EP1436890A1 - Drehstromgenerator mit erhöhter ausgangsleistung - Google Patents

Drehstromgenerator mit erhöhter ausgangsleistung

Info

Publication number
EP1436890A1
EP1436890A1 EP02776792A EP02776792A EP1436890A1 EP 1436890 A1 EP1436890 A1 EP 1436890A1 EP 02776792 A EP02776792 A EP 02776792A EP 02776792 A EP02776792 A EP 02776792A EP 1436890 A1 EP1436890 A1 EP 1436890A1
Authority
EP
European Patent Office
Prior art keywords
additional circuit
generator
connection
phase generator
stator windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02776792A
Other languages
English (en)
French (fr)
Inventor
Reinhard Rieger
Klaus Beulich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1436890A1 publication Critical patent/EP1436890A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • H02P9/307Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage more than one voltage output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices

Definitions

  • the energy for the excitation is taken from the electrical system of the respective motor vehicle. This is done using a generator controller that has a switched semiconductor as the switching element.
  • the generator regulator sets the excitation voltage between 0V and the on-board voltage. This is shown in FIG. 1, which shows a diagram to illustrate the positioning of the generator regulator R between the electrical system BN and the field winding WE of the generator.
  • FIG. 2 shows a known generator circuit, which has a generator regulator R, an excitation winding WE, a rectifier arrangement G and three stator windings WS.
  • the stator windings form a star connection and are offset from one another by 120 ° with respect to the rotor (not shown). Their beginnings of the winding, which are connected to the rectifier arrangement, are designated by the letters U, V, W. If the rotor is turned, an alternating voltage is generated in each of these stator windings. The three alternating voltages generated are offset from one another by 120 °.
  • a voltage supply system with an increased output power which is generated when an increased current requirement is signaled by means of an external control signal.
  • the known system has a three-phase generator, the windings of which supply the supply voltage for a vehicle electrical system via rectifiers.
  • the generator also contains an excitation winding, through which the excitation current that can be influenced by a voltage regulator.
  • the excitation winding can be operated with a higher voltage than the supply voltage during predeterminable times.
  • This increased voltage is generated by connecting additional windings with rectifiers in the generator or by means of a DC voltage converter assigned to the generator.
  • the generator is regulated by the voltage regulator, which has controlled transistors, in such a way that the output voltage of the generator remains at the electrical system level.
  • the claimed procedure enables simple and cost-effective integration of the additional components required in the generator.
  • a further voltage increase can advantageously be achieved by using a cascade connection.
  • FIG. 3 shows a sketch to illustrate the arrangement of the additional circuit according to a first exemplary embodiment of the invention.
  • FIG. 4 shows a sketch to illustrate the arrangement of the additional circuit according to a second exemplary embodiment of the invention.
  • FIG. 5 shows an exemplary embodiment for an additional circuit according to the invention.
  • FIG. 6 shows a first exemplary embodiment for a generator circuit according to the invention.
  • FIG. 7 shows a second exemplary embodiment for a generator circuit according to the invention.
  • FIG. 8 shows a diagram to illustrate the voltage profiles at the winding taps of the stator windings.
  • an additional circuit which has only passive components is used in a three-phase generator, which is preferably a claw-pole generator, the use of which results in an increase in the excitation voltage dropping at the excitation winding of the generator. This also increases the excitation current flowing through the excitation winding and thus the output power made available by the generator.
  • the output voltage of the generator can be doubled or tripled.
  • a further increase in the output voltage of the generator is possible by additionally using a cascade connection.
  • FIG. 3 shows a sketch to illustrate the arrangement of an additional circuit according to a first exemplary embodiment for the invention.
  • one connection of the additional circuit ZS1 is connected to the 14 V vehicle electrical system and a second connection via the generator controller R is connected to the remote connection of the field winding WE. concluded.
  • the other connection of the excitation winding WE- is connected directly to ground GND.
  • the additional circuit ZS1 has connections U, V, W which are connected to the stator windings.
  • FIG. 4 shows a sketch to illustrate the arrangement of an additional circuit according to a second exemplary embodiment of the invention.
  • one connection of the additional circuit ZS2 is connected to the 14 V vehicle electrical system and a second connection is connected via the generator controller R to the connection of the field winding WE remote from the ground.
  • the additional circuit ZS2 also extends to the connection between the ground connection of the field winding WE and ground GND.
  • the additional circuit ZS2 has connections U, V, W, which are connected to the stator windings.
  • FIG. 5 shows an exemplary embodiment for an additional circuit ZS1, as can be used in connection with FIG. 3.
  • This additional circuit is a passively operated booster circuit which is arranged between the 14 V connection and the generator regulator R according to FIG. 3.
  • This booster circuit has a parallel connection of three signal branches, each signal branch containing two diodes connected in series.
  • the connection point between the two diodes of the first signal branch can be connected to the connection U via a capacitor.
  • the connection point between the two diodes of the second signal branch can be connected to the connection V via a capacitor.
  • the connection point between the two diodes of the third voltage branch can be connected to the connection W via a capacitor.
  • the additional circuit has only a parallel connection of two signal branches or even only one signal branch, each of these signal branches being constructed in the same way as one of the signal branches shown in FIG. 5. If a booster circuit according to FIG. 5 is inserted into a claw-pole generator, the device shown in FIG. 6 is produced, which shows a first exemplary embodiment of a generator circuit according to the invention.
  • FIG. 7 shows a second exemplary embodiment of a generator circuit according to the invention. This exemplary embodiment is based on the basic arrangement according to FIG. 4.
  • FIG. 8 The course of the winding voltages at the taps U, V, W is shown in FIG. 8 for one of these winding strands.
  • time is plotted along the abscissa and voltage along the ordinate. It can be seen that the winding voltages are approximately rectangular.
  • a voltage of 14V is present at the capacitor arranged in the U-line, which is connected to the vehicle electrical system via a diode of the additional circuit.
  • Current flows from the vehicle electrical system via the diode to the capacitor.
  • the potential at tap U rises to a value that corresponds to the sum of the vehicle electrical system voltage and the forward voltage of the diode, ie to a value (U BM + 0.7V). This corresponds to an increase in the charge on the capacitor.
  • the energy output of the capacitor is calculated

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Rectifiers (AREA)

Abstract

Die Erfindung betrifft einen Drehstromgenerator, welcher mehrere Ständerwicklungen, eine mit den Ständerwicklungen verbundene Gleichrichteranordnung, eine Erregerwicklung, einen Generatorregler und eine eine Spannungserhöhung bewirkende Zusatzschaltung aufweist. Bei dieser Zusatzschaltung handelt es sich um eine in den Generator integrierte, passiv betriebene Boosterschaltung, welche keine gesteuerten Bauelemente aufweist.

Description

Drehstromgenerator mit erhöhter Ausgangsleistung
Stand der Technik
Bei bekannten Klauenpolgeneratoren wird die Energie für die Erregung aus dem Bordnetz des jeweiligen Kraftfahrzeugs entnommen. Dies geschieht unter Verwendung eines Generatorreg- lers, der einen geschalteten Halbleiter als Schaltelement aufweist. Der Generatorregler stellt die Erregerspannung zwischen 0V und der Bordnetsspannung ein. Dies ist in der Figur 1 gezeigt, die ein Diagramm zur Veranschaulichung der Positionierung des Generatorreglers R zwischen dem Bordnetz BN und der Erregerwicklung WE des Generators zeigt.
Die Figur 2 zeigt eine bekannte Generatorschaltung,, die einen Generatorregler R, eine Erregerwicklung WE, eine Gleichrichteranordnung G und drei Ständerwicklungen WS aufweist. Die Ständerwicklungen bilden eine Sternschaltung und sind bezüglich des nichtgezeichneten Läufers zueinander um jeweils 120° versetzt. Ihre Wicklungsanfänge, die mit der Gleichrichteranordnung verbunden sind, sind mit den Buchstaben U, V, W bezeichnet. Wird der Läufer gedreht, so wird in jeder dieser Ständerwicklungen eine Wechselspannung erzeugt. Die drei erzeugten Wechselspannungen sind zueinander um 120° versetzt.
Aus der DE 196 34 096 A ist ein Spannungsversorgungssystem .mit erhöhter Ausgangsleistung bekannt, die dann erzeugt wird, wenn mittels eines externen Steuersignals ein erhöhter Strombedarf signalisiert wird. Das bekannte System weist einen Drehstromgenerator auf, dessen Wicklungen über Gleichrichter die Versorgungsspannung für ein Fahrzeugbordnetz liefern. Weiterhin enthält der Generator eine Erregerwicklung, durch die der von einem Spannungsregler beein lussbare Erregerstrom fließt. Die Erregerwicklung ist während vorgebbarer Zeiten mit einer gegenüber der Versorgungsspannung erhöhten Spannung betreibbar. Diese erhöhte Spannung wird durch Zuschaltung von zusätzlichen Wicklungen mit Gleichrichtern im Generator oder durch einen dem Generator zugeordneten Gleichspannungswandler erzeugt. Dabei erfolgt die Regelung des Generators durch den Spannungsregler, welcher gesteuerte Transistoren aufweist, derart, dass die Ausgangsspannung des Generators auf Bordnetzniveau bleibt.
10
Vorteile der Erfindung
Demgegenüber wird durch die Erfindung, wie sie im Anspruch 1 angegeben ist, eine erhöhte Ausgangsleistung des Generators
15 erreicht, in dem im Sinne einer verbesserten magnetischen Ausnutzung des Generators die Welligkeit an den Wicklungsenden der Erregerwicklung für eine kapazitive Spannungserhöhung genutzt wird. Dies geschieht kostengünstig durch eine passive Zusatzschaltung, die keine Transistoren aufweist. Dies führt 0 im Vergleich zu Schaltungstopologien, die beispielsweise
Gleichspannungswandler zur Spannungsvervielfachung verwenden, zu Vorteilen im Hinblick auf die elektromagnetische Verträglichkeit.
25 Weiterhin ermöglicht die beanspruchte Vorgehensweise eine einfache und kostengünstige Integration der zusätzlichen notwendigen Bauteile in den Generator.
Gegenüber allen aktiv gesteuerten Zusatzschaltungen ergeben 30 sich Vorteile dadurch, dass keine aktiv gesteuerten Bauelemente notwendig sind. Es sind herkömmliche Dioden und Konden- satoren einsetzbar. Weiterhin treten keine Sättigungseffekte auf. Die Zusatzschaltung gemäß der Erfindung arbeitet urz- schluss- und leerlauffest .
J:>
Eine weitere Spannungserhöhung kann in vorteilhafter Weise durch -Verwendung einer Kaskadenschaltung erreicht werden. Zeichnung
Nachfolgend wird die Erfindung anhand der Figuren 3 - 8 beispielhaft näher erläutert. Die Figur 3 zeigt eine Skizze zur Veranschaulichung der Anordnung der Zusatzschaltung gemäß einem ersten Ausführungsbeispiel für die Erfindung. Die Figur 4 zeigt eine Skizze zur Veranschaulichung der Anordnung der Zusatzschaltung gemäß einem zweiten Ausführungsbeispiel für die Erfindung. Die Figur 5 zeigt ein Ausführungsbeispiel für eine Zusatzschaltung gemäß der Erfindung. Die Figur 6 zeigt ein erstes Ausführungsbeispiel für eine Generatorschaltung gemäß der Erfindung. Die Figur 7 zeigt ein zweites Ausführungsbeispiel für eine Generatorschaltung gemäß der Erfindung. Die Figur 8 zeigt ein Diagramm zur Veranschaulichung der Spannungs- verlaufe an den Wicklungsabgriffen der Ständerwicklungen.
Beschreibung der Ausführungsbeispiele
Gemäß der vorliegenden Erfindung wird in einen Drehstromgene- rator, bei dem es sich vorzugsweise um einen Klauenpolgenera- tor handelt, eine lediglich passive Bauelemente aufweisende Zusatzschaltung eingesetzt, durch deren Verwendung eine Erhöhung der an der Erregerwicklung des Generators abfallenden Erregerspannung erzielt wird. Dadurch erhöht sich auch der durch die Erregerwicklung fließende Erregerstrom und somit die vom Generator zur Verfügung gestellte Ausgangsleistung.
Mit einer Zusatzschaltung gemäß der Erfindung kann beispielsweise eine Verdoppelung oder Verdreifachung der Ausgangsspan- nung des Generators erreicht werden. Eine weitere Erhöhung der Ausgangsspannung des Generators ist durch zusätzliche Verwendung einer Kaskadenschaltung möglich.
Die Figur 3 zeigt eine Skizze zur Veranschaulichung der Anord- nung einer Zusatzschaltung gemäß einem ersten Ausführungsbeispiel für die Erfindung. Bei diesem ersten Ausführungsbeispiel ist ein Anschluss der Zusatzschaltung ZS1 mit dem 14V-Bordnetz verbunden und ein zweiter Anschluss über den Generatorregler R an den massefernen Anschluss der Erregerwicklung WE ange- schlössen. Der andere Anschluss der Erregerwicklung WE-ist direkt mit Masse GND verbunden. Weiterhin weist die Zusatzschaltung ZS1 Anschlüsse U, V, W auf, die mit den Ständerwicklungen verbunden sind.
Die Figur 4 zeigt eine Skizze zur Veranschaulichung der Anordnung einer Zusatzschaltung gemäß einem zweiten Ausführungsbeispiel für die Erfindung. Bei diesem zweiten Ausführungsbeispiel ist ein Anschluss der Zusatzschaltung ZS2 mit dem 14V- Bordnetz verbunden und ein zweiter Anschluss über den Generatorregler R an den massefernen Anschluss der Erregerwicklung WE angeschlossen. Weiterhin erstreckt sich die Zusatzschaltung ZS2 auch auf die Verbindung zwischen dem massenahen Anschluss der Erregerwicklung WE und Masse GND. Ferner weist die Zusatz- Schaltung ZS2 Anschlüsse U, V, W auf, die mit den Ständerwicklungen verbunden sind.
Die Figur 5 zeigt ein Ausführungsbeispiel für eine Zusatzschaltung ZS1, wie sie im Zusammenhang mit der Figur 3 verwen- det werden kann. Bei dieser Zusatzschaltung handelt es sich um eine passiv betriebene Boosterschaltung, die zwischen dem 14V- Anschluss und dem Generatorregler R gemäß Figur 3 angeordnet ist. Diese Boosterschaltung weist eine Parallelschaltung dreier Signalzweige auf, wobei jeder Signalzweig zwei in Reihe geschaltete Dioden enthält. Der Verbindungspunkt zwischen den beiden Dioden des ersten Signalzweiges ist über einen Kondensator mit dem Anschluss U verbindbar. Der Verbindungspunkt zwischen den beiden Dioden des zweiten Signalzweiges ist über einen Kondensator mit dem Anschluss V verbindbar. Der Verbin- dungspunkt zwischen den beiden Dioden des dritten Spannungszweiges ist über einen Kondensator mit dem Anschluss W verb- bindbar .
Bei alternativen Ausführungsformen, die in der Zeichnung nicht dargestellt sind, weist die Zusatzschaltung lediglich eine Parallelschaltung zweier Signalzweige oder gar nur einen Signalzweig auf, wobei jeder dieser Signalzweige ebenso aufgebaut ist wie einer der in der Figur 5 gezeigten Signalzweige . Setzt man eine Boosterschaltung gemäß Figur 5 in einen Klauen- polgenerator ein, so entsteht die in Figur 6 dargestellte Vorrichtung, die ein erstes Ausführungsbeispiel für eine Generatorschaltung gemäß der Erfindung zeigt.
Setzt man darüber hinaus eine derartige Boosterschaltung zusätzlich in den Verbindungszweig zwischen dem massenahen Anschluss der Erregerwicklung WE und Masse ein, so entsteht die in Figur 7 dargestellte Vorrichtung, die ein zweites Ausfüh- rungsbeispiel für eine Generatorschaltung gemäß der Erfindung zeigt. Dieses Ausführungsbeispiel beruht auf der grundsätzlichen Anordnung gemäß der Figur 4.
Der Verlauf der Wicklungsspannungen an den Abgriffen U, V, W ist für einen dieser Wicklungsstränge in der Figur 8 gezeigt. In dieser Figur ist längs der Abszisse die Zeit und längs der Ordinate die Spannung aufgetragen. Es ist ersichtlich, dass die Wicklungsspannungen näherungsweise rechteckförmig verlaufen.
Im folgenden wird anhand eines Stranges des Drehstromgenerators die Funktionsweise der Spannungserhöhungsschaltung am Ausführungsbeispiel gemäß Figur 6 näher erläutert. Zunächst liegt am Abgriff U eine Spannung von -0,7V vor. Dies ist dar- auf zurückzuführen, dass dieser Abgriff U über eine Diode mit Masse GND verbunden ist, wobei diese Diode eine Flussspannung von 0,7V aufweist.
An dem im U-Strang angeordneten Kondensator, der über eine Di- ode der Zusatzschaltung mit dem Bordnetz verbunden ist, liegt eine Spannung von 14V an. Es erfolgt ein Stromfluss aus dem Bordnetz über die Diode auf den Kondensator. Dadurch steigt das Potential am Abgriff U auf einen Wert an, der der Summe aus der Bordnetzspannung und der Flussspannung der Diode ent- spricht, d. h. auf einen Wert (UBM + 0,7V). Dies entspricht einer Anhebung der Ladung des Kondensators.
Anschließend fließt Ladung vom Kondensator über die zweite Diode der Zusatzschaltung in den Erregerkreis. Dadurch sinkt das Potential am Abgriff U wieder auf -0,7V. Dieser Vorgang,, der sich ständig wiederholt, erfolgt um 120° zeitversetzt in jedem der Stränge U, V, W.
Beispielsweise gilt für den Erregerstrom Ierr = 8A und für die Erregerspannung Uerr = 24V. Die Energieabgabe des Kondensators berechnet sich zu
E = - C 7 (ι -uχ u„ -uj
Für die Leistung der Boosterschaltung gilt:
Damit erhält man :
C « 1500 μF, wenn f = 180 Hz
Bei einer Veränderung der Randbedingungen ergeben sich andere Werte .

Claims

Ansprüche
1. Drehstromgenerator, welcher aufweist:
- mehrere Ständerwicklungen (WS) , - eine mit den Ständerwicklungen verbundene Gleichrichteranordnung (G) ,
- eine Erregerwicklung (WE) ,
- einen Generatorregler (R) , und
- eine eine Spannungserhöhung bewirkende Zusatzschaltung, dadurch gekennzeichnet, dass die Zusatzschaltung (ZSl; ZS2) eine in den Generator integrierte, passiv betriebene Boosterschaltung ist, welche keine gesteuerten Bauelemente aufweist.
2. Drehstromgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die Zusatzschaltung (ZSl, ZS2) ausschließlich aus Dioden und Kondensatoren besteht.
3. Drehstromgenerator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zusatzschaltung einen, zwei oder drei Signalzweige aufweist, wobei jeder Signalzweig zwei in Reihe geschaltete Dioden enthält und der Verbindungspunkt zwischen den beiden Dio- den jeweils über einen Kondensator mit einer der Ständerwicklungen (WS) verbunden ist.
4. Drehstromgenerator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusatzschaltung (ZSl) zwischen das Bordnetz und den massefernen Anschluss der Erregerwicklung (WE) geschaltet ist (Figur 6) .
5. Drehstromgenerator nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusatzschaltung (ZS2) zwei Parallelschaltungen dreier Signalzweige aufweist, wobei jeder Signalzweig zwei in Reihe ge- schaltete Dioden enthält und der Verbindungspunkt zwischen den beiden Dioden jeweils über einen Kondensator mit einer der Ständerwicklungen verbunden ist, und wobei eine der Parallelschaltungen dreier Signalzweige zwischen das Bordnetz und den massefernen Anschluss der Erregerwicklung (WE) und die andere Parallelschaltung dreier Signalzweige zwischen den massenahen Anschluss der Erregerwicklung (WE) und Masse geschaltet ist (Figur 7) .
EP02776792A 2001-10-11 2002-10-08 Drehstromgenerator mit erhöhter ausgangsleistung Withdrawn EP1436890A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10150373 2001-10-11
DE10150373A DE10150373A1 (de) 2001-10-11 2001-10-11 Drehstromgenerator mit erhöhter Ausgangsleistung
PCT/DE2002/003795 WO2003034583A1 (de) 2001-10-11 2002-10-08 Drehstromgenerator mit erhöhter ausgangsleistung

Publications (1)

Publication Number Publication Date
EP1436890A1 true EP1436890A1 (de) 2004-07-14

Family

ID=7702273

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02776792A Withdrawn EP1436890A1 (de) 2001-10-11 2002-10-08 Drehstromgenerator mit erhöhter ausgangsleistung

Country Status (6)

Country Link
US (1) US7102250B2 (de)
EP (1) EP1436890A1 (de)
JP (1) JP4365214B2 (de)
KR (1) KR20040050072A (de)
DE (1) DE10150373A1 (de)
WO (1) WO2003034583A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522157B2 (ja) * 2004-06-14 2010-08-11 新電元工業株式会社 バッテリー充電装置及び電源装置
EP2659116B1 (de) * 2010-12-29 2015-10-14 Magna Powertrain of America, Inc. Integrierter generator und motorpumpe
DE102017204091A1 (de) 2017-03-13 2018-09-13 Seg Automotive Germany Gmbh Schaltvorrichtung zum Schalten eines elektrischen Erregerstroms für eine elektrische Maschine mit einem Läufer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092712A (en) * 1977-05-27 1978-05-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Regulated high efficiency, lightweight capacitor-diode multiplier dc to dc converter
FR2475792A1 (fr) 1980-02-12 1981-08-14 Thomson Csf Multiplicateur de tension integre
JPH01186168A (ja) 1988-01-20 1989-07-25 Oki Electric Ind Co Ltd 受光用高圧発生回路
DE19634096A1 (de) 1996-08-23 1998-02-26 Bosch Gmbh Robert Spannungsversorgungssystem mit erhöhter Ausgangsleistung
US5986439A (en) * 1998-06-12 1999-11-16 Chrysler Corporation Method of controlling an automotive charging system in response to transient electrical loads
JP4024936B2 (ja) 1998-09-01 2007-12-19 沖電気工業株式会社 電圧発生回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03034583A1 *

Also Published As

Publication number Publication date
JP4365214B2 (ja) 2009-11-18
US7102250B2 (en) 2006-09-05
WO2003034583A1 (de) 2003-04-24
KR20040050072A (ko) 2004-06-14
JP2005506822A (ja) 2005-03-03
US20050041344A1 (en) 2005-02-24
DE10150373A1 (de) 2003-04-24

Similar Documents

Publication Publication Date Title
DE69506612T2 (de) Steuerschaltung für induktive Belastung
DE10214190B4 (de) Stromversorgung mit mehreren parallel geschalteten Schaltnetzteilen
EP0283842B1 (de) Umrichterschaltung mit einem Eintakt-Sperrumrichter
DE112009001695T5 (de) Stromversorgungsvorrichtung
DE19838296B4 (de) Elektrisches Spannungsversorgungssystem
DE4304694A1 (de)
WO2020064432A1 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen energiespeicher
WO1997025771A1 (de) Fahrzeugbordnetz
EP3750235B1 (de) Vorrichtung zur gewinnung elektrischer energie und energieerzeuger mit einer derartigen vorrichtung
WO2020064429A1 (de) Ladeschaltung für einen fahrzeugseitigen elektrischen energiespeicher
DE69009122T2 (de) Aufwärts und abwärts Zerhacker.
DE4430394A1 (de) Dreiphasige Gleichrichterschaltung mit nahezu sinusförmigen Eingangsströmen und geregelter Ausgangs-Gleichspannung
EP1436890A1 (de) Drehstromgenerator mit erhöhter ausgangsleistung
DE102014111451A1 (de) System zur Anhebung des netzseitigen Leistungsfaktors von dreiphasig gespeisten EC-Motoren
DE102004040228B4 (de) Fahrzeug mit Elektroantrieb
DE102017213194A1 (de) Wandlervorrichtung zum Wandeln einer elektrischen Gleichspannung, Verfahren und Steuereinrichtung zum Steuern einer Wandlervorrichtung zum Wandeln einer elektrischen Gleichspannung
EP1034611B1 (de) Drosselwandler
EP0978933A2 (de) Gleichspannungswandler
DE102016203150A1 (de) Spannungswandler und elektrisches Antriebssystem mit einem Spannungswandler
WO2005114830A1 (de) Frequenzumformeinrichtung für einen windenergiepark sowie verfahren zum betrieb einer solchen einrichtung
EP1885049A1 (de) Netzteil mit kombiniertem Aufwärts/Abwärts-Schaltwandler
DE2836325A1 (de) Vorrichtung zur erzeugung einer niederspannung aus einer hoeheren spannung mit wechselspannungsanteil
DE102018008604A1 (de) Hochsetzsteller sowie Verfahren zum Betreiben eines Hochsetzstellers
EP0190240A1 (de) Kollektorloser gleichstrommotor.
DE4237843A1 (de) Schaltungsanordnung zum Betreiben einer induktiven Last

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BEULICH, KLAUS

Inventor name: RIEGER, REINHARD

17Q First examination report despatched

Effective date: 20100211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100501