EP1440228B1 - Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine - Google Patents

Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine Download PDF

Info

Publication number
EP1440228B1
EP1440228B1 EP02779109A EP02779109A EP1440228B1 EP 1440228 B1 EP1440228 B1 EP 1440228B1 EP 02779109 A EP02779109 A EP 02779109A EP 02779109 A EP02779109 A EP 02779109A EP 1440228 B1 EP1440228 B1 EP 1440228B1
Authority
EP
European Patent Office
Prior art keywords
temperature
internal combustion
combustion engine
cylinder head
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02779109A
Other languages
English (en)
French (fr)
Other versions
EP1440228A1 (de
Inventor
Manfred Schmitt
Oliver Gerundt
Herbert Windisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1440228A1 publication Critical patent/EP1440228A1/de
Application granted granted Critical
Publication of EP1440228B1 publication Critical patent/EP1440228B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating or supervising devices
    • F02B77/089Safety, indicating or supervising devices relating to engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/31Cylinder temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • a cooling circuit for an internal combustion engine in which the engine block and the cylinder head of the internal combustion engine are flowed through by cooling water, which is cooled by a radiator.
  • a control unit receives signals from temperature sensors which detect temperatures of the engine block, the cylinder head and the cooling water.
  • An electrically driven cooling water pump and valves present in the cooling circuit are controlled by a control unit so that none of the temperatures detected by the sensors exceeds a predetermined maximum.
  • cooling In the known cooling circuit, although the operation of the cooling device depends on the operating state or the temperature of regions of the internal combustion engine. However, the temperatures are detected at such points of the internal combustion engine, which only relatively sluggish to changes in the thermal operating state of the internal combustion engine react. The reason for this is that the actually highly thermally stressed areas are not accessible. In order nevertheless to be able to ensure that the components subjected to the highest thermal load in the interior of the internal combustion engine, in particular in the combustion chamber of the internal combustion engine, do not exceed a certain maximum permissible temperature, cooling must be greater in the known cooling circuit and the corresponding method than is necessary per se would. This in turn reduces the efficiency of the internal combustion engine. Also, the fuel consumption of the internal combustion engine is indirectly increased, since the cooling water pump must be operated with a larger power than necessary per se.
  • the present invention has the object, a method of the type mentioned in such a way that the efficiency of the internal combustion engine is better and less fuel is consumed in the operation of the internal combustion engine.
  • a temperature is used for influencing the cooling device, which reflects the thermal state of the heavily loaded areas in the interior of the internal combustion engine very well and spontaneously.
  • the corresponding sensor signal thus responds directly to changes in the operating state of the internal combustion engine.
  • a "lagging behind" of the detected temperature compared to the component temperature at the actually relevant point is included the method according to the invention thus not or at least not to a relevant extent available.
  • the cooling device can react spontaneously to the different operating states of the internal combustion engine.
  • the otherwise required safety margins, with which it was previously intended to prevent the thermally highly stressed components in the interior of the internal combustion engine being overloaded, can therefore be lower in the method according to the invention or can be completely eliminated.
  • the internal combustion engine therefore operates at a higher efficiency.
  • the fuel consumption of the internal combustion engine is lowered because the cooling device, and in particular a Coolant pump, can operate in many operating conditions of the internal combustion engine with a lower power.
  • the temperature on a cylinder head gasket facing sealing surface of a cylinder head is detected at a position which correlates with respect to the temperature with the temperature at a highly thermally stressed location of a cylinder head, which on the combustion chamber side of the cylinder head next to the Exhaust valve is located.
  • the area in the cylinder head near the exhaust valve is relatively difficult to access for the cooling fluid. Therefore, in many types of internal combustion engines, this area is subject to the highest thermal load.
  • the temperature of the cooling fluid is detected and the operation of the cooling device also depends on the detected temperature of the cooling fluid.
  • a particularly relevant for the operation of the internal combustion engine state of the coolant is present when boiling bubbles occur in the coolant.
  • Such nucleate boiling in turn depends to a considerable extent on the temperature of the cooling fluid.
  • the influencing of the cooling device can therefore take place with even greater precision.
  • the occurrence of nucleate boiling is also affected by the temperature of the wetted surface. Knowledge of their temperature is therefore also helpful in predicting the occurrence of nucleate boiling.
  • a component temperature is measured on a cylinder head gasket facing the sealing surface of a cylinder at a location which is closest to an adjacent cylinder, and that the temperature of the cooling fluid is detected in a flow space between the two adjacent cylinders. Between two adjacent cylinder liners, the flow volume of the cooling fluid is relatively low and at the same time the component temperature at the cylinder is comparatively high. Bubble boiling of the cooling fluid is therefore likely to occur first at this point.
  • the thermally critical areas of internal combustion engine to internal combustion engine may be different. They are preferably determined in advance for each type of internal combustion engine by tests.
  • the operation of the cooling device is influenced so that the desired temperature is kept approximately constant at the location of the component located within the internal combustion engine and difficult or impossible to access. As a result, the thermal Minimized alternating load of the component and extended the life of the component again.
  • One possible operating strategy also consists in that the operation of the cooling device is influenced such that nucleate boiling does not occur in the coolant at any point during operation of the internal combustion engine. This is a comparatively safe operating strategy, since with strong nucleate boiling, the heat transfer from the components of the internal combustion engine to the cooling fluid drops significantly, which leads to a reduced cooling capacity of the cooling device. As a result, there is a risk of overheating of the internal combustion engine with corresponding adverse effects on the life of the internal combustion engine.
  • the operation of the cooling device is influenced so that during operation of the internal combustion engine in the coolant at least partially slight nucleate boiling occurs, such that the heat transfer coefficient or the heat flow density in the corresponding area is approximately maximum.
  • the physical effect is exploited that with slight nucleate boiling, the heat transfer coefficient is greater than in an operating state in which no nucleate boiling occurs.
  • the heat is best dissipated by the corresponding component in the cooling fluid.
  • the volume flow and the temperature of the cooling fluid are influenced so that the desired component temperature is achieved with the lowest possible flow rate of the cooling device.
  • Such a control principle is easy to implement and leads due to the lowest possible delivery rate of the cooling device to a significant fuel economy.
  • thermoelectric cooling fluid from the determined component temperature and the detected temperature of the cooling fluid and / or from a flow velocity of the cooling fluid and / or from a pressure of the cooling fluid and / or from a load of the internal combustion engine that temperature of the cooling fluid is determined, in the case of slight nucleate boiling occurs in the cooling fluid.
  • the temperature limit which may be reached under any circumstances, depending on the operating strategy, or which is just to be achieved, be adapted to the dynamically changing operating conditions of the internal combustion engine. This makes it possible to optimally utilize the power capabilities of the cooling device in different operating states of the internal combustion engine.
  • a further embodiment of the method according to the invention provides that the operation of the cooling device is influenced so that a lubricant with which the moving parts and / or bearings of the internal combustion engine are lubricated, has approximately a desired temperature during operation of the internal combustion engine.
  • the lubricant preferably has optimum lubrication properties at the desired temperature, resulting in favorable wear, longer life of the moving parts and bearings, and lower fuel consumption.
  • the invention also relates to a computer program according to claim 12.
  • the invention relates to a control and / or regulating device for operating an internal combustion engine according to claim 13.
  • the invention also relates to an internal combustion engine according to claim 14.
  • An internal combustion engine carries in FIG. 1 in total the reference numeral 10. It comprises an engine block 12 to which a cylinder head 14 is connected. Between the engine block and cylinder head 14, a cylinder head gasket 16 is arranged.
  • the internal combustion engine 10 is installed in a motor vehicle, not shown in the drawing and serves to drive it.
  • the engine block 12 is cooled by a cooler 18.
  • a cooling water line 22 leads to a valve 24, with which the cooling water flow into a line 26, which leads via a heat exchanger 28 to the electric cooling water pump 20, and in a bypass line 30, which leads bypassing the heat exchanger 28 directly to the electric cooling water pump 20, can be branched.
  • Combustion air is supplied to the cylinder head 14 via an intake pipe 32, in which an electrically adjustable throttle valve 34 is arranged.
  • the hot combustion exhaust gases are discharged via an exhaust pipe 36.
  • the operating state of the internal combustion engine 10 is detected by a plurality of sensors: Three temperature sensors 38, 40 and 42 are integrated in the cylinder head gasket 16. This can be done, for example, that PTC resistors are screen printed on the cylinder head gasket 16.
  • the location of the temperature sensor 38 is shown in FIG. 2: In this, the range of a cylinder 44 in the cylinder head 14 is shown. Visible in Fig. 2 u.a. a valve disk 46 of an exhaust valve and valve disks 48a and 48b of respective intake valves. Shown is also a cylinder 44 surrounding annular and plan machined sealing surface 50 on the cylinder head 14. A location 51, is arranged in the installation position of the temperature sensor 38, located in the region of the sealing surface 50 in the vicinity of the valve plate 46 of the exhaust valve. The temperature sensor 38 is arranged on the cylinder head gasket 16 facing the cylinder head 14.
  • Fig. 3 shows the cylinder 44 and adjacent cylinders 43 and 45 in the engine block 12. Recognizable are the piston (without reference numerals) inside the cylinder 43, 44 and 45 and a single cylinder 43, 44 and 45 surrounding flow space 52, which is traversed by thedewasseer during operation of the internal combustion engine 10.
  • a temperature sensor 40 is arranged in the region of a plane-machined sealing surface 54 of a bushing (without reference numeral) of the cylinder 43, namely at the position which is directly adjacent to the adjacent cylinder 44, and it is arranged on the cylinder head gasket 16 facing the engine block 14.
  • the temperature sensor 42 is arranged on the flow space 52 between the two cylinders 43 and 44 immediately adjacent to the temperature sensor 40. Since the temperature of the cooling water is to be measured with the temperature sensor 42, a covering layer pointing to the engine block 12 at the cylinder head gasket 16 is not present at the location of the temperature sensor 42.
  • Another temperature sensor 56 measures the temperature of the lubricating oil present in an oil sump 58 (see FIG.
  • a speed sensor 60 detects the rotational speed of a crankshaft 62 of the internal combustion engine 10.
  • a hot-film air mass meter (hereinafter abbreviated "HFM sensor”) is denoted by reference numeral 64, is located upstream of the throttle valve 34 in the intake manifold 32 and detects the air mass, which in the Combustion chambers of the internal combustion engine 10 passes. This in turn is representative of the load of the internal combustion engine 10.
  • All sensors 38, 40, 42, 56, 60 and 64 provide corresponding signals to a control and regulating device 66. This in turn controls u.a. the throttle valve 34 in the intake pipe 32 and the electric cooling water pump 20 at. Also, the valve 24 is controlled by the control and regulating device 66.
  • the position of the temperature sensor 38 is selected so that the temperature tm1 measured by the temperature sensor 38 during operation of the internal combustion engine 10 correlates with the temperature tk, which is shown in FIG Operation occurs at a location immediately adjacent to the valve disk 46 of the exhaust valve in the combustion chamber side wall of the cylinder head 14. This point is indicated in Fig. 2 by a cross with the reference numeral 68. In preliminary tests it was found that occur at the point indicated by the cross 68 in the cylinder head 14 of the internal combustion engine 10 shown here during operation of the internal combustion engine 10, the highest temperatures. This site is thus thermally particularly heavily loaded. The correlation of the measured values tm1 with the temperature tk was also determined in preliminary experiments for the present internal combustion engine.
  • FIG. 6 A first, comparatively simple control strategy of the cooling device 18 can be seen in FIG. 6:
  • the air charge rl detected by the HFM sensor 64 is shown in a typical operating cycle of the internal combustion engine 10 extending over a period t.
  • the air charge rl corresponds to the current engine load in the internal combustion engine shown here.
  • other internal combustion engines for example, with direct fuel injection
  • a second diagram in Fig. 6 shows the speed V of the motor vehicle, in which the internal combustion engine 10 is installed. Since the heat exchanger 28 is acted upon in the cooling device 18 to a significant extent by the wind of the motor vehicle, the speed V of the motor vehicle has a direct influence on the action of the heat exchanger 28 and thus on the operation of the cooling device 18th
  • Cooling device 18 are on the basis of the measured values tm1 supplied by the temperature sensor 38 on the one hand, the electric cooling water pump 20 and on the other hand, the valve 24 driven so that the temperature tk at the thermally most heavily loaded point 68 in the cylinder head 14 of the engine 10 is substantially constant and in approximately corresponds to the temperature tkmax, which is permissible in continuous operation for the material from which the cylinder head 14 is made.
  • the signal of the temperature sensor 38 is supplied to the control and regulating device 66, which controls the valve 24 so that a desired temperature of the coolant is reached, and which controls the electric cooling water pump 20 so that a desired cooling water volume flow is present.
  • the temperature of the cooling water can be monitored via the signal of the temperature sensor 42.
  • FIG. 7 A second possible control strategy of the cooling device 18 will now be explained with reference to Fig. 7: In this first the same operating cycle as in Fig. 6 is plotted, i. the same course of the air filling rl and the vehicle speed V. However, the control of the cooling device 18 is no longer in view of the maximum allowable component temperature, but in view to avoid with certainty the state of the "bubble boiling" in the cooling water of the cooling device 18.
  • Such nucleate boiling ie the formation of vapor bubbles within the cooling water, can occur in those regions of the flow space 52 in which the highest cooling water temperatures occur, for example when the cooling water pump 20 is switched off during warm-up of the internal combustion engine 10, but also during normal operation of the internal combustion engine 10.
  • An important factor influencing the possibility of bubble nucleation is also the Temperature tw of a wall, which limits the area in which the high cooling water temperatures occur.
  • the corresponding locations within an internal combustion engine can be detected for example by preliminary experiments. They vary from one type of engine to another.
  • a critical area for the formation of vapor bubbles in the flow space 52 between two cylinders 43 and 44 and 44 and 45 is present.
  • essential operating parameters are on the one hand the temperature tf of the cooling water in the gap between the two cylinders 43 and 44 and the wall temperature tw, for example, of the cylinder 43.
  • the two temperature sensors 40 and 42 are arranged at the appropriate locations.
  • the temperature detected by the sensor 40 tm2 is in normal operation of the internal combustion engine 10 slightly above the actual wall temperature tw, the temperature detected by the sensor 42 substantially corresponds to the actual cooling water temperature tf.
  • the limit temperatures gtw and gtf are not constant. Instead, they are currently determined continuously as a function of different influencing variables which change during operation of the internal combustion engine 10.
  • An influencing variable is, for example, the system pressure in the cooling device 18, the rotational speed of the crankshaft 62, which is detected by the rotational speed sensor 60, the current load rl, etc.
  • the corresponding wall temperature tw and the corresponding temperature tf of the cooling water is controlled by a corresponding control of the electric cooling water pump 20 and the valve 24 is set.
  • Another influencing factor for the maximum permissible cooling water temperature is the current volume flow of the cooling water within the cooling device 18. This volume flow can therefore also be used to determine the limit temperature gtf.
  • FIG. 8 yet another, third operating strategy for the operation of the cooling device 18 is shown.
  • the time course of the engine load rl and the vehicle speed V is identical to the operating strategies shown in FIGS. 6 and 7.
  • bubble boiling is expressly permitted in that illustrated in FIG. 8.
  • This operating strategy is based on the idea that the heat transfer coefficient from the walls of the cylinders 43, 44 and 45 to the cooling water in the flow space 52 is maximum when vapor bubbles are formed on the walls to a small extent.
  • the cooling water temperature tf by means of the temperature sensor 42 is detected very close to the wall of the cylinder 43 and can be compared with the temperature tw on the outside of the wall of the cylinder 43, which corresponds very well to the temperature tm2 detected by the temperature sensor 40,
  • a control strategy can be implemented which results in an optimization of the heat transfer coefficient between the wall of the cylinder 43 and the cooling water.
  • the corresponding temperatures tw and tf are thus always just above the limit temperatures gtw and gtf.
  • a deratige control of the cooling device 18, which leads to a maximum heat transfer coefficient, makes it possible to set the cooling water temperature tf and the flow of cooling water in the engine block 12 and in the cylinder head 14 so that a desired temperature in the cylinder head 14 with the lowest possible power of the cooling water pump 20th is reached.
  • a good inference of the temperatures at the locations acted upon by the lubricating oil, for example between the cylinders 43, 44 and 45 and the pistons (without reference number), can be determined by a combination of the temperature tm2 detected by the sensor 38 on the cylinder head 14 and that of the temperature sensor 42 detected temperature tf of the cooling water are drawn with the just output from the internal combustion engine 10 thermal power.
  • This thermal power may be characterized, for example, by the engine speed (speed sensor 60), the engine load (HFM sensor 64) and the oil temperature to (oil temperature sensor 56).
  • the corresponding signals are also supplied to the control and regulating device 66, which keeps the oil temperature at the critical lubrication points always in an optimum temperature range by influencing the cooling water temperature, the cooling water flow rate and possibly the thermal power loss emitted by the internal combustion engine 10.
  • a method is seen, which is applied to avoid exceeding a maximum allowable component temperature tkmax:
  • a condition is to be feared, for example, when at low vehicle speed V, a high engine load rl is required.
  • the insufficient cooling by the wind of the motor vehicle is trying to compensate by an entprechende increase in the cooling water flow dm / dt.
  • An increase in the cooling water flow dm / dt is achieved by increasing the speed of the electric cooling water pump 20.
  • the component temperature tk rise to a value above tkmax and possibly lead to damage of the cylinder head 14.
  • the thermal energy introduced into the cooling device 18 by the internal combustion engine 10 is reduced or limited by forcibly reducing the engine load r 1, that is to say by limiting the power of the internal combustion engine 10.
  • Such locking of the internal combustion engine 10 takes place in Fig. 10 at time t1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren nach dem Oberbegriff des Anspruchs 1.
  • In der DE 199 38 614 A1 wird ein Kühlkreislauf für einen Verbrennungsmotor beschrieben, bei dem der Motorblock und der Zylinderkopf der Brennkraftmaschine von Kühlwasser durchströmt werden, welches von einem Kühler gekühlt wird. Eine Steuereinheit erhält Signale von Temperatursensoren, welche Temperaturen des Motorblocks, des Zylinderkopfes und des Kühlwassers erfassen. Eine elektrisch angetriebene Kühlwasserpumpe sowie im Kühlkreislauf vorhandene Ventile werden von einer Steuereinheit so angesteuert, dass keine der von den Sensoren erfassten Temperaturen ein vorgegebenes Maximum überschreitet.
  • Bei dem bekannten Kühlkreislauf hängt der Betrieb der Kühleinrichtung zwar vom Betriebszustand bzw. der Temperatur von Bereichen der Brennkraftmaschine ab. Die Temperaturen werden jedoch an solchen Stellen der Brennkraftmaschine erfasst, welche nur relativ träge auf Änderungen des thermischen Betriebszustandes der Brennkraftmaschine reagieren. Der Grund hierfür ist, dass die eigentlich thermisch hoch belasteten Stellen nicht zugänglich sind. Um dennoch sicherstellen zu können, dass die thermisch am höchsten belasteten Bauteile im Inneren der Brennkraftmaschine, insbesondere im Brennraum der Brennkraftmaschine, eine bestimmte maximal zulässige Temperatur nicht überschreiten, muss bei dem bekannten Kühlkreislauf und dem entsprechenden Verfahren stärker gekühlt werden, als dies an sich erforderlich wäre. Dies reduziert wiederum den Wirkungsgrad der Brennkraftmaschine. Auch wird indirekt der Kraftstoffverbrauch der Brennkraftmaschine erhöht, da die Kühlwasserpumpe mit einer größeren Leistung als an sich notwendig betrieben werden muss.
  • Aus der DE 42 07 403 A1 ist eine Zylinderkopfdichtung für eine Brennkraftmaschine bekannt, in die ein Temperatursensor integriert ist.
  • Die vorliegende Erfindung hat die Aufgabe, ein Verfahren der eingangs genannten Art so weiterzubilden, dass der Wirkungsgrad der Brennkraftmaschine besser ist und weniger Kraftstoff im Betrieb der Brennkraftmaschine verbraucht wird.
  • Diese Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
  • Vorteile der Erfindung
  • Bei dem erfindungsgemäßen Verfahren wird eine Temperatur zur Beeinflussung der Kühleinrichtung verwendet, welche den thermischen Zustand der hochbelasteten Bereiche im Inneren der Brennkraftmaschine sehr gut und spontan wiedergibt. Das entsprechende Sensorsignal spricht also direkt auf Änderungen des Betriebszustands der Brennkraftmaschine an. Ein "Hinterherhinken" der erfassten Temperatur gegenüber der Bauteiltemperatur an der eigentlich relevanten Stelle ist bei dem erfindungsgemäßen Verfahren somit nicht oder wenigstens nicht in relevantem Umfang vorhanden.
  • Dabei wurde festgestellt, dass derartige, für die Beeinflussung der Kühleinrichtung aussagekräftige Temperaturen insbesondere im Bereich der Zylinderkopfdichtung auftreten. Deren Messung ist technisch realisierbar, da die hierzu notwendigen Temperatursensoren beispielsweise im Siebdruckverfahren in die Zylinderkopfdichtung integriert werden können.
  • Da bei dem erfindungsgemäßen Verfahren die relevanten, sich aus dem aktuellen Betriebszustand spontan einstellenden Temperaturen an den thermisch hochbelasteten Stellen bekannt sind, kann die Kühleinrichtung spontan auf die unterschiedlichen Betriebszustände der Brennkraftmaschine reagieren. Die sonst erforderlichen Sicherheitsmargen, mit denen bisher verhindert werden soll, dass die thermisch hochbelasteten Bauteile im Inneren der Brennkraftmaschine überlastet werden, können daher bei dem erfindungsgemäßen Verfahren geringer ausfallen oder komplett entfallen.
  • In vielen Betriebszuständen arbeitet die Brennkraftmaschine daher mit einem höheren Wirkungsgrad. Darüber hinaus wird der Kraftstoffverbrauch der Brennkraftmaschine gesenkt, da die Kühleinrichtung, und hier insbesondere eine Kühlmittelpumpe, in vielen Betriebszuständen der Brennkraftmaschine mit einer geringeren Leistung arbeiten kann.
  • Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
  • In einer ersten Weiterbildung wird vorgeschlagen, dass die Temperatur auf einer der Zylinderkopfdichtung zugewandten Dichtfläche eines Zylinderkopfs an einer Stelle erfasst wird, welche im Hinblick auf die Temperatur mit der Temperatur an einem thermisch hochbelasteten Ort eines Zylinderkopfs korreliert, welcher auf der Brennraumseite des Zylinderkopfs neben dem Auslassventil liegt.
    Der Bereich im Zylinderkopf in der Nähe des Auslassventils ist für das Kühlfluid relativ schlecht zugänglich. Daher ist dieser Bereich bei vielen Typen von Brennkraftmaschinen thermisch mit am höchsten belastet.
  • Es wurde nun festgestellt, dass die Temperatur an einer Stelle, welche auf der der Zylinderkopfdichtung zugewanden Dichtflächefläche des Zylinderkopfes und im Allgemeinen in der Nähe des Auslassventils der Brennkraftmaschine liegt, bei vielen Brennkraftmaschinen gut mit der Temperatur dieses thermisch hoch belasteten Bereiches korreliert. Bei diesem erfindungsgemäßen Verfahren wird also eine für die Beeinflussung der Kühleinrichtung in vielen Fällen besonders relevante Temperatur mit hoher Präzision erfasst.
  • Ferner wird vorgeschlagen, dass die Temperatur des Kühlfluids erfasst wird und der Betrieb der Kühleinrichtung auch von der erfassten Temperatur des Kühlfluids abhängt. Ein für den Betrieb der Brennkraftmaschine besonders relevanter Zustand des Kühlmittels liegt dann vor, wenn im Kühlmittel Siedeblasen auftreten. Ein solches Blasensieden hängt wiederum in erheblichem Umfange von der Temperatur des Kühlfluids ab. Bei dieser Weiterbildung kann die Beeinflussung der Kühleinrichtung daher mit noch größerer Präzision erfolgen. Das Auftreten von Blasensieden wird aber auch von der Temperatur der benetzten Oberfläche beeinflusst. Die Kenntnis von deren Temperatur ist daher für die Vorhersage des Auftretens von Blasensieden ebenfalls hilfreich.
  • Dabei wird besonders bevorzugt, wenn eine Bauteiltemperatur auf einer der Zylinderkopfdichtung zugewandten Dichtfläche eines Zylinders an einem Ort gemessen wird, welcher einem benachbarten Zylinder am nächsten ist, und dass die Temperatur des Kühlfluids in einem Strömungsraum zwischen den beiden benachbarten Zylindern erfasst wird. Zwischen zwei benachbarten Zylinderbuchsen ist das Strömungsvolumen des Kühlfluids relativ gering und gleichzeitig die Bauteiltemperatur am Zylinder vergleichsweise hoch. Blasensieden des Kühlfluids wird daher an dieser Stelle mit großer Wahrscheinlichkeit zuerst auftreten.
  • Dadurch, dass bei dem erfindungsgemäßen Verfahren die Temperaturen an dieser kritischen Stelle bekannt sind, kann das Auftreten von Blasensieden an dieser Stelle mit hoher Präzision vorhergesagt werden. Hierdurch wird die Sicherheit beim Betrieb der Brennkraftmaschine erhöht. Es sei an dieser Stelle darauf hingewiesen, dass die thermisch kritischen Bereiche von Brennkraftmaschine zu Brennkraftmaschine unterschiedlich sein können. Sie werden vorzugsweise für jeden Typ einer Brennkraftmaschine vorab durch Versuche ermittelt.
  • Möglich ist auch, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass die gewünschte Temperatur an dem innerhalb der Brennkraftmaschine gelegenen und nur schwer oder überhaupt nicht zugänglichen Ort des Bauteils in etwa konstant gehalten wird. Hierdurch wird die thermische Wechselbelastung des Bauteils minimiert und die Lebensdauer des Bauteils nochmals verlängert.
  • Eine mögliche Betriebsstrategie besteht auch darin, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass im Betrieb der Brennkraftmaschine im Kühlmittel an keiner Stelle Blasensieden auftritt. Dies ist eine vergleichsweise sichere Betriebsstrategie, da bei starkem Blasensieden der Wärmeübergang von den Bauteilen der Brennkraftmaschine zum Kühlfluid deutlich abfällt, was zu einer verminderten Kühlleistung der Kühleinrichtung führt. Hierdurch besteht die Gefahr einer Überhitzung der Brennkraftmaschine mit entsprechenden nachteiligen Auswirkungen auf die Lebensdauer der Brennkraftmaschine.
  • Möglich ist aber auch, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass im Betrieb der Brennkraftmaschine im Kühlmittel wenigstens bereichsweise leichtes Blasensieden auftritt, derart, dass der Wärmeübergangskoeffizient oder die Wärmestromdichte in dem entsprechenden Bereich in etwa maximal ist. Bei dieser Weiterbildung wird der physikalische Effekt ausgenutzt, dass bei leichtem Blasensieden der Wärmeübergangskoeffizient größer ist als in einem Betriebszustand, in dem kein Blasensieden auftritt. Bei leichtem Blasensieden wird die Wärme also am besten vom entsprechenden Bauteil in das Kühlfluid abgeleitet. Allerdings muss darauf geachtet werden, dass ausgeschlossen ist, dass das Blasensieden zu stark wird und hierdurch der Wärmeübergang vom Bauteil in das Kühlfluid zusammenbricht.
  • Dabei wird besonders bevorzugt, wenn der Volumenstrom und die Temperatur des Kühlfluids so beeinflusst werden, dass die gewünschte Bauteiltemperatur mit der geringstmöglichen Förderleistung der Kühleinrichtung erzielt wird. Ein solches Regelprinzip ist einfach zu realisieren und führt aufgrund der geringstmöglichen Förderleistung der Kühleinrichtung zu einer signifikanten Kraftstoffeinsparung.
  • Vorgeschlagen wird auch, dass aus der ermittelten Bauteiltemperatur und der erfassten Temperatur des Kühlfluids und/oder aus einer Strömungsgeschwindigkeit des Kühlfluids und/oder aus einem Druck des Kühlfluids und/oder aus einer Last der Brennkraftmaschine jene Temperatur des Kühlfluids ermittelt wird, bei der leichtes Blasensieden im Kühlfluid auftritt. Hierdurch kann die Temperaturgrenze, welche, je nach Betriebsstrategie, unter keinen Umständen erreicht werden darf oder welche gerade erreicht werden soll, an die sich dynamisch verändernden Betriebszustände der Brennkraftmaschine angepasst werden. Dies ermöglicht es, in unterschiedlichen Betriebzuständen der Brennkraftmaschine die Leistungsmöglichkeiten der Kühleinrichtung optimal auszunutzen.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass der Betrieb der Kühleinrichtung so beeinflusst wird, dass ein Schmiermittel, mit dem bewegliche Teile und/oder Lager der Brennkraftmaschine geschmiert werden, im Betrieb der Brennkraftmaschine in etwa eine gewünschte Temperatur aufweist. Das Schmiermittel hat bei der gewünschten Temperatur vorzugsweise optimale Schmierungseigenschaften, was zu einem günstigen Verschleißverhalten, längerer Lebensdauer der beweglichen Teile und der Lager und zu einem geringeren Kraftstoffverbrauch führt.
  • Besonders vorteilhaft ist auch jene Weiterbildung des erfindungsgemäßen Verfahrens, bei welcher dann, wenn die maximale Leistung der Kühleinrichtung erreicht und eine bestimmte Temperatur im Kühlmittel und/oder an einem Bauteil und/oder in dem Schmiermittel erreicht oder überschritten wird, die Leistung der Brennkraftmaschine derart begrenzt wird, dass das Kühlmittel und/oder das Bauteil und/oder das Schmiermittel die bestimmte Temperatur nicht überschreitet oder mindestens auf die bestimmte Temperatur abkühlt. Eine solche situationsabhängige Begrenzung der Leistung der Brennkraftmaschine erhöht die Betriebssicherheit und verlängert die Lebensdauer der Brennkraftmaschine, da verhindert wird, dass es in extremen Betriebssituationen und/oder bei einem Defekt in der Kühleinrichtung in der Brennkraftmaschine zu örtlichen und schädlichen Überhitzungen kommt.
  • Die Erfindung betrifft auch ein Computerprogramm nach Anspruch 12.
  • Ferner betrifft die Erfindung ein Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine nach Anspruch 13.
  • Schließlich betrifft die Erfindung noch eine Brennkraftmaschine nach Anspruch 14.
  • Zeichnung
  • Nachfolgend werden besonders bevorzugte Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:
  • Fig. 1:
    eine Prinzipdarstellung einer Brennkraftmaschine mit einem Motorblock, einem Zylinderkopf und einer Kühleinrichtung;
    Fig. 2:
    eine perspektivische Draufsicht auf einen Bereich des Zylinderkopfs der Brennkraftmaschine von Fig. 1 ;
    Fig. 3:
    eine perspektivische Draufsicht auf einen Bereich des Motorblocks der Brennkraftmaschine von Fig. 1;
    Fig. 4:
    ein Detail der Darstellung von Fig. 3;
    Fig. 5:
    ein Diagramm, in dem die in der Nähe eines Auslassventils des Zylinderkopfes auftretende Temperatur und eine hierzu korrelierende Temperatur an einer Zylinderkopfdichtung über der Zeit aufgetragen sind;
    Fig. 6:
    drei Diagramme, in denen die Last der Brennkraftmaschine, die Geschwindigkeit eines Fahrzeugs, in welches die Brennkraftmaschine eingebaut ist, und die bei Anwendung einer ersten Regelstrategie der Kühleinrichtung in der Nähe des Auslassventils des Zylinderkopfes des Zylinderkopfes auftretende Temperatur über der Zeit dargestellt sind;
    Fig. 7:
    vier Diagramme, in denen die Last der Brennkraftmaschine, die Geschwindigkeit des Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, die Temperatur an einem Ort des Zylinderblocks und die Temperatur des Kühlfluids bei einer zweiten Regelstrategie der Kühleinrichtung über der Zeit aufgetragen sind;
    Fig. 8:
    vier Diagramme ähnlich zu Fig. 7 bei einer dritten Regelstrategie der Kühleinrichtung;
    Fig. 9:
    drei Diagramme, in denen die Last der Brennkraftmaschine, die Geschwindigkeit des Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, und die Temperatur eines Schmiermittels, welche bei einer vierten Regelstrategie der Kühleinrichtung auftritt, jeweils über der Zeit aufgetragen sind; und
    Figur 10:
    vier Diagramme, in denen die Last der Brennkraftmaschine, die Geschwindigkeit des Kraftfahrzeugs, in welches die Brennkraftmaschine eingebaut ist, die Temperatur in der Nähe eines Auslassventils des Zylinderkopfs, und der Volumenstrom des Kühlwassers über der Zeit aufgetragen sind, welche bei einer eines Schmiermittels, welche in einer bestimmten Betriebssituation der Brennkraftmaschine auftreten.
    Beschreibung der Ausführungsbeispiele
  • Eine Brennkraftmaschine trägt in Fig. 1 insgesamt das Bezugszeichen 10. Sie umfasst einen Motorblock 12, mit dem ein Zylinderkopf 14 verbunden ist. Zwischen Motorblock und Zylinderkopf 14 ist eine Zylinderkopfdichtung 16 angeordnet. Die Brennkraftmaschine 10 ist in ein in der Zeichnung nicht dargestelltes Kraftfahrzeug eingebaut und dient zu dessen Antrieb.
  • Der Motorblock 12 wird ebenso wie der Zylinderkopf 14 von einer Kühleinrichtung 18 gekühlt. Diese umfasst eine elektrisch angetriebene Kühlwasserpumpe 20, welche auslassseitig mit dem Motorblock 12 und indirekt mit dem Zylinderkopf 14 verbunden ist (indirekt insoweit, als das Kühlwasser durch entsprechende Kanäle (nicht dargestellt) und Öffnungen in der Zylinderkopfdichtung 16 vom Motorblock 12 in den Zylinderkopf 14 strömt). Vom Zylinderkopf 14 führt eine Kühlwasserleitung 22 zu einem Ventil 24, mit dem der Kühlwasserstrom in eine Leitung 26, die über einen Wärmetauscher 28 zur elektrischen Kühlwasserpumpe 20 führt, und in eine Bypassleitung 30, welche unter Umgehung des Wärmetauschers 28 direkt zur elektrischen Kühlwasserpumpe 20 führt, verzweigt werden kann.
  • Verbrennungsluft wird dem Zylinderkopf 14 über ein Ansaugrohr 32 zugeführt, in dem eine elektrisch verstellbare Drosselklappe 34 angeordnet ist. Die heißen Verbrennungsabgase werden über ein Abgasrohr 36 abgeleitet.
  • Der Betriebszustand der Brennkraftmaschine 10 wird über mehrere Sensoren erfasst : Drei Temperatursensoren 38, 40 und 42 sind in die Zylinderkopfdichtung 16 integriert. Dies kann beispielsweise dadurch geschehen, dass PTC-Widerstände im Siebdruckverfahren auf die Zylinderkopfdichtung 16 aufgedruckt werden. Der Anbringungsort des Temperatursensors 38 ist dabei aus Fig. 2 ersichtlich: In dieser ist der Bereich eines Zylinders 44 im Zylinderkopf 14 dargestellt. Sichtbar sind in Fig. 2 u.a. ein Ventilteller 46 eines Auslassventils und Ventilteller 48a und 48b entsprechender Einlassventile. Dargestellt ist auch eine den Zylinder 44 kreisringförmig umgebende und plan bearbeitete Dichtfläche 50 am Zylinderkopf 14. Ein Ort 51, an dem in Einbaulage der Temperatursensor 38 angeordnet ist, liegt im Bereich der Dichtfläche 50 in der Nähe des Ventiltellers 46 des Auslassventils. Der Temperatursensor 38 ist auf der Zylinderkopfdichtung 16 dem Zylinderkopf 14 zugewandt angeordnet.
  • Die Position der Temperatursensoren 40 und 42 geht aus den Fig. 3 und 4 hervor: Fig. 3 zeigt den Zylinder 44 und benachbarte Zylinder 43 und 45 im Motorblock 12. Erkennbar sind die Kolben (ohne Bezugszeichen) im Inneren der Zylinder 43, 44 und 45 sowie ein die einzelnen Zylinder 43, 44 und 45 umgebender Strömungsraum 52, welcher im Betrieb der Brennkraftmaschine 10 vom Kühlwasseer durchströmt wird.
  • Wie insbesondere aus Fig. 4 ersichtlich ist, ist der eine Temperatursensor 40 im Bereich einer plan bearbeiteten Dichtfläche 54 einer Laufbuchse (ohne Bezugszeichen) des Zylinders 43 angeordnet, und zwar an jener Stelle, welche zu dem daneben liegenden Zylinder 44 unmittelbar benachbart ist, und er ist auf der Zylinderkopfdichtung 16 dem Motorblock 14 zugewandt angeordnet. Der Temperatursensor 42 ist am Strömungsraum 52 zwischen den beiden Zylindern 43 und 44 unmittelbar neben dem Temperatursensor 40 angeordnet. Da mit dem Temperatursensor 42 die Temperatur des Kühlwassers gemessen werden soll, ist an der Stelle des Temperatursensors 42 eine zum Motorblock 12 hinweisende Deckschicht an der Zylinderkopfdichtung 16 nicht vorhanden.
  • Ein weiterer Temperatursensor 56 misst die Temperatur des in einem Ölsumpf 58 vorhandenen Schmieröls (vgl. Figur 1). Ein Drehzahlsensor 60 erfasst die Drehzahl einer Kurbelwelle 62 der Brennkraftmaschine 10. Ein Heißfilm-Luftmassenmesser (nachfolgend abgekürzt "HFM-Sensor" genannt) trägt das Bezugszeichen 64, ist stromaufwärts von der Drosselklappe 34 im Ansaugrohr 32 angeordnet und erfasst die Luftmasse, welche in die Brennräume der Brennkraftmaschine 10 gelangt. Diese ist wiederum repräsentativ für die Last der Brennkraftmaschine 10.
  • Alle Sensoren 38, 40, 42, 56, 60 und 64 liefern entsprechende Signale an ein Steuer- und Regelgerät 66. Dieses steuert wiederum u.a. die Drosselklappe 34 im Ansaugrohr 32 und die elektrische Kühlwasserpumpe 20 an. Auch das Ventil 24 wird vom Steuer- und Regelgerät 66 angesteuert.
  • Wie aus Fig. 5 ersichtlich ist, ist die Position des Temperatursensors 38 so gewählt, dass die im Betrieb der Brennkraftmaschine 10 vom Temperatursensor 38 gemessene Temperatur tm1 mit der Temperatur tk korreliert, welche im Betrieb an einer unmittelbar neben dem Ventilteller 46 des Auslassventils gelegenen Stelle in der brennraumseitigen Wand des Zylinderkopfes 14 auftritt. Diese Stelle ist in Fig. 2 durch ein Kreuz mit dem Bezugszeichen 68 gekennzeichnet. Bei Vorversuchen wurde festgestellt, dass an der mit dem Kreuz 68 bezeichneten Stelle im Zylinderkopf 14 der hier dargestellten Brennkraftmaschine 10 im Betrieb der Brennkraftmaschine 10 die höchsten Temperaturen auftreten. Diese Stelle wird somit thermisch besonders stark belastet. Die Korrelation der Messwerte tm1 mit der Temperatur tk wurde für die vorliegende Brennkraftmaschine ebenfalls in Vorversuchen ermittelt.
  • Eine erste, vergleichsweise einfache Regelstrategie der Kühleinrichtung 18 ist aus Fig. 6 ersichtlich: In deren oberstem Diagramm ist die vom HFM-Sensor 64 erfasste Luftfüllung rl bei einem typischen sich über einen Zeitraum t erstreckenden Betriebszyklus der Brennkraftmaschine 10 dargestellt. Die Luftfüllung rl entspricht bei der hier dargestellten Brennkraftmaschine der aktuellen Motorlast. Bei anderen Brennkraftmaschinen (beispielsweise mit Kraftstoff-Direkteinspritzung) kann in bestimmten Betriebszuständen beispielsweise auch die eingespritzte Kraftstoffmenge als Kriterium für die aktuelle Motorlast verwendet werden.
  • Ein zweites Diagramm in Fig. 6 zeigt die Geschwindigkeit V des Kraftfahrzeugs, in welches die Brennkraftmaschine 10 eingebaut ist. Da der Wärmetauscher 28 in der Kühleinrichtung 18 in wesentlichem Umfang vom Fahrtwind des Kraftfahrzeugs beaufschlagt wird, hat die Geschwindigkeit V des Kraftfahrzeugs einen direkten Einfluss auf die Wirkung des wärmetauschers 28 und somit auf den Betrieb der Kühleinrichtung 18.
  • Bei der in Fig. 6 dargestellten Regelstrategie der Kühleinrichtung 18 werden auf der Basis der vom Temperatursensor 38 gelieferten Messwerte tm1 einerseits die elektrische Kühlwasserpumpe 20 und andererseits das Ventil 24 so angesteuert, dass die Temperatur tk an der thermisch am höchsten belasteten Stelle 68 im Zylinderkopf 14 der Brennkraftmaschine 10 im Wesentlichen konstant ist und in etwa jener Temperatur tkmax entspricht, welche im Dauerbetrieb für das Material zulässig ist, aus welchem der Zylinderkopf 14 hergestellt ist. Hierzu wird das Signal des Temperatursensors 38 dem Steuer- und Regelgerät 66 zugeführt, welches das Ventil 24 so ansteuert, dass eine gewünschte Temperatur des Kühlmittels erreicht wird, und welches die elektrische Kühlwasserpumpe 20 so ansteuert, dass ein gewünschter Kühlwasser-Volumenstrom vorliegt. Die Temperatur des Kühlwassers kann dabei über das Signal des Temperatursensors 42 überwacht werden.
  • Eine zweite mögliche Regelstrategie der Kühleinrichtung 18 wird nun unter Bezugnahme auf Fig. 7 erläutert: In dieser ist zunächst der gleiche Betriebszyklus wie in Fig. 6 aufgetragen, d.h. der gleiche Verlauf der Luftfüllung rl und der Fahrzeuggeschwindigkeit V. Die Regelung der Kühleinrichtung 18 erfolgt jedoch nicht mehr im Hinblick auf die maximal zulässige Bauteiltemperatur, sondern im Hinblick darauf, mit Sicherheit den Zustand des "Blasensiedens" im Kühlwasser der Kühleinrichtung 18 zu vermeiden.
  • Ein derartiges Blasensieden, also die Bildung von Dampfblasen innerhalb des Kühlwassers, kann in jenen Bereichen des Strömungsraumes 52 auftreten, in denen z.B. bei im Warmlauf der Brennkraftmaschine 10 abgeschalteter Kühlwasserpumpe 20, aber auch im normalen Betrieb der Brennkraftmaschine 10 die höchsten Kühlwassertemperaturen auftreten. Ein wichtiger Einflussfaktor für die Möglichkeit des Auftretens von Blasensieden ist aber auch die Temperatur tw einer Wand, welche jenen Bereich begrenzt, in dem die hohen Kühlwassertemperaturen auftreten. Die entsprechenden Stellen innerhalb einer Brennkraftmaschine können beispielsweise durch Vorversuche erfasst werden. Sie sind von einem Brennkraftmaschinentyp zum anderen unterschiedlich.
  • Bei der vorliegenden Brennkraftmaschine 10 ist ein für die Bildung von Dampfblasen kritischer Bereich im Strömungsraum 52 zwischen zwei Zylindern 43 und 44 bzw. 44 und 45 vorhanden. Dort erfolgt durch die relativ große äußere Umfangsfläche der Zylinder 43, 44 bzw. 44, 45 ein starker Wärmeeintrag in das Kühlwasser, bei gleichzeitig relativ geringer Strömungsgeschwindigkeit im Spalt zwischen zwei Zylindern 43, 44 bzw. 44, 45. Im Hinblick auf die Bildung von Dampfblasen in diesem Bereich wesentliche Betriebsparameter sind einerseits die Temperatur tf des Kühlwassers im Spalt zwischen den beiden Zylindern 43 und 44 und die Wandtemperatur tw beispielsweise des Zylinders 43. Wie bereits im Zusammenhang mit Fig. 4 erläutert wurde, sind zur Erfassung dieser beiden Temperaturen tw und tf die beiden Temperatursensoren 40 und 42 an den entsprechenden Stellen angeordnet. Die vom Sensor 40 erfasste Temperatur tm2 liegt im Normalbetrieb der Brennkraftmaschine 10 ganz leicht oberhalb der tatsächlichen Wandtemperatur tw, die vom Sensor 42 erfasste Temperatur entspricht im wesentlichen der tatsächlichen Kühlwassertemperatur tf.
  • Wie aus Fig. 7 ersichtlich ist, erfolgt die Regelung der Kühleinrichtung 18, also letztlich der elektrischen Kühlwasserpumpe 20 und des Ventils 24, durch das Steuer- und Regelgerät 66 so, dass unabhängig von der an der Brennkraftmaschine anstehenden Last (Luftfüllung rl) und der Fahrzeuggeschwindigkeit V einerseits die Wandtemperatur tw und die Kühlwassertemperatur tf immer unterhalb entsprechender Grenzen gtw bzw. gtf sind, bei denen mit dem Vorliegen von Blasensieden zu rechnen ist.
  • Wie aus Fig. 7 ebenfalls hervorgeht, sind die Grenztemperaturen gtw und gtf dabei nicht konstant. Sie werden stattdessen kontinuierlich abhängig von verschiedenen und sich im Betrieb der Brennkraftmaschine 10 ändernden Einflussgrößen aktuell ermittelt. Eine Einflussgröße ist beispielsweise der Systemdruck in der Kühleinrichtung 18, die Drehzahl der Kurbelwelle 62, welche vom Drehzahlsensor 60 erfasst wird, die aktuelle Last rl usw.. Die entsprechende Wandtemperatur tw und die entsprechende Temperatur tf des Kühlwassers wird durch eine entsprechende Ansteuerung der elektrischen Kühlwasserpumpe 20 bzw. des Ventils 24 eingestellt. Eine weitere Einflussgröße für die maximal zulässige Kühlwassertemperatur ist der aktuelle Volumenstrom des Kühlwassers innerhalb der Kühleinrichtung 18. Auch dieser Volumenstrom kann daher zur Bestimmung der Grenztemperatur gtf herangezogen werden.
  • In Fig. 8 ist eine nochmals andere, dritte Betriebsstrategie für den Betrieb der Kühleinrichtung 18 dargestellt. Auch hier ist der zeitliche Verlauf der Motorlast rl und der Fahrzeuggeschwindigkeit V identisch zu den in den Fig. 6 und 7 dargestellten Betriebsstrategien. Im Gegensatz zu der in Fig. 7 dargestellten Betriebsstrategie wird bei jener, welche in Fig. 8 dargestellt ist, Blasensieden jedoch ausdrücklich zugelassen. Dieser Betriebsstrategie liegt der Gedanke zugrunde, dass der Wärmeübergangskoeffizient von den Wänden der Zylinder 43, 44 und 45 zum Kühlwasser im Strömungsraum 52 dann maximal ist, wenn an den besagten Wänden in geringem Umfange Dampfblasen gebildet werden. Dieser Zustand wird auch als "leichtes Blasensieden" bezeichnet. Steigt die Wandtemperatur tw der Zylinder 43, 44 und 45 jedoch über jene Temperatur, bei der leichtes Blasensieden auftritt, an, werden die Dampfblasen größer und der Wärmeübergangskoeffizient fällt wegen der instabilen Filmbildung wieder stark ab.
  • Dadurch, dass die Kühlwassertemperatur tf mit Hilfe des Temperatursensors 42 sehr nahe an der Wand des Zylinders 43 erfasst wird und mit der Temperatur tw an der Außenseite der Wand des Zylinders 43 verglichen werden kann, welche sehr gut der vom Temperatursensor 40 erfassten Temperatur tm2 entspricht, kann eine Regelstrategie realisiert werden, welche auf eine Optimierung des Wärmeübergangskoeffizienten zwischen der Wand des Zylinders 43 und dem Kühlwasser hinausläuft. Wie aus Fig. 8 ersichtlich ist, liegen bei einer solchen Regelstrategie die entsprechenden Temperaturen tw und tf somit ständig knapp oberhalb der Grenztemperaturen gtw und gtf. Eine deratige Regelung der Kühleinrichtung 18, welche zu einem maximalen Wärmeübergangskoeffizienten führt, ermöglicht es, die Kühlwassertemperatur tf und den Volumenstrom des Kühlwassers im Motorblock 12 bzw. im Zylinderkopf 14 so einzustellen, dass eine gewünschte Temperatur im Zylinderkopf 14 mit der kleinstmöglichen Leistung der Kühlwasserpumpe 20 erreicht wird.
  • Aus den Diagrammen der Fig. 9 ist eine nochmals andere Betriebsstrategie für die Kühleinrichtung 18 ersichtlich. Auch hier entsprechen wieder die Verläufe der Motorlast rl und der Fahrzeuggeschwindigkeit V über der Zeit den in den vorhergehenden Fig. 6 bis 8 dargestellten Verläufen. Bei der in Fig. 9 dargestellten Regelstrategie wird jedoch die Temperatur des Öls, welche vom Temperatursensor 56 erfasst wird, in einem optimalen Bereich gehalten. Dies geschieht durch eine entsprechende Einstellung der Temperatur des Zylinderkopfs 14 bzw. der Teile im Motorblock 12. Dadurch, dass das Öl immer die richtige Temperatur hat, können Reibungsverluste und der Verschleiß der beweglichen Teile der Brennkraftmaschine 10 minimiert werden. Auch die Alterung des Schmieröls kann verringert werden.
  • Ein guter Rückschluss auf die Temperaturen an den vom Schmieröl beaufschlagten Stellen, wie beispielsweise zwischen den Zylindern 43, 44 und 45 und den Kolben (ohne Bezugszeichen), kann durch eine Kombination aus der vom Sensor 38 erfassten Temperatur tm2 am Zylinderkopf 14 und der vom Temperatursensor 42 erfassten Temperatur tf des Kühlwassers mit der gerade von der Brennkraftmaschine 10 abgegebenen thermischen Leistung gezogen werden. Diese thermische Leistung kann beispielsweise durch die Motordrehzahl (Drehzahlsensor 60), die Motorlast (HFM-Sensor 64) und die Öltemperatur to (Öltemperätursensor 56) charakterisiert werden. Die entsprechenden Signale werden ebenfalls dem Steuer- und Regelgerät 66 zugeführt, welches durch die Beeinflussung der Kühlwassertemperatur, des Kühlwasser-Volumenstroms und eventuell der von der Brennkraftmaschine 10 emittierten thermischen Verlustleistung die Öltemperatur an den kritischen Schmierstellen stets in einem optimalen Temperaturbereich hält.
  • Aus Fig. 10 ist ein Verfahren ersichtlich, welches angewendet wird, um ein Überschreiten einer maximal zulässigen Bauteiltemperatur tkmax zu vermeiden: Ein solcher Zustand ist beispielsweise dann zu befürchten, wenn bei geringer Fahrzeuggeschwindigkeit V eine hohe Motorlast rl gefordert wird. Die mangelhafte Kühlung durch den Fahrtwind des Kraftfahrzeugs wird durch eine entprechende Erhöhung des Kühlwasserstroms dm/dt zu kompensieren versucht. Eine Erhöhung des Kühlwasserstroms dm/dt erfolgt durch eine Erhöhung der Drehzahl der elektrischen Kühlwasserpumpe 20. Ist jedoch deren maximale Drehzahl erreicht bzw. der maximal mögliche Kühlwasserstrom dmmax/dt erreicht, würde, ohne Gegenmaßnahmen, die Bauteiltemperatur tk auf einen Wert oberhalb tkmax ansteigen und gegebenenfalls zu einer Beschädigung des Zylinderkopfs 14 führen. Um dem zu begegnen, wird die von der Brennkraftmaschine 10 in die Kühleinrichtung 18 eingebrachte thermische Energie durch eine zwangsweise Reduzierung der Motorlast rl, also durch eine Begrenzung der Leistung der Brennkraftmaschine 10, reduziert bzw. begrenzt. Ein derartiges Abriegeln der Brennkraftmaschine 10 erfolgt in Fig. 10 zum Zeitpunkt t1.

Claims (14)

  1. Verfahren zum Betreiben einer Brennkraftmaschine (10), bei dem aus einem Bereich (12, 14) der Brennkraftmaschine (10) von einer Kühleinrichtung (18) mittels eines Kühlfluids thermische Energie abgeführt wird, bei dem die Temperatur an einem Ort einer Zylinderkopfdichtung (16) erfasst wird, und bei dem der Betrieb der Kühleinrichtung (18) von der erfassten Temperatur abhängt, dadurch gekennzeichnet, dass
    a) eine Korrelation zwischen der Temperatur (tm1 ; tm2) an dem Ort der Zylinderkopfdichtung (16) der Brennkraftmaschine (10) mit einer Temperatur (tk; tw)) an einem solchen Ort (68) eines Bauteils (14) der Brennkraftmaschine (10), welcher thermisch hochbelastet, innerhalb der Brennkraftmaschine (10) gelegen und nur schwer oder überhaupt nicht zugänglich ist, bestimmt,
    b) und aus der erfassten Temperatur (tm1; tm2) mittels der bestimmten Korrelation die Temperatur (tk; tw) an dem schwer oder überhaupt nicht zugänglichen Ort (68) ermittelt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur auf einer der Zylinderkopfdichtung (16) zugewandten Dichtfläche (50) eines Zylinderkopfs (14) an einer Stelle (51) erfasst wird, welche im Hinblick auf die Temperatur mit der Temperatur an einem thermisch hochbelasteten Ort (68) eines Zylinderkopfs (14) korreliert, welcher auf der Brennraumseite des Zylinderkopfs (14) neben dem Auslassventil (46) liegt.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Temperatur (tf) des Kühlfluids erfasst wird und der Betrieb der Kühleinrichtung (18) auch von der erfassten Temperatur (tf) des Kühlfluids abhängt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass eine Bauteiltemperatur (tm2) auf einer der Zylinderkopfdichtung (16) zugewandten Dichtfläche (54) eines Zylinders (43) an einem Ort erfasst wird, welcher einem benachbarten Zylinder (44) am nächsten ist, und dass die Temperatur (tf) des Kühlfluids in einem Strömungsraum (52) zwischen den beiden benachbarten Zylindern (43, 44) erfasst wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass die gewünschte Temperatur (tk) an dem innerhalb der Brennkraftmaschine (10) gelegenen und nur schwer oder überhaupt nicht zugänglichen Ort (68) des Bauteils (14) in etwa konstant gehalten wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass im Normalbetrieb der Brennkraftmaschine (10) im Kühlmittel an keiner Stelle Blasensieden auftritt.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass im Normalbetrieb der Brennkraftmaschine (10) im Kühlmittel wenigstens bereichsweise leichtes Blasensieden auftritt, derart, dass der Wärmeübergangskoeffizient oder die Wärmestromdichte in den entsprechenden Bereichen in etwa maximal ist.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Volumenstrom (dm/dt) und die Temperatur (tf) des Kühlfluids so beeinflusst werden, dass die gewünschte Bauteiltemperatur (tk) mit der geringstmöglichen Förderleistung der Kühleinrichtung (18) erzielt wird.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass aus der ermittelten Bauteiltemperatur (tk) und der erfassten Temperatur (tf) des Kühlfluids und/oder aus einer Strömungsgeschwindigkeit (dm/dt) des Kühlfluids und/oder aus einem Druck des Kühlfluids und/oder aus einer Last (rl) der Brennkraftmaschine (10) jene Temperatur (gtf) des Kühlfluids ermittelt wird, bei der leichtes Blasensieden im Kühlfluid auftritt.
  10. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Betrieb der Kühleinrichtung (18) so beeinflusst wird, dass ein Schmiermittel, mit dem bewegliche Teile und/oder Lager der Brennkraftmaschine (10) geschmiert werden, im Normalbetrieb der Brennkraftmaschine (10) in etwa eine gewünschte Temperatur (to) aufweist.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass dann, wenn die maximale Leistung (dmmax/dt) der Kühleinrichtung (18) erreicht und eine bestimmte Temperatur im Kühlmittel und/oder eine bestimmte Temperatur (tkmax) an einem Bauteil (14) und/oder in dem Schmiermittel erreicht oder überschritten wird, die Leistung (rl) der Brennkraftmaschine derart (10) begrenzt wird, dass das Kühlmittel und/oder das Bauteil (14) und/oder das Schmiermittel die bestimmte Temperatur (tkmax) nicht überschreitet oder mindestens auf die bestimmte Temperatur abkühlt.
  12. Computerprogramm, dadurch gekennzeichnet, dass es zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche programmiert ist.
  13. Steuer- und/oder Regelgerät (66) zum Betreiben einer Brennkraftmaschine, dadurch gekennzeichnet, dass es zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 11 programmiert ist.
  14. Brennkraftmaschine (10), dadurch gekennzeichnet, dass sie ein Steuer- und/oder Regelgerät (66) nach Anspruch 13 umfasst.
EP02779109A 2001-10-22 2002-09-19 Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine Expired - Lifetime EP1440228B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10153486 2001-10-22
DE2001153486 DE10153486A1 (de) 2001-10-22 2001-10-22 Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
PCT/DE2002/003517 WO2003038251A1 (de) 2001-10-22 2002-09-19 Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1440228A1 EP1440228A1 (de) 2004-07-28
EP1440228B1 true EP1440228B1 (de) 2007-07-18

Family

ID=7704184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02779109A Expired - Lifetime EP1440228B1 (de) 2001-10-22 2002-09-19 Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine

Country Status (4)

Country Link
EP (1) EP1440228B1 (de)
JP (1) JP4351054B2 (de)
DE (2) DE10153486A1 (de)
WO (1) WO2003038251A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8489949B2 (en) 2003-08-05 2013-07-16 Qualcomm Incorporated Combining grant, acknowledgement, and rate control commands
JP4748078B2 (ja) * 2007-02-16 2011-08-17 株式会社豊田中央研究所 内燃機関
EP2177733A1 (de) * 2008-10-16 2010-04-21 Perkins Engines Company Limited Gesteuerter Nucleat-Siedepunktsensor
FR2954405B1 (fr) * 2009-12-22 2012-01-13 Renault Sa Dispositif de refroidissement pour vehicule automobile
US9121332B2 (en) 2011-03-03 2015-09-01 Toyota Jidosha Kabushiki Kaisha Warmup acceleration device for internal combustion engine
US9115635B2 (en) 2013-03-22 2015-08-25 Ford Global Technologies, Llc Inferred engine local temperature estimator
FR3004757B1 (fr) * 2013-04-19 2017-03-17 Renault Sa "moteur comportant une culasse munie d'un capteur de temperature"

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124017A (ja) * 1982-01-19 1983-07-23 Nippon Denso Co Ltd エンジンの冷却系制御装置
US4768484A (en) * 1987-07-13 1988-09-06 General Motors Corporation Actively pressurized engine cooling system
DE4014502C2 (de) * 1990-05-07 1998-09-03 Bayerische Motoren Werke Ag Verfahren zum Einbau eines Sensors in eine formgepreßte Dichtung
DE4015109A1 (de) * 1990-05-11 1991-11-14 Lechler Elring Dichtungswerke Zylinderkopfdichtung
DE4033261C2 (de) * 1990-10-19 1995-06-08 Freudenberg Carl Fa Temperaturgesteuerter Kühlkreis einer Verbrennungskraftmaschine
DE4109498B4 (de) * 1991-03-22 2006-09-14 Robert Bosch Gmbh Vorrichtung und Verfahren zur Regelung der Temperatur einer Brennkraftmaschine
DE4113294C1 (de) * 1991-04-24 1992-06-17 Fa. Carl Freudenberg, 6940 Weinheim, De
DE4207403A1 (de) * 1992-03-09 1993-09-30 Goetze Ag Zylinderkopfdichtung für Verbrennungskraftmaschinen
DE4431043C2 (de) * 1994-09-01 2000-08-03 Johann Himmelsbach Verfahren zur Kühlung von Antriebsmaschinen mit flüssigem Kühlmittel
DE19508104C2 (de) * 1995-03-08 2000-05-25 Volkswagen Ag Verfahren zur Regelung eines Kühlkreislaufes eines Verbrennungskraftmotors
IT1285944B1 (it) * 1996-06-12 1998-06-26 Magneti Marelli Spa Motore a combustione interna
IT1293667B1 (it) * 1997-08-01 1999-03-08 Fiat Ricerche Sistema di raffreddamento per un motore di autoveicolo.
DE19835581A1 (de) * 1998-08-06 2000-02-17 Daimler Chrysler Ag Brennkraftmaschine mit einem Kurbelgehäuse
FR2796987B1 (fr) * 1999-07-30 2002-09-20 Valeo Thermique Moteur Sa Dispositif de regulation du refroidissement d'un moteur thermique de vehicule automobile
DE19938614A1 (de) 1999-08-14 2001-02-22 Bosch Gmbh Robert Kühlkreislauf für einen Verbrennungsmotor

Also Published As

Publication number Publication date
DE50210521D1 (de) 2007-08-30
JP2005507047A (ja) 2005-03-10
WO2003038251A1 (de) 2003-05-08
DE10153486A1 (de) 2003-05-08
EP1440228A1 (de) 2004-07-28
JP4351054B2 (ja) 2009-10-28

Similar Documents

Publication Publication Date Title
EP2751397B1 (de) Verfahren und vorrichtung zur leckagedetektion eines fahrzeug-schmiersystems
DE102016113394B3 (de) Wärmemanagementsystem und -verfahren einer variablen Zylinderkühlung eines Verbrennungsmotors
EP0640753B1 (de) Kühlanlage für eine Brennkraftmaschine
DE60005872T2 (de) Brennkraftmaschine mit getrennten Kühlkreisläufen für den Zylinderkopf und den Motorblock
DE112016003821B4 (de) Kühlvorrichtung und steuerungsmethode für einen verbrennungsmotor
DE102010027816B4 (de) Brennkraftmaschine mit Ölkreislauf und Verfahren zur Erwärmung des Motoröls einer derartigen Brennkraftmaschine
DE112015005126B4 (de) Kühlungsregelungsvorrichtung für einen Verbrennungsmotor und Kühlungsregelungsverfahren dafür
DE102013214838B4 (de) Brennkraftmaschine mit flüssigkeitsgekühltem Zylinderkopf und flüssigkeitsgekühltem Zylinderblock und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE19728351A1 (de) Verfahren zur Wärmeregulierung einer Brennkraftmaschine
DE3139621A1 (de) Temperatursteuervorrichtung fuer einen verbrennungsmotor
DE10155339A1 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Kraftfahrzeug
DE4041937A1 (de) Kuehlvorrichtung fuer eine brennkraftmaschine
DE102015110834B4 (de) Verfahren und System zum Beschleunigen des Warmlaufens einer Kraftmaschine
DE102005062294A1 (de) Verfahren zur Kühlung einer Brennkraftmaschine
DE102012200746A1 (de) Brennkraftmaschine mit im Kühlmittelkreislauf angeordneter Pumpe und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102012201541B4 (de) Verfahren zur Beeinflussung des Wärmehaushalts einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines solchen Verfahrens
DE112017003025T5 (de) Kühlvorrichtung für einen Verbrennungsmotor eines Fahrzeugs und deren Steuerungsverfahren
DE102017223562B4 (de) Motorkühlungssystem mit einer Kühlmittelsteuerventileinheit
DE102008042660A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Ölkühler und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016222184B4 (de) Flüssigkeitsgekühlte Brennkraftmaschine umfassend einen Zylinderblock und Verfahren zur Herstellung eines zugehörigen Zylinderblocks
EP1440228B1 (de) Verfahren, computerprogramm und steuer- und/oder regelgerät zum betreiben einer brennkraftmaschine, sowie brennkraftmaschine
DE102010017790A1 (de) Verfahren zur Begrenzung der thermischen Belastung einer flüssigkeitsgekühlten Brennkraftmaschine
DE10226928A1 (de) Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
DE102013211156A1 (de) Flüssigkeitsgekühlte Brennkraftmaschine mit Nebenkreislauf
DE19641558A1 (de) Verfahren und Steuerung zur Regelung des Kühlkreislaufes eines Fahrzeuges mittels einer thermisch geregelten Wasserpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17Q First examination report despatched

Effective date: 20061121

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE SK TR

REF Corresponds to:

Ref document number: 50210521

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

26N No opposition filed

Effective date: 20080421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130920

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140920

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160922

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160922

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210521

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401