz anliegt.
  • Zwischen N25 und einem Lampenspannungsknoten N27 ist eine Lampendrossel L3 geschaltet. An N27 ist der Anschluss J3 geschaltet, an dem im Ausführungsbeispiel die Serienschaltung zweier Entladungslampen Lp1 und Lp2 geschaltet ist. Die vorliegende Erfindung ist jedoch auch mit einer oder mehreren Lampen ausführbar. Der Strom durch die Entladungslampen Lp1 und Lp2 fließt über einen Anschluss J8, durch eine Wicklung W1 eines Messtransformators zum Knoten N26. Im wesentlichen wird damit die Wechselrichterspannung an eine Serienschaltung zweier Entladungslampcn Lp 1, Lp2 und der Lampendrossel L3 angelegt.
  • Der in J3 eingespeiste Strom fließt nicht nur durch die Gasentladung der Entladungslampen Lp1, Lp2 sondern auch durch eine äußere Wendel der ersten Entladungslampe Lp1 zu einem Anschluss J4. Von dort weiter durch eine Wicklung W4 eines Heiztransformators, weiter durch einen variablen Widerstand R 1, weiter durch eine Wicklung W3 des Messtransformators zum Anschluss J7. Am Anschluss J7 ist eine äußere Wendel der zweiten Entladungslampe Lp2 angeschlossen, deren anderes Ende zum Anschluss J8 führt. Zwei innere Wendeln der Entladungslampen Lp1 und Lp2 sind jeweils über die Anschlüsse J5 und J6 mit der Wicklung W5 des Heiztransformators verbunden. Durch die in diesem Absatz beschrieben Anordnung bewirkt die Wechselrichterspannung nicht nur einen Strom durch die Gasentladung der Entladungslampen Lp1, Lp2 sondern auch einen Heizstrom durch die äußeren Wendeln und über den Heiztransformator auch einen Heizstrom durch die inneren Wendeln der Entladungslampen Lp1, Lp2. Soll nur eine Entladungslampe betrieben werden, so kann der Heiztransformator entfallen.
  • Der Heizstrom wird im wesentlichen vor der Zündung der Entladungslampen Lp1, Lp2 während einer Vorheizphase als Vorheizstrom für die Vorheizung der Wendeln benötigt. Den Wert des Heizstroms bestimmt wesentlich der variable Widerstand R1. Während der Vorheizphase ist der Wert von R 1 so gering, dass ein durch Lampendatcn vorgegebener Heizstrom erreicht wird. Nach der Vorheizphase erhöht sich der Wert von R1, so dass im Vergleich zum Strom durch die Gasentladung der Entladungslampen Lp1, Lp2 vernachlässigbarer Heizstrom fließt. Im Ausführungsbeispiel ist R1 durch einen sog. PTC oder Kaltleiter realisiert. Dabei handelt es sich um einen Widerstand der im kalten Zustand einen geringen Widerstand aufweist. Durch den Heizstrom wird der Kaltleiter aufgeheizt, wodurch sein Widerstandswert steigt. R1 kann auch durch einen elektronischen Schalter realisiert werden, der in der Vorheizphase geschlossen und danach geöffnet ist. In Serie zu diesem Schalter kann ein Widerstand mit konstantem Widerstandswert geschaltet sein. Damit ist ein schneller Übergang von der Vorheizphase zur Zündphase möglich.
  • Durch die beschriebene Anordnung zum Vorheizen der Wendeln ist während der Vorheizphase durch Dämpfung die Resonanzfrequenz eines im nächsten Abschnitt beschrieben Resonanzkreises geringer als dessen Eigenfrequenz. Vorteilhaft wird während der Vorheizphase eine Wechselrichterfrequenz gewählt, die unter der Eigenfrequenz liegt, damit sich ein hoher Heizstrom und damit eine kurze Vorheizphase ergibt.
  • Der Lampenspannungsknoten N27 ist über einen ersten Resonanzkondensator C6 mit dem Pumpknoten N23 verbunden. Zwischen N23 und N0 ist ein zweiter Resonanzkondensator C7 geschaltet. C6 und C7 bilden mit der Lampendrossel L3 einen Resonanzkreis. Zur Festlegung der Eigenfrequenz des Resonanzkreises, wird C6 und C7 in Serie geschaltet betrachtet. Der wirksame Kapazitätswert von C6 und C7 bezüglich der Eigenfrequenz ist somit der Quotient aus dem Produkt und der Summe der Kapazitätswerte von C6 und C7. Wird der Resonanzkreis nahe seiner Eigenfrequenz angeregt, so entsteht über den Lampen eine Zündspannung, die zur Zündung der Entladungslampen führt. Nach der Zündung wirkt L3 zusammen mit C6 und C7 als Anpassnetzwerk, das eine Ausgangsimpedanz des Wechselrichters in eine zum Betrieb der Entladungslampen nötige Impedanz transformiert.
  • Durch die Verbindung von C6 und C7 mit dem Pumpknoten N23 wirkt die Kombination von L3, C6 und C7 jedoch nicht nur als Resonanzkreis und Anpassnetzwerk, sonder gleichzeitig als Pumpnetzwerk. Ist das Potenzial an N23 niedriger als die momentane Netzspannung, so bezieht das Pumpnetzwerk L3,C6,C7 Energie aus der Netzspannung. Übersteigt das Potenzial an N23 die Spannung am Hauptencrgiespeichcr C3, so wird die von der Netzspannung aufgenommene Energie an C3 abgegeben. Durch die Wahl des Verhältnisses der Kapazitätswerte von C6 und C7 kann die Wirkung des Netzwerks L3, C6, C7 als Pumpnetzwerk abgeglichen werden. Je größer der Kapazitätswert von C7 gewählt wird, desto geringer ist die Wirkung des Netzwerks L3, C6, C7 als Pumpnetzwerk.
  • Eine weitere Pumpwirkung geht von einem Kondensator C8 aus, der zwischen N23 und den Verbindungsknoten N25 der Halbbrückentransistoren T1,T2 geschaltet ist. Auch C8 wirkt nicht nur als Pumpnetzwerk, sondern erfüllt gleichzeitig die Aufgabe eines Snubber-Kondensators. Snubber-Kondensatoren sind allgemein als Maßnahme zur Schalterentlastung in Wechselrichtern bekannt.
  • Das Pumpnetzwerk für den zweiten Pumpzweig besteht aus der Serienschaltung einer Pumpdrossel L4 und eines Pumpkondensators C9. Dieses Pumpnetzwerk ist zwischen den Verbindungsknoten N25 der Halbbrückentransistoren T1,T2 und den Pumpknoten N22 geschaltet. Beim vorliegenden Ausführungsbeispiel werden zwei Pumpzweige verwendet, damit die gepumpte Energie auf mehrere Bauteile aufgeteilt wird. Damit ist eine kostengünstigere Dimensionierung der Bauteile möglich. Auch erhält man dadurch einen Freiheitsgrad bei der Auslegung der Abhängigkeit der gepumpten Energie von Betriebsparametern der Entladungslampen. Die Erfindung ist jedoch auch mit nur einem Pumpzweig realisierbar.
  • Die Halbbrückentransistoren T1, T2 sind als MOSFET ausgelegt. Auch andere elektronische Schalter können dafür eingesetzt werden. Zur Ansteuerung der Gates von T1 und T2 ist im Ausführungsbeispiel ein integrierter Schaltkreis IC1 vorgesehen. IC1 ist im vorliegenden Beispiel ein Schaltkreis der Firma International Rectifier vom Typ IR2153. Es sind auch alternative Schaltkreise zu diesem Typ auf dem Markt erhältlich; z. B. L6571 der Firma STM. Der Schaltkreis IR2153 enthält einen sog. High-Side-Treiber mit dem auch der Halbbrückentransistor T1 angesteuert werden kann, obwohl er keinen Anschluss am Bezugspotenzial N0 hat. Dazu sind eine Diode D10 und ein Kondensator C10 nötig.
  • Die Betriebsspannungsversorgung des ICl erfolgt über den Anschluss 1 des ICl. In Figur 2 ist dazu eine Spannungsquelle VCC zwischen Anschluss 1 des ICl und N0 vorgesehen. Es sind allgemein mehrere Möglichkeiten bekannt, wie diese Spannungsquelle VCC realisiert werden kann. Im einfachsten Fall kann das IC über einen Widerstand von der gleichgerichteten Netzspannung versorgt werden.
  • Außer den Treiberschaltungen für die Halbbrückentransistoren enthält das IC1 einen Oszillator, dessen Schwingfrequenz über die Anschlüsse 2 und 3 eingestellt werden kann. Die Schwingfrequenz des Oszillators entspricht der Wechselrichterfrequenz. Zwischen den Anschlüssen 2 und 3 ist ein frequenzbestimmender Widerstand R3 geschaltet. Zwischen Anschluss 3 und N0 ist die Serienschaltung eines frequenzbestimmenden Kondensators C11 und der Emitter-Kollektor-Strecke eines Bipolartransistors T3 geschaltet. Parallel zur Emitter-Kollektor-Strecke von T3 ist eine Diode D9 geschaltet, damit C11 ge- und entladen werden kann. Durch eine Spannung zwischen dem Basisanschluss von T3 und N0 kann die Wechselrichterfrequenz eingestellt werden und bildet somit eine Stellgröße für einen Regelkreis. Der Basisanschluss von T3 ist mit einem Stellgrößenknoten N28 verbunden. T3, ICl und deren Beschaltung kann somit als Regler aufgefasst werden.
  • Die Funktionen des IC 1 und dessen Beschaltung können auch realisiert werden durch einen beliebigen spannungs- oder stromgesteuerten Oszillator, der über Treiberschaltungen die Ansteuerung der Halbbrückentransistoren bewerkstelligt.
  • Der Regelkreis im Ausführungsbeispiel erfasst als Regelgröße den Strom durch die Gasentladung der Entladungslampen Lp1, Lp2. Dazu besitzt der Messtransformator eine Wicklung W2. Der Wickelsinn im Messtransformator ist so ausgelegt, dass von einem Gesamtstrom in Wicklung W1 der Heizstrom in Wicklung W3 abgezogen wird, so dass in Wicklung W2 ein Strom fließt, der dem Strom durch die Gasentladung der Entladungslampen Lp1, Lp2 proportional ist. Ein Vollbrückenglcichriclter gebildet durch Dioden D11, D12, D13 und D 14 richtet den Strom durch Wicklung W2 gleich und führt ihn über einen niederohmigen Messwiderstand R4 auf NO. Der Spannungsabfall an R4 ist somit ein Maß für den Strom durch die Gasentladung der Entladungslampen Lp1, Lp2. Über einen Tiefpass zur Mittelwertbildung, der durch einen Widerstand R5 und einen Kondensator C13 gebildet wird, gelangt der Spannungsabfall an R4 an den Eingang eines nicht invertierenden Messverstärkers.
  • Der Messverstärker wird in einer bekannten Weise durch einen Operationsverstärker AMP und die Widerstände R6, R7 und R8 realisiert. Im Ausführungsbeispiel ist eine Verstärkung des Messverstärkers von ca. 10 eingestellt. Für den Fall, dass der Spannungsabfall an R4 Werte aufweist, die direkt als Stellgröße verwendet werden können, kann der Messverstärker entfallen oder durch einen Impedanzwandler, wie z. B. einen Emitterfolger, ersetzt werden.
  • Der Ausgang des Messverstärkers ist über eine Diode D15 mit dem Stcllgrößcnknoten N28 verbunden. Damit ist der Regelkreis zur Regelung des Stroms durch die Gasentladung der Entladungslampen Lp1, Lp2 geschlossen. Die Diode D15 ist nötig, damit das Potenzial von N28 auf einen Wert angehoben werden kann, der über dem vom Messverstärker vorgegebenen Wert liegt. Die Anode von D15 stellt einen ersten Reglereingang dar.
  • Der erfindungsgemäße Schwellwertschalter ist in Figur 2 durch einen Varistor MOV realisiert. Er liegt in einer Serienschaltung mit einem Kondensators C12, einem Widerstand R2 und einer Diode D17, die den Lampenspannungsknoten N27 mit dem Stellgrößenknoten N28 verbindet. Die Anode von D17 stellt einen zweiten Reglereingang dar. N28 ist über die Parallelschaltung eines Widerstandes R9 und eines Kondensators C14 mit N0 verbunden.
  • An N27 liegt gegenüber N0 eine Spannung an, die ein Maß für die im Resonanzkreis gebildet aus L3, C6 und C7 schwingende Blindenergie ist. Überschreitet diese Spannung die Schwellspannung des Varistors MOV, so fließt ein Strom durch R9 und C14 wird aufgeladen. Damit wird die Spannung am Stellgrößenknoten N28 angehoben. Dies bewirkt einen Anstieg der Wechsehichterfrequenz und die im Resonanzkreis schwingende Blindenergie wird reduziert, da die Wechsclrichterfrequenz weiter von der Eigenfrequenz des Resonanzkreises abrückt.
  • Zwischen N0 und dem Verbindungspunkt von R2 und D17 ist die Diode D16 geschaltet. Damit wird im Zusammenspiel mit C12 an N28 die Summe aus positiver und negativer Amplitude der Spannung angelegt, die der Varistor MOV passieren lässt. Statt des Varistors MOV kann ein beliebiger anderer Schwellwertschalter Verwendung finden, wie er z. B. durch Zener-Dioden oder Suppressor-Dioden aufgebaut werden kann. Der Schwellwert des Varistors MOV ist im Anwendungsbeispiel 250Veff gewählt. Durch einen höheren Wert wird mehr Blindenergie im Resonanzkreis zugelassen, was zu einer höheren Zündspannung an den Entladungslampen Lp1, Lp2, aber auch zu einer höheren Belastung von Bauelementen führt. Über den Schwellwert des Varistors MOV kann somit ein gewünschtes Optimum eingestellt werden.
  • Der Wert des Widerstands R2 beeinflusst die Stärke der Wirkung des erfindungsgemäßen Eingriffs auf den Regelkreis am Stellgrößenknoten N28. Vorteilhaft ist auch ein nichtlinearer Zusammenhang zwischen der Spannung am Stellgrößenknoten N28 und der Wechselrichterfrequenz. Dieser nichtlineare Zusammenhang wird im Anwendungsbeispiel durch die nichtlineare Kennlinie von T3 realisiert. Zudem wird er von der Abhängigkeit der Frequenz des Oszillators im IC1 von der Spannung am Anschluss 3 des ICl beeinflusst. Ein starker Anstieg der Spannung an N27 führt durch die Nichtlinearität zu einer überproportionalen Erhöhung der Wechselrichterfrequenz, wodurch einer Überlastung von Bauteilen, wie z. B. der Spannungsbelastung von C3 oder der Strombelastung von T 1 und T2, vorgebeugt wird.
  • Statt der Spannung könnte auch der Strom im Resonanzkreis als Maß für die im Resonanzkreis schwingende Blindenergie herangezogen werden. Dazu könnte beispielsweise eine Zusatzwicklung auf L3 dienen.

Claims (16)

  1. Schaltungsanordnung zum Start und Betrieb von Entladungslampen (L, Lp1, Lp2) mit folgenden Merkmalen:
    • ein erster und ein zweiter Netzanschluss (J1, J2) zum Anschluss einer Netzspannung,
    • ein Gleichrichter (D1, D2, D3, D4), dessen Gleichrichtereingang mit den Netzanschlüssen gekoppelt ist und an dessen Gleichrichterausgang (N21) die gleichgerichtete Netzspannung anliegt,
    • der Gleichrichterausgang (N21) ist mit einem elektronischen Pumpschalter (UNI, D7, D8) gekoppelt, wodurch sich am elektronischen Pumpschalter (UNI, D7, D8) ein erster Pumpknoten (N 1, N23) ausbildet,
    • die dem Gleichrichterausgang (N21) abgewandte Seite des elektronischen Pumpschalters ist mit einem Hauptenergiespeicher (C3) gekoppelt,
    • der Hauptenergiespeicher (C3) liefert Energie an einen Wechselrichter (INV), der an einem Wechselrichterausgang (N25, N26) eine Wechselrichterspannung abgibt, die eine Wechsclrichterfrequenz aufweist, die wesentlich höher ist als die Frequenz der Netzspannung,
    • der Wechselrichterausgang (N25), ist über ein Pumpnetzwerk (PN, L3, C6,C7)) mit dem ersten Pumpknoten (N1, N23) gekoppelt,
    • an den Wechselrichterausgang (N25) sind über ein Anpassnetzwerk (Mn, L3, C6, C7), das einen Resonanzkreis (L3, C6, C7) mit einer Eigenfrequenz aufweist, über Lampenklemmen (J3-J6) Entladungslampen (L, Lp1, Lp2) anschließbar,
    • ein Regler (CONT), dessen Reglerausgang ein Stellsignal ausgibt, wobei der Reglerausgang derart mit dem Wechselrichter (INV) gekoppelt ist, dass das Stellsignal die Wechselrichterfrequenz beeinflusst,
    • ein erster Reglereingang (B 1), in den eine erste elektrische Größe eingespeist wird, die einer ersten Betriebsgröße entspricht,
    dadurch gekennzeichnet, dass
    der Regler einen zweiten Reglereingang aufweist, in den über einen Schwellwertschalter (TH, MOV) eine zweite elektrische Größe eingespeist wird, die einer zweiten Betriebsgröße (B2) entspricht, die ein Maß für die Blindenergie ist, die im Resonanzkreis (L3, C6, C7) schwingt,
    wobei der Wert der zweiten elektrischen Größe beim Überschreiten des Schwellwerts des Schwellwertschalters (TH, MOV) einen größeren Wert der Wechselrichterfrequenz bewirkt.
  2. Schaltungsanordnung gemäß Anspruch 1,
    dadurch gekennzeichnet, dass,
    der Regler einen Addierer enthält, der die elektrischen Größen vom ersten und vom zweiten Reglereingang addiert.
  3. Schaltungsanordnung gemäß Anspruch 1,
    dadurch gekennzeichnet, dass,
    der elektronische Pumpschalter (UNI) durch eine erste Pumpdiode (D7) realisiert ist, die so gepolt ist, dass über die erste Pumpdiode (D7) Energie dem Hauptenergiespeicher (C3) zugeführt werden kann,
  4. Schaltungsanordnung gemäß Anspruch 3,
    dadurch gekennzeichnet, dass,
    der Glcichrichterausgang (N21) über eine zweite Pumpdiode (D5) mit dem ersten Pumpknoten (N23) verbunden ist, wobei die zweite Pumpdiode (D5) so gepolt ist, dass über die zweite Pumpdiode Energie dem Gleichrichter entnommen werden kann.
  5. Schaltungsanordnung gemäß Anspruch 4,
    dadurch gekennzeichnet, dass,
    der Gleichrichterausgang (N21) über die Serienschaltung einer dritten (D6) und einer vierten (D8) Pumpdiode mit dem Hauptenergiespeicher (C3) gekoppelt ist, wodurch sich am Verbindungspunkt der dritten (D6) und der vierten (D8) Pumpdiode ein zweiter Pumpknoten (N22) ausbildet, in den ein Teil der Energie, die der Wechselrichterausgang (N25) abgibt, eingespeist wird.
  6. Schaltungsanordnung gemäß Anspruch 1 oder 5,
    dadurch gekennzeichnet, dass,
    der erste (N23) oder der zweite (N22) Pumpknoten über eine Serienschaltung einer Pumpdrossel (L4) und eines Pumpkondensators (C9) mit dem Wechselrichterausgang (N25) verbunden ist.
  7. Schaltungsanordnung gemäß Anspruch 1 oder 5,
    dadurch gekennzeichnet, dass,
    der Wechselrichterausgang (N25) über eine Lampendrossel (L3) mit einem Anschluss (J3) für eine Entladungslampe (Lp 1) verbunden ist, wodurch sich an diesem Anschluss ein Lampenspannungsknoten (N27) ausbildet, der über einen Resonanzkondensator (C6) mit dem ersten (N23) oder dem zweiten (N22) Pumpknoten verbunden ist.
  8. Schaltungsanordnung gemäß Anspruch 1 oder 5,
    dadurch gekennzeichnet, dass,
    der Strom durch eine Entladungslampe in den ersten oder den zweiten Pumpknotcn eingespeist wird.
  9. Schaltungsanordnung gemäß Anspruch 1,
    dadurch gekennzeichnet, dass,
    der Wechsclrichtcrausgang (N25) über eine Lampendrossel (L3) mit einem Anschluss für eine Entladungslampe (J3) verbunden ist, wodurch sich an diesem Anschluss ein Lampenspannungsknoten (N27) ausbildet, an dem die zweite elektrische Betriebsgröße (B2) abgegriffen wird.
  10. Schaltungsanordnung gemäß Anspruch 9,
    dadurch gekennzeichnet, dass,
    der Schwellwertschalter (TH) durch einen Varistor (MOV) realisiert wird und in Serie zu einem Kondensator (C12) und einem Widerstand (R2) geschaltet ist.
  11. Schaltungsanordnung gemäß Anspruch 1,
    dadurch gekennzeichnet, dass,
    die erste elektrische Betriebsgröße (B 1) der Strom durch eine betriebene Entladungslampe (Lp1, Lp2) ist.
  12. Schaltungsanordnung gemäß Anspruch 11,
    dadurch gekennzeichnet, dass,
    ein veränderlicher Widerstand (R1) einen Heizstromkreis schließt, der einen von der Wechselrichterspannung getriebenen Heizstrom durch Elektrodenwendeln einer angeschlossenen Entladungslampe (Lp1, Lp2) bewirkt.
  13. Schaltungsanordnung gemäß Anspruch 12,
    dadurch gekennzeichnet, dass,
    der veränderliche Widerstand (R1) ein Kaltleiter ist.
  14. Schaltungsanordnung gemäß Anspruch 12,
    dadurch gekennzeichnet, dass,
    der veränderliche Widerstand (R1) ein elektronischer Schalter ist.
  15. Schaltungsanordnung gemäß Anspruch 1,
    dadurch gekennzeichnet, dass,
    der Regler eine nichtlineare Kennlinie besitzt.
  16. Verfahren zum Start und Betrieb von Entladungslampen mit einer Schaltungsanordnung gemäß Anspruch 1 gekennzeichnet durch folgende Schritte:
    • Bedämpfen des Resonanzkreises (L3, C6, C7) über Wendeln von angeschlossenen Entladungslampen,
    • Einstellen einer Wechselrichterfrequenz, die unter der Eigenfrequenz liegt,
    • Rücknahme der Dämpfung des Resonanzkreises,
    • Erfassen der zweiten Betriebsgröße (B2),
    • Vergleich der zweiten Betriebsgröße (B2) mit einem vorgegebenen Schwellwert,
    • Erhöhen der Wechselrichterfrequenz für den Fall, dass die zweite Betriebsgröße (B2) den Schwellwert überschreitet.
EP03029436A 2003-01-28 2003-12-19 Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen Expired - Lifetime EP1443807B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10303276A DE10303276A1 (de) 2003-01-28 2003-01-28 Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen
DE10303276 2003-01-28

Publications (3)

Publication Number Publication Date
EP1443807A2 EP1443807A2 (de) 2004-08-04
EP1443807A3 EP1443807A3 (de) 2005-10-26
EP1443807B1 true EP1443807B1 (de) 2007-01-24

Family

ID=32602994

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03029436A Expired - Lifetime EP1443807B1 (de) 2003-01-28 2003-12-19 Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen

Country Status (8)

Country Link
US (1) US6933681B2 (de)
EP (1) EP1443807B1 (de)
KR (1) KR101010164B1 (de)
CN (1) CN1558705B (de)
AT (1) ATE352976T1 (de)
CA (1) CA2456371A1 (de)
DE (2) DE10303276A1 (de)
TW (1) TWI340608B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025774A1 (de) 2004-05-26 2005-12-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Vorschaltgerät für Entladungslampe mit Dauerbetriebs-Regelschaltung
DE102004044180A1 (de) 2004-09-13 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
DE102005007346A1 (de) * 2005-02-17 2006-08-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betreiben von Gasentladungslampen
DE102005008483A1 (de) * 2005-02-24 2006-08-31 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH EVG für Hochdruckentladungslampe mit Strommesseinrichtung
DE102005058484A1 (de) * 2005-12-07 2007-06-14 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betreiben mindestens einer LED
US8736189B2 (en) * 2006-12-23 2014-05-27 Fulham Company Limited Electronic ballasts with high-frequency-current blocking component or positive current feedback
CO6530147A1 (es) * 2011-09-23 2012-09-28 Panacea Quantum Leap Technology Llc Balaso electrónico
GB2499020B (en) * 2012-02-03 2016-04-20 Tridonic Gmbh & Co Kg Lamp ballast
DE102013201438A1 (de) * 2013-01-29 2014-07-31 Osram Gmbh Schaltungsanordnung und Verfahren zum Betreiben und Dimmen mindestens einer LED
DE102014114954A1 (de) * 2014-10-15 2016-04-21 Beckhoff Automation Gmbh Halbbrücke mit zwei Halbleiterschaltern zum Betreiben einer Last

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG48019A1 (en) * 1993-04-23 1998-04-17 Koninkl Philips Electronics Nv Power factor correcting circuit
US5410221A (en) * 1993-04-23 1995-04-25 Philips Electronics North America Corporation Lamp ballast with frequency modulated lamp frequency
US5404082A (en) * 1993-04-23 1995-04-04 North American Philips Corporation High frequency inverter with power-line-controlled frequency modulation
EP0677982B1 (de) * 1994-04-15 2000-02-09 Knobel Ag Lichttechnische Komponenten Verfahren zum Betrieb eines Vorschaltgeräts für Entladungslampen
US5612597A (en) * 1994-12-29 1997-03-18 International Rectifier Corporation Oscillating driver circuit with power factor correction, electronic lamp ballast employing same and driver method
US5604411A (en) * 1995-03-31 1997-02-18 Philips Electronics North America Corporation Electronic ballast having a triac dimming filter with preconditioner offset control
US5742134A (en) * 1996-05-03 1998-04-21 Philips Electronics North America Corp. Inverter driving scheme
US5747942A (en) * 1996-07-10 1998-05-05 Enersol Systems, Inc. Inverter for an electronic ballast having independent start-up and operational output voltages
US6144169A (en) * 1998-12-29 2000-11-07 Philips Electronics North America Corporation Triac dimmable electronic ballast with single stage feedback power factor inverter
JP2001015289A (ja) * 1999-04-28 2001-01-19 Mitsubishi Electric Corp 放電灯点灯装置

Also Published As

Publication number Publication date
KR20040069290A (ko) 2004-08-05
CN1558705A (zh) 2004-12-29
US20040150349A1 (en) 2004-08-05
KR101010164B1 (ko) 2011-01-20
DE10303276A1 (de) 2004-07-29
EP1443807A2 (de) 2004-08-04
EP1443807A3 (de) 2005-10-26
CN1558705B (zh) 2010-05-12
DE50306367D1 (de) 2007-03-15
CA2456371A1 (en) 2004-07-28
ATE352976T1 (de) 2007-02-15
TW200501830A (en) 2005-01-01
TWI340608B (en) 2011-04-11
US6933681B2 (en) 2005-08-23

Similar Documents

Publication Publication Date Title
EP0852454B1 (de) Betriebsschaltung für eine elektrodenlose Niederdruckentladungslampe
DE69213632T2 (de) Elektronisches Verschaltgerät für eine Kompaktleuchtstofflampe
DE102005058484A1 (de) Schaltungsanordnung und Verfahren zum Betreiben mindestens einer LED
EP0781077A2 (de) Schaltungsanordnung zum Betrieb einer Lampe
EP0372303B1 (de) Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe
DE69016815T2 (de) Vorschaltgeräte für Gasentladungslampen.
EP1443807B1 (de) Schaltungsanordnung und Verfahren zum Start und Betrieb von Entladungslampen
US6194840B1 (en) Self-oscillating resonant converter with passive filter regulator
DE19849738C2 (de) Impulsgenerator
EP1443808B1 (de) Schaltungsanordnung und Verfahren zum Start und Betrieb von Gasentladungslampen mit heizbaren Elektrodenwendeln
DE19914505A1 (de) Schaltung zur Korrektur des Leistungsfaktors
EP1553810B1 (de) Schaltungsanordnung zum Betrieb von Lichtquellen mit Leistungsfaktorkorrektur
DE4137207A1 (de) Schaltungsanordnung zum betrieb von entladungslampen
EP1635620A1 (de) Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
EP0389847B1 (de) Schaltungsanordnung
DE10254408A1 (de) Ladungsgepumpte Gleichsignal-Vorspannungsversorgung
DE10200049A1 (de) Betriebsgerät für Gasentladungslampen
EP3487055B1 (de) Hilfsspannungsversorgung
DE102005025154A1 (de) Schaltungsanordnung zum Betrieb einer Entladungslampe mit Temperaturausgleich
EP0276460A1 (de) Schaltungsanordnung zum Betrieb einer Niederdruckentladungslampe
DE10259069B4 (de) Resonanzkonverter und Verfahren zum Treiben von veränderlichen Lasten
EP1263267A2 (de) Verfahren zum Start einer Entladungslampe
DE10220471A1 (de) Schaltungsanordnung zum Betrieb von Entladungslampen
DE2648758A1 (de) Sinusleistungsgenerator
EP0585727B1 (de) Wechselrichterschaltung mit zwei in Reihe geschalteten Glättungskapazitäten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50306367

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070425

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070625

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

BERE Be: lapsed

Owner name: PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20101203

Year of fee payment: 8

Ref country code: SE

Payment date: 20101207

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306367

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111128

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 352976

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306367

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50306367

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131220

Year of fee payment: 11

Ref country code: GB

Payment date: 20131219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131220

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50306367

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141219

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141219

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231