EP1438133A1 - Phosphinite - Google Patents

Phosphinite

Info

Publication number
EP1438133A1
EP1438133A1 EP02801309A EP02801309A EP1438133A1 EP 1438133 A1 EP1438133 A1 EP 1438133A1 EP 02801309 A EP02801309 A EP 02801309A EP 02801309 A EP02801309 A EP 02801309A EP 1438133 A1 EP1438133 A1 EP 1438133A1
Authority
EP
European Patent Office
Prior art keywords
transition metal
catalyst
pentenenitrile
methyl
phosphinite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02801309A
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael Bartsch
Robert Baumann
Dagmar Pascale Kunsmann-Keitel
Gerd Haderlein
Tim Jungkamp
Marco Altmayer
Wolfgang Siegel
Ferenc Molnar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1438133A1 publication Critical patent/EP1438133A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/46Phosphinous acids [R2POH], [R2P(= O)H]: Thiophosphinous acids including[R2PSH]; [R2P(=S)H]; Aminophosphines [R2PNH2]; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/08Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
    • C07C253/10Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Definitions

  • the present invention relates to new phosphinites, in particular chelate phosphonites, processes for their preparation, their use as ligands in transition metal complexes, new transition metal complexes, processes for their preparation, their use as catalysts and processes in the presence of such transition metal complexes as catalysts.
  • R1, R2, R4 independently of one another are hydrogen, an alkyl or alkylene group having 1 to 8 carbon atoms, or an alkoxy group having 1 to 8 carbon atoms, with the proviso that at least one of the groups R1, R2, R4 is not equal to H,
  • n 0, 1 or 2
  • transition metal complexes as well as processes for their preparation, their use as ligands in transition metal complexes, new transition metal complexes, processes for their preparation, their use as catalysts and processes in the presence of such transition metal complexes as catalysts.
  • the radicals R1, R2, R4 are independently hydrogen, an alkyl or alkylene group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms, with the proviso that at least one of the groups R1, R2, R4 is not equal to H.
  • R1 is hydrogen
  • R2 can be hydrogen and R4 can be an alkyl or alkylene group with 1 to 8 carbon atoms or an alkoxy group with 1 to 8 carbon atoms or R2 can be one
  • R2 and R4 can be hydrogen or R2 independently of Rl can be an alkyl or alkylene group with 1 to 8 carbon atoms or an alkoxy group with 1 to 8 carbon atoms and R4 are hydrogen or R2 is hydrogen and R4, independently of Rl, is an alkyl or alkylene group with 1 to 8 carbon atoms or an alkoxy group with 1 to 8 carbon atoms, or R2 and R4 are, independently of one another and independently of Rl, an alkyl or Alkylene group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms.
  • the alkyl or alkylene group having 1 to 8 carbon atoms is preferably an alkyl group having 1 to 8 carbon atoms, in particular 1 to 4 carbon atoms, advantageously selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, n-Bu- tyl, s-butyl, i-butyl and t-butyl, in particular from the group consisting of methyl, ethyl, n-propyl, i-propyl and t-butyl, into consideration.
  • the alkoxy group having 1 to 8 carbon atoms is preferably an alkoxy group having 1 to 4 carbon atoms, advantageously selected from the group consisting of methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, i-butoxy and t- Butoxy, especially methoxy.
  • R3 represents H or a methyl group.
  • the phenyl groups connected to a phosphorus atom can be unsubstituted or can carry 1 or 2 substituents X independently of one another per phenyl group, so that the values 0, 1 or 2 result for n.
  • the two phenyl groups connected to a phosphorus atom can be substituted in the same way or differently, and in the case of a different substitution the differences relate both to the number of the substituents and to the type of the substituents.
  • formulas 1, 2 and 3 comprise both the same and a different substitution of the phenyl groups connected to a phosphorus atom.
  • X is F, Cl or CF 3 , preferably F or CF 3 .
  • the two radicals XI and X2 can independently represent F, Cl or CF 3 , that is to say F and F, F and Cl, F and CF 3 , Cl and Cl, Cl and CF 3 , CF and CF 3 , preferably F and F, CF 3 and CF 3 .
  • n 1 and X equal to F
  • a substitution in the m position to the phosphorus atom connected to the phenyl ring in a phenyl ring connected to a phosphorus atom can be considered.
  • a substitution in the p-position to the phosphorus atom connected to the phenyl ring in a phenyl ring connected to a phosphorus atom can be considered.
  • n 2 and XI and X2 equal to F
  • a substitution in the two m positions to the phosphorus atom connected to the phenyl ring in a phenyl ring connected to a phosphorus atom can be considered.
  • n 2 and X equal to CF 3
  • a substitution in the two m-positions to the phosphorus atom connected to the phenyl ring is considered phosphorus atom in a phenyl ring connected to a phosphorus atom.
  • Particularly preferred phosphinites are those of the formulas Ia-Ij below with the meanings of the groups R1, R2, R3 and R4 indicated in Table 1.
  • radicals R1, R2, R3 and R4 have the following meanings:
  • phosphinites are those according to ⁇
  • R 1 and R 2 have the following meanings:
  • Phosphinite I can be prepared in accordance with the production process described in US Pat. Nos. 5,523,453 and 5,693,843 for the phosphinite ligands described there, for example by reacting an optionally substituted (Xn-phenyl) (Xn-phenyl) phosphine chloride with one of the groups R1, R2 , R3 and R4 carrying diol.
  • the presentation is efficient and economical from easily accessible starting materials.
  • the diphenylphosphine chlorides used as the starting compound and their preparation are known per se, for example from: H. Schindlbauer, Monthly Bulletin Chemistry, Volume 96, 1965, pages 1936-1942.
  • the process described there for the preparation of 4-fluorophenyldichlorophosphine can be used analogously to the preparation of the (Xn-phenyl) (Xn-phenyl) phosphine chlorides.
  • the optimal parameters for the production of the respective phenyl) (Xn-phenyl) phosphine chlorides can easily be determined by a few simple preliminary tests.
  • the phosphinites I can be used as ligands in transition metal complexes.
  • transition metals here are advantageously the metals of the 1st to 2nd and 6th to 8th subgroups of the periodic table, preferably the 8th subgroup of the periodic table, particularly preferably iron, cobalt and nickel, in particular nickel.
  • nickel it can have different values, such as 0, +1, +2, +3.
  • Nickel (0) and nickel (+2), in particular nickel (0), are preferred.
  • a chemical compound containing a transition metal or preferably a transition metal with a phosphinite I can be used, wherein a single phosphinite I or a mixture of several phosphinites I can be used as phosphinite I.
  • the transition metal can be obtained before the reaction from suitable chemical compounds, for example by reduction with base metals such as zinc, from salts such as chlorides.
  • salts such as chlorides, bromides, acetylacetonates, sulfates, nitrates, for example nickel (2) chloride, or Ni (0) complex compounds, such as bis, are advantageously used for this purpose (1, 5-cyclooctadiene) Ni (0).
  • the valence of the transition metal in the complex can be with suitable oxidizing or reducing agents, for example base metals, such as zinc, or hydrogen in chemically bound form, such as sodium borohydride, or in molecular form Shape, or be changed electrochemically.
  • suitable oxidizing or reducing agents for example base metals, such as zinc, or hydrogen in chemically bound form, such as sodium borohydride, or in molecular form Shape, or be changed electrochemically.
  • reaction of a complex compound of Ni (0) with organic monophosphine, monophosphinite, monophosphonite or monophosphite ligands with a phosphinite I is suitable in accordance with the process described in German application 10136488.1.
  • the molar ratio of transition metal to phosphinite I can be in the range between 1 and 6, preferably 2 to 5, in particular 2, 3 or 4.
  • the transition metal complexes can be free of ligands other than the phosphinites I.
  • the transition metal complexes can contain further ligands, for example nitriles, such as acetonitrile, adiponitrile, 3-pentenenitrile, 4-pentenenitrile, 2-methyl-3-butenonitrile, olefins, such as butadiene, or phosphorus compounds, such as organic monophosphines , Monophosphinites, monophosphonites or monophosphites.
  • nitriles such as acetonitrile, adiponitrile, 3-pentenenitrile, 4-pentenenitrile, 2-methyl-3-butenonitrile, olefins, such as butadiene, or phosphorus compounds, such as organic monophosphines , Monophosphinites, monophosphonites or monophosphites.
  • Such transition metal complexes can in principle be prepared in such a manner as described in the literature, for example in DE-OS-2 237 703, US-A-3, 850, 973, US-A-3, 766, 237 or US-A-3, 903, 120, for the preparation of transition metal complexes which contain tri-o-tolyl-phosphite, tri-m-tolyl-phosphite or tri-p-tolyl-phosphite, by using these phosphites partially or completely replaced the phosphinites I according to the invention.
  • transition metal complexes according to the invention can be used as a catalyst, in particular as a homogeneous catalyst.
  • transition metal complexes according to the invention as a catalyst in the addition of hydrocyanic acid to olefinic double bonds, in particular those which are conjugated to a further olefinic double bond, for example butadiene, to obtain a mixture comprising 2-methyl-3- butenenitrile and 3-pentenenitrile.
  • Equally advantageous is the use as a catalyst in the addition of hydrocyanic acid to olefinic double bonds which are not associated with a further olefinic double bond, for example of 3-pentonitrile or 4-pentenenitrile or mixtures thereof, preferably 3-pentenenitrile, with retention of adiponitrile, or of 3-pentenoate or 4-pentenoate or mixtures thereof, preferably 3-pentenoate, to give 5-cyanovaleric acid ester.
  • transition metal complexes according to the invention as a catalyst in the isomerization of organic nitriles, in particular those in which the nitrile group is not conjugated to an olefinic double bond, for example 2-methyl-3-butenenitrile to give 3-pentenenitrile , proven.
  • advantageous ⁇ way is the use as a catalyst in the isomerization of organic nitriles in which the nitrile group is conjugated to an olefinic double bond.
  • Processes for the addition of hydrocyanic acid to an olefinic double bond or for the isomerization of organic nitriles can in principle be carried out in such a manner as is described, for example, in WO 99/13983 or WO 99/64155, in that the phosphonites described there by the phosphinites I according to the invention partially or completely replaced.
  • 1,3-butadiene-containing hydrocarbon mixtures are available on an industrial scale.
  • a hydrocarbon mixture with a high total olefin content is referred to as a C-cut, with about 40% being 1,3-butadiene and the rest being monoolefins and polyunsaturated hydrocarbons and alkanes.
  • These streams always contain small amounts of generally up to 5% of alkynes, 1,2-dienes and vinyl acetylene.
  • Pure 1,3-butadiene can e.g. B. be isolated by extractive distillation from commercially available hydrocarbon mixtures.
  • Suitable heterogeneous catalyst systems generally comprise a transition metal compound on an inert support.
  • Suitable inorganic carriers are the oxides customary for this, in particular silicon and aluminum oxides, aluminosilicates, zeolites, carbides, nitrides etc. and mixtures thereof. A1 2 0 3 , Si0 and mixtures thereof are preferably used as carriers.
  • the heterogeneous catalysts used are those described in US Pat. Nos. 4,587,369; US-A-4, 704, 492 and US-A-4, 493, 906, which are incorporated herein by reference in their entirety.
  • Suitable copper-based catalyst systems are marketed by Dow Chemical as KLP catalysts.
  • a pretreated, partially hydrogenated C-cut can be continuous, semi-continuous or discontinuous.
  • the hydrogen cyanide is added continuously.
  • Suitable reactors for continuous implementation are that
  • the hydrogen cyanide is added to 1,3-butadiene or a 1,3-butadiene-containing hydrocarbon mixture in a semi-continuous manner.
  • the semi-continuous process includes: a) filling a reactor with the hydrocarbon mixture, if appropriate a part of the hydrogen cyanide and an optionally in situ generated hydrocyanation catalyst according to the invention and optionally a solvent,
  • Suitable pressure-resistant reactors are known to the person skilled in the art and are described, for. B. in Ulimann's Encyclopedia of Industrial Chemistry, Vol. 1, 3rd Edition, 1951, pp. 769 ff.
  • an autoclave is used for the method according to the invention, which can, if desired, be provided with a stirring device and an inner lining. The following should preferably be observed for the above steps:
  • the pressure-resistant reactor is filled with the partially hydrogenated C-cut or butadiene, hydrogen cyanide, a hydrocyanation catalyst and, if appropriate, a solvent.
  • Suitable solvents are the aromatic hydrocarbons, such as toluene and xylene, or tetrahydrofuran mentioned above in the preparation of the catalysts according to the invention.
  • the reaction of the mixture is generally carried out at elevated temperature and pressure.
  • the reaction temperature is generally in a range from about 0 to 200 ° C., preferably about 50 to 150 ° C.
  • the pressure is generally in a range from about 1 to 200 bar, preferably about 1 to 100 bar, in particular 1 to 50 bar, particularly preferably 1 to 20 bar.
  • Hydrogen cyanide is fed in during the reaction in accordance with its consumption, the pressure in the autoclave remaining essentially constant.
  • the reaction time is about 30 minutes to 5 hours.
  • the reaction time can be followed by a post-reaction time of 0 minutes to about 5 hours, preferably about 1 hour to 3.5 hours, during which no more hydrogen cyanide is fed into the autoclave. During this time, the temperature becomes essentially constant on the Leave the previously set reaction temperature.
  • the workup is carried out according to common methods and includes the separation of the unreacted 1, 3-butadiene and the unreacted hydrogen cyanide, for. B. by washing or extracting and the distillative workup of the remaining reaction mixture to separate the valuable products and recover the still active catalyst.
  • the hydrogen cyanide is added to the
  • adiponitrile from a butadiene-containing mixture can be divided into three steps by adding 2 molar equivalents of hydrogen cyanide:
  • Step 1 contained 3-pentenenitriles to various n-pentenenitriles.
  • the highest possible proportion of 3-pentenenitrile or 4-pentenenitrile and the lowest possible proportion of conjugated 2-pentenenitrile and 2-methyl-2-butenenitrile which may act as a catalyst poison should be formed.
  • the catalysts according to the invention based on phosphinite ligands are also suitable for position and double bond isomerization in step 2 and / or the second addition of hydrogen cyanide in step 3.
  • the catalysts used according to the invention not only show a high selectivity with regard to the monoaddition products obtained in the hydrocyanation of 1,3-butadiene-containing hydrocarbon mixtures, but they can also be mixed with an excess of hydrogen cyanide in the hydrocyanation without that there is a noticeable deposition of inactive nickel (II) compounds, such as nickel (II) cyanide.
  • the catalysts containing a phosphonite I are therefore not only suitable for continuous hydrocyanation processes in which an excess of hydrogen cyanide in the reaction mixture can generally be effectively avoided, but also for semi-continuous processes and batch processes, in which there is generally a large excess of hydrogen cyanide.
  • the catalysts used according to the invention and the processes for hydrocyanation based on them generally have higher catalyst recycle rates and longer catalyst service lives than known processes. In addition to improved economy, this is also advantageous from an ecological point of view, since the nickel cyanide formed from the active catalyst with hydrogen cyanide is highly toxic and must be worked up or disposed of at high cost.
  • the systems according to the invention are generally suitable for all customary hydrocyanation processes.
  • the hydrocyanation of unactivated olefins e.g. of styrene and 3-pentenenitrile.
  • hydrocyanic acid to an olefinic double bond in the presence of a catalyst system according to the invention in particular the addition to butadiene, a butadiene or to 3-pentenenitrile, 4-pentenenitrile or mixtures of such pentenenitriles, or the isomerization of organic nitriles in the presence of a catalyst system according to the invention, in particular the isomerization of 2-methyl-3-butenenitrile to 3-pentenenitrile can advantageously be carried out in the presence of one or more Lewis acids as promoters which influence the activity, selectivity or both of the catalyst system according to the invention.
  • Inorganic and organic compounds in which the cation is selected from the group consisting of scandium, titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, boron, aluminum, yttrium, zirconium, niobium, molybdenum are suitable as promoters , Cadmium, rhenium and tin.
  • Examples include ZnBr 2 , Znl 2 , ZnCl 2 , ZnS0 4 , CuCl 2 , CuCl, Cu (0 3 SCF 3 ) 2 , CoCl 2 , CoI 2 , Fel 2 , FeCl 3 , FeCl 2 , FeCl 2 (THF) 2 , TiCl 4 (THF) 2 , TiCl 4 , TiCl 3 , CITi (O-iso-Pr) 3 , MnCl 2 , ScCl 3 , AICI3, (C 8 H 17 ) A1C1 2 , (C 8 H 17 ) 2 A1C1, (iso-C 4 H 9 ) 2 A1C1, Ph 2 AlCl, PhAlCl 2 , ReCl, ZrCl 4 , ZrCl 2 , NbCl 5 , VC1 3 , CrCl 2 , M 0 CI 5 , YC1 3 , CdCl
  • Suitable promoters are further described in the patents US 3,496,217, US 3,496,218 and US 4,774,353. These include metal salts such as ZnCl 2 , CoI 2 and SnCl 2 , and organometallic compounds such as RA1C1 2 , R 3 Sn0 SCF 3 , and R 3 B, where R is an alkyl group or aryl group.
  • US Patent No. 4,874,884 describes how synergistically effective combinations of promoters can be selected to increase the catalytic activity of the catalyst system.
  • Preferred promoters include CdCl 2 , FeCl 2 , ZnCl 2 , B (C 6 H 5 ) 3 and (C 6 H 5 ) 3 SnZ, where Z is CF 3 S0 3 , CH 3 C 6 H 4 S0 3 or (C 6 H 5 ) 3 BCN stands.
  • the molar ratio of promoter to nickel in the catalyst system can be between 1:16 to 50: 1.
  • a further advantageous embodiment of the hydrocyanation can be taken from US 5,693,843, the contents hereby inte grated ⁇ is, with the proviso that, instead of the catalysts mentioned in this patent writing ⁇ an inventive system or a mixture of such systems is used.
  • nickel (0) - (m / p-tolyl phosphite) stands for a mixture containing 2.35% by weight of Ni (0), 19% by weight of 3-pentenenitrile and 78.65% by weight of m / p -Tolyl phosphite with a m: p ratio of 2: 1.
  • Ni (COD) 2 stands for Ni (0) -bis- (1,4-cyclooctadiene), 2M3BN for 2-methyl-3-butenenitrile, t2M2BN for trans-2-methyl-2-butenenitrile, c2M2BN for cis-2- Methyl-2-butenenitrile, t2PN for trans-2-pentene nitrile, 4PN for 4-pentenenitrile, t3PN for trans-3-pentenenitrile, c3PN for cis-3-pentenenitrile, MGN for methylglutaronitrile, 3PN for the sum of t3PN and c3PN , BD for 1, 3-butadiene, HCN for hydrocyanic acid, ADN for adiponitrile and THF for tetrahydrofuran.
  • the HCN conversion to 2M3BN / 3PN was 88.0%.
  • the ratio 2M3BN / 3PN was 3/1.
  • Example 2 (1 mmol Ni (0)) 1 eq. -Nickel ( 0 ) - ( m / p-tolyl phosphite) was stirred with 1.2 eq Ligan d 1 in THF for 12 hours. This solution was 462 eq. D B an d 390 equivalents of HCN in THF, filled at 25 ° C in a glass autoclave and heated to 80 ° C. The temperature profile of the reaction (slightly exothermic reaction) was determined with an internal thermometer and, after 180 minutes, GC chromatography (GC weight percent, internal standard: ethylbenzene) determined the HCN conversion to 2M3BN and 3PN. The following results were obtained:
  • the HCN conversion to 2M3BN / 3PN was 98%.
  • the ratio 2M3BN / 3PN was 2/1.
  • the HCN conversion to 2M3BN / 3PN was 92%.
  • the ratio 2M3BN / 3PN was 2.7 / 1.
  • the HCN conversion to 2M3BN / 3PN was 9.8%.
  • the ratio 2M3BN / 3PN was 1 / 3.4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
EP02801309A 2001-10-12 2002-10-04 Phosphinite Withdrawn EP1438133A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10150286 2001-10-12
DE10150286A DE10150286A1 (de) 2001-10-12 2001-10-12 Phosphinite
PCT/EP2002/011108 WO2003033142A1 (de) 2001-10-12 2002-10-04 Phosphinite

Publications (1)

Publication Number Publication Date
EP1438133A1 true EP1438133A1 (de) 2004-07-21

Family

ID=7702232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02801309A Withdrawn EP1438133A1 (de) 2001-10-12 2002-10-04 Phosphinite

Country Status (12)

Country Link
US (1) US20050090677A1 (ko)
EP (1) EP1438133A1 (ko)
JP (1) JP2005505611A (ko)
KR (1) KR20040048948A (ko)
CN (1) CN1568225A (ko)
AR (1) AR036791A1 (ko)
BR (1) BR0213108A (ko)
CA (1) CA2462720A1 (ko)
DE (1) DE10150286A1 (ko)
MX (1) MXPA04002764A (ko)
MY (1) MY143360A (ko)
WO (1) WO2003033142A1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880028B2 (en) 2006-07-14 2011-02-01 Invista North America S.A R.L. Process for making 3-pentenenitrile by hydrocyanation of butadiene
US7897801B2 (en) 2003-05-12 2011-03-01 Invista North America S.A R.L. Process for the preparation of dinitriles
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US7973174B2 (en) 2005-10-18 2011-07-05 Invista North America S.A.R.L. Process of making 3-aminopentanenitrile
US7977502B2 (en) 2008-01-15 2011-07-12 Invista North America S.A R.L. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
US8088943B2 (en) 2008-01-15 2012-01-03 Invista North America S.A R.L. Hydrocyanation of pentenenitriles
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
US8178711B2 (en) 2006-03-17 2012-05-15 Invista North America S.A R.L. Method for the purification of triorganophosphites by treatment with a basic additive
US8247621B2 (en) 2008-10-14 2012-08-21 Invista North America S.A.R.L. Process for making 2-secondary-alkyl-4,5-di-(normal-alkyl)phenols
US8338636B2 (en) 2009-08-07 2012-12-25 Invista North America S.A R.L. Hydrogenation and esterification to form diesters
US8373001B2 (en) 2003-02-10 2013-02-12 Invista North America S.A R.L. Method of producing dinitrile compounds
US9040733B2 (en) 2010-07-07 2015-05-26 Invista North America S.A.R.L. Process for making nitriles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR038161A1 (es) 2002-01-24 2004-12-29 Basf Ag Procedimiento para separar acidos de mezclas de reaccion quimicas con la ayuda de liquidos ionicos
US7709674B2 (en) * 2006-07-14 2010-05-04 Invista North America S.A R.L Hydrocyanation process with reduced yield losses
WO2009075692A2 (en) 2007-05-14 2009-06-18 Invista Technologies S.A.R.L. High efficiency reactor and process
JP2011515411A (ja) * 2008-03-19 2011-05-19 インビスタ テクノロジーズ エス エイ アール エル シクロドデカトリエンの製造方法およびラウロラクトンの製造方法
EP2614070B1 (en) 2010-09-07 2017-07-26 Invista Technologies S.à r.l. Nickel compositions for preparing nickel metal and nickel complexes

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1112539A (en) * 1965-11-26 1968-05-08 Du Pont Preparation of organic nitriles
US3496217A (en) * 1967-05-23 1970-02-17 Du Pont Hydrocyanation of olefins
US3766237A (en) * 1972-01-25 1973-10-16 Du Pont Hydrocyanation of olefins
US3850973A (en) * 1973-09-26 1974-11-26 Du Pont Hydrocyanation of conjugated diolefins
US4493906A (en) * 1983-03-08 1985-01-15 The Dow Chemical Company Catalyst for the selective hydrogenation of acetylenes
FR2553760B1 (fr) * 1983-10-25 1986-05-02 Inst Francais Du Petrole Procede d'hydrogenation selective en presence de solvant des composes acetyleniques d'une coupe d'hydrocarbures c4 riche en butadiene
US4774353A (en) * 1986-06-05 1988-09-27 E. I. Du Pont De Nemours And Company Triorganotin catalyst promoters for hydrocyanation
US4704492A (en) * 1986-12-24 1987-11-03 Mobil Oil Corporation Selective hydrogenation of acetylenic impurities in crude butadiene
US5175335A (en) * 1991-11-12 1992-12-29 E. I. Du Pont De Nemours And Company Enantioselective hydrocyanation of aromatic vinyl compounds
US5523453A (en) * 1995-03-22 1996-06-04 E. I. Du Pont De Nemours And Company Process for hydrocyanation
US5693843A (en) * 1995-12-22 1997-12-02 E. I. Du Pont De Nemours And Company Process for hydrocyanation of diolefins and isomerization of nonconjugated 2 alkyl-3-monoalkenenitriles
US6171966B1 (en) * 1996-08-15 2001-01-09 Applied Materials, Inc. Delineation pattern for epitaxial depositions
US5710344A (en) * 1996-11-08 1998-01-20 E. I. Du Pont De Nemours And Company Process to prepare a linear aldehyde
MY124170A (en) * 1997-07-29 2006-06-30 Invista Tech Sarl Hydrocyanation processes and multidentate phosphite ligand and nickel catalyst compositions therefor
ZA986369B (en) * 1997-07-29 2000-01-17 Du Pont Hydrocyanation of diolefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles.
DE19740180A1 (de) * 1997-09-12 1999-03-18 Basf Ag Katalysator, umfassend wenigstens einen Nickel(0)Komplex auf Basis eines Phosphonitliganden und Verfahren zur Herstellung von Nitrilen
DE19825212A1 (de) * 1998-06-05 1999-12-09 Basf Ag Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines zweizähnigen Phosphonitliganden und Verfahren zur Herstellung von Nitrilen
US6653485B2 (en) * 2000-11-17 2003-11-25 The Penn State Research Foundation Ortho substituted chiral phosphines and phosphinites and their use in asymmetric catalytic reactions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03033142A1 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8373001B2 (en) 2003-02-10 2013-02-12 Invista North America S.A R.L. Method of producing dinitrile compounds
US7897801B2 (en) 2003-05-12 2011-03-01 Invista North America S.A R.L. Process for the preparation of dinitriles
US7973174B2 (en) 2005-10-18 2011-07-05 Invista North America S.A.R.L. Process of making 3-aminopentanenitrile
US8178711B2 (en) 2006-03-17 2012-05-15 Invista North America S.A R.L. Method for the purification of triorganophosphites by treatment with a basic additive
US7919646B2 (en) 2006-07-14 2011-04-05 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US8394981B2 (en) 2006-07-14 2013-03-12 Invista North America S.A R.L. Hydrocyanation of 2-pentenenitrile
US7880028B2 (en) 2006-07-14 2011-02-01 Invista North America S.A R.L. Process for making 3-pentenenitrile by hydrocyanation of butadiene
US8101790B2 (en) 2007-06-13 2012-01-24 Invista North America S.A.R.L. Process for improving adiponitrile quality
US8088943B2 (en) 2008-01-15 2012-01-03 Invista North America S.A R.L. Hydrocyanation of pentenenitriles
US7977502B2 (en) 2008-01-15 2011-07-12 Invista North America S.A R.L. Process for making and refining 3-pentenenitrile, and for refining 2-methyl-3-butenenitrile
US8247621B2 (en) 2008-10-14 2012-08-21 Invista North America S.A.R.L. Process for making 2-secondary-alkyl-4,5-di-(normal-alkyl)phenols
US8338636B2 (en) 2009-08-07 2012-12-25 Invista North America S.A R.L. Hydrogenation and esterification to form diesters
US9040733B2 (en) 2010-07-07 2015-05-26 Invista North America S.A.R.L. Process for making nitriles
US9040734B2 (en) 2010-07-07 2015-05-26 Invista North America S.A R.L. Process for making nitriles
US9045391B2 (en) 2010-07-07 2015-06-02 Invista North America S.A.R.L. Process for making nitriles
US9051242B2 (en) 2010-07-07 2015-06-09 Invista North America S.A.R.L. Process for making nitriles
US9051241B2 (en) 2010-07-07 2015-06-09 Invista North America S.A.R.L. Process for making nitriles
US9133107B2 (en) 2010-07-07 2015-09-15 Invista North America S.A.R.L. Process for making nitriles
US9133108B2 (en) 2010-07-07 2015-09-15 Invista North America S.A.R.L. Process for making nitriles
US9169197B2 (en) 2010-07-07 2015-10-27 Invista North America S.A. R.L. Process for making nitriles

Also Published As

Publication number Publication date
JP2005505611A (ja) 2005-02-24
MY143360A (en) 2011-04-29
MXPA04002764A (es) 2004-06-29
CN1568225A (zh) 2005-01-19
WO2003033142A1 (de) 2003-04-24
US20050090677A1 (en) 2005-04-28
AR036791A1 (es) 2004-10-06
CA2462720A1 (en) 2003-04-24
KR20040048948A (ko) 2004-06-10
BR0213108A (pt) 2004-09-21
DE10150286A1 (de) 2003-04-17

Similar Documents

Publication Publication Date Title
EP1682559B1 (de) Sterisch anspruchsvolle chelatphosphinitphosphitliganden, katalysator, umfassend wenigstens einen nickel(0)komplex stabilisiert durch diesen liganden sowie ein verfahren zur herstellung von nitrilen
EP1414567B1 (de) Ni(0) enthaltendes katalysatorsystem für hydrocyanierung
EP1003716B1 (de) Verfahren zur herstellung von gemischen monoolefinischer c 5-mononitrile durch katalytische hydrocyanierung in gebenwart eines katalysators, umfassend wenigstens einen metallocenphosphor (iii)-nickel(0)-komplex
DE69829667T2 (de) Hydrocyanierungsverfahren
EP1019190B1 (de) Katalysator, umfassend wenigstens einen nickel(o)komplex auf basis eines phosphonitliganden und verfahren zur herstellung von nitrilen
EP1438133A1 (de) Phosphinite
EP1438317B1 (de) Phosphonite, ihre verwendung als ligand in übergangsmetall komplexen und verfahren zur herstellung von nitrilen
EP1438132A1 (de) Phosphonite
EP0944585B1 (de) Monoolefinische c 5-mononitrile, verfahren zu ihrer herstellung und ihrer verwendung
EP1091804B1 (de) Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines zweizähnigen phosphonitliganden und verfahren zur herstellung von nitrilen
WO2002013964A2 (de) Zur herstellung von nutrilen geeigneter katalysator
DE102004004696A1 (de) Kontinuierliches Verfahren zur Herstellung von linearen Pentennitrilen
DE10311122A1 (de) Verfahren zur Hydrocyanierung einer olefinisch ungesättigten Verbindung
DE10150281A1 (de) Phosphonite
DE10207165A1 (de) Phosponite

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040512

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOLNAR, FERENC

Inventor name: SIEGEL, WOLFGANG

Inventor name: ALTMAYER, MARCO

Inventor name: JUNGKAMP, TIM

Inventor name: HADERLEIN, GERD

Inventor name: KUNSMANN-KEITEL, DAGMAR, PASCALE

Inventor name: BAUMANN, ROBERT

Inventor name: BARTSCH, MICHAEL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOLNAR, FERENC

Inventor name: SIEGEL, WOLFGANG

Inventor name: ALTMAYER, MARCO

Inventor name: JUNGKAMP, TIM

Inventor name: HADERLEIN, GERD

Inventor name: KUNSMANN-KEITEL, DAGMAR, PASCALE

Inventor name: BAUMANN, ROBERT

Inventor name: BARTSCH, MICHAEL

17Q First examination report despatched

Effective date: 20061017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070228