EP1431406A1 - Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases - Google Patents

Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases Download PDF

Info

Publication number
EP1431406A1
EP1431406A1 EP02447265A EP02447265A EP1431406A1 EP 1431406 A1 EP1431406 A1 EP 1431406A1 EP 02447265 A EP02447265 A EP 02447265A EP 02447265 A EP02447265 A EP 02447265A EP 1431406 A1 EP1431406 A1 EP 1431406A1
Authority
EP
European Patent Office
Prior art keywords
steel
substrate
maximum
temperature
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02447265A
Other languages
German (de)
English (en)
Inventor
Joachim Antonissen
Liesbeth Barbe
Marijke De Meyer
Lucia Tosal-Martinez
Serge Claessens
Sven Vandeputte
Sigrid Jacobs
Bruno De Cooman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sidmar SA
Original Assignee
Sidmar SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sidmar SA filed Critical Sidmar SA
Priority to EP02447265A priority Critical patent/EP1431406A1/fr
Priority to EP10180139A priority patent/EP2264207A1/fr
Priority to CA002507378A priority patent/CA2507378A1/fr
Priority to AU2003283135A priority patent/AU2003283135A1/en
Priority to PCT/BE2003/000188 priority patent/WO2004057048A1/fr
Priority to MXPA05006801A priority patent/MXPA05006801A/es
Priority to BR0316905-7A priority patent/BR0316905A/pt
Priority to JP2004560925A priority patent/JP4856876B2/ja
Priority to KR1020117024664A priority patent/KR20110127283A/ko
Priority to CNB2003801069574A priority patent/CN100537813C/zh
Priority to US10/539,758 priority patent/US20060140814A1/en
Priority to EP03775002A priority patent/EP1579020A1/fr
Priority to KR1020057011585A priority patent/KR20050094408A/ko
Priority to RU2005123361/02A priority patent/RU2328545C2/ru
Publication of EP1431406A1 publication Critical patent/EP1431406A1/fr
Priority to JP2011125041A priority patent/JP2011231406A/ja
Priority to US13/243,295 priority patent/US20120018058A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention is related to a steel composition comprising phosphor, to be used for the production of TRIP steel' products.
  • the invention is equally related to the process of production of said products, and to the end products themselves.
  • Ultra high strength steel (UHSS) sheet products and in particular TRIP steel products showing a remarkable combination of high strength and good formability, can provide the solution for this problem. Additionally, an increased corrosion resistance of these steel sheet products by means of electro or hot dip galvanising, is frequently asked for.
  • EP-A-1096029 is related to the production of a tempered martensite TRIP steel, whose chemical composition is silicon-manganese based and contains (in wt%) 0.05-0.20% C, 0.3-1.8% Si and 1.0-3.0% Mn as well as one or more of the following additions (in wt%): 0.05-1% Cr+Mo, ⁇ 0.003% B, 0.01-0.1% Ti+Nb+V and ⁇ 0.01% Ca+REM.
  • the cold rolling production process consists of three consecutive annealing steps.
  • the sheet is completely austenised during at least 5 seconds and subsequently rapidly cooled (>10°C/s) below the Ms (Martensite start) temperature in order to produce lath martensite.
  • the second and third step are combined in a continuous annealing or galvanising line and consist of reheating the sheet in the intercritical region (Ac1 ⁇ T ⁇ Ac3) during 5 to 120 seconds, cooling (>5°C/s) to 500°C or lower and than subjecting the sheet to a galvanising or galvannealing treatment.
  • the first one being the additional annealing step that is required to produce the lath martensite starting micro-structure.
  • EP-A-0922782 also describes the production of a cold rolled Si-Mn based TRIP steel which contains (in wt%) 0.05-0.40%C, 1.0-3.0% Si, 0.6-3.0% Mn, 0.02-1.5% Cr, 0.01-0.20%P and 0.01-0.3% Al.
  • this product does not require the use of an additional annealing step.
  • Cr is added to the analysis in order to retard the bainite formation and promote acicular ferrite and martensite formation as it is thought by the inventors that bainite is detrimental to the crushing behaviour in Si-Mn based TRIP steels.
  • P is added to avoid pearlite formation and to increase the strength of the ferritic phase.
  • the maximal P content is limited to 0.2% because of weldability.
  • the high Si content in this invention will however again impair hot dip galvanisability resulting in an insufficient surface appearance and a very high risk on bare spots.
  • the occurrence of red scale which is difficult to remove, on the hot strip, due to the higher Si content, is also expected to cause processing difficulties.
  • EP-A-0796928 describes the production of an Al-based Dual Phase steel which contains (in wt%) 0.05-0.3% C, 0.8-3.0% Mn, 0.4-2.5% Al and 0.01-0.2% Si. Additionally the steel can contain one of the following elements (in wt%) ⁇ 0.05% Ti, ⁇ 0.8% Cr, ⁇ 0.5% Mo, ⁇ 0.5% Ni, ⁇ 0.05% Nb and ⁇ 0.08% P. After cold rolling with a reduction rate higher than 40%, the material is intercritically annealed at temperatures between 740 and 850°C and subsequently cooled at a cooling rate of 10 to 50 K/s to the Zn-bath temperature.
  • EP-A-1170391 describes the production of a low carbon ( ⁇ 0.08wt%), low silicon ( ⁇ 0.5wt%) and low aluminium ( ⁇ 0.3wt%) TRIP steel obtained by adding a nitriding step to the processing (0.03-2wt%N).
  • the Al and Si contents have to be kept low in order to avoid nitride precipitation and thus loss of free N.
  • the Si content is preferably lower than 0.2wt% because of hot dip galvanisability.
  • the carbon content is kept very low because of weldability and because of the fact that the presence of nitrogen in the steel also stabilises the retained austenite.
  • This nitrogen is incorporated in the steel sheet either during or immediately after hot finish rolling, during recrystallisation annealing, during intercritical annealing or via a combination of one or more of these processes. All of them require the steel sheet to be held for 2sec to 10min. in an atmosphere containing not less than 2% ammonia in the temperature range 550-800°C. It is clear that this nitriding step makes processing a lot more difficult and requires complicated technical modifications to existing installations. At the moment this process is internationally not considered to be industrially feasible. Furthermore the very low alloying content of this steel grade, does not allow to reach tensile strength levels above 650MPa.
  • US-A-5470529 deals with the production of cold rolled TRIP steels based upon a wide variety of combined Al-Si analyses.
  • the carbon content range is set as 0.05-0.3wt%, but more preferably is 0.1-0.2wt%.
  • the Si-content is kept below 1.0wt% in order to avoid red scale formation, but more preferably is in the range 0.2-0.9wt%.
  • Manganese is added in 0.005 to 4.0wt%, but more preferably 0.5-2.0wt%.
  • part of the Si is replaced by Al for various reasons.
  • Al also avoids cementite precipitation during bainitic holding. This enables to use lower Si-levels and thus avoid red scale formation.
  • Al-range is set as 0.1-2.0wt% and more preferably as 0.5-1.5wt%.
  • Al and Si are both ferrite stabilizers, their sum is limited in order to avoid over-stabilizing the retained austenite.
  • the Al+Si content should be in the range 0.5-3.0wt% and more preferably in the range 1.5-2.5wt%.
  • P is considered as an incidental impurity that should be limited as much as possible.
  • the P-limit is set at 0.1wt% or less and preferably less than 0.02wt%.
  • Cu is added to the analysis to facilitate the removal of red scale, to improve the corrosion resistance of the as cold rolled product and to improve the wettability by molten Zn. Therefore the Cu-range is 0.1-2.0wt% and more preferably 0.1-0.6wt%.
  • Ni is added as well. For economics its content is limited to 1.0wt% and preferably 0.5wt%. The following constraints also apply: Ni(wt%)>Cu(wt%)/3 when Cu>0.5wt% and Mn+Ni>0.5wt%. Cr may be added as well to stabilise the retained austenite and to further improve corrosion resistance.
  • Nb and V might be added as well.
  • Their upper limit is preferably 0.05wt% for Nb and Ti and 0.10wt% for V.
  • Si-content in this invention is limited to ⁇ 1wt% in order to avoid red scale formation, most of the cold rolled example steels have a Si-content in the range 0.5-1.1wt%. The latter is considered to give rise to hot dip galvanising difficulties (bad wettability by molten Zn) and a deteriorated surface appearance (bare spots).
  • EP-A-1154028 describes the manufacturing of a P-alloyed low-Al, low-Si TRIP steel, which contains (in wt%): 0.06-0.17%C, 1.35-1.80%Mn, 0.35-0.50%Si, 0.02-0.12%P, 0.05-0.50%Al, max. 0.07%Nb, max. 0.2%V, max. 0.05%Ti, max. 30ppm B and 100-350ppm N.
  • the carbide forming elements Ti, Nb or V are added, the carbon content is preferably 0.16wt%.
  • the amount of residual austenite is limited to a maximum of 10%.
  • the combination of low Si-content and rather low C-content results in tensile strength values which are quite low ( ⁇ 600MPa).
  • low-Al steel 0.19% C, 1.5% Mn, 0.26% Si, 0.086% P and 0.52% Al
  • high-Al steel 0.17% C, 1.46% Mn, 0.26% Si, 0.097% P and 1.81% Al.
  • the low-Al steel will suffer from mechanical properties that are very sensitive to process parameter variations such as line speed and overageing temperature. This can lead to a non-compatibility between different galvanising lines or even to strongly thickness-dependent mechanical properties.
  • the high-Al steel on the other hand again requires the use of an adapted casting powder that can give rise to health problems. Furthermore the weldability will be impaired due to the presence of Al-oxides in the welded area.
  • the present invention is related to a cold rolled Al-Si P-alloyed TRIP steel composition intended to be used as uncoated, electro-galvanised or hot dip galvanised material.
  • Said composition is characterised by the following contents :
  • the novelty and inventive step of this compostion lies in the specific combination of elements P, Si, Al and C.
  • adding P in excess of prior art levels whilst limiting the maximum Si- and Al-content, allows to decrease the C-content for reaching a certain strength level, in combination with better weldability.
  • Three specific embodiments are related to the same chemical composition, but having three different subranges for carbon which are related to the strength level that is aimed at:
  • the present invention is equally related to a process for manufacturing a cold rolled TRIP steel product, comprising the steps of:
  • the process of the invention further comprises the steps of:
  • the process of the invention further comprises an electrolytic zinc coating step.
  • the process of the invention further comprises the following processing steps after the cold rolling step:
  • the process comprising a hot dip galvanising step may further comprise the step of subjecting said substrate to a skinpass reduction of maximum 1.5%.
  • the invention is equally related to a steel product produced according to the process of the invention and having a microstructure comprising 30-75% ferrite, 10-40% bainite, 0-20% retained austenite and possibly 0-10% martensite.
  • the invention is equally related to a steel product produced according to the process of the invention and having a carbon content between 1300ppm and 1900ppm.
  • Said product has a yield strength between 320MPa and 480MPa, a tensile strength above 590MPa, an elongation A80 higher than 26% and a n-value (this is the strain hardening coefficient, calculated between 10% and uniform elongation) higher than 0.2.
  • the invention is further related to a steel product produced according to the process of the invention and having a carbon content between 1700 and 2300ppm.
  • Said product has a yield strength between 350MPa and 510MPa, a tensile strength above 700MPa, an elongation A80 higher than 24% and a n-value (calculated between 10% and uniform elongation) higher than 0.19.
  • the invention is further related to a steel product produced according to the process of the invention and having a carbon content between 2000ppm and 2600ppm.
  • Said product has a yield strength between 400MPa and 600MPa, a tensile strength above 780MPa, an elongation A80 higher than 22% and a n-value (calculated between 10% and uniform elongation) higher than 0.18.
  • the invention is also related to a steel product produced according to the process of the invention and having a carbon content between 2000 and 2600ppm.
  • Said product has a yield strength between 450MPa and 700MPa, a tensile strength above 980MPa, an elongation A80 higher than 18% and a n-value (calculated between 10% and uniform elongation) higher than 0.14.
  • a steel product according to the invention may have a bake hardening BH2 higher than 40MPa in both longitudinal and transversal directions.
  • a steel composition is proposed for the production of a P-alloyed Al-Si TRIP steel product.
  • Application of the broadest chemical composition ranges which are indicated, will be able, in combination with the right process parameters, to result in products having a desired TRIP microstructure, good weldability as well as excellent mechanical properties, with very high values of the product of tensile strength and total elongation (this value is characteristic for a high energy absorption potential in case of a crash).
  • the preferred ranges are related to more narrow ranges of mechanical properties, for example a guaranteed minimum tensile strength of 780MPa, or to more stringent requirements on weldability (maximum of C-range, see next paragraph).
  • a first preferred subrange is 1300-1900ppm.
  • a second preferred subrange is 1700-2300ppm.
  • a third preferred subrange is 2000-2600ppm.
  • the minimum carbon content per sub-range is needed in order to ensure the strength level as carbon is the most important element for the hardenability.
  • the maximum of the claimed range per sub-range is related to weldability.
  • the effect of carbon on mechanical properties is illustrated by exemplary composition A, E and F and reference compositions B, C and D (tables 1, 3-8).
  • the effect of carbon content on spot weldability is illustrated by reference compositions B, C and D (table 2).
  • Mn between 10000ppm and 22000ppm, preferably between 13000-22000ppm.
  • Manganese acts as an austenite stabiliser and thus decreases the Ms temperature of the retained austenite. Furthermore Mn suppresses pearlite formation and also contributes to the overall strength level of the steel by solid solution hardening. Adding excess Mn results on the other hand in insufficient ferrite formation upon cooling from the soaking temperature and thus to insufficient carbon concentration in the retained austenite, rendering the latter less stable. Too much Mn will also increase the hardness of the weld and will enhance the formation of detrimental banded microstructures.
  • Al between 8000ppm and 15000ppm, preferably between 8000-14000ppm and most preferably between 9000-13000ppm. Aluminium is added because, to an even stronger degree than Si, it is a ferrite stabiliser and thus enhances the ferrite formation during soaking and during cooling from the soaking temperature, thereby stabilising the retained austenite. The latter is stabilised even more by the fact that Al also suppresses the precipitation of carbon from the retained austenite during the overageing stage. Unlike Si, Al has no detrimental effect on galvanisability. Al-contents above 15000ppm are however known to require the use of an adapted very fine casting powder that can cause health problems. Furthermore weldability can deteriorate due to the presence of Al-oxides in the welded area. A minimum Al content is however required to allow the material to be processed on different hot dip galvanising lines with different lengths of the levelling zones and to ensure a high process robustness.
  • Si between 2000ppm and 6000ppm, preferably between 2500-4500ppm. Silicon has essentially the same function as Al, albeit slightly less pronounced. That is: Si is a ferrite stabiliser and prevents carbide precipitation during the overageing stage, thereby stabilising the retained austenite at room temperature. Besides this, Si also contributes to the overall strength level of the steel by solid solution hardening. The maximum Si-content is however limited as Si is well known to provoke problems as to surface quality because of the presence of Si-oxides which after pickling create a surface with irregular and very high roughness. Moreover, in view of corrosion protection, hot dip galvanising of high Si-containing substrates in general leads to insufficient surface appearance for automotive applications, with moreover a high risk on the presence of bare spots on the surface.
  • P between 400ppm and 1000ppm, preferably between 600-1000ppm.
  • Phosphorous is added primarily to allow the carbon content to be decreased to obtain improved weldability, while maintaining the same tensile strength level.
  • P in combination with Si is known to enhance the retained austenite stability by suppressing carbide precipitation during the overageing stage.
  • P additions below 400ppm do not allow a sufficiently large reduction of C-content.
  • S maximum 120ppm.
  • the S-content has to be limited because a too high inclusion level can deteriorate the formability.
  • Ti maximum 1000ppm, preferably below 200ppm for products produced according to the present invention having a tensile strength below 980MPa. Titanium can be added in order to increase the tensile strength of the steel by grain refinement and precipitation strengthening. However for tensile strengths below 980MPa, even without adding Ti, using the appropriate processing parameters, will result in the targeted mechanical properties per carbon sub-range and thus avoid an increase in analysis cost or extra processing difficulties (e.g. rolling forces).
  • Nb maximum 1000ppm, preferably below 100ppm for products produced according to the present invention having a tensile strength below 980MPa.
  • Niobium can be added in order to increase the tensile strength of the steel by grain refinement and precipitation strengthening.
  • tensile strengths below 980MPa even without adding Nb, using the appropriate processing parameters, will result in the targeted mechanical properties per carbon sub-range and thus avoid an increase in analysis cost or extra processing difficulties (e.g. rolling forces).
  • V maximum 1000ppm, preferably below 100ppm for products produced according to the present invention having a tensile strength below 980MPa.
  • Vanadium can be added in order to increase the tensile strength of the steel by grain refinement and precipitation strengthening.
  • tensile strengths below 980MPa even without adding V, using the appropriate processing parameters, will result in the targeted mechanical properties per carbon sub-range and thus avoid an increase in analysis cost.
  • the present invention is equally related to the process for producing said steel product. This process comprises the steps of:
  • these steps are followed by an annealing treatment in a continuous annealing line, comprising the following steps:
  • a second preferred embodiment comprises the same processing steps mentioned above, but additionally also comprises an electrolytic zinc coating step.
  • the cold rolling step is followed by an annealing treatment in a continuous hot dip galvanising line, comprising the following steps:
  • the thickness of the steel substrates of the invention after cold rolling can be lower than 1mm according to the initial hot rolled sheet thickness and the capability of the cold rolling mill to perform the cold rolling at a sufficiently high level. Thus, thicknesses between 0.3 and 2.5mm are feasible.
  • the resulting cold rolled product has a multiphase structure with 30-75% ferrite, 10-40% bainite, 0-20% retained austenite and possibly amounts of martensite (0-10%) present at room temperature.
  • the amount of martensite at room temperature should however be limited in order to maintain an n-value behaviour (constant or increasing with strain) and mechanical properties that are characteristic for TRIP-steels. Specific mechanical properties as a function of processing parameter values are given in the examples.
  • the cold rolled non-temper rolled product showed in all cases a yield point elongation, which is typical for TRIP-steels and indicates that no or only very small amounts of martensite are present in the microstructure.
  • This yield point elongation can be suppressed by temper rolling the final product. Small temper rolling reductions are sufficient to avoid the occurrence of a yield point elongation and temper rolling reductions above 1.5% should be avoided in order to prevent a too large yield strength increase.
  • the final cold rolled product furthermore preferably exhibits a constant or increasing n-value with increasing strain. This behaviour implies that the retained austenite is gradually transformed into martensite as the tensile test progresses thereby postponing the occurrence of necking, leading to an excellent combination of tensile strength and total elongation.
  • the robustness of TRIP steel products produced according to this invention is ensured by the minimum Al-content specified in the preferred Al-range: 8000-14000ppm and most preferably in the range 9000-13000ppm. Adding less Al will render the retained austenite less stable. This will increase the risk of loss of mechanical properties by austenite decomposition through carbon precipitation and on the other hand the less stable retained austenite will more easily transform into martensite during straining, limiting the formability of the material. Adding less Al will also retard the bainite transformation kinetics. As a consequence the mechanical properties will become more dependent on processing conditions such as line speed and overageing temperature as well on the actual line lay-out (short or long overageing section). Using an Al-content within the preferred range, avoids such line dependency and loss of robustness.
  • Table 1 shows examples of compositions of laboratory castings of the P-alloyed Al-Si TRIP steel product according to the present invention (codes A, E and F), and of reference compositions (B,C and D) having either a C-content which is higher than the claimed range and/or no intentionally added phosphor.
  • Laboratory thermal cycle simulations and tensile tests were performed to obtain the mechanical properties of the test specimens of these example compositions. It is to be noted that in what follows, all mentioned tensile test mechanical properties are measured according to the standard EN10002-1.
  • Table 8 contains the mechanical properties obtained after applying several hot dip galvanising simulations on steel samples of compositions E and F. Looking at the data in table 6 and 8 (in particular E compared to B), it is clear that the tensile strength is even higher for the composition of the invention, as compared to the reference composition which has 600ppm more carbon and no intentionally added phosphor.
EP02447265A 2002-12-20 2002-12-20 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases Withdrawn EP1431406A1 (fr)

Priority Applications (16)

Application Number Priority Date Filing Date Title
EP02447265A EP1431406A1 (fr) 2002-12-20 2002-12-20 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases
JP2004560925A JP4856876B2 (ja) 2002-12-20 2003-11-06 冷間圧延多相鋼製品の製造のための鋼組成物
US10/539,758 US20060140814A1 (en) 2002-12-20 2003-11-06 Steel composition for the production of cold rolled multiphase steel products
AU2003283135A AU2003283135A1 (en) 2002-12-20 2003-11-06 A steel composition for the production of cold rolled multiphase steel products
PCT/BE2003/000188 WO2004057048A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits en acier a phases multiples lamine a froid
MXPA05006801A MXPA05006801A (es) 2002-12-20 2003-11-06 Composicion de acero para la produccion de productos de acero multifase laminados en frio.
BR0316905-7A BR0316905A (pt) 2002-12-20 2003-11-06 Composição de aço para a produção de produtos de aço multifase laminados a frio
EP10180139A EP2264207A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases
KR1020117024664A KR20110127283A (ko) 2002-12-20 2003-11-06 냉간압연 다상조직 스틸 제품의 제조를 위한 스틸 조성물
CNB2003801069574A CN100537813C (zh) 2002-12-20 2003-11-06 用于制备冷轧多相钢产品的钢组合物
CA002507378A CA2507378A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits en acier a phases multiples lamine a froid
EP03775002A EP1579020A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits en acier a phases multiples lamine a froid
KR1020057011585A KR20050094408A (ko) 2002-12-20 2003-11-06 냉간압연 다상조직 스틸 제품의 제조를 위한 스틸 조성물
RU2005123361/02A RU2328545C2 (ru) 2002-12-20 2003-11-06 Композиция стали для производства холоднокатаных изделий из многофазной стали
JP2011125041A JP2011231406A (ja) 2002-12-20 2011-06-03 冷間圧延多相鋼製品の製造のための鋼組成物
US13/243,295 US20120018058A1 (en) 2002-12-20 2011-09-23 Process for manufacturing a cold rolled trip steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02447265A EP1431406A1 (fr) 2002-12-20 2002-12-20 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases

Publications (1)

Publication Number Publication Date
EP1431406A1 true EP1431406A1 (fr) 2004-06-23

Family

ID=32338263

Family Applications (3)

Application Number Title Priority Date Filing Date
EP02447265A Withdrawn EP1431406A1 (fr) 2002-12-20 2002-12-20 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases
EP03775002A Withdrawn EP1579020A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits en acier a phases multiples lamine a froid
EP10180139A Withdrawn EP2264207A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP03775002A Withdrawn EP1579020A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits en acier a phases multiples lamine a froid
EP10180139A Withdrawn EP2264207A1 (fr) 2002-12-20 2003-11-06 Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases

Country Status (11)

Country Link
US (2) US20060140814A1 (fr)
EP (3) EP1431406A1 (fr)
JP (2) JP4856876B2 (fr)
KR (2) KR20050094408A (fr)
CN (1) CN100537813C (fr)
AU (1) AU2003283135A1 (fr)
BR (1) BR0316905A (fr)
CA (1) CA2507378A1 (fr)
MX (1) MXPA05006801A (fr)
RU (1) RU2328545C2 (fr)
WO (1) WO2004057048A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642990A1 (fr) * 2003-06-19 2006-04-05 Nippon Steel Corporation Plaque d'acier a haute resistance a excellente formabilite et procede de production correspondant
DE102006001628A1 (de) * 2006-01-11 2007-07-26 Thyssenkrupp Steel Ag Verzinktes walzhartes kaltgewalztes Flachprodukt und Verfahren zu seiner Herstellung
WO2008102009A1 (fr) * 2007-02-23 2008-08-28 Corus Staal Bv Feuillard d'acier à résistance élevée, laminé à froid et trempé en continu, et procédé de fabrication dudit feuillard
EP2098600A1 (fr) * 2008-02-19 2009-09-09 JFE Steel Corporation Feuille d'acier haute résistance ayant une ductilité supérieure, et son procédé de fabrication
EP2439290A1 (fr) * 2010-10-05 2012-04-11 ThyssenKrupp Steel Europe AG Acier à plusieurs phases, produit plat laminé à froid fabriqué à partir d'un tel acier à plusieurs phases et son procédé de fabrication
WO2012168564A1 (fr) * 2011-06-07 2012-12-13 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle
WO2016005061A1 (fr) * 2014-07-07 2016-01-14 Tata Steel Ijmuiden B.V. Bande d'acier douée d'une résistance élevée et d'une aptitude élevée au formage, portant un revêtement à base de zinc obtenu par immersion à chaud
EP3390040B1 (fr) 2015-12-15 2020-08-26 Tata Steel IJmuiden B.V. Bande d'acier galvanisé à chaud haute résistance
CN115181899A (zh) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法
DE102022104228A1 (de) 2022-02-23 2023-08-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts mit niedrigem Kohlenstoffgehalt

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431406A1 (fr) * 2002-12-20 2004-06-23 Sidmar N.V. Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases
PL1918403T3 (pl) * 2006-10-30 2009-10-30 Thyssenkrupp Steel Ag Sposób wytwarzania płaskich produktów stalowych ze stali tworzącej strukturę martenzytyczną
EP2209926B1 (fr) 2007-10-10 2019-08-07 Nucor Corporation Acier à structure métallographique complexe et son procédé de fabrication
CN101899619B (zh) * 2010-08-14 2012-04-25 武汉钢铁(集团)公司 高应变硬化指数的热镀锌高强钢及其生产方法
CN102321854A (zh) * 2011-09-21 2012-01-18 首钢总公司 一种trip钢及其生产方法
JP2013072108A (ja) * 2011-09-27 2013-04-22 Jfe Steel Corp 成形後の表面品質に優れる冷延鋼板及びその製造方法
RU2573455C2 (ru) * 2011-09-30 2016-01-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный, гальванизированный горячим способом стальной лист и способ его получения
FR2986598B1 (fr) * 2012-02-03 2015-03-27 Freudenberg Carl Kg Joint d'etancheite
US20140102604A1 (en) * 2012-10-11 2014-04-17 Thyssenkrupp Steel Usa, Llc Cold rolled recovery annealed mild steel and process for manufacture thereof
WO2015001367A1 (fr) * 2013-07-04 2015-01-08 Arcelormittal Investigación Y Desarrollo Sl Feuille d'acier laminée à froid, procédé de fabrication et véhicule
WO2016001701A1 (fr) 2014-07-03 2016-01-07 Arcelormittal Ligne de traitement polyvalent pour traitement thermique et plaquage par immersion à chaud d'une bande d'acier
RU2556445C1 (ru) * 2014-11-05 2015-07-10 Юлия Алексеевна Щепочкина Сталь
MX2018000328A (es) * 2015-07-13 2018-03-14 Nippon Steel & Sumitomo Metal Corp Lamina de acero, lamina de acero galvanizado por inmersion en caliente, lamina de acero galvanorecocido, y metodos de fabricacion para lo mismo.
KR102057946B1 (ko) 2015-07-13 2019-12-20 닛폰세이테츠 가부시키가이샤 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판, 그리고 그들의 제조 방법
EP3437750A1 (fr) 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Procédés de presse d'aciers revêtus
US10329639B2 (en) * 2017-08-04 2019-06-25 Gm Global Technology Operations Llc. Multilayer steel and method of reducing liquid metal embrittlement
WO2020071522A1 (fr) * 2018-10-04 2020-04-09 日本製鉄株式会社 Tôle d'acier laminée à froid
CN115181896B (zh) * 2021-04-02 2023-09-12 宝山钢铁股份有限公司 980MPa级低碳低合金热镀锌TRIP钢及快速热处理热镀锌制造方法
CN113549821A (zh) * 2021-06-29 2021-10-26 鞍钢股份有限公司 一种低屈强比高扩孔率800MPa级热轧酸洗复相钢及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252592A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板
EP0707087A1 (fr) * 1994-04-26 1996-04-17 Nippon Steel Corporation Feuille en acier haute resistance convenant a l'emboutissage profond et son procede de fabrication
JPH10219387A (ja) * 1997-02-04 1998-08-18 Sumitomo Metal Ind Ltd 加工性に優れた熱延高張力鋼板及びその製造方法
JPH11310828A (ja) * 1998-04-30 1999-11-09 Nippon Steel Corp 形状凍結性と成形性に優れた高張力複合組織熱延鋼板の製造方法
JPH11315328A (ja) * 1998-05-06 1999-11-16 Nippon Steel Corp 形状凍結性に優れた良加工性熱延高張力鋼板の製造方法
JP2000160278A (ja) * 1998-11-20 2000-06-13 Nippon Steel Corp 表面品質の良好な高張力熱延鋼板
EP1154028A1 (fr) * 2000-05-12 2001-11-14 Corus Staal BV Acier à plusieurs phases et procédé pour sa fabrication

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU43211A1 (fr) * 1962-04-24 1963-04-18
US4388122A (en) * 1980-08-11 1983-06-14 Kabushiki Kaisha Kobe Seiko Sho Method of making high strength hot rolled steel sheet having excellent flash butt weldability, fatigue characteristic and formability
JPS59211591A (ja) * 1983-05-14 1984-11-30 Kawasaki Steel Corp 耐食性などに優れたZn−Fe−P系合金電気めつき鋼板
EP0559225B1 (fr) * 1992-03-06 1999-02-10 Kawasaki Steel Corporation Fabrication d'une tÔle d'acier résistant à la traction et ayant une déformabilité de bordage par étirage excellente
JPH05295433A (ja) * 1992-04-20 1993-11-09 Sumitomo Metal Ind Ltd 溶融亜鉛メッキ高張力熱延鋼板の製造方法
US5470529A (en) 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
DE19610675C1 (de) 1996-03-19 1997-02-13 Thyssen Stahl Ag Mehrphasenstahl und Verfahren zu seiner Herstellung
JP3530353B2 (ja) * 1997-09-24 2004-05-24 新日本製鐵株式会社 高い動的変形抵抗を有する衝突時衝撃吸収用高強度冷延鋼板とその製造方法
JP3530356B2 (ja) * 1997-09-24 2004-05-24 新日本製鐵株式会社 高い動的変形抵抗を有する衝突時衝撃吸収用良加工性高強度冷延鋼板とその製造方法
JP3320014B2 (ja) 1997-06-16 2002-09-03 川崎製鉄株式会社 耐衝撃特性に優れた高強度高加工性冷延鋼板
JP3619357B2 (ja) * 1997-12-26 2005-02-09 新日本製鐵株式会社 高い動的変形抵抗を有する高強度鋼板とその製造方法
AU3987400A (en) 1999-04-21 2000-11-10 Kawasaki Steel Corporation High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
KR100441414B1 (ko) * 2000-04-21 2004-07-23 신닛뽄세이테쯔 카부시키카이샤 버링 가공성이 우수한 고피로강도 강판 및 그의 제조방법
JP3661559B2 (ja) * 2000-04-25 2005-06-15 住友金属工業株式会社 加工性とめっき密着性に優れた合金化溶融亜鉛めっき高張力鋼板とその製造方法
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
DE60114139T2 (de) * 2000-06-07 2006-07-20 Nippon Steel Corp. Stahlrohr mit hoher verformbarkeit und herstellungsverfahren dafür
JP4414563B2 (ja) * 2000-06-12 2010-02-10 新日本製鐵株式会社 成形性並びに穴拡げ性に優れた高強度鋼板およびその製造方法
JP3542946B2 (ja) 2000-06-29 2004-07-14 新日本製鐵株式会社 加工性及びめっき密着性に優れた高強度鋼板及びその製造方法
EP1288322A1 (fr) * 2001-08-29 2003-03-05 Sidmar N.V. Acier à tres haute résistance mécanique, procédé pour la production de cet acier et le produit obtenu
JP3828466B2 (ja) * 2002-07-29 2006-10-04 株式会社神戸製鋼所 曲げ特性に優れた鋼板
EP1431406A1 (fr) * 2002-12-20 2004-06-23 Sidmar N.V. Composition d'acier pour la production de produits laminés à froid en acier à plusieurs phases

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252592A (ja) * 1994-03-15 1995-10-03 Nippon Steel Corp 成形性、低温靭性及び疲労特性に優れた熱延高強度鋼板
EP0707087A1 (fr) * 1994-04-26 1996-04-17 Nippon Steel Corporation Feuille en acier haute resistance convenant a l'emboutissage profond et son procede de fabrication
JPH10219387A (ja) * 1997-02-04 1998-08-18 Sumitomo Metal Ind Ltd 加工性に優れた熱延高張力鋼板及びその製造方法
JPH11310828A (ja) * 1998-04-30 1999-11-09 Nippon Steel Corp 形状凍結性と成形性に優れた高張力複合組織熱延鋼板の製造方法
JPH11315328A (ja) * 1998-05-06 1999-11-16 Nippon Steel Corp 形状凍結性に優れた良加工性熱延高張力鋼板の製造方法
JP2000160278A (ja) * 1998-11-20 2000-06-13 Nippon Steel Corp 表面品質の良好な高張力熱延鋼板
EP1154028A1 (fr) * 2000-05-12 2001-11-14 Corus Staal BV Acier à plusieurs phases et procédé pour sa fabrication

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 02 29 February 1996 (1996-02-29) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02 29 February 2000 (2000-02-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 09 13 October 2000 (2000-10-13) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8262818B2 (en) 2003-06-19 2012-09-11 Nippon Steel Corporation Method for producing high strength steel sheet excellent in formability
EP1642990A4 (fr) * 2003-06-19 2006-11-29 Nippon Steel Corp Plaque d'acier a haute resistance a excellente formabilite et procede de production correspondant
EP1642990A1 (fr) * 2003-06-19 2006-04-05 Nippon Steel Corporation Plaque d'acier a haute resistance a excellente formabilite et procede de production correspondant
US7922835B2 (en) 2003-06-19 2011-04-12 Nippon Steel Corporation High strength steel sheet excellent in formability
DE102006001628A1 (de) * 2006-01-11 2007-07-26 Thyssenkrupp Steel Ag Verzinktes walzhartes kaltgewalztes Flachprodukt und Verfahren zu seiner Herstellung
WO2008102009A1 (fr) * 2007-02-23 2008-08-28 Corus Staal Bv Feuillard d'acier à résistance élevée, laminé à froid et trempé en continu, et procédé de fabrication dudit feuillard
EP3421634A1 (fr) * 2007-02-23 2019-01-02 Tata Steel IJmuiden B.V. Bande d'acier haute résistance laminée à froid recuite en continu et procédé pour fabriquer ledit acier
RU2464338C2 (ru) * 2007-02-23 2012-10-20 Тата Стил Эймейден Б.В. Холоднокатаная и полученная с непрерывным отжигом полоса высокопрочной стали и способ производства упомянутой стали
US7919194B2 (en) 2008-02-19 2011-04-05 Jfe Steel Corporation High strength steel sheet having superior ductility
EP2098600A1 (fr) * 2008-02-19 2009-09-09 JFE Steel Corporation Feuille d'acier haute résistance ayant une ductilité supérieure, et son procédé de fabrication
US9970088B2 (en) 2010-10-05 2018-05-15 Thyssenkrupp Steel Europe Ag Multi-phase steel, cold-rolled flat product produced from such a multi-phase steel and method for producing it
EP2439290A1 (fr) * 2010-10-05 2012-04-11 ThyssenKrupp Steel Europe AG Acier à plusieurs phases, produit plat laminé à froid fabriqué à partir d'un tel acier à plusieurs phases et son procédé de fabrication
WO2012045595A1 (fr) * 2010-10-05 2012-04-12 Thyssenkrupp Steel Europe Ag Acier multiphases, produit plat laminé à froid fabriqué à partir d'un tel acier multiphases et procédé de fabrication dudit produit plat
WO2012168567A1 (fr) * 2011-06-07 2012-12-13 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procede de fabrication et utilisation d'une telle tôle
RU2579320C2 (ru) * 2011-06-07 2016-04-10 Арселормитталь Инвестигасьон И Десарролло Сл Холоднокатаный стальной лист с покрытием из цинка или цинкового сплава, способ его производства и применение такого стального листа
WO2012168564A1 (fr) * 2011-06-07 2012-12-13 Arcelormittal Investigación Y Desarrollo Sl Tôle d'acier laminée à froid et revêtue de zinc ou d'alliage de zinc, procédé de fabrication et utilisation d'une telle tôle
WO2016005061A1 (fr) * 2014-07-07 2016-01-14 Tata Steel Ijmuiden B.V. Bande d'acier douée d'une résistance élevée et d'une aptitude élevée au formage, portant un revêtement à base de zinc obtenu par immersion à chaud
US10577682B2 (en) 2014-07-07 2020-03-03 Tata Steel Ijmuiden B.V. Steel strip having high strength and high formability, the steel strip having a hot dip zinc based coating
EP3390040B1 (fr) 2015-12-15 2020-08-26 Tata Steel IJmuiden B.V. Bande d'acier galvanisé à chaud haute résistance
EP3390040B2 (fr) 2015-12-15 2023-08-30 Tata Steel IJmuiden B.V. Bande d'acier galvanisé à chaud haute résistance
CN115181899A (zh) * 2021-04-02 2022-10-14 宝山钢铁股份有限公司 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法
CN115181899B (zh) * 2021-04-02 2023-07-07 宝山钢铁股份有限公司 980MPa级别低碳低合金TRIP钢及其快速热处理制造方法
DE102022104228A1 (de) 2022-02-23 2023-08-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts mit niedrigem Kohlenstoffgehalt

Also Published As

Publication number Publication date
BR0316905A (pt) 2005-10-18
KR20110127283A (ko) 2011-11-24
US20120018058A1 (en) 2012-01-26
RU2005123361A (ru) 2006-01-20
CN1729307A (zh) 2006-02-01
CA2507378A1 (fr) 2004-07-08
CN100537813C (zh) 2009-09-09
AU2003283135A1 (en) 2004-07-14
US20060140814A1 (en) 2006-06-29
MXPA05006801A (es) 2006-02-17
RU2328545C2 (ru) 2008-07-10
JP2011231406A (ja) 2011-11-17
EP1579020A1 (fr) 2005-09-28
JP2006510802A (ja) 2006-03-30
EP2264207A1 (fr) 2010-12-22
JP4856876B2 (ja) 2012-01-18
WO2004057048A1 (fr) 2004-07-08
KR20050094408A (ko) 2005-09-27

Similar Documents

Publication Publication Date Title
US20120018058A1 (en) Process for manufacturing a cold rolled trip steel product
EP1979500B1 (fr) Bandes d'acier a forte teneur en manganese qui presentent une excellente aptitude au revetement et des proprietes de surface superieures, bandes d'acier revetues utilisant ces bandes d'acier et procede de fabrication de celles-ci
US8715427B2 (en) Ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
KR102196079B1 (ko) 실리콘을 함유하는 750 MPa의 최소 인장 강도 및 개선된 특성을 갖는 마이크로-합금된 고강도 다상 강 및 상기 강으로부터 스트립을 제조하기 위한 방법
US10640855B2 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
US10626478B2 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
US20130118647A1 (en) Method of producing an austenitic steel
US20180044759A1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
CN111684084A (zh) 高强度热轧或冷轧并退火的钢及其生产方法
JP3498504B2 (ja) 高延性型高張力冷延鋼板と亜鉛メッキ鋼板
CA2624390C (fr) Tole d'acier laminee a froid, ayant une durcissabilite excellente au cours de la cuisson du revetement et une resistance tout aussi bonne au vieillissement a la temperature ambiante et methode de production connexe
US20200392596A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
CN111247258B (zh) 高强度多相钢和用于由这种多相钢制造钢带的方法
US20220033925A1 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
EP4114994B1 (fr) Tôle d'acier laminée à froid à résistance élevée et recuite après galvanisation et son procédé de fabrication
JP2007063604A (ja) 伸びと穴拡げ性に優れた溶融亜鉛めっき高強度鋼板およびその製造方法
JP3473480B2 (ja) 強度と延性に優れる溶融亜鉛めっき鋼板およびその製造方法
KR101489243B1 (ko) 가공성 및 도금밀착성이 우수한 고강도 합금화 용융 아연도금강판 및 그 제조방법
JP3908964B2 (ja) 成形性に優れた溶融亜鉛メッキ高強度鋼板およびその製造方法
JPH06145893A (ja) 延性と耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2002317245A (ja) プレス加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
KR20220139882A (ko) 고플랜지성 초고강도 연성 열간압연 강, 열간압연 강 제조방법 및 그 용도

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041224