EP1421267B1 - Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre - Google Patents

Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre Download PDF

Info

Publication number
EP1421267B1
EP1421267B1 EP02779615A EP02779615A EP1421267B1 EP 1421267 B1 EP1421267 B1 EP 1421267B1 EP 02779615 A EP02779615 A EP 02779615A EP 02779615 A EP02779615 A EP 02779615A EP 1421267 B1 EP1421267 B1 EP 1421267B1
Authority
EP
European Patent Office
Prior art keywords
diesel oil
injection
exhaust gases
filtration
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02779615A
Other languages
German (de)
English (en)
Other versions
EP1421267A1 (fr
Inventor
Jean-Claude Fayard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRMT
Original Assignee
CRMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRMT filed Critical CRMT
Publication of EP1421267A1 publication Critical patent/EP1421267A1/fr
Application granted granted Critical
Publication of EP1421267B1 publication Critical patent/EP1421267B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/08Adding substances to exhaust gases with prior mixing of the substances with a gas, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air

Definitions

  • the present invention generally relates to the field of particulate filters and more particularly to a method of regenerating a diesel engine exhaust filtration device.
  • the present invention also relates to a filter device for retaining the carbonaceous particles and soot, produced by the engine and burn them regularly to prevent their accumulation, the latter phase constituting regeneration, the object of the method according to the invention.
  • the atmosphere is also modified by the release of solid particles. These particles are classified according to their size. Thus, the smallest so-called particles that can not be sedimented, because they are incapable of being deposited on the ground under the effect of gravitation, are the most dangerous for human health because they are likely to penetrate the pulmonary alveoli. In addition, they contaminate the highest layers of the atmosphere and are therefore responsible for global pollution.
  • the particulate filter requires regeneration to burn the particles that have been trapped.
  • the particles are generally trapped by a filter cartridge forming part of the particulate filter.
  • This cartridge to withstand the high temperatures encountered may consist of a porous body of cordierite, quartz or silicon carbide, generally of honeycomb structure to have a maximum filtration surface.
  • a major disadvantage of such particulate filters is the incomplete combustion of particles retained by the filter cartridge. Indeed, for urban use conditions, the temperature of the exhaust gas reached is insufficient to cause their combustion and significantly limit clogging of the filter and therefore its regeneration. Without chemical assistance, the carbonaceous particles resulting from the combustion of diesel fuel in diesel engines only start to oxidize significantly above 500 ° C. These temperatures are almost never reached in urban driving conditions.
  • a first technique consists in arranging upstream of the filter, a catalyst for oxidation of nitric oxide (NO) contained in the gases nitrogen dioxide (NO 2 ) exhaust system, the latter having the property of catalyzing the combustion of carbonaceous particles from 250 ° C.
  • NO nitric oxide
  • NO 2 nitrogen dioxide
  • this method requires the use of a diesel fuel whose sulfur content is less than 50 ppm (parts per million), to keep a conversion efficiency of NO to NO 2 sufficient.
  • CRT Continuous Regenerating Trap
  • Such operation is obtained only when the exhaust gas or the combustion chamber have a temperature greater than 300 ° C for at least 30% of the operating time of the vehicle.
  • organometallic additives added to the gas oil such as cerium, iron, strontium, calcium or others. These techniques make it possible to obtain an effect similar to that obtained with NO 2 by catalyzing the combustion of carbonaceous materials at temperatures in the region of 300 ° C.
  • a first disadvantage of these techniques is the prohibitive cost of the additives used.
  • WO-A-00/34632 describes all the features of the preambles of the independent claims 1 and 3.
  • US-A-4,462,812 discloses a particle separator for use in the exhaust system of a diesel engine, which comprises a filter retained in a chamber of this separator, so that the exhaust gas arriving can circulate freely around the free portion of this filter, to heat its external surface, and thus reduce the thermal stresses that are generated in this filter during its operation and its regeneration.
  • US-B-6,273,120 relates to a device for introducing a liquid reductant into an exhaust gas purification system, comprising a mixing chamber of this reducer with a gas, in communication with a transport pipe of this type. gearbox as well as with a pipe for transporting this gas, while a device for controlling the pressure in the line of the gearbox is provided, depending on the pressure of the gas in the gas line.
  • the objective of the present invention is to provide a method of regeneration of a filtration device, which overcomes the disadvantages of the various existing techniques of treating the carbonaceous particles and soot emitted by diesel engines.
  • Another object of the invention is to provide a regeneration process, thus avoiding any risk of accumulation of particles in the filtration device and therefore any risk of uncontrolled regeneration.
  • Yet another object of the invention is to provide a regeneration process that does not lead to significant overconsumption of fuel and, more generally, does not entail additional financial cost for the user.
  • Yet another object of the invention is to provide a regeneration process that does not affect the performance of the engine, in particular by pressure losses, due to the counterpressure exerted by the exhaust gases on the engine, due to clogging of the filter device.
  • a final objective of the invention is to provide a filtration device for implementing the regeneration method according to the invention.
  • Another object of the invention relates to a filtration device for carrying out the regeneration method according to the invention.
  • This device is in accordance with the appended claim 3.
  • FIG. 1 The system that allows the implementation of the regeneration method according to the invention is shown schematically in Figure 1, according to a preferred embodiment.
  • this system collaborate various mechanical elements of the vehicle, which are or are not part of the filter device and which contribute to the regeneration of this device.
  • a diesel engine 10 supplied with fuel by a main tank 12 via a feed system 14, produces exhaust gas in operation. These gases are recovered through a manifold (not shown) at the engine outlet and are evacuated via an exhaust duct 16. This duct joins an enclosure 18 containing a catalyst production means. 20 and a filtering means 22. A temperature probe 24 and a pressure sensor 26 are also placed at the chamber 18. These probes have the function of measuring the temperature and the pressure in the vicinity of the production means. of combustion catalyst. The data relating to these measurements are transmitted to an electronic control unit 28 and are analyzed by the latter.
  • the electronic control unit is connected to two ducts 30 and 32 and triggers their opening.
  • the conduit 30 connects a secondary reservoir 34 to the injection chamber 36.
  • This secondary reservoir 34 supplies the injection chamber 36 with diesel fuel. Itself is fed by the main tank 12 through a piping system 38.
  • the conduit 32 connects the engine 10 to the injection chamber 36. It allows the engine 10 to supply the injection chamber 36 with compressed air.
  • the ducts 30 and 32 are opened via two solenoid valves 31 and 33, electrically controlled by the electronic control unit.
  • FIG. 1 A detailed view in longitudinal section of the chamber 18 is shown in FIG.
  • the combustion catalyst production means 20 and the filtration means 22 are grouped together in the chamber.
  • the combustion catalyst production means 20 consists of two cartridges 20a and 20b for the production of combustion catalysts.
  • these cartridges are preferably on a metal support so as to obtain the lowest thermal inertia possible.
  • these cartridges are preferably based on platinum and are the seat of a conversion of the nitrogen monoxide (NO) contained in the exhaust gases to nitrogen dioxide (NO 2 ), which constitutes the combustion catalyst. NO 2 diffuses to the filtration medium 22.
  • NO nitrogen monoxide
  • NO 2 nitrogen dioxide
  • the filtration means 22 consists of a set of three-dimensional filter units.
  • these filter units are honeycomb type silicon carbide.
  • these filtering units are assembled so as to form the body of a particle filter.
  • the filtration means consists of three particulate filters 22a, 22b and 22c. These particulate filters thus arranged, are represented as seen from above in FIG. 3.
  • the filters consist of a body 40, and a metal casing 42.
  • the body 40 is constituted by the assembly of several filtering units 44, separated by a seal 46, whose function is to compensate for their expansion.
  • the enclosure 18 has in its lower part a retention chamber to increase their residence time in the enclosure, purified exhaust gas through the filtration means (filter units or particulate filters).
  • FIG. 4 A variant of this embodiment is shown in FIG. 4.
  • the particulate filters 22a, 22b and 22c are arranged in opposite directions.
  • the device then comprises a particular zone of retention of the exhaust gases, not yet filtered. Indeed, these are contained between the catalyst cartridges and the lower support 48 of the filters, which allows a longer residence time of the exhaust gases, before their passage in the particle filters, which goes from one on the other hand, to promote the exchange of heat between the gases and the filters and, on the other hand, to limit the loss of heat by exchange with the outside.
  • the filter units 44 are independent of one another.
  • each filter unit is separated from adjacent ones by a space sufficient to allow their expansion.
  • This arrangement is particularly advantageous because, on the one hand, it makes it possible to significantly reduce the thermal expansion stresses, especially in the event of sudden combustion of retained particles, which greatly limits the risk of the filter units deteriorating; on the other hand, the available surface area for the heat transfer by the gases is considerably increased, which further increases this heat transfer.
  • a variant of this second embodiment, shown in FIG. 5, consists in arranging the filter units 44 in the opposite direction in the filtration device, with a support positioned in the lower part, in the image of the variant of the first mode. embodiment, shown in Figure 4.
  • the advantages of this provision are identical to those mentioned above in the description of Figure 4.
  • each filter unit is a square-based cylinder having a width and a depth of 35 mm, and a length ranging from 150 to 300 mm.
  • the regeneration occurs through the injection of diesel fuel.
  • the temperature in the vicinity of the catalyst production means is measured by means of the probe 24.
  • the measured temperature value ⁇ m is collected by the control electronics unit.
  • the housing will compare this value ⁇ m to a reference value ⁇ r , corresponding to the temperature at which the combustion of diesel in the presence of catalyst is complete.
  • the electronic control unit triggers the opening of the solenoid valves 31 and 33. This opening causes the entry of diesel and compressed air into the chamber 36.
  • the diesel fuel mixes with the compressed air and the mixture thus formed is pulverized in the nebulized form. in the gas evacuation duct 16.
  • This spraying is done through an orifice formed in the wall of the chamber 36, facing which there is a nozzle, fixed to the chamber, to obtain a jet nebulized under pressure.
  • the chamber 36 is of the compressed air paint gun type.
  • the capacity of the secondary tank 34 is determined so that it corresponds to the maximum volume of diesel fuel required for the regeneration. Thus, over-consumption of diesel can not occur.
  • the frequency of the regeneration cycles is limited by the time required to fill the secondary tank 34, which also avoids excessive consumption of fuel.
  • the fuel injected into the exhaust duct 16 enters the enclosure and undergoes complete combustion at the catalyst producing means.
  • This combustion induces a significant increase in temperature up to a temperature ⁇ c at which the combustion of the particles which clog the filtration means will proceed.
  • the NO 2 molecules produced will catalyze this combustion reaction.
  • this reaction occurs at a temperature below normal temperature.
  • the solid particles are transformed into gases which are evacuated.
  • the filtration means is then devoid of deposits and recovers its full filtration capacity.
  • the measurement of ⁇ m can be exploited by the electronic unit in order to evaluate the temperature of the particles at the level of the filtration means. Indeed, if ⁇ m is close to the temperature at which the combustion of particles can be done without post-injection of diesel fuel, the calculator can decide not to trigger this post-injection, which allows a substantial saving of fuel .
  • an additional temperature sensor is disposed near the filtration means so as to obtain the exact temperature of the particles.
  • a third operational mode consists in simultaneously measuring the temperature and the pressure at the level of the catalyst production means, thanks to the temperature probe 24 and to the pressure probe 26.
  • the measured pressure value P m reflects the degree of obstruction filtration means by the particles. Indeed, if the filtering means is clogged, the exhaust gases pass more difficultly and then exert a back pressure. Thus, the measurement of the pressure P m corresponds to the best means of controlling the clogging of the filtration means.
  • the electronic control unit compares the measured value P m with a reference value P r , corresponding to the maximum acceptable degree of obstruction of the filtration means. If P m is greater than or equal to P r , the electronic control unit compares ⁇ m with ⁇ r .
  • the housing then triggers the diesel injection post-injection which leads to the regeneration of the filtration means.
  • This operational mode has the advantage of triggering post-injection only when the filtration means has reached a certain degree of clogging, which allows to greatly limit overconsumption of fuel.
  • the test was carried out on a bench under conditions corresponding to urban driving conditions.
  • the control unit has been set up so that the post-injection is triggered as soon as the back pressure reaches 120 mb and the gas temperature is above 300 ° C.
  • the device described in this example makes it possible to obtain an exhaust gas temperature that is constantly higher than 300 ° C., regardless of the initial temperature of the exhaust gas.
  • the backpressure value measured after each regeneration process of the filtration device is 50 mb, which corresponds to the value of back pressure measured on a new filtration device. Regeneration of the device is complete.
  • the regeneration process according to the invention and the associated filtration device are therefore particularly suitable for the treatment of the exhaust gases of urban public transport vehicles.
  • the gases produced by these vehicles are generally at a temperature below that required to allow the regeneration of conventional filtration devices, resulting in clogging of these devices and therefore their rapid deterioration by sudden combustion reactions.
  • the results obtained with the present technique make it possible to envisage a minimum service life of the filtration device of 100,000 km, on vehicles of this type.
  • the inventors have the merit of having been able to combine and adapt various existing techniques in order to potentiate their effects and to obtain a device having a very high degree of efficiency. high efficiency, to fight against the emission of polluting particles produced by diesel engines and, secondly, to obtain excellent results in terms of filter regeneration, even in the case of vehicles whose engine speeds do not allow to obtain exhaust gases having a high temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

  • La présente invention concerne de façon générale le domaine des filtres à particules et de façon plus particulière, un procédé de régénération d'un dispositif de filtration de gaz d'échappement pour moteur diesel.
  • En outre, la présente invention vise également un dispositif de filtration destiné à retenir les particules charbonneuses et de suie, produites par le moteur et à brûler ces dernières régulièrement afin d'éviter leur accumulation, cette dernière phase constituant la régénération, objet du procédé selon l'invention.
  • Le développement de l'ère industrielle a généré de graves conséquences sur l'environnement. En effet, les industries polluantes mais également le développement du parc automobile sont à l'origine d'un rejet important de polluants dans l'atmosphère qui entraîne sa modification. Cette modification est de deux ordres. On note tout d'abord, une modification chimique. Cette dernière se reflète surtout par une croissance continue de la teneur de l'air en composés, dérivés du carbone. Ces composés sont notamment le monoxyde de carbone (CO) et certains hydrocarbures imbrûlés, issus des combustions incomplètes. La présence de ces composés dans l'atmosphère constitue un risque direct pour la santé beaucoup plus important. Ainsi, le CO est un toxique respiratoire très puissant. Les hydrocarbures aromatiques polycycliques (HAP), tels que le benzopyrène, le benzanthracène ou, encore le fluoranthrène, particulièrement importants dans les fumées, les suies ou les gaz d'échappement des moteurs sont des carcinogènes reconnus.
  • L'atmosphère est également modifiée par la libération de particules solides. Ces particules sont classées en fonction de leur taille. Ainsi, les plus petites dites particules insédimentables, car incapable de se déposer au sol sous l'effet de la gravitation, sont les plus dangereuses pour la santé humaine, car elles sont susceptibles de pénétrer dans les alvéoles pulmonaires. Par ailleurs, elles contaminent les plus hautes couches de l'atmosphère et sont donc responsables d'une pollution globale.
  • Aussi, au regard de ce constat alarmant, les pouvoirs publics, tant au niveau national qu'international, essaient-ils de mettre en place des normes antipollution. Ces normes touchent surtout l'industrie automobile. Ainsi, les marques automobiles doivent régulièrement apporter des modifications sur leurs véhicules afin de les mettre en conformité avec ces normes.
  • Outre la mise au point de nouveaux moteurs ayant une consommation en carburant toujours plus réduite, un effort tout particulier a été fait sur le développement de nouveaux systèmes d'échappement, destinés à réduire l'émission de gaz polluants imbrûlés et de particules solides. Ainsi, les constructeurs automobiles ont mis au point les pots catalytiques ou catalyseurs, généralement constitués d'une enveloppe en acier inoxydable, d'un isolant thermique et d'un support en nid d'abeille imprégné de métaux précieux tels que le platine ou le rhodium. Ces catalyseurs permettent de réduire, avant tout, les émissions d'hydrocarbures polycycliques et de CO, et ceci dans une proportion de l'ordre de 50%. Toutefois, ils n'ont aucune action sur les émissions de particules solides. Ainsi, notamment en matière de moteurs diesels qui produisent de nombreuses particules solides, ces catalyseurs n'apportent pas d'amélioration notable de la qualité de l'air.
  • D'autres techniques ont été élaborées afin de limiter l'émission de particules polluantes par les véhicules. C'est le cas du filtre à particules. Ce filtre permet de réduire de 90% la masse totale des particules émises par les moteurs diesels. Il est encore plus efficace pour la rétention des très fines particules, puisque le taux de rétention peut aller jusqu'à 99%.
  • Le filtre à particules nécessite toutefois une régénération permettant de brûler les particules qui ont été piégées. Les particules sont généralement piégées par une cartouche filtrante faisant partie du filtre à particules. Cette cartouche pour résister aux températures élevées rencontrées peut être constitué d'un corps poreux de cordiérite, de quartz ou de carbure de silicium, généralement de structure en nid d'abeille pour présenter une surface maximum de filtration.
  • Un inconvénient majeur de tels filtres à particules consiste dans la combustion incomplète des particules retenues par la cartouche filtrante. En effet, pour des conditions d'utilisation urbaine, la température des gaz d'échappement atteinte est insuffisante pour provoquer leur combustion et limiter significativement le colmatage du filtre et donc sa régénération. Sans assistance chimique, les particules charbonneuses issues de la combustion du gazole dans les moteurs diesels ne commencent à s'oxyder significativement qu'au-dessus de 500°C. Ces températures ne sont pratiquement jamais atteintes dans des conditions de roulage urbain.
  • Il apparaît alors nécessaire de faire appel à un procédé chimique pour éliminer ces particules. Différentes techniques sont utilisées permettant d'obtenir leur combustion.
  • Une première technique consiste à disposer en amont du filtre, un catalyseur d'oxydation du monoxyde d'azote (NO) contenu dans les gaz d'échappement en dioxyde d'azote (NO2), ce dernier ayant la propriété de catalyser la combustion des particules charbonneuses à partir de 250°C. Toutefois, ce procédé impose d'utiliser un gazole dont la teneur en soufre est inférieure à 50 ppm (parties par million), pour garder une efficacité de conversion du NO en NO2 suffisante.
  • Cette technique, appelée "Continuous Regenerating Trap" (C.R.T.), allie les effets du filtre à particules et du catalyseur d'oxydation du NO. Ce système nécessite pour assurer un bon fonctionnement des filtres, une régénération régulière qui limite la perte de charge du filtre en éliminant le risque de régénération non contrôlé et exothermique.
  • Un tel fonctionnement n'est obtenu que lorsque les gaz d'échappement ou l'enceinte de combustion présentent une température supérieure à 300°C pendant au moins 30% du temps de fonctionnement du véhicule.
  • Dans le cas contraire, il se développe des réactions violentes liées à la concentration excessive de particules charbonneuses colmatant le filtre. Ces réactions consistent en la combustion, trop rapide d'une grande masse de particules, ce qui conduit généralement à une destruction du filtre par choc thermique, les températures obtenues étant très élevées localement.
  • D'autres techniques font appel à l'utilisation d'additifs organométalliques rajoutés au gazole tel que le cérium, fer, strontium, calcium ou autres. Ces techniques permettent d'obtenir un effet similaire à celui obtenu avec le NO2 en catalysant la combustion des matières charbonneuses à des températures voisines de 300°C.
  • Un premier inconvénient de ces techniques est le coût prohibitif des additifs utilisés.
  • Un autre inconvénient majeur réside dans le fait qu'il est nécessaire de prévoir un dispositif d'additivation complémentaire.
  • Encore un autre inconvénient de ces techniques est qu'elles présentent une tendance encore plus importante au colmatage du filtre et donc aux réactions qui en découlent, si les températures atteintes en fonctionnement ne sont pas suffisamment importantes, les additifs présents dans les matières charbonneuses contribuant à encrasser encore plus rapidement le médiat filtrant
  • D'autres techniques ont consisté à expérimenter des dispositifs basés sur des moyens de chauffage complémentaires du type brûleurs, résistances électriques ou autres. Ces moyens de chauffage complémentaire sont mis en oeuvre uniquement lorsque la cartouche présente un début de colmatage, se traduisant par une augmentation de la perte de charge. Un tel dispositif de régénération est mis en oeuvre avec le moteur en marche, c'est à dire en présence d'un débit de gaz d'échappement important. Un tel dispositif nécessite donc une puissance de chauffage importante pour simultanément porter à la bonne température les gaz d'échappement et la masse de la cartouche filtrante.
  • WO-A-00/34632 décrit toutes les caractéristiques des préambules des revendications indépendantes 1 et 3.
  • Par ailleurs, US-A-4,462,812 décrit un séparateur de particules destiné à être utilisé dans le circuit d'échappement d'un moteur diesel, qui comporte un filtre retenu dans une chambre de ce séparateur, de manière que les gaz d'échappement arrivant puissent circuler librement autour de la partie libre de ce filtre, pour chauffer sa surface externe, et ainsi réduire les contraintes thermiques qui sont engendrées dans ce filtre pendant son fonctionnement et sa régénération.
  • Enfin, US-B-6,273,120 concerne un dispositif permettant d'introduire un réducteur liquide dans un système d'épuration des gaz d'échappement, comportant une chambre de mélange de ce réducteur avec un gaz, en communication avec une conduite de transport de ce réducteur ainsi qu'avec une conduite de transport de ce gaz, alors qu'il est prévu un dispositif de commande de la pression dans la conduite du réducteur, en fonction de la pression du gaz dans la conduite de gaz.
  • Dans un tel contexte technique, l'objectif de la présente invention est de fournir un procédé de régénération d'un dispositif de filtration, qui remédie aux inconvénients des différentes techniques existantes consistant à traiter les particules charbonneuses et de suies émises par les moteurs diesels.
  • Un autre objectif de l'invention est de fournir un procédé de régénération, évitant ainsi tout risque d'accumulation de particules dans le dispositif de filtration et donc tout risque de régénération incontrôlée.
  • Encore un autre objectif de l'invention, est de fournir un procédé de régénération n'entraînant pas de surconsommation significative de carburant et plus généralement, n'entraînant pas de surcoût financier, pour l'utilisateur.
  • Encore un autre objectif de l'invention est de fournir un procédé de régénération n'entamant pas les performances du moteur, notamment par des pertes de charge, dues à la contre-pression exercée par les gaz d'échappement sur le moteur, du fait d'un colmatage du dispositif de filtration.
  • Enfin un dernier objectif de l'invention est de fournir un dispositif de filtration permettant de mettre en oeuvre le procédé de régénération selon l'invention.
  • Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne tout d'abord un procédé de régénération selon la revendication 1 annexée.
  • Un autre objet de l'invention concerne un dispositif de filtration permettant la mise en oeuvre du procédé de régénération selon l'invention. Ce dispositif est conforme à la revendication 3 annexée.
  • La présente invention sera mieux comprise à la lecture de la description qui suit, faite en référence aux dessins qui représentent, de façon nullement limitative, un exemple de réalisation du dispositif de filtration selon l'invention et dans lesquels :
    • La figure 1 représente une vue générale schématique du système comprenant le dispositif de filtration et permettant la mise en oeuvre du procédé de régénération.
    • La figure 2 représente une vue en coupe longitudinale du dispositif de filtration selon un premier mode de réalisation.
    • La figure 3 représente une vue en coupe transversale, selon l'axe II-II, du dispositif de filtration représenté en coupe longitudinale sur la figure 3.
    • La figure 4 représente une variante de ce premier mode réalisation, vue en coupe longitudinale du dispositif de filtration.
    • La figure 5 représente une vue en coupe longitudinale du dispositif de filtration selon un second mode de réalisation.
  • Le système qui permet la mise en oeuvre du procédé de régénération selon l'invention est représenté de façon schématique à la figure 1, selon un mode préférentiel. Dans ce système, collaborent différents éléments mécaniques du véhicule, qui font ou non partie du dispositif de filtration et qui concourent à la régénération de ce dispositif.
  • Ainsi, un moteur diesel 10, alimenté en carburant par un réservoir principal 12 via un système d'alimentation 14, produit en fonctionnement des gaz d'échappement. Ces gaz sont récupérés par le biais d'un collecteur (non représenté) à la sortie du moteur et sont évacués par l'intermédiaire d'un conduit d'évacuation 16. Ce conduit rejoint une enceinte 18 contenant un moyen de production de catalyseur de combustion 20 et un moyen de filtration 22. Sont également placées au niveau de l'enceinte 18, une sonde de température 24 et une sonde de pression 26. Ces sondes ont pour fonction de mesurer la température et la pression au voisinage du moyen de production de catalyseur de combustion. Les données relatives à ces mesures sont transmises à un boîtier électronique de commande 28 et sont analysées par ce dernier.
  • Le boîtier électronique de commande est relié à deux conduits 30 et 32 et déclenche leur ouverture. Le conduit 30 relie un réservoir secondaire 34 à la chambre d'injection 36. Ce réservoir secondaire 34 alimente la chambre d'injection 36 en gazole. Lui-même est alimenté par le réservoir principal 12 par le biais d'un système de tuyauterie 38.
  • Le conduit 32 relie, quant à lui, le moteur 10 à la chambre d'injection 36. Il permet au moteur 10 d'alimenter la chambre d'injection 36 en air comprimé.
  • L'ouverture des conduits 30 et 32 se fait par l'intermédiaire de deux électrovannes 31 et 33, commandées électriquement par le boîtier électronique de commande.
  • Une vue détaillée en coupe longitudinale de l'enceinte 18 est représentée sur la figure 2.
  • Dans l'enceinte sont regroupés le moyen de production de catalyseur de combustion 20 et le moyen de filtration 22. Le moyen de production de catalyseur de combustion 20 est constitué par deux cartouches 20a et 20b de production de catalyseurs de combustion.
  • Ces cartouches sont de préférence sur un support métallique de manière à obtenir une inertie thermique la plus faible possible. Selon un mode préféré de réalisation, ces cartouches sont préférentiellement à base de platine et sont le siège d'une transformation du monooxyde d'azote (NO) contenu dans les gaz d'échappement en dioxyde d'azote (NO2), qui constitue le catalyseur de combustion. Le NO2 produit diffuse jusqu'au moyen de filtration 22.
  • Le moyen de filtration 22 est constitué par un ensemble d'unités filtrantes tridimensionnelles. De façon avantageuse, ces unités filtrantes sont de type nid d'abeille en carbure de silicium.
  • Selon un premier mode de réalisation représenté sur la figure 2, ces unités filtrantes sont assemblées de façon à former le corps d'un filtre à particules. Ainsi, le moyen de filtration est constitué par trois filtres à particules 22a, 22b et 22c. Ces filtres à particules ainsi disposés, sont représentés vus de dessus sur la figure 3. Les filtres sont constitués d'un corps 40, et d'une enveloppe métallique 42. Le corps 40 est constitué par l'assemblage de plusieurs unités filtrantes 44, séparées par un joint 46, qui a pour fonction de compenser leur dilatation.
  • L'enceinte 18 comporte dans sa partie inférieure une chambre de rétention permettant d'accroître leur temps de résidence dans l'enceinte, des gaz d'échappement épurés par passage dans le moyen de filtration (unités filtrantes ou filtres à particules).
  • Cet accroissement du temps de résidence des gaz d'échappement permet à ces derniers de venir chauffer les unités filtrantes ou les filtres à particules et donc les particules elles-même. Cette caractéristique remarquable permet de maintenir ces dernières à une température bien supérieure à la température habituelle. Cette température peut atteindre la température permettant leur combustion en présence du catalyseur de combustion. Dans ce cas, la régénération se déroule sans injection de gazole.
  • Une variante de ce mode de réalisation est représentée sur la figure 4. Selon cette variante, les filtres à particules 22a, 22b et 22c sont disposés en sens inverse. Le dispositif comporte alors une zone particulière de rétention des gaz d'échappement, non encore filtrés. En effet, ceux-ci sont contenus entre les cartouches de catalyseur et le support inférieur 48 des filtres, ce qui permet un temps de séjour plus important des gaz d'échappement, avant leur passage dans les filtres à particules, qui va d'une part, favoriser l'échange de chaleur entre les gaz et les filtres et d'autre part, limiter la déperdition de chaleur par échange avec l'extérieur.
  • Selon un second mode de réalisation du dispositif selon l'invention, les unités filtrantes 44 sont indépendantes les unes des autres. Ainsi, chaque unité filtrante est séparée de celles adjacentes par un espace suffisant pour permettre leur dilatation. Cette disposition est particulièrement avantageuse car, d'une part, elle permet de réduire de façon très importante les contraintes de dilatations thermiques, notamment en cas de combustion brutale de particules retenues, ce qui limite fortement le risque de voir les unités filtrantes se détériorer; d'autre part, la surface disponible pour la transmission de chaleur par les gaz est augmentée de façon considérable, ce qui accentue d'autant cette transmission de chaleur.
  • Une variante de ce second mode de réalisation, représentée sur la figure 5, consiste à disposer les unités filtrantes 44 en sens inverse dans le dispositif de filtration, avec un support positionné dans la partie inférieure, à l'image de la variante du premier mode de réalisation, représentée à la figure 4. Les avantages de cette disposition sont identiques à ceux cités supra dans la description de la figure 4.
  • Selon un exemple de réalisation, chaque unité filtrante est un cylindre à base carrée ayant une largeur et une profondeur de 35 mm, et une longueur variant de 150 à 300 mm.
  • Dans le cas où la température n'est pas suffisante pour déclencher la combustion des particules, la régénération se produit grâce à l'injection de gazole.
  • Pour se faire, la température au voisinage du moyen de production de catalyseur est mesurée, grâce à la sonde 24. La valeur de température θm mesurée est recueillie par le boîtier électronique de commande. Le boîtier va comparer cette valeur θm à une valeur de référence θr, correspondant à la température à laquelle la combustion du gazole, en présence de catalyseur, se fait de façon complète.
  • Si la température θm mesurée est supérieure ou égale à la valeur de référence θr, le boîtier électronique de commande déclenche l'ouverture des électrovannes 31 et 33. Cette ouverture entraîne l'entrée de gazole et d'air comprimé dans la chambre 36. Dans la chambre 36, le gazole se mélange à l'air comprimé et le mélange, ainsi constitué, est pulvérisé, sous forme nébulisé dans le conduit d'évacuation des gaz 16. Cette pulvérisation se fait par un orifice aménagé dans la paroi de la chambre 36, en regard duquel se trouve une buse, fixée à la chambre, permettant d'obtenir un jet nébulisé sous pression. Selon un exemple de réalisation, la chambre 36 est de type pistolet à peinture à air comprimé.
  • Lorsque la quantité de gazole nécessaire, prédéterminée par le boîtier électronique de commande, a été injectée, l'alimentation en gazole est coupée par fermeture de l'électrovanne 33. Seule l'alimentation en air comprimé persiste de telle sorte que ce dernier est pulvérisé dans le conduit 16 en lieu et place du mélange. Cette alimentation prolongée en air comprimé a pour but de d'éliminer tout reste de gazole dans la chambre d'injection 36 et le conduit 16.
  • La capacité du réservoir secondaire 34 est déterminée de façon à ce qu'elle corresponde au volume maximum de gazole nécessaire à la régénération. Ainsi, il ne peut se produire de surconsommation de gazole. De plus, grâce à ce mode de réalisation, la fréquence des cycles de régénération est limitée par le temps nécessaire au remplissage du réservoir secondaire 34, ce qui permet également d'éviter des surconsommations conséquentes en carburant.
  • Le carburant injecté dans le conduit d'évacuation 16 entre dans l'enceinte et subit une combustion complète au niveau du moyen de production de catalyseur. Cette combustion induit une augmentation significative de température jusqu'à une température θc à laquelle va se dérouler la combustion des particules qui colmatent le moyen de filtration. Les molécules de NO2 produites vont catalyser cette réaction de combustion. Ainsi, cette réaction se produit à une température inférieure à la température normale. Lors de cette combustion, les particules solides sont transformées en gaz qui sont évacués.
  • Le moyen de filtration se retrouve alors dépourvu de dépôts et récupère sa pleine capacité de filtration.
  • Selon un mode de réalisation particulier, la mesure de θm peut être exploitée par le boîtier électronique afin d'évaluer la température des particules au niveau du moyen de filtration. En effet, si θm est voisine de la température à laquelle la combustion de particules peut se faire sans post-injection de gazole, le calculateur peut décider de ne pas déclencher cette post-injection, ce qui permet de faire une économie substantielle de carburant.
  • Selon une variante de ce mode de réalisation, une sonde de température supplémentaire est disposée à proximité du moyen de filtration de façon à obtenir la température exacte des particules.
  • Un troisième mode opérationnel consiste à mesurer simultanément la température et la pression au niveau du moyen de production de catalyseur, grâce à la sonde de température 24 et à la sonde de pression 26. La valeur de pression Pm mesurée reflète le degré d'obstruction du moyen de filtration par les particules. En effet, si le moyen de filtration est colmaté, les gaz d'échappement passent plus difficilement et exercent alors une contre-pression. Ainsi, la mesure de la pression Pm correspond au meilleur moyen de contrôler le colmatage du moyen de filtration. Le boîtier électronique de commande compare la valeur Pm mesurée à une valeur de référence Pr, correspondant au degré d'obstruction maximal acceptable du moyen de filtration. Si Pm est supérieure ou égale à Pr, le boîtier électronique de commande compare θm à θr. Si θm est supérieure ou égale θr, le boîtier déclenche alors la post-injection de gazole qui conduit à la régénération du moyen de filtration. Ce mode opérationnel a pour intérêt de ne déclencher de post-injection que lorsque le moyen de filtration a atteint un degré de colmatage déterminé, ce qui permet de fortement limiter la surconsommation de carburant.
  • EXEMPLE
  • A titre d'exemple non limitatif, est présenté ci-dessous un dispositif de filtration utilisé avec un moteur de véhicule industriel, le moteur Renault VI 620-45 suralimenté, de 10 litres de cylindrée et d'une puissance de 190 Kw. Ce moteur équipe des bus urbains.
  • Le dispositif de filtration est composé de :
    • Deux cartouches de catalyseurs à base de platine permettant la transformation du NO en NO2. Ces cartouches, de 7,5 pouces diamètre et de 3 pouces de long, montées en parallèle sur un support métallique, tel que représenté sur la figure 2. Le volume de catalyseur a été déterminé de sorte que le taux de conversion de NO en NO2 soit supérieur à 85 %.
    • Trois filtres à particules IBIDEN, de type nid d'abeille en carbure silicium, montés en parallèle. Ces filtres ont une section de 162 cm2 (diamètre 143,8 mm) et une longueur de 254 mm.
    • Un système d'injection de gazole comportant une chambre d'injection tel que décrit précédemment et un réservoir secondaire d'une capacité de 50 cm3. Le débit de système d'injection est de 50 cm3 par minute. Ce débit a été déterminé de sorte que l'augmentation de température des gaz d'échappement, engendrée par la post-injection soit comprise entre 170 et 250°C, selon les conditions d'utilisation.
    • Un boîtier électronique commandant la post-injection de gazole. Une temporisation limite la durée de la post-injection à 1 minute et une programmation spécifique du boîtier permet d'obtenir au plus une post-injection toutes les 5 minutes.
  • L'essai a été réalisé sur banc, dans des conditions correspondant à des conditions de roulage urbain.
  • Le boîtier électronique a été réglé de manière à ce que la post-injection soit déclenchée dès que la contre-pression atteint 120 mb et que la température des gaz est supérieure à 300°C.
  • On sait que, pour que la régénération se fasse correctement, il est nécessaire que le temps pendant lequel la température des gaz d'échappement est supérieure à 300°C, soit supérieur à 30 % du temps d'utilisation du véhicule.
  • Le dispositif décrit dans cet exemple permet d'obtenir une température de gaz d'échappement constamment supérieur à 300°C, quelle que soit la température initiale des gaz d'échappement.
  • Ainsi, la valeur de contre-pression mesurée après chaque processus de régénération du dispositif de filtration est de 50 mb, ce qui correspond à la valeur de contre-pression mesurée sur un dispositif de filtration neuf. La régénération du dispositif est donc complète.
  • Le procédé de régénération selon l'invention et le dispositif de filtration associé sont donc particulièrement adéquats pour le traitement des gaz d'échappement des véhicules de transport en commun urbain. En effet, les gaz produits par ces véhicules sont généralement à une température inférieure à celle nécessaire pour permettre la régénération des dispositifs de filtration classiques, ce qui entraîne un colmatage de ces dispositifs et donc leur détérioration rapide par de brutales réactions de combustion. Or, les résultats obtenus avec la présente technique permettent d'envisager une durée de vie minimale du dispositif de filtration de 100 000 km, sur des véhicules de ce type.
  • Une telle technique pourrait également être utilisée sur des véhicules de tourisme. En effet, ces derniers fonctionnant à des régimes plus importants, les gaz d'échappement produits ont des températures bien supérieures qui peuvent atteindre plus de 500°C. Le problème de régénération de filtre est donc moins crucial. Toutefois, les systèmes existants utilisent généralement des additifs organométalliques pour catalyser la combustion des particules, ce qui engendre un coût de fonctionnement important. Le dispositif selon l'invention, associé à son procédé de régénération, permet de pallier ce problème de coût.
  • Ainsi, si le dispositif de filtration selon l'invention, ne comporte pas d'éléments techniques nouveaux, les inventeurs ont le mérite d'avoir su combiner et adapter différentes techniques existantes afin de potentialiser leurs effets et d'obtenir un dispositif ayant une très grande efficacité, pour lutter contre l'émission de particules polluantes produites par les moteurs diesels et, d'autre part, pour obtenir d'excellents résultats en terme de régénération de filtres, même dans le cas de véhicules dont les régimes moteurs ne permettent pas d'obtenir des gaz d'échappement ayant une température élevée.

Claims (14)

  1. Procédé de régénération d'un dispositif de filtration des gaz d'échappement produits par un moteur diesel, ce procédé étant du type de ceux dans lesquels des particules, retenues sur un moyen de filtration (22) dudit dispositif de filtration, sont brûlées grâce à l'action d'un catalyseur de combustion (20) ledit moyen de filtration (22) des gaz d'échappement étant prévu en aval d'un moyen de production dudit catalyseur de combustion (20), caractérisé en ce qu'il consiste essentiellement à retenir les gaz d'échappement chauds autour du moyen de filtration (22) afin de fournir aux particules, au moins une partie de l'énergie calorifique nécessaire à leur combustion et à brûler lesdites particules de façon à régénérer le dispositif de filtration, et également à :
    - mettre en oeuvre un moyen de production de catalyseur de combustion (20) dans le dispositif de filtration,
    - mesurer une température θm au voisinage du moyen de production de catalyseur de combustion (20),
    - comparer θm à une température θr correspondant à la température à laquelle la combustion du gazole, en présence du catalyseur de combustion, est complète,
    - si θm est supérieure ou égale à θr, déclencher une post-injection de gazole, par l'intermédiaire d'un moyen d'injection, dans le dispositif de filtration, pendant une durée déterminée, afin d'entraîner une augmentation de température des particules pour permettre leur combustion.
  2. Procédé selon la revendication précédente, caractérisé en ce qu'il consiste également à :
    - mesurer une pression Pm au voisinage du moyen de production de catalyseur de combustion (20), ladite pression Pm reflétant le degré d'obstruction du moyen de filtration (22) par les particules,
    - comparer ladite pression Pm à une pression Pr de référence correspondant au degré d'obstruction maximal acceptable,
    - si Pm est supérieure ou égale à la pression Pr, comparer θm à θr,
    - si θm est supérieure ou égale à θr, déclencher la post-injection de gazole.
  3. Dispositif permettant la mise en oeuvre du procédé de régénération selon la revendication 1 ou 2, comportant un moyen de production de catalyseur de combustion (20), un moyen de filtration (22) des gaz d'échappement en aval du moyen de production de catalyseur de combustion, un moyen d'injection de gazole en amont du moyen de production de catalyseur de combustion, lesdits moyens de production de catalyseur de combustion et de filtration étant contenus dans une enceinte réactionnelle (18), dans la trajectoire du flux des gaz d'échappement produits par un moteur (10), ainsi qu'un boîtier électronique de commande (28) et au moins une sonde de température (24), placée à l'intérieur de ladite enceinte (18), servant à mesurer la température θm en son sein, caractérisé en ce que le moyen d'injection de gazole communique avec un conduit d'évacuation (16) des gaz d'échappement et en ce que le boîtier électronique de commande (28) est relié à la sonde de température (24), compare la valeur θm mesurée avec la valeur de référence θr, et déclenche l'injection de gazole dans le conduit d'évacuation (16), par l'intermédiaire dudit système d'injection, lorsque la mesure θm est supérieure ou égale à la valeur de référence θr.
  4. Dispositif selon la revendication 3, permettant la mise en oeuvre du procédé de régénération selon la revendication 2, caractérisé en ce qu'il comporte au moins une sonde de pression (26), placée à l'intérieur de ladite enceinte (18), servant à mesurer la pression Pm en son sein, et en ce que le boîtier électronique de commande (28) est relié à ladite sonde de pression (26), compare la valeur Pm mesurée avec la valeur de référence Pr, et déclenche l'injection de gazole dans le conduit d'évacuation (16), par l'intermédiaire dudit système d'injection lorsque la mesure Pm est supérieure ou égale à la valeur de référence Pr.
  5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que ledit moyen de filtration, constitué par un ensemble d'unités filtrantes (44), baigne dans une chambre de réception des gaz d'échappement, lesdits gaz d'échappement venant chauffer lesdites unités filtrantes.
  6. Dispositif selon la revendication 5, caractérisé en ce que ledit moyen de filtration est constitué par au moins deux filtres à particules (22a, 22b) comportant un corps (40), formé par les unités filtrantes (44) solidarisées par un joint (46), et une enveloppe métallique (42).
  7. Dispositif selon l'une des revendications 3 à 6, caractérisé en ce que ledit moyen d'injection comprend un réservoir de gazole (34) et une chambre d'injection (36) du gazole contenu dans ledit réservoir, dans le conduit d'évacuation (16).
  8. Dispositif selon la revendication précédente, caractérisé en ce que ladite chambre (36) est alimentée, d'une part, en gazole par l'intermédiaire d'un premier conduit (30) la reliant audit réservoir (34), et d'autre part, en air comprimé par l'intermédiaire d'un second conduit (32), la reliant au moteur (10), ladite chambre comportant un orifice par lequel le gazole est injecté dans ledit dispositif de filtration.
  9. Dispositif selon l'une des revendications 7 ou 8, caractérisé par le fait que les conduits (30 et 32) alimentant la chambre (36) du système d'injection en gazole et en air comprimé comportent chacun une électrovanne (31 et 33) commandée par le boîtier électronique de commande, l'ouverture de ces électrovannes entraînant l'entrée de gazole et d'air comprimé dans la chambre (36) et donc l'injection de gazole dans le conduit d'évacuation des gaz d'échappement.
  10. Dispositif selon l'une des revendications 8 ou 9, caractérisé en ce que la chambre (36) du système d'injection est munie d'une buse en regard de l'orifice permettant d'injecter le gazole sous forme nébulisée, dans le conduit d'évacuation des gaz (16).
  11. Dispositif selon l'une des revendications 5 à 10, caractérisé en ce que les unités filtrantes (44) sont constituées préférentiellement en carbure de silicium ou tout autre matériau équivalent, dont la structure est de type nid d'abeille.
  12. Dispositif selon l'une des revendications 3 à 11, caractérisé en ce que le moyen de production de catalyseur de combustion est constitué par au moins une cartouche à base de platine ou tout matériau équivalent, catalysant la transformation du monooxyde d'azote (NO), contenu dans les gaz d'échappement en dioxyde d'azote (NO2), le NO2 produit catalysant la réaction de combustion des particules colmatant le filtre.
  13. Dispositif selon l'une des revendications 7 à 12, à, caractérisé en ce que la capacité du réservoir secondaire (34) est préférentiellement équivalente au volume maximum de gazole injecté lors de la post-injection.
  14. Dispositif selon l'une des revendications 6 à 13, caractérisé en ce que les filtres à particules (22a et 22b) sont placés dans l'enceinte (18), en parallèle.
EP02779615A 2001-08-28 2002-08-07 Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre Expired - Lifetime EP1421267B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0111180A FR2829180B1 (fr) 2001-08-28 2001-08-28 Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour un moteur diesel et dispositif de mise en oeuvre
FR0111180 2001-08-28
PCT/FR2002/002819 WO2003018971A1 (fr) 2001-08-28 2002-08-07 Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre

Publications (2)

Publication Number Publication Date
EP1421267A1 EP1421267A1 (fr) 2004-05-26
EP1421267B1 true EP1421267B1 (fr) 2006-04-12

Family

ID=8866779

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02779615A Expired - Lifetime EP1421267B1 (fr) 2001-08-28 2002-08-07 Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre

Country Status (7)

Country Link
US (1) US20050000211A1 (fr)
EP (1) EP1421267B1 (fr)
AT (1) ATE323219T1 (fr)
CA (1) CA2458983C (fr)
DE (1) DE60210631T2 (fr)
FR (1) FR2829180B1 (fr)
WO (1) WO2003018971A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10316799A1 (de) * 2003-04-11 2004-10-28 Man Nutzfahrzeuge Ag Kombinierte Abgasnachbehandlungs-/Schalldämpfungsvorrichtung im Abgasstrang einer Brennkraftmaschine
EP1644619A2 (fr) * 2003-06-12 2006-04-12 Donaldson Company, Inc. Procede d'apport de carburant dans un ecoulement transitoire d'un systeme d'echappement
FR2872212B1 (fr) * 2004-06-23 2006-11-03 Peugeot Citroen Automobiles Sa Systeme d'evaluation de l'etat de charge de moyens de depollution d'une ligne d'echappement
US20060101810A1 (en) * 2004-11-15 2006-05-18 Angelo Theodore G System for dispensing fuel into an exhaust system of a diesel engine
US20060218902A1 (en) * 2005-03-31 2006-10-05 Solar Turbines Incorporated Burner assembly for particulate trap regeneration
US8091337B2 (en) * 2008-02-29 2012-01-10 Corning Incorporated Exhaust treatment device having a reactive compound and conditioning the device via endothermic reaction
US9010098B2 (en) * 2012-10-24 2015-04-21 Electro-Motive Diesel, Inc. After-treatment device
CN108868974A (zh) * 2018-09-03 2018-11-23 王随朝 柴油发电机尾气处理装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462812A (en) * 1982-12-08 1984-07-31 General Motors Corporation Ceramic monolith particulate trap including filter support
JPH0419315A (ja) * 1990-05-10 1992-01-23 Nissan Motor Co Ltd 内燃機関の排気処理装置
JPH0441914A (ja) * 1990-06-01 1992-02-12 Nissan Motor Co Ltd 内燃機関の排気処理装置
US5381659A (en) * 1993-04-06 1995-01-17 Hughes Aircraft Company Engine exhaust reburner system and method
JP3028110B2 (ja) * 1993-10-21 2000-04-04 日野自動車株式会社 エンジンの排ガス浄化装置
JP3089989B2 (ja) * 1995-05-18 2000-09-18 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
US6021639A (en) * 1995-06-28 2000-02-08 Mitsubishi Heavy Industries, Ltd. Black smoke eliminating device for internal combustion engine and exhaust gas cleaning system including the device
JP3572439B2 (ja) * 1998-05-21 2004-10-06 日産自動車株式会社 ディーゼルエンジンの排気浄化装置
US6273120B1 (en) * 1998-11-12 2001-08-14 Siemens Aktiengesellschaft Device for introducing a liquid reducing agent into an exhaust gas purification system
AU1288800A (en) * 1998-12-05 2000-06-26 Johnson Matthey Public Limited Company Improvements in particulate control
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
JP3904768B2 (ja) * 1999-09-06 2007-04-11 日野自動車株式会社 ディーゼルエンジン排気ガス用パティキュレートフィルタのクリーニング及び再生装置
US6568178B2 (en) * 2000-03-28 2003-05-27 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
US6304815B1 (en) * 2000-03-29 2001-10-16 Ford Global Technologies, Inc. Method for controlling an exhaust gas temperature of an engine for improved performance of exhaust aftertreatment systems
EP1205647B1 (fr) * 2000-11-03 2003-03-05 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Procédé de régénération le filtre à particules d'un moteur Diesel
US6405528B1 (en) * 2000-11-20 2002-06-18 Ford Global Technologies, Inc. Method for determining load on particulate filter for engine exhaust, including estimation of ash content
US6598387B2 (en) * 2000-12-21 2003-07-29 Ford Global Technologies, Llc Reduction of exhaust smoke emissions following extended diesel engine idling
KR100504422B1 (ko) * 2001-09-07 2005-07-29 미쓰비시 지도샤 고교(주) 엔진의 배기 정화 장치
JP3858752B2 (ja) * 2002-04-25 2006-12-20 トヨタ自動車株式会社 内燃機関の排気浄化装置
US6843054B2 (en) * 2003-01-16 2005-01-18 Arvin Technologies, Inc. Method and apparatus for removing NOx and soot from engine exhaust gas
US7021047B2 (en) * 2004-07-23 2006-04-04 General Motors Corporation Diesel exhaust aftertreatment device regeneration system

Also Published As

Publication number Publication date
DE60210631D1 (de) 2006-05-24
FR2829180A1 (fr) 2003-03-07
CA2458983A1 (fr) 2003-03-06
FR2829180B1 (fr) 2005-10-28
US20050000211A1 (en) 2005-01-06
CA2458983C (fr) 2012-07-10
DE60210631T2 (de) 2007-04-05
EP1421267A1 (fr) 2004-05-26
ATE323219T1 (de) 2006-04-15
WO2003018971A1 (fr) 2003-03-06

Similar Documents

Publication Publication Date Title
EP1588032B1 (fr) Procede de post injection de liquide de regeneration du type hydrocarbure, alcool et/ou agent reducteur (e.g. gazole et/ou uree et/ou solution ammoniacale) pour la regeneration de systemes de filtration des gaz d echappement de moteur diesel
FR2902137A1 (fr) Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d'un tel bruleur
WO2003102389A9 (fr) Procede et dispositif de filtration des gaz d'echappement pour moteur diesel a surface de filtration variable par obstruction commandee
EP1581727B1 (fr) Systeme d aide a la regeneration d un filtre a particul es d une ligne d echappement d un moteur diesel
FR2928176A1 (fr) Procede de regeneration d'un filtre a particules pour moteur a essence et ensemble d'echappement associe
EP1421267B1 (fr) Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour moteur diesel et dispositif de mise en oeuvre
FR2876414A1 (fr) Systeme et procede de traitement aval des gaz d'echappement d'un moteur a combustion interne
EP1581728B1 (fr) Systeme d'aide a la regeneration d'un filtre a particules pour ligne d'echappement
EP1448882B1 (fr) Dispositif de filtration des gaz d echappement pour moteur diesel comprenant un support de catalyseur integre dans le moyen de filtration
FR2819548A1 (fr) Systeme de traitement des gaz d'echappement d'un moteur a combustion et procede de pilotage d'un tel systeme
EP1461515B1 (fr) Procede de regeneration de filtres a particules par injection de nitrate d'ammonium et dispositif de mise en oeuvre
FR2937082A1 (fr) Bruleur pour regeneration des filtres a particules de moteur a combustion interne et la mise en temperature de systeme catalytique et ligne d'echappement integrant un tel bruleur.
FR2927657A3 (fr) Alimentation en carburant du systeme d'admission de reducteurs dans l'echappement et dispositif de depollution des gaz d'echappement d'un vehicule automobile.
FR2902455A1 (fr) Systeme de traitement des gaz polluants de moteur diesel
FR2937882A1 (fr) Procede de dimensionnement d'un catalyseur d'oxydation.
EP2708709B1 (fr) Ligne déchappement avec dispositif de traitement des émissions polluantes d'un moteur thérmique par reduction catalytique, s'affranchissant de réducteur embarque
FR2865239A1 (fr) Dispositif de filtration des gaz d'echappement pour moteur diesel associant un additif de combustion compose de nano-particules et un filtre a particules a surface de filtration variable
FR2873157A1 (fr) Procede et dispositif de regeneration d'un filtre a particules d'une ligne d'echappement d'un moteur diesel
EP1511550A2 (fr) Dispositif de filtration de gaz d'echappement
FR2808840A1 (fr) Procede de determination du point de montage d'un precatalyseur dans la tubulure d'echappement d'un moteur a combustion interne et installation d'epuration l'utilisant
FR2978203A1 (fr) Bruleur a flux inverse pour la regeneration des filtres a particules de moteur a combustion interne et la mise en temperature de systemes dans une ligne d'echappement integrant un tel bruleur
FR2933448A1 (fr) Dispositif de purification de gaz d'echappement
FR2849671A1 (fr) Filtre a particules pour ligne d'echappement et ligne d'echappement, systeme d'aide a la regeneration et procede de traitement des gaz d'echappement l'utilisant
EP1529932A1 (fr) Système de purification des gaz d'échappement d'un moteur thermique de véhicule automobilie et ligne d'échappement comportant un tel système

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60210631

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070115

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

BERE Be: lapsed

Owner name: CRMT

Effective date: 20060831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: CRMT

Free format text: CRMT#3, CHEMIN DE LA BROCARDIERE#69570 DARDILLY (FR) -TRANSFER TO- CRMT#3, CHEMIN DE LA BROCARDIERE#69570 DARDILLY (FR) $ JEAN-CLAUDE FAYARD#44 TER, RUE DU PROFESSEUR FLORENCE#69003 LYON (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110812

Year of fee payment: 10

Ref country code: FR

Payment date: 20110727

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110810

Year of fee payment: 10

Ref country code: GB

Payment date: 20110722

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110822

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120807

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60210631

Country of ref document: DE

Effective date: 20130301