EP1442217A1 - Procede et dispositif de deceleration d'un rotor d'un convertisseur d'energie eolienne - Google Patents

Procede et dispositif de deceleration d'un rotor d'un convertisseur d'energie eolienne

Info

Publication number
EP1442217A1
EP1442217A1 EP02782753A EP02782753A EP1442217A1 EP 1442217 A1 EP1442217 A1 EP 1442217A1 EP 02782753 A EP02782753 A EP 02782753A EP 02782753 A EP02782753 A EP 02782753A EP 1442217 A1 EP1442217 A1 EP 1442217A1
Authority
EP
European Patent Office
Prior art keywords
deceleration torque
brake
torque
unit
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02782753A
Other languages
German (de)
English (en)
Inventor
Norbert Hennchen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1442217A1 publication Critical patent/EP1442217A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0248Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking by mechanical means acting on the power train
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method for decelerating a drive train, in particular a rotor of a wind power plant, in which a deceleration torque which is reduced in comparison with the maximum deceleration torque is initiated in order to avoid an undesirably high load. Furthermore, the invention relates to a device for performing the method.
  • An aerodynamic brake known as a wing or blade tip brake, serves as the service brake. This aerodynamic brake is always triggered, for example, due to the centrifugal force that occurs when the wind speed exceeds a maximum permissible value.
  • the blade tip rotates, for example, by 80 ° and thus acts as an aerodynamic brake.
  • the second brake system usually has a mechanical, in particular spring-actuated disc brake, which is arranged as an emergency or parking brake on the fast shaft between the transmission and the generator.
  • the mechanical brake unit is only used in critical situations or for locking in the idle state, for example for service activities.
  • the brake system is activated electromechanically or hydraulically during operation. If an emergency arises that requires the wind turbine to be braked quickly, the electricity supply of the electrotechnical brake unit switched off or the hydraulic pressure reduced by opening a valve. As a result, the braking unit is activated by the pretensioning force of a spring element and thus transmits the required deceleration torque until the wind turbine stops.
  • the brake unit generally acts on the fast shaft of the transmission because a low torque corresponding to the transmission ratio of a transmission occurs there.
  • the decelerating moment brings about moments of inertia, the major part of which is caused by the rotation of the rotor blades.
  • the power transmission between the brake unit and the rotor blades takes place via the gearbox and a main shaft.
  • the main shaft and the other shafts of the gearbox are twisted by the onset of the deceleration torque. If the maximum deceleration torque is suddenly introduced, this leads to torsional vibrations.
  • These torsional vibrations cause peak torque loads, the amount of which can reach twice the deceleration torque. These undesirably high loads can damage the gearbox, the main shaft and the rotor blade holders.
  • the invention has for its object to provide a method for reliable and fast deceleration of the rotor of the wind turbine, in which an undesirable peak load, in particular above the maximum deceleration torque, can be excluded. Furthermore, a device for performing the method is to be created.
  • the first-mentioned object is achieved according to the invention with a method according to the features of patent claim 1.
  • the sub-claims 2 to 6 relate to particularly expedient developments of the invention.
  • a method is thus provided in which, after the deceleration torque has been introduced, at least one additional deceleration torque is initiated with a time shift which is matched to the natural frequency of the wind turbine.
  • the deceleration torque is introduced with a time delay such that an undesired oscillation, in particular torsional oscillation, cannot occur.
  • a reduced deceleration torque is first initiated and the deceleration torque is increased step by step in one or more stages or continuously according to the natural frequency of the wind turbine.
  • the rotor can be decelerated much more and therefore comes to a standstill earlier, which results in a considerable gain in safety.
  • a particularly advantageous embodiment of the method is achieved in that the time shift essentially corresponds to half the period of the torsional natural frequency of the wind power plant.
  • a possible torsional vibration is hereby avoided by the occurrence of torque peaks being excluded by the superimposition of the decelerating torques introduced.
  • a further particularly practical embodiment is also achieved if the natural frequency of a drive train of the wind turbine is used to determine the additional deceleration torque. All rotating elements attributable to the drive train are taken into account, so that possible vibrational loads on the overall system are avoided in an optimal manner.
  • the two deceleration torques are set hydraulically, in order in this way to achieve any gradation of the deceleration torques introduced.
  • the hydraulic elements do not have to act directly on the brake unit, but can also only be used as control elements in order to achieve independence of the brake unit from a possible failure of the pressure supply device.
  • a further, particularly favorable modification of the present invention is also achieved in that the deceleration moments are essentially of the same size in order to achieve the most uniform possible introduction of the deceleration moments. This reliably eliminates possible drive train vibrations.
  • the maximum deceleration torque to be initiated is distributed evenly over the rotating system's rotating time.
  • the reaction forces occurring when the deceleration torque is introduced are determined and the temporal shift or the amount of the deceleration torque to be introduced subsequently is determined therefrom.
  • the deceleration torque can be introduced in a metered manner in accordance with the detected reaction forces in order to be able to react flexibly to any undesirable loads that may occur.
  • the wind power plant is equipped with a control unit by means of which all essential parameters and optionally also external operating conditions are recorded and converted into a corresponding command for the deceleration torque to be initiated by means of a control program.
  • the time shift, the deceleration torque, or both are varied to counteract undesirable load conditions.
  • the second object of creating a device for decelerating a drive train in particular a rotor of a wind turbine, in which a decelerating torque which is reduced compared to the maximum decelerating torque in order to avoid an undesirably high load can be transmitted for carrying out the method solved that by means of the brake unit, in addition to the reduced deceleration torque with a time shift matched to the natural frequency, at least one additional deceleration torque can be transmitted.
  • the maximum deceleration torque is gradually introduced in a sequence that is coordinated with the natural frequency of the wind power plant, in order to prevent the rotating system from vibrating.
  • the chronological sequence, as well as the gradation of the deceleration moments is determined by essential parameters that are determined individually or depending on the design.
  • a particularly advantageous embodiment is also achieved in that the brake unit counteracts a brake unit in a rest position by means of a holding unit. against a preload force definable brake body.
  • a failure of the holding unit for example as a result of damage or a power failure, leads to activation of the braking unit in that the pretensioning force acts on the brake body and thus transmits the required deceleration torque.
  • a further, particularly favorable embodiment of the present invention is also achieved in that the brake body can be fixed in different positions by means of the holding unit for setting the first and the additional deceleration torque.
  • a predetermined deceleration torque is introduced in each position of the holding unit in order to enable the deceleration torque to be increased step by step until the maximum deceleration torque is reached.
  • the holding unit has a hydraulic cylinder through which a force counteracting the desired pretensioning force is introduced. To trigger the deceleration torque, therefore, only the hydraulic cylinder is actuated by the pressure supply device in such a way that it returns to its rest position and the pretensioning force acts on the brake body of the brake unit.
  • a particularly reliable embodiment of the device is also achieved in that the hydraulic cylinder is acted upon by a fluid from a pressure supply device in the rest position of the brake unit, so that a failure of the pressure supply leads to an immediate initiation of the deceleration torque. A malfunction of the holding unit therefore in no case leads to the cancellation of the deceleration torque.
  • the electrical energy for supplying the braking unit can be stored by means of a capacitor, so that the functionality of the device is ensured in any case even if the electrical energy supply fails.
  • the method and the device can be used with any drive train. They are also suitable for rail-bound vehicles as well as for road vehicles, as well as for other machines. In addition to applications for avoiding high loads, to increase the accuracy, applications are also conceivable for those uses which serve for positioning and handling, for example in the case of actuators or handling machines.
  • the invention permits various embodiments. To further clarify its basic principle, one of these is shown in the drawing and is described below. This shows in
  • FIG. 1 shows a schematic diagram of a device according to the invention
  • FIG. 2 shows a circuit diagram of a valve of the device shown in FIG. 1.
  • FIG. 1 shows a basic illustration of a device 1 according to the invention for decelerating a rotor, not shown, of a wind power plant.
  • a hydraulic fluid is pumped from a pressureless tank 3 into a pressure supply device 4 designed as a pressure accumulator via a pump 2 in order to bring it into operational readiness.
  • a valve 9 is set by applying a control voltage such that there is an essentially unimpeded flow of hydraulic fluid.
  • the necessary pressure is built up in a holding unit 11 equipped with a hydraulic cylinder 10 in order to move the brake body 6 against the biasing force F R of a spring element 12 into the illustrated rest position of the brake unit 5.
  • a possible drainage of the hydraulic fluid via two valves 13, 14 designed as electrically operable ball seat valves is avoided by applying a control voltage. If, however, a switching unit 15 is actuated, the valve 9 closes and the valve 14 is opened without delay. The hydraulic fluid can thus flow into the tank 3 via a pressure reducer 16 until the deceleration torque corresponds to approximately half of the desired maximum deceleration torque.
  • the valve 13 is also opened via a delay switch 17 with a time shift which corresponds to half a period of the drive train natural frequency.
  • the electrical energy required in particular to control the valves 9, 13, 14 is provided by means of a capacitor 18, the circuit diagram of which is shown by way of example in FIG. 2.
  • the switching unit 15 In its closed switching position, the switching unit 15 enables the capacitor 18 to be charged via a resistor 19. The valve 14 is therefore switched directly. If the switching unit 15 is actuated in an emergency, the valve 14 is supplied with electrical energy via a diode 20 until the capacitor 18 discharges is. The delay time results from the capacitance of the capacitor 18 and the power consumption and the electrical switching point of the valve 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un procédé et un dispositif (1) de décélération d'une chaîne cinématique, principalement d'un rotor d'un convertisseur d'énergie éolienne. L'invention a pour but d'éviter une charge élevée indésirable, occasionnée par des vibrations torsionnelles consécutives à un brusque amorçage du couple décélérateur. A cet effet, le couple décélérateur amorcé est augmenté progressivement au moyen d'une unité de freinage (5) dans une séquence temporelle déterminée, fonction de la fréquence propre du convertisseur d'énergie éolienne. Les vibrations torsionnelles éventuelles peuvent ainsi être évitées de manière sûre, de sorte que l'arrêt s'effectue prématurément et l'agencement constructif peut être dimensionné en fonction de couples de rotation qui sont atteints par le couple décélérateur maximum.
EP02782753A 2001-11-05 2002-10-31 Procede et dispositif de deceleration d'un rotor d'un convertisseur d'energie eolienne Withdrawn EP1442217A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10153798A DE10153798C2 (de) 2001-11-05 2001-11-05 Verfahren und Vorrichtung zur Verzögerung eines Rotors einer Windkraftanlage
DE10153798 2001-11-05
PCT/DE2002/004055 WO2003040556A1 (fr) 2001-11-05 2002-10-31 Procede et dispositif de deceleration d'un rotor d'un convertisseur d'energie eolienne

Publications (1)

Publication Number Publication Date
EP1442217A1 true EP1442217A1 (fr) 2004-08-04

Family

ID=7704364

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782753A Withdrawn EP1442217A1 (fr) 2001-11-05 2002-10-31 Procede et dispositif de deceleration d'un rotor d'un convertisseur d'energie eolienne

Country Status (3)

Country Link
EP (1) EP1442217A1 (fr)
DE (1) DE10153798C2 (fr)
WO (1) WO2003040556A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003080414A1 (fr) * 2002-03-23 2003-10-02 General Electric Company Systeme de frein hydraulique destine a une installation d'energie eolienne
EP1490250B1 (fr) * 2002-03-23 2010-07-07 General Electric Company Systeme de freinage hydraulique pour installation eolienne
DE10320580A1 (de) * 2003-05-07 2004-11-25 Bosch Rexroth Ag Bremseinrichtung für eine Windenergieanlage mit einem die Windenergie in eine Drehbewegung umsetzenden Rotor und Verfahren zum Betrieb einer derartigen Bremseinrichtung
DE102004004350B3 (de) * 2004-01-29 2005-09-01 Nordex Energy Gmbh Verfahren zur Verringerung der Drehzahl eines Antriebsstranges in einer Windenergieanlage sowie Windenergieanlage mit mindestens zwei Nenndrehzahlen
DE102005038243B4 (de) * 2005-08-12 2014-11-27 S.B. Patent Holding Aps Bremsanlage für eine Windkraftanlage
DE102007040834A1 (de) * 2007-08-29 2009-03-05 S.B. Patent Holding Aps Verfahren zum Betreiben einer Windenergieanlage und Steuer- und Regeleinheit zur Ausführung des Verfahrens
DK2119910T3 (da) * 2008-05-14 2012-07-16 Alstom Wind Sl Metode til reduktion af vridningssvingninger i kraftoverførselssystemet i en vindmølle
DE102009006054A1 (de) * 2009-01-24 2010-07-29 Robert Bosch Gmbh Stationäre Energiegewinnungsanlage mit einer Abbremsvorrichtung
US8047770B2 (en) * 2009-12-30 2011-11-01 General Electric Company Methods and systems for providing variable mechanical brake torque
DE102010009857A1 (de) * 2010-03-02 2011-09-08 Robert Bosch Gmbh Verfahren zum Abbremsen einer Windenergieanlage und Abbremsvorrichtung zur Durchführung des Verfahrens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8716506D0 (en) * 1987-07-14 1987-08-19 Lawson Tancred Sons & Co Ltd S Wind turbine operating system
DE4418769C1 (de) * 1994-05-28 1995-08-24 Daimler Benz Ag Verfahren zur Dämpfung von Regelschwingungen eines mittels Lowrad-Bremseneingriffen traktionsregelnden Systems in einem Kraftfahrzeug
DE19634464C2 (de) * 1995-08-28 1998-07-16 Lothar Kloft Bremseinrichtung einer Windkraftanlage und Verfahren zu deren Betätigung
DE19629168C1 (de) * 1996-07-19 1997-10-30 Voith Turbo Kg Windturbine mit einem Turm, einer Gondel und einer Bremse zum Arretieren der Schwenkbewegung der Gondel
DE19705948A1 (de) * 1997-02-17 1998-08-20 Itt Mfg Enterprises Inc Verfahren zum Dämpfen von Antriebsstrangschwingungen
DE19717059C1 (de) * 1997-04-23 1998-07-09 Aerodyn Eng Gmbh Verfahren zum Verbringen einer Windkraftanlage in eine Parkstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03040556A1 *

Also Published As

Publication number Publication date
DE10153798C2 (de) 2003-07-31
WO2003040556A1 (fr) 2003-05-15
DE10153798A1 (de) 2003-01-02

Similar Documents

Publication Publication Date Title
EP1747365B1 (fr) Installation eolienne pourvue d'un generateur auxiliaire, et son procede de commande
EP1971772B1 (fr) Procede de conduite d'un systeme a energie eolienne et systeme a energie eolienne
DE60311896T2 (de) Redundantes steuerungssystem zur verstellung der anstellwinkel der rotorblätter einer windkraftanlage
DE102006029640B4 (de) Windenergieanlage mit einem Maschinenhaus
EP1959131B1 (fr) Eolienne dotée d'un frein de rotor actionné hydrauliquement
DE10345485B4 (de) Bremsvorrichtung mit Betriebs- und Feststellbremsfunktion
DE102007052863B4 (de) Verfahren zum Betreiben einer Windenergieanlage
DE102015210431A1 (de) Verfahren zum Ansteuern einer Feststellbremse in einem Fahrzeug
DE102012101484A1 (de) Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
WO2003040556A1 (fr) Procede et dispositif de deceleration d'un rotor d'un convertisseur d'energie eolienne
DE19720025B4 (de) Antrieb zur Winkelverstellung von Rotorblättern in Windkraftanlagen
EP2872776B1 (fr) Éolienne pourvue d'un système de calage de pale
EP1622800B1 (fr) Dispositif de freinage pour installation éolienne, comprenant un rotor convertissant l'énergie éolienne en mouvement rotatif et procédé d'exploitation d'un dispositif de freinage de ce type
DE19644705A1 (de) Vorrichtung zur Verstellung von Rotorblättern
DE102008004948A1 (de) Verfahren und Vorrichtung zum Drehen eines Maschinenhauses einer Windenergieanlage
DE102007040834A1 (de) Verfahren zum Betreiben einer Windenergieanlage und Steuer- und Regeleinheit zur Ausführung des Verfahrens
EP2389509B1 (fr) Installation de production d'energie stationnaire dotee d'un dispositif de freinage
DE102007002136A1 (de) Windenergieanlage mit einer hydraulisch betätigten Rotorbremse und Verfahren zur hydraulischen Steuerung einer Rotorbremse
WO2018091497A1 (fr) Éolienne comprenant un système de freinage ainsi que procédé de fonctionnement de cette éolienne
EP2224128A2 (fr) Eolienne avec un système de freinage
DE102010037695A1 (de) Verfahren und Einrichtung zur Abbremsung einer Windenergieanlage in einem Notfall
EP2698533A1 (fr) Pas variable électro-hydraulique, éolienne ou centrale hydraulique et procédé de fonctionnement d'un pas variable électro-hydraulique
DE202004009071U1 (de) Windenergieanlage mit einem Hilfsgenerator
WO2011107208A2 (fr) Procédé pour freiner une éolienne et dispositif de freinage permettant de mettre en oeuvre ce procédé
EP4111049B1 (fr) Centrale hydroélectrique dotée de vanne de sécurité

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060503