EP1428600A1 - Pulverulent material for abradable seal - Google Patents

Pulverulent material for abradable seal Download PDF

Info

Publication number
EP1428600A1
EP1428600A1 EP03292937A EP03292937A EP1428600A1 EP 1428600 A1 EP1428600 A1 EP 1428600A1 EP 03292937 A EP03292937 A EP 03292937A EP 03292937 A EP03292937 A EP 03292937A EP 1428600 A1 EP1428600 A1 EP 1428600A1
Authority
EP
European Patent Office
Prior art keywords
powder
material according
metallic powder
total weight
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03292937A
Other languages
German (de)
French (fr)
Other versions
EP1428600B1 (en
Inventor
Philippe Le Biez
Philippe Perruchaut
Karim Larabi
Pierre Bertrand
Christian Coddet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA filed Critical SNECMA Moteurs SA
Publication of EP1428600A1 publication Critical patent/EP1428600A1/en
Application granted granted Critical
Publication of EP1428600B1 publication Critical patent/EP1428600B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/251Mica

Definitions

  • the present invention relates to the general field of powdery materials for the formation of seals abradable. It finds its application in particular in the field of turbomachinery.
  • abradable seals Materials with an abradability property are commonly used in many applications, including the formation of seals.
  • the abradable seals are in particular used at the rotary parts of a turbomachine, such as compressors, to reduce air or gas leaks could affect the performance of the turbomachine.
  • a turbomachine compressor consists of a plurality vanes fixed on a shaft which is mounted in a fixed ring. In operating, the shaft and the vanes rotate inside the ring compressor.
  • the internal surface of the ring of compressor is usually covered with a material coating abradable and the compressor shaft is mounted in the ring compressor so that the top of the blades is closest possible abradable coating.
  • abradable coating is therefore to form a seal between the fixed parts and the moving parts of the compressors of a turbomachine.
  • the seal made of abradable material provides reduced clearance without damaging the parts of the rotor coming into contact.
  • Interference between the fixed parts and mobile compressors are mainly due to expansions differential of fixed and moving parts during transient compressor operation. Creep phenomena of the blades, unbalance and vibration can also cause such interference.
  • silicon-based materials have satisfactory abradability and erosion characteristics but their use at high temperatures is limited.
  • the pulverulent material described in US patent 5,434,210 This material is limited to an operating temperature of approximately 400 ° C. Above of this temperature, the metallic matrix of this material shrinks and densifies which can cause wear on the top of the vanes opposite.
  • materials based on chromium and nickel are relatively stable and resistant to high temperature but have too low abradability and erosion characteristics, in particular when placed next to alloy compressor blades uncoated titanium.
  • a NiCrAl alloy although having a good temperature behavior, is relatively hard and thus causes excessive wear on the blades.
  • the present invention therefore relates to a pulverulent material intended for the formation of an abradable coating for seals that meet the criteria listed above.
  • Another object of the invention is to form a coating abradable which exhibits satisfactory behavior for applications to temperatures up to 550 ° C.
  • Yet another object of the invention is to provide a joint abradable seal usable in front of blades or wipers titanium alloy without the need for a protective coating at the top of these.
  • a powder material for the formation of an abradable coating, characterized in that it comprises a metallic powder mainly based on aluminum and containing manganese or calcium.
  • thermo properties of this new pulverulent material are superior to those of the materials currently used for the formation of abradable seals.
  • the applicant has in fact noticed that the temperature of the eutectic bearing of an AlMn or AlCa alloy is sufficiently high compared to that of an AlSi alloy for example, so that it can reach temperatures of around 550 ° C without transformation or degradation of the material.
  • an organic powder is added in order increase the porosity of the coating obtained, promote abradability during contact between fixed and mobile parts and allow the elevation coating temperature.
  • a solid ceramic lubricating powder advantageously provides inter-lamellar decohesion sufficient not to generate overheating at the blades during of contacts between fixed and mobile parts.
  • the powdery material obtained thus meets the criteria mentioned above. It is perfectly suited the formation of an abradable coating, especially for seals for sealing the compressors of a turbomachine.
  • the ceramic powder comprises one of the following components: boron nitride, molybdenum disulfide, graphite, talc, bentonite, and mica
  • the organic powder includes one of following components: polyester, polymethylmethacrylate, and polyimide.
  • the metal powder represents between 65% and 95%, the ceramic powder between 3% and 20% and the organic powder between 5% and 20% of the total weight of the material.
  • the metal powder may further comprise one or several of the following additional elements: chromium, molybdenum, nickel, silicon and iron.
  • Manganese or calcium forming the metal powder advantageously represents between 5% and 20% and the element (s) additional represent at most 10% of the weight of the metal powder.
  • the powder metallic is an AlMn5 alloy
  • the ceramic powder is nitride of hexagonal boron
  • the organic powder is polyester.
  • the pulverulent material according to the invention is intended to form a abradable material such as a coating for gaskets of compressors or turbine rings for example.
  • the powder material consists essentially of a metallic powder in an alloy mainly based on aluminum.
  • the second main metallic element of this alloy can be manganese or calcium, up to 5% to 20% by weight of the metallic powder.
  • the metal powder (of the AlMn or AlCa type) can also include one or more of the additional metallic elements following: chromium, molybdenum, nickel, silicon and iron.
  • the amount of each of these additional elements does not exceed 5% of the weight of the metal powder, and the cumulative amount of these elements no more than 10% of the same weight.
  • the pulverulent material further comprises a organic powder comprising one or more of the following components: polyester, polymethylmethacrylate, and polyimide. It can also be composed of any other polymer type material, for example polyethylene, polyvinyl acetate or polyaramide.
  • a ceramic powder can advantageously be added. It includes one or more of the components chosen from the following group of solid ceramic lubricants: boron nitride, molybdenum disulfide, graphite, talc, bentonite, and mica. She can also be composed of other laminated materials based on silicates such as kaolin and other clays.
  • the metallic, lubricating and organic powders thus prepared are preferably mixed in the following proportions: the powder metal represents between 65% and 90% of the total weight of the material, the ceramic powder varies between 5% and 20% and the organic powder between 5% and 15%.
  • the mixing of the powders can be carried out mechanically. This process consists in mechanically mixing the different components and, thanks to the compression and shear forces generated by the mixer, to obtain agglomerates constituted by each of the initial components.
  • the mixture can also be obtained by a other process such as agglomeration-drying or fusion-grinding.
  • the pulverulent material is composed of a metal powder made of aluminum alloy and manganese (AlMn5), a ceramic powder made of hexagonal boron nitride (hBN) and an organic polyester powder (PE).
  • AlMn5 represents approximately 75% of the total weight of the material
  • nitride of hexagonal boron represents about 15% of the total weight
  • the polyester represents about 10% of the total weight of the material.
  • the pulverulent material thus obtained is intended to be pulverized thermally using known techniques (plasma or flame for example) to form an abradable coating.
  • a pulverulent mixture intended for thermal spraying was prepared by mechanically mixing 75% by weight of an AlMn5 powder with 10% by weight of PE and 15% by weight of hBN. A nickel-based substrate was coated with a NiAl5 sublayer. The powder thus obtained was then sprayed by plasma on this substrate.
  • the spraying parameters used during this test are grouped in the following table: Plasma gas Argon Hydrogen Flow rates (L / min) 50-70 2,5-5 Pressure (kPa) 100-150 120-170 Intensity (A) 500 Voltage (V) 31 Projection distance 130 mm
  • the parameters of the injector used are as follows: Nozzle diameter 6 mm Injector size 2 mm Injector angle 90 degree Movement speed 1600 mm / s Scan interval 5.5mm
  • the coating obtained after this spraying forms a abradable coating which has a thickness of approximately 3 mm.
  • the coating hardness was measured using the indentation scale R15Y from Rockwell which indicates the hardness of a coating. In the case present, the coating tested has an R15Y indentation value of around 70.
  • the substrate sample thus coated then underwent a step sublimation at 500 ° C for four hours. At the end of this sublimation, the coating has an R15Y indentation value of around 60.
  • the coating was evaluated on an abradability bench against uncoated titanium alloy vanes.
  • the usability of this seal was measured under the following test conditions: Test temperature Ambient temperature Number of blades 3 Blade thickness 0.8mm Speed of blade tips 200 m / s Incursion speed 0.15 mm / s Penetration 0.5mm
  • the abradable seal as well obtained has good properties of resistance to erosion compared to at the classic joint in Table II. It is capable of wear by contact with blades of metal alloys, in particular of non-titanium alloys coated, without causing wear of the latter. Stability metallurgical of this seal still allows it to withstand high temperatures of the order of 550 ° C, unlike the seal classic of table II which cannot withstand temperatures too high.

Abstract

Pulverulent material comprises mainly aluminum and contains manganese or calcium. 5-20 weight % of the metallic powder comprises manganese or calcium. The material additionally contains 5-15 weight % organic powder and 5-20 weight % ceramic powder. The material may contain one or more additional metallic elements selected from chromium, molybdenum, nickel, silicon and iron and representing at most 10 wt.% of the weight of the metallic powder. The metallic powder represents 65-90 wt% of the material.

Description

La présente invention se rapporte au domaine général des matériaux pulvérulents destinés à la formation de joints d'étanchéité abradables. Elle trouve son application notamment dans le domaine des turbomachines.The present invention relates to the general field of powdery materials for the formation of seals abradable. It finds its application in particular in the field of turbomachinery.

Les matériaux ayant une propriété d'abradabilité sont couramment utilisés dans de nombreuses applications, et notamment pour la formation de joints d'étanchéité. Les joints d'étanchéité abradables sont en particulier utilisés au niveau des parties rotatives d'une turbomachine, telles que les compresseurs, afin de réduire les fuites d'air ou de gaz pouvant affecter le rendement de la turbomachine.Materials with an abradability property are commonly used in many applications, including the formation of seals. The abradable seals are in particular used at the rotary parts of a turbomachine, such as compressors, to reduce air or gas leaks could affect the performance of the turbomachine.

Un compresseur de turbomachine consiste en une pluralité d'aubes fixées sur un arbre qui est monté dans un anneau fixe. En fonctionnement, l'arbre et les aubes tournent à l'intérieur de l'anneau de compresseur.A turbomachine compressor consists of a plurality vanes fixed on a shaft which is mounted in a fixed ring. In operating, the shaft and the vanes rotate inside the ring compressor.

Pour garantir un rendement efficace de la turbomachine, il est important de réduire le plus possible les fuites d'air et de gaz dans les sections de compression de la turbomachine. Cette réduction des fuites s'obtient en minimisant le jeu existant d'une part entre le sommet des aubes et la surface interne de l'anneau de compresseur et d'autre part entre les viroles inter-disques et la surface externe du redresseur. Cependant, la dilatation thermique et centrifuge des aubes des compresseurs rend difficile l'obtention de faibles jeux entre le sommet des aubes et la surface interne de l'anneau de compresseur.To guarantee an efficient performance of the turbomachine, it is important to minimize air and gas leaks in the compression sections of the turbomachine. This reduction in leaks is obtained by minimizing the play existing on the one hand between the top of the blades and the inner surface of the compressor ring and secondly between the inter-disc ferrules and the external surface of the rectifier. However, the thermal and centrifugal expansion of the blades of the compressors makes it difficult to obtain small clearances between the top of blades and the internal surface of the compressor ring.

Dans ces conditions, la surface interne de l'anneau de compresseur est généralement recouverte d'un revêtement en matériau abradable et l'arbre du compresseur est monté dans l'anneau de compresseur de sorte que le sommet des aubes soit le plus proche possible du revêtement abradable. Le rôle d'un tel revêtement abradable est donc de former un joint d'étanchéité entre les parties fixes et les parties mobiles des compresseurs d'une turbomachine. Under these conditions, the internal surface of the ring of compressor is usually covered with a material coating abradable and the compressor shaft is mounted in the ring compressor so that the top of the blades is closest possible abradable coating. The role of such an abradable coating is therefore to form a seal between the fixed parts and the moving parts of the compressors of a turbomachine.

En effet, dans le cas de contacts entre les parties fixes et mobiles du compresseur, le joint d'étanchéité en matériau abradable permet d'obtenir un jeu réduit sans pour autant détériorer les pièces du rotor entrant en contact. Les interférences entre les parties fixes et mobiles des compresseurs sont dues essentiellement aux dilatations différentielles des parties fixes et mobiles lors de régimes transitoires de fonctionnement des compresseurs. Des phénomènes de fluage des aubes, de balourd et de vibration peuvent également engendrer de telles interférences.Indeed, in the case of contacts between the fixed parts and moving parts of the compressor, the seal made of abradable material provides reduced clearance without damaging the parts of the rotor coming into contact. Interference between the fixed parts and mobile compressors are mainly due to expansions differential of fixed and moving parts during transient compressor operation. Creep phenomena of the blades, unbalance and vibration can also cause such interference.

Dans ces situations d'interférences, il est important que les joints d'étanchéité répondent aux critères suivants :

  • le sommet des aubes ne doit pas subir d'usure trop importante. En effet, bien qu'une faible usure soit tolérée, il est préférable, lors d'un contact, que ce soit le joint d'étanchéité qui soit endommagé ;
  • les contacts entre le sommet des aubes et les joints ne doivent pas engendrer d'échauffement des aubes, notamment dans le cas d'aubes en alliage de titane pour lesquelles de tels échauffements peuvent conduire à un début de feu ;
  • les joints d'étanchéité doivent résister à l'érosion provoquée par le flux gazeux circulant dans la veine du compresseur ;
  • les joints d'étanchéité doivent également conserver les propriétés d'abradabilité dans un environnement oxydant et corrosif. En effet, l'élévation de la température dans les compresseurs provoque une oxydation et les gaz de combustion de la turbomachine ainsi que l'air extérieur engendrent une corrosion de l'environnement ;
  • en cas d'usure des joints d'étanchéité, les résidus ne doivent pas provoquer l'obstruction des orifices destinés au refroidissement des compresseurs ;
  • enfin, le matériau abradable formant les joints d'étanchéité doit résister aux fortes températures sans présenter de modifications telles que le durcissement, la fragilisation et la décohésion qui pourraient dégrader ses capacités d'abradabilité. Le matériau abradable doit en effet être capable de supporter les différents cycles de fonctionnement de la turbomachine sans se dégrader.
In these interference situations, it is important that the seals meet the following criteria:
  • the top of the blades must not be subject to excessive wear. Indeed, although a slight wear is tolerated, it is preferable, during a contact, that it is the seal which is damaged;
  • the contacts between the tips of the blades and the seals must not cause the blades to heat up, in particular in the case of titanium alloy blades for which such heating can lead to the start of fire;
  • the seals must resist erosion caused by the gas flow circulating in the vein of the compressor;
  • the seals must also retain the abradability properties in an oxidizing and corrosive environment. Indeed, the rise in temperature in the compressors causes oxidation and the combustion gases of the turbomachine as well as the outside air cause corrosion of the environment;
  • in the event of wear of the seals, the residues must not cause the orifices intended for the cooling of the compressors to be blocked;
  • finally, the abradable material forming the seals must resist high temperatures without presenting modifications such as hardening, embrittlement and decohesion which could degrade its abradability capacities. The abradable material must in fact be capable of withstanding the various operating cycles of the turbomachine without degrading.

De nombreux matériaux pulvérulents destinés à la formation de joints d'étanchéité abradables ont été proposés. Ces différents matériaux peuvent se classer principalement en deux catégories : les matériaux ayant une poudre métallique à base de silicium (par exemple, un matériau comprenant un alliage AlSi et une poudre organique) et les matériaux ayant une poudre métallique à base de chrome et de nickel (par exemple, un matériau contenant un alliage en NiCrAl et une poudre céramique, organique ou argile). Ces matériaux abradables présentent toutefois des inconvénients selon la catégorie à laquelle ils appartiennent.Many pulverulent materials intended for the formation of Abradable seals have been proposed. These different materials can be classified mainly into two categories: materials having a metallic powder based on silicon (for example, a material including an AlSi alloy and an organic powder) and the materials having a metallic powder based on chromium and nickel (for example, a material containing an alloy of NiCrAl and a ceramic powder, organic or clay). These abradable materials, however, have disadvantages depending on the category to which they belong.

En effet, les matériaux à base de silicium possèdent des caractéristiques d'abradabilité et d'érosion satisfaisantes mais leur utilisation à des températures élevées est limitée. On connaít, par exemple, le matériau pulvérulent décrit dans le brevet US 5,434,210. Ce matériau est limité à une température d'utilisation de 400°C environ. Au-dessus de cette température, la matrice métallique de ce matériau se rétracte et se densifie ce qui peut entraíner des usures sur le sommet des aubes en vis-à-vis.Indeed, silicon-based materials have satisfactory abradability and erosion characteristics but their use at high temperatures is limited. We know, by example, the pulverulent material described in US patent 5,434,210. This material is limited to an operating temperature of approximately 400 ° C. Above of this temperature, the metallic matrix of this material shrinks and densifies which can cause wear on the top of the vanes opposite.

Quant aux matériaux à base de chrome et de nickel, ils sont relativement stables et résistants à haute température mais présentent de trop faibles caractéristiques d'abradabilité et d'érosion, notamment lorsqu'ils sont déposés en regard d'aubes de compresseur en alliage de titane non revêtues. Par exemple, un alliage NiCrAl, bien qu'ayant un bon comportement en température, est relativement dur et provoque ainsi des usures trop importantes des aubes.As for materials based on chromium and nickel, they are relatively stable and resistant to high temperature but have too low abradability and erosion characteristics, in particular when placed next to alloy compressor blades uncoated titanium. For example, a NiCrAl alloy, although having a good temperature behavior, is relatively hard and thus causes excessive wear on the blades.

Pour pallier un tel inconvénient, il est possible d'avoir recours à un revêtement protecteur au sommet des aubes. Cependant, l'utilisation d'un tel revêtement est particulièrement coûteuse.To overcome such a drawback, it is possible to have recourse to a protective coating at the top of the blades. However, the use such a coating is particularly expensive.

Objet et résumé de l'inventionSubject and summary of the invention

La présente invention a donc pour objet un matériau pulvérulent destiné à la formation d'un revêtement abradable pour joints d'étanchéité qui répondent aux critères énumérés ci-dessus.The present invention therefore relates to a pulverulent material intended for the formation of an abradable coating for seals that meet the criteria listed above.

Un autre objet de l'invention est de former un revêtement abradable qui présente une tenue satisfaisante pour des applications à des températures pouvant atteindre 550°C. Another object of the invention is to form a coating abradable which exhibits satisfactory behavior for applications to temperatures up to 550 ° C.

Encore un autre objet de l'invention est de réaliser un joint d'étanchéité abradable utilisable face à des aubes ou des léchettes en alliage de titane sans avoir recours à un revêtement protecteur au sommet de celles-ci.Yet another object of the invention is to provide a joint abradable seal usable in front of blades or wipers titanium alloy without the need for a protective coating at the top of these.

A cet effet, il est prévu un matériau pulvérulent destiné à la formation d'un revêtement abradable, caractérisé en ce qu'il comprend une poudre métallique majoritairement à base d'aluminium et contenant du manganèse ou du calcium.For this purpose, a powder material is provided for the formation of an abradable coating, characterized in that it comprises a metallic powder mainly based on aluminum and containing manganese or calcium.

Les propriétés thermiques de ce nouveau matériau pulvérulent sont supérieures à celles des matériaux actuellement utilisés pour la formation de joints abradables. La déposante a en effet remarqué que la température du palier eutectique d'un alliage AlMn ou AlCa est suffisamment élevée comparée à celle d'un alliage AlSi par exemple, de sorte qu'elle permet d'atteindre des températures de l'ordre de 550°C sans transformation ni dégradation du matériau.The thermal properties of this new pulverulent material are superior to those of the materials currently used for the formation of abradable seals. The applicant has in fact noticed that the temperature of the eutectic bearing of an AlMn or AlCa alloy is sufficiently high compared to that of an AlSi alloy for example, so that it can reach temperatures of around 550 ° C without transformation or degradation of the material.

Avantageusement, une poudre organique est ajoutée afin d'augmenter la porosité du revêtement obtenu, de favoriser l'abradabilité lors de contacts entre parties fixes et mobiles et de permettre l'élévation en température du revêtement.Advantageously, an organic powder is added in order increase the porosity of the coating obtained, promote abradability during contact between fixed and mobile parts and allow the elevation coating temperature.

De plus, l'ajout d'une poudre lubrifiante en céramique solide permet avantageusement d'obtenir une décohésion inter-lamellaire suffisante pour ne pas générer d'échauffement au niveau des aubes lors de contacts entre parties fixes et mobiles. Le matériau pulvérulent obtenu répond ainsi aux critères mentionnés ci-dessus. Il est parfaitement adapté à la formation d'un revêtement abradable, notamment pour les joints d'étanchéité des compresseurs d'une turbomachine.In addition, the addition of a solid ceramic lubricating powder advantageously provides inter-lamellar decohesion sufficient not to generate overheating at the blades during of contacts between fixed and mobile parts. The powdery material obtained thus meets the criteria mentioned above. It is perfectly suited the formation of an abradable coating, especially for seals for sealing the compressors of a turbomachine.

Avantageusement, la poudre céramique comprend l'un des composants suivants : nitrure de bore, disulfure de molybdène, graphite, talc, bentonite, et mica, et la poudre organique comprend l'un des composants suivants : polyester, polyméthylméthacrylate, et polyimide.Advantageously, the ceramic powder comprises one of the following components: boron nitride, molybdenum disulfide, graphite, talc, bentonite, and mica, and the organic powder includes one of following components: polyester, polymethylmethacrylate, and polyimide.

De préférence, la poudre métallique représente entre 65% et 95%, la poudre céramique entre 3% et 20% et la poudre organique entre 5% et 20% du poids total du matériau.Preferably, the metal powder represents between 65% and 95%, the ceramic powder between 3% and 20% and the organic powder between 5% and 20% of the total weight of the material.

La poudre métallique peut comprendre en outre l'un ou plusieurs des éléments additionnels suivants : chrome, molybdène, nickel, silicium et fer. Le manganèse ou le calcium formant la poudre métallique représente avantageusement entre 5% et 20% et le ou les éléments additionnels représentent au plus 10% du poids de la poudre métallique.The metal powder may further comprise one or several of the following additional elements: chromium, molybdenum, nickel, silicon and iron. Manganese or calcium forming the metal powder advantageously represents between 5% and 20% and the element (s) additional represent at most 10% of the weight of the metal powder.

Dans un mode préféré de réalisation de l'invention, la poudre métallique est un alliage AlMn5, la poudre céramique est du nitrure de bore hexagonal et la poudre organique est du polyester.In a preferred embodiment of the invention, the powder metallic is an AlMn5 alloy, the ceramic powder is nitride of hexagonal boron and the organic powder is polyester.

Description détaillée d'un mode de réalisationDetailed description of an embodiment

Le matériau pulvérulent selon l'invention est destiné à former un matériau abradable tel qu'un revêtement pour joints d'étanchéité de compresseurs ou d'anneaux de turbine par exemple.The pulverulent material according to the invention is intended to form a abradable material such as a coating for gaskets of compressors or turbine rings for example.

Le matériau pulvérulent se compose essentiellement d'une poudre métallique en alliage majoritairement à base d'aluminium.The powder material consists essentially of a metallic powder in an alloy mainly based on aluminum.

Le deuxième élément métallique principal de cet alliage peut être du manganèse ou du calcium, à hauteur de 5% à 20% en poids de la poudre métallique.The second main metallic element of this alloy can be manganese or calcium, up to 5% to 20% by weight of the metallic powder.

La poudre métallique (de type AlMn ou AlCa) peut en outre comporter un ou plusieurs des éléments métalliques additionnels suivants : chrome, molybdène, nickel, silicium et fer. La quantité individuelle de chacun de ces éléments additionnels n'excède pas 5% du poids de la poudre métallique, et la quantité cumulée de ces éléments additionnels ne dépasse pas 10% de ce même poids.The metal powder (of the AlMn or AlCa type) can also include one or more of the additional metallic elements following: chromium, molybdenum, nickel, silicon and iron. The amount of each of these additional elements does not exceed 5% of the weight of the metal powder, and the cumulative amount of these elements no more than 10% of the same weight.

De préférence, le matériau pulvérulent comporte en outre une poudre organique comprenant l'un ou plusieurs des composants suivants : polyester, polyméthylméthacrylate, et polyimide. Elle peut également être composée de tout autre matériau de type polymère, par exemple du polyéthylène, du polyacétate de vinyle ou du polyaramide.Preferably, the pulverulent material further comprises a organic powder comprising one or more of the following components: polyester, polymethylmethacrylate, and polyimide. It can also be composed of any other polymer type material, for example polyethylene, polyvinyl acetate or polyaramide.

De plus, une poudre céramique peut être avantageusement ajoutée. Elle comprend l'un ou plusieurs des composants choisis dans le groupe des lubrifiants céramiques solides suivant : nitrure de bore, disulfure de molybdène, graphite, talc, bentonite, et mica. Elle peut également être composée d'autres matériaux stratifiés à base de silicates comme par exemple du kaolin et d'autres argiles.In addition, a ceramic powder can advantageously be added. It includes one or more of the components chosen from the following group of solid ceramic lubricants: boron nitride, molybdenum disulfide, graphite, talc, bentonite, and mica. She can also be composed of other laminated materials based on silicates such as kaolin and other clays.

Les poudres métallique, lubrifiante et organique ainsi préparées sont mélangées de préférence dans les proportions suivantes : la poudre métallique représente entre 65% et 90% du poids total du matériau, la poudre céramique varie entre 5% et 20% et la poudre organique entre 5% et 15%.The metallic, lubricating and organic powders thus prepared are preferably mixed in the following proportions: the powder metal represents between 65% and 90% of the total weight of the material, the ceramic powder varies between 5% and 20% and the organic powder between 5% and 15%.

Le mélange des poudres peut être réalisé mécaniquement. Ce procédé consiste à mélanger mécaniquement les différents composants et, grâce aux forces de compression et de cisaillement généré par le mélangeur, à obtenir des agglomérats constitués par chacun des composants initiaux.The mixing of the powders can be carried out mechanically. This process consists in mechanically mixing the different components and, thanks to the compression and shear forces generated by the mixer, to obtain agglomerates constituted by each of the initial components.

Cependant, le mélange peut également être obtenu par un autre procédé comme l'agglomération-séchage ou la fusion-broyage.However, the mixture can also be obtained by a other process such as agglomeration-drying or fusion-grinding.

Selon un mode de réalisation préféré, le matériau pulvérulent se compose d'une poudre métallique en alliage d'aluminium et de manganèse (AlMn5), d'une poudre céramique en nitrure de bore hexagonal (hBN) et d'une poudre organique en polyester (PE). Avantageusement, l'alliage AlMn5 représente environ 75% du poids total du matériau, le nitrure de bore hexagonal représente environ 15% du poids total et le polyester représente environ 10% du poids total du matériau.According to a preferred embodiment, the pulverulent material is composed of a metal powder made of aluminum alloy and manganese (AlMn5), a ceramic powder made of hexagonal boron nitride (hBN) and an organic polyester powder (PE). Advantageously, the alloy AlMn5 represents approximately 75% of the total weight of the material, nitride of hexagonal boron represents about 15% of the total weight and the polyester represents about 10% of the total weight of the material.

Le matériau pulvérulent ainsi obtenu est destiné à être pulvérisé thermiquement selon des techniques connues (par plasma ou par flamme par exemple) afin de former un revêtement abradable.The pulverulent material thus obtained is intended to be pulverized thermally using known techniques (plasma or flame for example) to form an abradable coating.

Il peut être avantageux de faire subir au revêtement abradable un traitement thermique de sublimation afin de créer des cavités dans le matériau et ainsi d'augmenter son taux de porosité. Cette sublimation a pour effet d'éliminer la poudre organique afin d'effectuer des essais dans des conditions d'utilisation proches de la réalité dans laquelle le composant organique est nécessairement éliminé.It may be advantageous to subject the abradable coating sublimation heat treatment to create cavities in the material and thus increase its porosity rate. This sublimation has the effect of eliminating the organic powder in order to carry out tests in conditions of use close to reality in which the organic component is necessarily eliminated.

EssaiTrial

Un mélange pulvérulent destiné à la projection thermique a été préparé en mélangeant mécaniquement 75% en poids d'une poudre AlMn5 avec 10% en poids de PE et 15% en poids de hBN. Un substrat en à base Nickel a été revêtu d'une sous couche NiAl5. La poudre ainsi obtenue a ensuite été pulvérisée par plasma sur ce substrat. Les paramètres de pulvérisation utilisés lors de cet essai sont regroupés dans le tableau suivant : Gaz du plasma Argon Hydrogène Débits (L/min) 50-70 2,5-5 Pression (kPa) 100-150 120-170 Intensité (A) 500 Tension (V) 31 Distance de projection 130 mm A pulverulent mixture intended for thermal spraying was prepared by mechanically mixing 75% by weight of an AlMn5 powder with 10% by weight of PE and 15% by weight of hBN. A nickel-based substrate was coated with a NiAl5 sublayer. The powder thus obtained was then sprayed by plasma on this substrate. The spraying parameters used during this test are grouped in the following table: Plasma gas Argon Hydrogen Flow rates (L / min) 50-70 2,5-5 Pressure (kPa) 100-150 120-170 Intensity (A) 500 Voltage (V) 31 Projection distance 130 mm

Les paramètres de l'injecteur utilisé sont les suivants : Diamètre de la buse 6 mm Taille de l'injecteur 2 mm Angle de l'injecteur 90 degrés Vitesse de déplacement 1600 mm/s Intervalle de balayage 5,5 mm The parameters of the injector used are as follows: Nozzle diameter 6 mm Injector size 2 mm Injector angle 90 degree Movement speed 1600 mm / s Scan interval 5.5mm

Le revêtement obtenu suite à cette pulvérisation forme un revêtement abradable qui présente une épaisseur de 3 mm environ. La dureté du revêtement a été mesurée en utilisant l'échelle d'indentation R15Y de Rockwell qui indique la dureté d'un revêtement. Dans le cas présent, le revêtement testé présente une valeur d'indentation R15Y de l'ordre de 70 environ.The coating obtained after this spraying forms a abradable coating which has a thickness of approximately 3 mm. The coating hardness was measured using the indentation scale R15Y from Rockwell which indicates the hardness of a coating. In the case present, the coating tested has an R15Y indentation value of around 70.

L'échantillon de substrat ainsi revêtu a ensuite subi une étape de sublimation à 500°C durant quatre heures. A l'issue de cette sublimation, le revêtement présente une valeur d'indentation R15Y de l'ordre de 60 environ.The substrate sample thus coated then underwent a step sublimation at 500 ° C for four hours. At the end of this sublimation, the coating has an R15Y indentation value of around 60.

Le revêtement a été évalué sur un banc d'abradabilité en regard d'aubes en alliage de titane non revêtues. L'aptitude à l'usure de ce joint d'étanchéité a été mesurée dans les conditions d'essais suivantes : Température d'essai Température ambiante Nombre d'aubes 3 Epaisseur des aubes 0,8 mm Vitesse des extrémités des aubes 200 m/s Vitesse d'incursion 0,15 mm/s Pénétration 0,5 mm The coating was evaluated on an abradability bench against uncoated titanium alloy vanes. The usability of this seal was measured under the following test conditions: Test temperature Ambient temperature Number of blades 3 Blade thickness 0.8mm Speed of blade tips 200 m / s Incursion speed 0.15 mm / s Penetration 0.5mm

Les différentes mesures effectuées ont porté sur les points suivants : efforts dans les trois axes (pénétration Fp, coupe Fco et chariotage Fch) et mesure de l'usure des aubes. Le tableau I ci-dessous illustre ces résultats, en comparaison avec les résultats réalisé sur un revêtement connu formé d'un mélange AlSi, d'une poudre organique et de nitrure de bore hexagonal (tableau II). Etat du revêtement Efforts (Newton) Usure des aubes (mm) Fp Fco Fch N°1 N°2 N°3 Non vieilli 3,2 3,2 2,9 +0,01 +0,03 +0,01 250 heures à 500°C 2,85 4 2,4 +0,01 +0,03 +0,05 500 heures à 500°C 2,6 5,6 2,5 0 +0,02 +0,01 500 heures à 550°C 3,5 3,7 4,9 +0,01 +0,01 0 Etat du revêtement Efforts (Newton) Usure des aubes (mm) Fp Fco Fch N°1 N°2 N°3 Non vieilli 11 2,25 0,5 0 0 -0,01 250 heures à 500°C 8,7 2,8 0,5 +0,02 +0,03 +0,02 500 heures à 500°C 4 2,8 0,5 +0,02 0 0 The various measurements carried out related to the following points: forces in the three axes (penetration Fp, cut Fco and turning Fch) and measurement of the wear of the blades. Table I below illustrates these results, in comparison with the results produced on a known coating formed of an AlSi mixture, an organic powder and hexagonal boron nitride (Table II). Coating condition Efforts (Newton) Blade wear (mm) fp FCO Fch # 1 # 2 # 3 Not aged 3.2 3.2 2.9 0.01 0.03 0.01 250 hours at 500 ° C 2.85 4 2.4 0.01 0.03 0.05 500 hours at 500 ° C 2.6 5.6 2.5 0 0.02 0.01 500 hours at 550 ° C 3.5 3.7 4.9 0.01 0.01 0 Coating condition Efforts (Newton) Blade wear (mm) fp FCO Fch # 1 # 2 # 3 Not aged 11 2.25 0.5 0 0 -0.01 250 hours at 500 ° C 8.7 2.8 0.5 0.02 0.03 0.02 500 hours at 500 ° C 4 2.8 0.5 0.02 0 0

Au regard de ces résultats, le joint d'étanchéité abradable ainsi obtenu présente de bonnes propriétés de résistance à l'érosion par rapport au joint classique du tableau II. Il est capable d'usure par contact avec des aubes en alliages métalliques, notamment en alliages de titane non revêtus, sans provoquer d'usure de ces dernières. La stabilité métallurgique de ce joint d'étanchéité lui permet encore de résister à des températures élevées de l'ordre de 550°C, contrairement au joint classique du tableau II qui ne peut pas supporter des températures aussi élevées.In view of these results, the abradable seal as well obtained has good properties of resistance to erosion compared to at the classic joint in Table II. It is capable of wear by contact with blades of metal alloys, in particular of non-titanium alloys coated, without causing wear of the latter. Stability metallurgical of this seal still allows it to withstand high temperatures of the order of 550 ° C, unlike the seal classic of table II which cannot withstand temperatures too high.

Claims (15)

Matériau pulvérulent destiné à la formation d'un revêtement abradable, caractérisé en ce qu'il comprend une poudre métallique majoritairement à base d'aluminium et contenant du manganèse ou du calcium.Pulverulent material intended for the formation of an abradable coating, characterized in that it comprises a metallic powder mainly based on aluminum and containing manganese or calcium. Matériau selon la revendication 1, caractérisé en ce que le manganèse ou le calcium de ladite poudre métallique représente entre 5% et 20% du poids de ladite poudre métallique.Material according to claim 1, characterized in that the manganese or calcium of said metallic powder represents between 5% and 20% of the weight of said metallic powder. Matériau selon l'une des revendications 1 et 2, caractérisé en ce qu'il comporte en outre une poudre organique.Material according to either of Claims 1 and 2, characterized in that it also comprises an organic powder. Matériau selon la revendication 3, caractérisé en ce que ladite poudre organique représente entre 5% et 15% du poids total dudit matériau.Material according to claim 3, characterized in that said organic powder represents between 5% and 15% of the total weight of said material. Matériau selon l'une des revendications 3 et 4, caractérisé en ce que ladite poudre organique comprend l'un des composants suivants : polyester, polyméthylméthacrylate, et polyimide.Material according to one of claims 3 and 4, characterized in that said organic powder comprises one of the following components: polyester, polymethylmethacrylate, and polyimide. Matériau selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comporte en outre une poudre céramique.Material according to any one of Claims 1 to 5, characterized in that it also comprises a ceramic powder. Matériau selon la revendication 6, caractérisé en ce que ladite poudre céramique représente entre 5% et 20% du poids total dudit matériau.Material according to claim 6, characterized in that said ceramic powder represents between 5% and 20% of the total weight of said material. Matériau selon l'une des revendications 6 et 7, caractérisé en ce que ladite poudre céramique comprend l'un des composants suivants : nitrure de bore, disulfure de molybdène, graphite, talc, bentonite, et mica.Material according to one of claims 6 and 7, characterized in that said ceramic powder comprises one of the following components: boron nitride, molybdenum disulfide, graphite, talc, bentonite, and mica. Matériau selon l'une quelconque des revendications 1 à 8, caractérisé en ce que ladite poudre métallique comprend en outre l'un ou plusieurs des éléments additionnels suivants : chrome, molybdène, nickel, silicium et fer.Material according to any one of claims 1 to 8, characterized in that said metallic powder further comprises one or more of the following additional elements: chromium, molybdenum, nickel, silicon and iron. Matériau selon la revendication 9, caractérisé en ce que le ou les éléments additionnels de ladite poudre métallique représentent au plus 10% du poids de ladite poudre métallique.Material according to claim 9, characterized in that the additional element or elements of said metallic powder represent at most 10% of the weight of said metallic powder. Matériau selon l'une quelconque des revendications 1 à 10, caractérisé en ce que ladite poudre métallique représente entre 65% et 90% du poids total dudit matériau.Material according to any one of claims 1 to 10, characterized in that said metallic powder represents between 65% and 90% of the total weight of said material. Matériau selon l'une quelconque des revendications 1 à 11, caractérisé en ce que ladite poudre métallique est un alliage AlMn5.Material according to any one of claims 1 to 11, characterized in that said metallic powder is an AlMn5 alloy. Matériau selon la revendication 12, caractérisé en ce qu'il comporte en outre du nitrure de bore hexagonal et du polyester.Material according to claim 12, characterized in that it further comprises hexagonal boron nitride and polyester. Matériau selon la revendication 13, caractérisé en ce que ledit alliage AlMn5 représente 75% du poids total du matériau, ledit nitrure de bore hexagonal représente 15% du poids total du matériau et ledit polyester représente 10% du poids total du matériau.Material according to claim 13, characterized in that said AlMn5 alloy represents 75% of the total weight of the material, said hexagonal boron nitride represents 15% of the total weight of the material and said polyester represents 10% of the total weight of the material. Revêtement abradable pour joint d'étanchéité, caractérisé en ce qu'il est obtenu par pulvérisation thermique d'un matériau pulvérulent selon l'une quelconque des revendications 1 à 14.Abradable coating for a seal, characterized in that it is obtained by thermal spraying of a pulverulent material according to any one of Claims 1 to 14.
EP03292937A 2002-12-13 2003-11-26 Pulverulent material for abradable seal Expired - Lifetime EP1428600B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0215799A FR2848575B1 (en) 2002-12-13 2002-12-13 PULVERULENT MATERIAL FOR ABRADABLE SEAL
FR0215799 2002-12-13

Publications (2)

Publication Number Publication Date
EP1428600A1 true EP1428600A1 (en) 2004-06-16
EP1428600B1 EP1428600B1 (en) 2008-05-14

Family

ID=32320212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03292937A Expired - Lifetime EP1428600B1 (en) 2002-12-13 2003-11-26 Pulverulent material for abradable seal

Country Status (7)

Country Link
US (1) US7160352B2 (en)
EP (1) EP1428600B1 (en)
JP (1) JP4223935B2 (en)
DE (1) DE60320925D1 (en)
FR (1) FR2848575B1 (en)
RU (1) RU2342222C2 (en)
UA (1) UA80681C2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067872A3 (en) * 2007-11-28 2011-06-08 United Technologies Corporation Article having composite layer
EP3023511A1 (en) * 2014-11-24 2016-05-25 Techspace Aero S.A. Composition and abradable seal of an axial turbomachine compressor housing
EP3444443A1 (en) 2017-08-14 2019-02-20 Safran Aero Boosters SA Abradable seal composition for a turbine engine compressor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0705696D0 (en) * 2007-03-24 2007-05-02 Rolls Royce Plc A method of repairing a damaged abradable coating
US8172519B2 (en) * 2009-05-06 2012-05-08 General Electric Company Abradable seals
IT1396362B1 (en) * 2009-10-30 2012-11-19 Nuovo Pignone Spa MACHINE WITH RELIEF LINES THAT CAN BE ABRASE AND METHOD.
JP5331210B2 (en) * 2009-11-12 2013-10-30 オーエスジー株式会社 Hard coating and hard coating tool
US8562290B2 (en) 2010-04-01 2013-10-22 United Technologies Corporation Blade outer air seal with improved efficiency
EP3083108B1 (en) * 2013-12-20 2022-06-22 Plansee SE Method of making a chromium containing coating
CN115716134A (en) 2014-07-21 2023-02-28 诺沃皮尼奥内技术股份有限公司 Method for manufacturing a mechanical component by incremental manufacturing
GB2568063B (en) 2017-11-02 2019-10-30 Hardide Plc Water droplet erosion resistant coatings for turbine blades and other components
US11674210B2 (en) * 2020-08-31 2023-06-13 Metal Improvement Company, Llc Method for making high lubricity abradable material and abradable coating
CN113584361B (en) * 2021-09-26 2022-01-11 中国航发北京航空材料研究院 High-strength corrosion-resistant 7-series aluminum alloy and casting method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147087A (en) * 1959-02-19 1964-09-01 Gen Electric Controlled density heterogeneous material and article
GB1077256A (en) * 1966-03-21 1967-07-26 Metco Inc Improvements relating to flame spraying
EP0459114A1 (en) * 1990-05-10 1991-12-04 The Perkin-Elmer Corporation Aluminium and boron nitride thermal spray powder
EP0486319A1 (en) * 1990-11-16 1992-05-20 Tsuyoshi Masumoto Aluminium alloy powders for coating materials, and coating materials containing the alloy powders
EP0487273A1 (en) * 1990-11-19 1992-05-27 Sulzer Plasma Technik, Inc. Thermal spray powder
US5352538A (en) * 1991-07-15 1994-10-04 Komatsu Ltd. Surface hardened aluminum part and method of producing same
EP1010861A2 (en) * 1998-12-18 2000-06-21 United Technologies Corporation Abradable seal and method of producing such a seal
EP1036855A1 (en) * 1999-03-16 2000-09-20 Praxair S.T. Technology, Inc. Abradable quasicrystalline coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB604457A (en) * 1945-07-05 1948-07-05 Charles Fletcher Lumb Production of heat resistant coatings of metal on another metal
US3077659A (en) * 1958-12-24 1963-02-19 Gen Motors Corp Coated aluminum cylinder wall and a method of making
USRE26223E (en) * 1960-06-09 1967-06-20 Base materials coated with an alloy of aujmtnum and manganese
FR2529909B1 (en) * 1982-07-06 1986-12-12 Centre Nat Rech Scient AMORPHOUS OR MICROCRYSTALLINE ALLOYS BASED ON ALUMINUM
US4606967A (en) * 1983-10-19 1986-08-19 Sermatech International Inc. Spherical aluminum particles in coatings
EP0489427A1 (en) * 1990-12-05 1992-06-10 Sumitomo Metal Industries, Ltd. Surface-coated aluminum material
DE19601793B4 (en) * 1996-01-19 2004-11-18 Audi Ag Process for coating surfaces
WO2001044533A1 (en) * 1999-12-15 2001-06-21 Pratt & Whitney Canada Corp. Abradable coatings

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147087A (en) * 1959-02-19 1964-09-01 Gen Electric Controlled density heterogeneous material and article
GB1077256A (en) * 1966-03-21 1967-07-26 Metco Inc Improvements relating to flame spraying
EP0459114A1 (en) * 1990-05-10 1991-12-04 The Perkin-Elmer Corporation Aluminium and boron nitride thermal spray powder
EP0486319A1 (en) * 1990-11-16 1992-05-20 Tsuyoshi Masumoto Aluminium alloy powders for coating materials, and coating materials containing the alloy powders
EP0487273A1 (en) * 1990-11-19 1992-05-27 Sulzer Plasma Technik, Inc. Thermal spray powder
US5352538A (en) * 1991-07-15 1994-10-04 Komatsu Ltd. Surface hardened aluminum part and method of producing same
EP1010861A2 (en) * 1998-12-18 2000-06-21 United Technologies Corporation Abradable seal and method of producing such a seal
EP1036855A1 (en) * 1999-03-16 2000-09-20 Praxair S.T. Technology, Inc. Abradable quasicrystalline coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067872A3 (en) * 2007-11-28 2011-06-08 United Technologies Corporation Article having composite layer
US7998604B2 (en) 2007-11-28 2011-08-16 United Technologies Corporation Article having composite layer
EP3023511A1 (en) * 2014-11-24 2016-05-25 Techspace Aero S.A. Composition and abradable seal of an axial turbomachine compressor housing
CN105623322A (en) * 2014-11-24 2016-06-01 航空技术空间股份有限公司 Abradable composition and seal of an axial-flow turbomachine compressor casing
US10001024B2 (en) 2014-11-24 2018-06-19 Safran Aero Boosters Sa Abradable composition and seal of an axial-flow turbomachine compressor casing
CN105623322B (en) * 2014-11-24 2019-11-26 赛峰航空助推器股份有限公司 The abradable synthetic and sealing element of axial-flow turbine unit compressor housing
EP3444443A1 (en) 2017-08-14 2019-02-20 Safran Aero Boosters SA Abradable seal composition for a turbine engine compressor
BE1025469B1 (en) * 2017-08-14 2019-03-18 Safran Aero Boosters S.A. ABRADABLE JOINT COMPOSITION FOR TURBOMACHINE COMPRESSOR

Also Published As

Publication number Publication date
US7160352B2 (en) 2007-01-09
FR2848575A1 (en) 2004-06-18
FR2848575B1 (en) 2007-01-26
US20040112174A1 (en) 2004-06-17
RU2342222C2 (en) 2008-12-27
JP2004197225A (en) 2004-07-15
UA80681C2 (en) 2007-10-25
RU2003135594A (en) 2005-05-20
EP1428600B1 (en) 2008-05-14
DE60320925D1 (en) 2008-06-26
JP4223935B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP3142003B2 (en) Wearable seal for gas turbine engines formed by plasma spray
EP1428600B1 (en) Pulverulent material for abradable seal
US20050129511A1 (en) Turbine blade tip with optimized abrasive
FR2531491A1 (en) ABRASIVE / ABRASIVE JOINT SYSTEM FOR ROTATING MACHINE
EP2917502B1 (en) Rotor-stator assembly for a gas turgine engine
FR2640688A1 (en) PNEUMATIC CERAMIC SEALING DEVICE THAT CAN BE USED BY FRICTION, IN PARTICULAR FOR TURBOMOTORS
JPS61171969A (en) Method of improving corrosion resistance of polishable sealing material and polishable sealing structure
FR2518123A1 (en) PROCESS FOR APPLYING A COATING OF CERAMIC MATERIAL ON A METALLIC SUBSTRATE AND ARTICLE OBTAINED
EP0792948A1 (en) Thermal barrier coating with improved underlayer and articles having this thermal barrier coating
JP2008063657A (en) Method for applying resistant coating to fretting wear at high temperature
US7165946B2 (en) Low-mid turbine temperature abradable coating
FR2829524A1 (en) METHOD FOR MAKING RADIAL END PARTS OF MOBILE TURBOMACHINE PARTS
US20230235440A1 (en) Method for making high lubricity abradable material and abradable coating
US11448082B2 (en) Wear resistant, self-lubricating static seal
FR3107524A1 (en) ABRADABLE COATING
FR2979664A1 (en) Annular part for stator of e.g. high-pressure turbine of turboshaft engine of aircraft, has porous abradable material coating covered with additional layer of non-porous refractory material, where additional layer includes lower thickness
US11225878B1 (en) Abradable composite material and method of making the same
FR3123236A1 (en) Process for manufacturing an abradable layer.
JP5781665B1 (en) Compression ring for internal combustion engine
FR2918077A1 (en) Self lubricating solid coating of tungsten carbide with cobalt for covering a friction surface of a turbomachine part e.g. sleeve, comprises a cobalt matrix and a phase of cobalt-tungsten-carbide compound inserted in the matrix
JP2000017419A (en) Wear resistant sliding member
FR2966167A1 (en) METHOD FOR DEPOSITING OXIDATION PROTECTION COATING AND HOT CORROSION ON A SUPERALLIATION SUBSTRATE, COATING OBTAINED

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

AKX Designation fees paid

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

17Q First examination report despatched

Effective date: 20051118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60320925

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221021

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221021

Year of fee payment: 20

Ref country code: DE

Payment date: 20220616

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60320925

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60320925

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231125